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Motivation

• Data mining applications

– Fast growing segment

– Compute and memory 
intensive

• Evolution of modern 
architecture

– Cache performance 
becomes more critical

– Entering the chip multiple 
processor era

• Frequent itemset mining

– A typical example to show 
the significance of 
architecture oriented 
algorithm design

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Contributions

• We improve the cache performance through design 
of a cache-conscious FP-array

– Improve data locality performance

– Hardware and software prefetching

– Reduce off-chip memory access and improve scaling 
performance

• We present a lock-free method to efficiently 
parallelize the FPGrowth algorithm

– Dataset tiling and the hot sub-tree provide a lock-free 
mechanism in FP-tree building

– Better scaling performance to harness the multi-core 
processing capability

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Frequent Itemset Mining (FIM)

• Aims to discover groups of items or values that co-occur 
frequently in a dataset

• An example

– Dataset:

• T1: A, B, C, D, 

• T2: B, C, D

• T3: A, B, E

– When min-support = 2, The FIMs are:

• {A}  {B}  {C}  {D}

• {A, B}  {B, C}  {C, D}  {B, D} 

• {B, C, D}

– Anti-monotone Apriori property: if any length k itemset is 
not frequent in the database, its length (k +1) super-
itemset can never be frequent

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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FIMI algorithms

• Apriori (The first algorithm)

• DHP

• DIC

• Eclat

• Partition

• FPGrowth (The first FP-tree based algorithm)

• Cache-Conscious tree (The state-of-the-art algorithm)

• Nonordfp

• KDCI, parKDCI

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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FP-tree building

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Sorted TransactionsTransactionNo.

Min-support=3
Frequent items: A,B,C,D,E

Root

A:1

B:1

E:1

Header Table

Item  frequency  head 
A           5 NULL

B           3 NULL

C          3 NULL

D          3 NULL

E          3 NULL

Create an empty FP-treeInsert transaction 1Insert transaction 2
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Insert other transactions
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• Build FP-tree
– Count the frequency of each item (Preparation)

– Insert frequent items of each transaction in 
frequency descending order into the FP-tree (FP-
tree building)
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FP-growth

• FP-growth (mining an existing FP-tree)

– For each item in the FP-tree

• Construct the conditional pattern base

• If the conditional pattern base has more than 1 frequent item, 
construct a child FP-tree

• Recursively FP-growth of this child FP-tree

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 

Root
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Header Table

Item  frequency  head 
A           5           NULL

B           3           NULL

C          3           NULL

D          3           NULL

E          3           NULL

C:2

D:1

D:1

E:1

B:1 C:1

E:1
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Conditional Pattern Bases

item cond. pattern base

E BA:1, DA:1, C:1

D CA:1, A:1

C A:2

B A:2

E:1

B:2

A:5

E:1

D:1 E:1

C:1

Poor spatial locality: only two node fields are used in the FP-tree traversal, pointer 
de-referencing

Poor temporal locality: large data structure
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Cache-Conscious tree (CC-tree)

• CC-tree
– FP-tree data structure reorganization

– More cache friendly, but it still suffers from pointer 
de-referencing

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Cache-Conscious FP-array

• Item array
– Each element is an item label

– Replicate items in the joint path in the FP-tree

• Node array
– Organized as an array list. Each item records the 
occurrences of a frequent item in the item array 

– 3 elements of each item

• begin position of the item in the item array

• reference count 

• transaction size 

• Traverse the FP-tree in a depth-first order to build 
FP-array

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Visit node A

• Write an element to the node array list of A

• Write item A to the item array

Visit node B

• Write an element to the node array list of B

• Write item B to the item array

Visit node E

• Write an element to the node array list of E

• Do not write item E to the item array as node E is a leaf node

Visit node C

• Duplicate the items in the joint path

• Write an element into the node array list of C

• Write item C to the item array

Visit other nodes

FP-array construction from an FP-tree 

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 

Root

A:5

B:2

E:1

C:2

D:1

D:1

E:1

B:1 C:1

E:1

D:1A:5

B:2

E:1

C:2



14

FP-array optimization

• Compact data size for the item array

• Hardware prefetching

– Continuous accesses in both the node array and the item array

• Software prefetching

– Prefetch data in the item array, located by the node array

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 

H/W prefetching

H/W prefetching

S/W prefetching

FP-array provides a smaller node size than FP-tree and CC-tree: improve cache line 
utilization and spatial data locality

Hardware prefeteching: enable strided data access pattern

Software prefeteching: enable non-strided transaction data access
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The importance of FP-tree building 
parallelization

• FP-tree building
– Largely ignored due to its small execution time compared 
to FP-growth

– However, after FP-array optimization the FP-tree building 
time consists of 10~40% of the total run time

– It cannot be ignored according to Amdahl’s law 

• Traditional approaches
– Multi-tree method

– Lock based single tree method

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Dataset tiling

• General terms
– Hot item: A, B; Cold item: C, 

D, E

– Class id: the bitmap of hot 
items

– Hot FP-node: the FP-tree 
node corresponding to the 
hot item

– Hot sub-tree: the sub-tree 
consists of all the hot nodes

– Hot node hashing table: each 
hot node can be hashed by a 
unique class id

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Root

Hot node hashing table

00 01 10 11

<00, 1, (D)>D8

<00, 2, (C,E)>C,E7

<10, 0, ()>B6

<11, 0, ()>A,B5

<01, 1, (D)>A,D4

<01, 2, (C,E)>A,C,E3

<01, 2, (C,D)>A,C,D2

<11, 1, (E)>A,B,E1

New 

transactions
Sorted 

Transactions
No.
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Lock-free FP-tree building

00D8

00C,E7

10B6

11A,B5

01A,D4

01A,C,E3

01A,C,D2

11A,B,E1

Class idSorted 

Transactions
No.
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<1, (E)>, <0, ()>11

<0, ()>10

<2, (C,D)>, <2, (C,E)>,<1, (D)>01

<2, (C,E)>, <1, (D)>00

New transactionsTile Id.

• Preparation: generate new 
transactions as <class id, 
cold item number, cold 
item list>

• Dataset tiling: merge new 
transactions with the 
same class id into a tile

• Dataset insertion: insert 
new transactions in each 
tile into the tree. For each 
tile, append each 
transaction to the hot
node corresponding to the 
class id
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Lock-free FP-tree building

• Preparation: generate new 
transactions as <class id, 
cold item number, cold 
item list>

• Dataset tiling: merge new 
transactions with the 
same class id into a tile

• Dataset insertion: insert 
new transactions in each 
tile into the tree. For each 
tile, append each 
transaction to the hot
node corresponding to the 
class id

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 

<1, (E)>, <0, ()>11

<0, ()>10

<2, (C,D)>, <2, (C,E)>,<1, (D)>01

<2, (C,E)>, <1, (D)>00

New transactionsTile Id.

Tiles are independent with each other: a natural lock-free parallel mechanism in FP-
tree building

Tile-by-tile insertion leads to better temporal data locality performance
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Lock-free FIMI implementation

• FP-tree building
– Parallel preparation: select 16 hot items to build a hot sub-
tree, and each thread generates new transactions from the 
original dataset

– Parallel dataset tiling: each thread merges the new 
transactions into tiles according to the class id information

– Parallel dataset insertion: each thread inserts a set of tiles 
into the FP-tree in a lock-free manner

• FP-growth
– The frequent-1 items can be simply parallelized after 
building the FP-tree

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Experimental Setup

Hardware:

• 4-U Xeon system: 4 Xeon MP 7130M CPU, total 8 cores

• Physical memory: 4GB

Software:

• OpenMP programming model

• Intel C/C++ 9.1 compiler

• Intel Vtune performance analyzer

4MB(unified)L3 cache

2x1MBL2 cache

16KBL1 data cache

3.20GHzCore speed

Dual-coreCPU type

Xeon MP 7130M

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor
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Experimental Setup

Dataset

• Accidents, Kosarak and Webdocs are the datasets from the 
Frequent Itemset Mining Implementations Repository

• Smallwebdocs and Bigwebdocs are artificial datasets which are 
cut from Webdocs

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Impact of FP-array optimization

FP-growth  sequential 
performance analysis

• FPGrowth - base

• CC-tree

• FP-array

– 2.7 fold speedup when H/W 
prefetch is off

– Hardware prefetching provides 
an additional 5%~30% speedup

– Software prefetching provides 
20% speedup for the large 
datasets 

– Consistently outperforms CC-
tree and FP-tree with the 
decreasing of min-support

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Impact of FP-array optimization

FP-growth  cache 
performance analysis

• FP-array reduces the 
cache misses by a factor 
of 17 on average 
compared to the baseline 
FPGrowth

• Much better than CC-tree 
in terms of cache 
performance

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Impact of FP-array optimization

FP-growth  memory 
requirement analysis

• Base
– FPGrowth

• CC-tree
– Increases memory 
requirement significantly 
and sometimes fails for 
large size data input

• FP-array
– Does not increase memory 
requirement and saves 
memory for some cases

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Impact of Lock-free parallelization

Scaling performance 
analysis

• Lock-free FP-tree 
building obtains an 
average 5.6 fold speedup 
on the 8-core system

• The whole application 
gets a 6.1 fold speedup

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Overall execution time evaluation
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Summary

• Proposed a cache-conscious FP-array for FP-tree 
based algorithm
– Improves spatial data locality

– Allows for hardware and software prefetching

– 4.0 fold speedup on a single core

• Proposed a new parallel mechanism to enable lock-
free tree-building 
– Improves the temporal cache performance

– Makes the algorithm amenable to the thread level 
parallelization 

– 6.1 fold speedup on an 8-core system and a final 24 fold 
speedup 

• Effective algorithm design in data mining needs to 
take into account modern architectural designs

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor 
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Questions?
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