
Optimization of Frequent Itemset

Mining on Multiple-Core Processor

Li Liu, Eric Li, Yimin Zhang, Zhizhong Tang

Tsinghua University

Beijing 100084, China

Intel China Research Center
Intel Corporation

Beijing 100080, China

VLDB 2007

Sep. 27, 2007, University of Vienna, Austria

2

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

3

Motivation

• Data mining applications

– Fast growing segment

– Compute and memory
intensive

• Evolution of modern
architecture

– Cache performance
becomes more critical

– Entering the chip multiple
processor era

• Frequent itemset mining

– A typical example to show
the significance of
architecture oriented
algorithm design

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

20.533.613.24Webdocs

19.333.812.30Bigwebdocs

6.014.44.80Smallwebdocs

6.915.35.78Accidents

6.515.95.74Kosarak

L3 misses per
1000 instr.

L3 miss
rate (%)

CPIDataset

0

1

2

3

4

5

6

1P 2P 4P 8P
Thread number

s
p

e
e
d

u
p

FP-growth+FP-tree building FP-growth only

4

Contributions

• We improve the cache performance through design
of a cache-conscious FP-array

– Improve data locality performance

– Hardware and software prefetching

– Reduce off-chip memory access and improve scaling
performance

• We present a lock-free method to efficiently
parallelize the FPGrowth algorithm

– Dataset tiling and the hot sub-tree provide a lock-free
mechanism in FP-tree building

– Better scaling performance to harness the multi-core
processing capability

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

5

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

6

Frequent Itemset Mining (FIM)

• Aims to discover groups of items or values that co-occur
frequently in a dataset

• An example

– Dataset:

• T1: A, B, C, D,

• T2: B, C, D

• T3: A, B, E

– When min-support = 2, The FIMs are:

• {A} {B} {C} {D}

• {A, B} {B, C} {C, D} {B, D}

• {B, C, D}

– Anti-monotone Apriori property: if any length k itemset is
not frequent in the database, its length (k +1) super-
itemset can never be frequent

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

7

FIMI algorithms

• Apriori (The first algorithm)

• DHP

• DIC

• Eclat

• Partition

• FPGrowth (The first FP-tree based algorithm)

• Cache-Conscious tree (The state-of-the-art algorithm)

• Nonordfp

• KDCI, parKDCI

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

8

FP-tree building

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

DD9

C,EE,C7

BB6

A,BB,A5

A,DA,D4

A,C,EA,C,E3

A,C,DF,C,D,A2

A,B,EF,E,B,A1

Sorted TransactionsTransactionNo.

Min-support=3
Frequent items: A,B,C,D,E

Root

A:1

B:1

E:1

Header Table

Item frequency head
A 5 NULL

B 3 NULL

C 3 NULL

D 3 NULL

E 3 NULL

Create an empty FP-treeInsert transaction 1Insert transaction 2

A:2

C:1

D:1

Insert other transactions
D:1

E:1

A:5

B:2 C:2

B:1 C:1

E:1

D:1

• Build FP-tree
– Count the frequency of each item (Preparation)

– Insert frequent items of each transaction in
frequency descending order into the FP-tree (FP-
tree building)

COUNT

ITEM

NODE

POINTER

CHILD

POINTERS

PARENT

POINTER

9

FP-growth

• FP-growth (mining an existing FP-tree)

– For each item in the FP-tree

• Construct the conditional pattern base

• If the conditional pattern base has more than 1 frequent item,
construct a child FP-tree

• Recursively FP-growth of this child FP-tree

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

Root

A:5

B:2

E:1

Header Table

Item frequency head
A 5 NULL

B 3 NULL

C 3 NULL

D 3 NULL

E 3 NULL

C:2

D:1

D:1

E:1

B:1 C:1

E:1

D:1

Conditional Pattern Bases

item cond. pattern base

E BA:1, DA:1, C:1

D CA:1, A:1

C A:2

B A:2

E:1

B:2

A:5

E:1

D:1 E:1

C:1

Poor spatial locality: only two node fields are used in the FP-tree traversal, pointer
de-referencing

Poor temporal locality: large data structure

10

Cache-Conscious tree (CC-tree)

• CC-tree
– FP-tree data structure reorganization

– More cache friendly, but it still suffers from pointer
de-referencing

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

����

11

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

12

Cache-Conscious FP-array

• Item array
– Each element is an item label

– Replicate items in the joint path in the FP-tree

• Node array
– Organized as an array list. Each item records the
occurrences of a frequent item in the item array

– 3 elements of each item

• begin position of the item in the item array

• reference count

• transaction size

• Traverse the FP-tree in a depth-first order to build
FP-array

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

13

Visit node A

• Write an element to the node array list of A

• Write item A to the item array

Visit node B

• Write an element to the node array list of B

• Write item B to the item array

Visit node E

• Write an element to the node array list of E

• Do not write item E to the item array as node E is a leaf node

Visit node C

• Duplicate the items in the joint path

• Write an element into the node array list of C

• Write item C to the item array

Visit other nodes

FP-array construction from an FP-tree

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

Root

A:5

B:2

E:1

C:2

D:1

D:1

E:1

B:1 C:1

E:1

D:1A:5

B:2

E:1

C:2

14

FP-array optimization

• Compact data size for the item array

• Hardware prefetching

– Continuous accesses in both the node array and the item array

• Software prefetching

– Prefetch data in the item array, located by the node array

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

H/W prefetching

H/W prefetching

S/W prefetching

FP-array provides a smaller node size than FP-tree and CC-tree: improve cache line
utilization and spatial data locality

Hardware prefeteching: enable strided data access pattern

Software prefeteching: enable non-strided transaction data access

15

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

16

The importance of FP-tree building
parallelization

• FP-tree building
– Largely ignored due to its small execution time compared
to FP-growth

– However, after FP-array optimization the FP-tree building
time consists of 10~40% of the total run time

– It cannot be ignored according to Amdahl’s law

• Traditional approaches
– Multi-tree method

– Lock based single tree method

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

17

Dataset tiling

• General terms
– Hot item: A, B; Cold item: C,

D, E

– Class id: the bitmap of hot
items

– Hot FP-node: the FP-tree
node corresponding to the
hot item

– Hot sub-tree: the sub-tree
consists of all the hot nodes

– Hot node hashing table: each
hot node can be hashed by a
unique class id

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

Root

A:5

B:2

E:1

C:2

D:1

D:1

E:1

B:1 C:1

E:1

D:1A:5

Root

B:2

B:1

B:2

A:5 B:1

Root

Hot node hashing table

00 01 10 11

<00, 1, (D)>D8

<00, 2, (C,E)>C,E7

<10, 0, ()>B6

<11, 0, ()>A,B5

<01, 1, (D)>A,D4

<01, 2, (C,E)>A,C,E3

<01, 2, (C,D)>A,C,D2

<11, 1, (E)>A,B,E1

New

transactions
Sorted

Transactions
No.

18

Lock-free FP-tree building

00D8

00C,E7

10B6

11A,B5

01A,D4

01A,C,E3

01A,C,D2

11A,B,E1

Class idSorted

Transactions
No.

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

<1, (E)>, <0, ()>11

<0, ()>10

<2, (C,D)>, <2, (C,E)>,<1, (D)>01

<2, (C,E)>, <1, (D)>00

New transactionsTile Id.

• Preparation: generate new
transactions as <class id,
cold item number, cold
item list>

• Dataset tiling: merge new
transactions with the
same class id into a tile

• Dataset insertion: insert
new transactions in each
tile into the tree. For each
tile, append each
transaction to the hot
node corresponding to the
class id

19

Lock-free FP-tree building

• Preparation: generate new
transactions as <class id,
cold item number, cold
item list>

• Dataset tiling: merge new
transactions with the
same class id into a tile

• Dataset insertion: insert
new transactions in each
tile into the tree. For each
tile, append each
transaction to the hot
node corresponding to the
class id

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

<1, (E)>, <0, ()>11

<0, ()>10

<2, (C,D)>, <2, (C,E)>,<1, (D)>01

<2, (C,E)>, <1, (D)>00

New transactionsTile Id.

Tiles are independent with each other: a natural lock-free parallel mechanism in FP-
tree building

Tile-by-tile insertion leads to better temporal data locality performance

20

Lock-free FIMI implementation

• FP-tree building
– Parallel preparation: select 16 hot items to build a hot sub-
tree, and each thread generates new transactions from the
original dataset

– Parallel dataset tiling: each thread merges the new
transactions into tiles according to the class id information

– Parallel dataset insertion: each thread inserts a set of tiles
into the FP-tree in a lock-free manner

• FP-growth
– The frequent-1 items can be simply parallelized after
building the FP-tree

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

21

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

22

Experimental Setup

Hardware:

• 4-U Xeon system: 4 Xeon MP 7130M CPU, total 8 cores

• Physical memory: 4GB

Software:

• OpenMP programming model

• Intel C/C++ 9.1 compiler

• Intel Vtune performance analyzer

4MB(unified)L3 cache

2x1MBL2 cache

16KBL1 data cache

3.20GHzCore speed

Dual-coreCPU type

Xeon MP 7130M

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

23

Experimental Setup

Dataset

• Accidents, Kosarak and Webdocs are the datasets from the
Frequent Itemset Mining Implementations Repository

• Smallwebdocs and Bigwebdocs are artificial datasets which are
cut from Webdocs

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

35.84281200001.46G1690000Webdocs

25.228050000460M500000Bigwebdocs

54.166212000200M230000Smallwebdocs

26.1664000034M340000Accidents

5.1153080031M990000Kosarak

Aver. Effective
Trans. Len.

Num. frequent
1-items

Min-supportSizeNum. of
trans.

Name

24

Impact of FP-array optimization

FP-growth sequential
performance analysis

• FPGrowth - base

• CC-tree

• FP-array

– 2.7 fold speedup when H/W
prefetch is off

– Hardware prefetching provides
an additional 5%~30% speedup

– Software prefetching provides
20% speedup for the large
datasets

– Consistently outperforms CC-
tree and FP-tree with the
decreasing of min-support

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

0

1

2

3

4

5

kosarak accidents smallwebdocs bigwebdocs webdocs

CC-tree FP-array

FP-array+H/W prefetching FP-array+H/W+S/W prefetching

0

1

2

3

4

5

6

7

100000 75000 50000 25000
min-support

CC_tree

FP-array+H/W prefetching

FP-array+H/W +S/W prefteching

FP-growth sequential speedup

FP-growth sequential speedup of Bigwebdocs

25

Impact of FP-array optimization

FP-growth cache
performance analysis

• FP-array reduces the
cache misses by a factor
of 17 on average
compared to the baseline
FPGrowth

• Much better than CC-tree
in terms of cache
performance

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

0

5

10

15

20

kosarak accidents bigwebdocs smallwebdocs webdocs

M
P

K
I

FPGrowth FP-array
FP-array+H/W prefetching FP-array+H/W+S/W prefetching
CC-tree+H/W prefetching

L3 cache miss reduction in FP-growth

26

Impact of FP-array optimization

FP-growth memory
requirement analysis

• Base
– FPGrowth

• CC-tree
– Increases memory
requirement significantly
and sometimes fails for
large size data input

• FP-array
– Does not increase memory
requirement and saves
memory for some cases

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

Memory consumption ratio in FP-growth

0

1

2

3

4

kosarak accidents smallwebdocs bigwebdocs webdocs
M

e
m

o
ry

 C
o

n
s

u
m

p
ti

o
n

 R
a

ti
o

FP-array CC-tree

27

Impact of Lock-free parallelization

Scaling performance
analysis

• Lock-free FP-tree
building obtains an
average 5.6 fold speedup
on the 8-core system

• The whole application
gets a 6.1 fold speedup

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

FP-tree building and overall scaling performance

0

2

4

6

8

1 2 4 8
Core number

S
p

e
e

d
u

p

FP-tree building speedup Ovreall speedup

28

Overall execution time evaluation

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

10

100

1000

10000

400000 350000 300000 250000 200000 150000 120000

min support

ti
m

e

kDCI LCM2 FPGrowth

CC-tree FP-array

Total execution time of “Webdocs”

1

10

100

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 800

min-support

T
im

e

AIM2 KDCI LCM2 nonordfp

FPGrowth CC-tree FP-array

Total execution time of “Kosarak”

Serial FP-array algorithm. The
parallelized version is 6.1x faster

29

Outline

• Motivation and contributions

• Introduction

• Cache-conscious optimization

• Lock-free parallelization

• Performance evaluation

• Summary

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

30

Summary

• Proposed a cache-conscious FP-array for FP-tree
based algorithm
– Improves spatial data locality

– Allows for hardware and software prefetching

– 4.0 fold speedup on a single core

• Proposed a new parallel mechanism to enable lock-
free tree-building
– Improves the temporal cache performance

– Makes the algorithm amenable to the thread level
parallelization

– 6.1 fold speedup on an 8-core system and a final 24 fold
speedup

• Effective algorithm design in data mining needs to
take into account modern architectural designs

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

31

Questions?

VLDB07: Optimization of Frequent Itemset Mining on Multiple-Core Processor

