
1Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Recovery Principles in
MySQL Cluster 5.1

Mikael Ronström
Senior Software Architect

MySQL AB



2Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Outline of Talk

• Introduction of MySQL Cluster in version 4.1
and 5.0

• Discussion of requirements for MySQL Cluster
version 5.1

• Adaption of System Recovery algorithms

• Adaption of Node Recovery algorithms



3Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

NDB API

MySQL Cluster Architecture

Application

Management
Client

Management
API

MySQL
Server

NDB Kernel
(Database nodes)

MGM Server
(Management nodes)

Application

NDB API

Application

MySQL
Server

Application

Application

NDB API



4Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Overview of MySQL Cluster in version 4.1 and 5.0

• Main memory
– Complemented with logging to disk

• Clustered
– Database distributed over many nodes

– Synchronous replication between nodes

– Database automatically partitioned over the nodes

– Fail-over capability in case of node failure

• Update in one MySQL server, immediately see result in
another

• Support for high update loads (as well as very high read
loads)



5Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Node Recovery

Running Node
(Primary)

Restarting Node
(Backup)

Copied
fragments

Copying

Transaction Coordinator coordinates

fragment operations

If there are two

fragment copies,

then both are 

part of transaction

Example with two replicas



6Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

System Recovery:
Flushing the log to disk

TimeT1 commits T2 commits T3 commitsGCP

A global checkpoint GCP flushes REDO log to disk.

Transactions T1 and T2 become disk persistent.

(Also called group commit.)

REDO log



7Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

System Recovery:
Log and Local checkpoints

TimeT1 commits T2 commits T3 commits

The REDO log is written to disk.

LCP

A local checkpoint LCP

saves an image of the

database on disk.

This enables cutting the 

tail of the REDO log.

Since MySQL Cluster replicate all data, the REDO log
and LCPs are only used to recover from whole system
failures.

Transactions T1, T2 and T3 are main memory persistent
in all replicas.



8Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

System Recovery:
Checkpointing takes time

TimeT1 commits T2 commits T3 commits

REDO log

LCP
start

LCP
stop

UNDO log

UNDO log makes LCP image consistent with database at LCP start time.

This is needed since REDO log records are exactly the operations performed

and thus the LCP must be action-consistent.



9Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Restoring a Fragment at
System Restart

1) Load Data Pages from local checkpoint into memory

Start
UNDO log

End of
UNDO log

Execute UNDO log

Fuzzy point of
start of Local
Checkpoint

End Global
Checkpoint
Log Record

Execute REDO log



10Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

New Requirements for MySQL Cluster 5.1

• Disk data to handle larger data volumes

• Variable sized records

• User defined partitioning

• Replication between clusters



11Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Discussion of Disk data requirement (1)

• Two major options

  - Put in existing disk-based engine into
NDB kernel

  - Careful reengineering of NDB kernel to
add support for disk-based



12Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Discussion of Disk data requirement (2)

• We opted for a careful reengineering of the
NDB kernel to handle disk-based data

• The aim to keep its very good performance
although data resides on disk

• Implementation divided in two phases, first
phase puts non-indexed data on disk

• Second phase implement disk-based indexes



13Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Discussion of Disk data requirement (3)

• MySQL Cluster version 5.1 implements
the first phase, non-indexed fields on
disk

• The approach of careful reengineering
also enabled and in some cases forced
us to improve on parts of the recovery
architecture

• This paper presents some of those
improvements



14Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Availability of MySQL Cluster 5.1

• The 5.1 version of MySQL has just been
made available for source download

• As of today the version includes support
for user defined partitioning

• As of soon the version will include
support for disk-based data

• The cluster replication will soon be
available in this downloadable tree



15Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Structure of Disk-based Row

Tup
Vers.

NULL
Bits

Check
Sum

2B [4B] [4B]

Attribute
Descriptor

Offset

Attribute
Id

Bits

2B
Fixed
Size
Part

Var
Attr. x

Variable Attribute
Length Array

Disk
Ref

[8B]
GCP

Id

[4B]

NULL
Bits

Check
Sum

[4B] [4B]

Bits

4B
Fixed
Size
Part

Var
Attr. x

MM
Ref

4B
GCP

Id

4B

Main Memory Part of Row

Disk Memory Part of Row



16Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Node Recovery

• Node Restart clearly affected by
needing to copy entire data if data
volume goes up by a factor of 10-100.

• 10-20 minutes of node restart with a few
Gbytes of data is acceptable since no
downtime happens but 10 hours of node
restart with a few hundred Gbytes of
data is not an acceptable period.

• Thus ”forced” reengineering



17Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Node Restart, Replay Log Variant
Starting NodeRunning Node

1) Restart node from
Local logs (e.g. GCP 16)

2) Replay Log from
First GCP not restored
(e.g. 17 in this case) to
Current GCP

3) Complex Hand-over (most likely involving
some exclusive locks when log replay completed



18Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Pros and Cons with Replay Log Variant

• Cons 1: Need to copy all rows if not
enough log records in the running node

• Cons 2: Need to read the REDO log
while writing it

• Cons 3: Difficult hand-over problem
when end-of-log is coming closer to
complete the Copy Phase

• Pros 1: Minimum effort when REDO
logs exist



19Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Node Restart, Delete Log Variant
Starting NodeRunning Node

1) Restart node from
Local logs (e.g. GCP 16)

3) Replay Delete Log from First
GCP not restored (e.g. 17 in
this case) to GCP of 2) 2) Start participating in

transactions4) Scan Running Node for records
with higher GCP then GCP restored
(e.g. 16 here), synchronise with
starting node those rows



20Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Pros and Cons with Delete Log Variant

• Cons 1: Need to copy all data if not enough delete
log records in the running node

• Cons 2: Need to read the Delete log while writing it

• Cons 3: Need to scan all rows in running node

• Cons 4: Need TIMESTAMP on rows

• Pros 1: No hand-over problem

• Pros 2: Delete Log much smaller than REDO log



21Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

iSCSI Variant Intro

• View all data as ROWID entries
• ROWID’s only added or deleted in chunks of pages

=> uncommon operation
• Thus an INSERT/DELETE is transformed into an

UPDATE of the ROWID entry
• Thus synchronisation can be done by a side-by-side

check if the old and the new data is the same
• Efficient manner of performing check is by having

TIMESTAMP on all ROWs (in our case TIMESTAMP
= GCP id)



22Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Node Restart, iSCSI Variant
Starting NodeRunning Node

1) Restart node from
Local logs (e.g. GCP 16)

2) Specify page ranges existing
in partition to copy

4) Start participating in
transactions

5) Synchronise all ROWID’s, send new
data when changed since GCP node
restored (e.g. 16 in this case)

3) Delete all pages no longer
present



23Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Pros and Cons with iSCSI Variant

• Cons 1: Need to scan all rows in running node

• Cons 2: Need TIMESTAMP on rows

• Cons 3: Requires ROWID as record identifier

• Pros 1: No hand-over problem

• Pros 2: Not limited by Log Sizes



24Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

System Recovery

• Algorithms that write entire data set
each during local checkpoint cannot
work for cached disk data

• Thus new algorithm needed for the disk-
based parts

• Previous algorithm had a coupling
between abort mechanisms and
recovery mechanisms

• Here we found an ”enabled”
reengineering



25Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Buffer Manager Problem

• Design Goal: Any update should at
most generate two disk writes in the
normal case to sustain very good
performance for high update loads (side
effect should be that we get almost
comparable performance to file systems



26Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Buffer Manager Solution (1)

• REDO log no changes

• Write Page using a Page Cache
algorithm with Write Ahead Log (WAL)
principle.

• We try to achieve multiple writes for
inserts by choosing an extent with place
for the record and as much free space
as possible



27Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Search Extent to Write
(Down First, Right Then)

(Extent Size = 1 MB, 70% full
Record Size = 10 kB

0.5MB
28kB

0.4MB
22kB

0.3MB
18kB

0.2MB
15kB

0.1MB
11kB

0.5MB
24kB

0.4MB
19kB

0.2MB
15kB

0.2MB
12kB

0.1MB
8kB

0.5MB
20kB

0.4MB
16kB

0.3MB
12kB

0.2MB
9kB

0.1MB
5.5kB

0.5MB
16kB

0.4MB
12.8kB

0.3MB
9.6kB

0.2MB
6.4kB

0.1MB
3.2kB



28Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Buffer Manager Solution (2)

• For disk-based data we need to UNDO
log all structural changes (data
movement, allocation, deallocation)

• Data UNDO logging is not needed if
GCP was written since REDO log will
replay it anyways

• Implementation through Filtering UNDO
log records when preparing them for
write to disk (avoids complex logic
around page writes)



29Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Abort Handling Decoupled from Recovery

• Decided to use No-Steal algorithm (only
committed pages are written to disk)

• => Simplifies Recovery
• => Requires Transaction State to be in main

memory for optimum performance
• Large transactions could require that

transactional information is spooled down to
disk and back later

• As for MySQL Cluster 4.1 and 5.0 also 5.1
will impose a configurable limit to transaction
sizes



30Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Buffer Manager Conclusions

• Good solution for minimising the
number of disk writes for transactions
that fit into main memory (thus can still
be upto Gbytes in size)

• Growth of memory sizes makes design
choices with easier architecture better
(logical logging and No-Steal algorithm)



31Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

New LCP Algorithm for Main Memory Parts
that avoids UNDO logging entirely

• Scan Memory Parts and write each row
part into checkpoint log

• Use one bit in row to synchronise write
at start of write

• This bit doesn’t survive crashes and
thus no problem maintaining it after a
crash it is always initialised to 0

• Simple variant on Copy-On-Write



32Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Action by Insert/Update/Delete when scan ongoing
and scan hasn’t passed yet

• Commit Insert sets bit, no write to
checkpoint

• Commit Update/Delete sets bit and
writes to checkpoint log



33Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Action by scan

• If bit = 0 when scan reads it write it to
the local checkpoint file

• If bit = 1 then set bit = 0 and don’t write
it to local checkpoint



34Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Index Recovery

• All indexes are main memory indexes
and are rebuilt as part of system
recovery and node recovery

• All index builds can be performed while
updates are ongoing (feature of NDB
kernel to be exported to SQL level in
5.1)



35Copyright 2005 MySQL AB The World’s Most Popular Open Source Database

Conclusions

• Careful reengineering of NDB kernel
introducing non-indexed fields on disk
for MySQL Cluster version 5.1

• Lots of improvements, both
performance-wise and simplicity-wise of
Recovery algorithms

• Welcome to play with it and check if
there are areas needing improvement,
code will soon be available


