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ABSTRACT

A broad class of data, ranging from similarity networks, workflow

networks to protein networks, can be modeled as graphs with data

values as vertex labels. The vertex labels (data values) are often

dirty for various reasons such as typos or erroneous reporting of

results in scientific experiments. Neighborhood constraints, speci-

fying label pairs that are allowed to appear on adjacent vertexes in

the graph, are employed to detect and repair erroneous vertex la-

bels. In this paper, we study the problem of repairing vertex labels

to make graphs satisfy neighborhood constraints. Unfortunately,

the relabeling problem is proved to be NP-hard, which motivates

us to devise approximation methods for repairing, and identify in-

teresting special cases (star and clique constraints) that can be ef-

ficiently solved. We propose several approximate repairing algo-

rithms including greedy heuristics, contraction method and a hy-

brid approach. The performances of algorithms are also analyzed

for the special case. Our extensive experimental evaluation, on both

synthetic and real data, demonstrates the effectiveness of eliminat-

ing frauds in several types of application networks. Remarkably,

the hybrid method performs well in practice, i.e., guarantees termi-

nation, while achieving high effectiveness at the same time.

1. INTRODUCTION
This paper studies a problem of repairing vertex labels in a graph

to make it satisfy certain neighborhood constraints (a.k.a. binary

constraints [20]) on labels. Let L = {ℓ1, . . . , ℓ|L|} denote a set of

labels. A constraint graph S(L,N ) is an undirected graph, where

N specifies the pair-wise neighborhood constraints of unique labels

in L. For instance, Figure 1(a) illustrates a constraint graph that

specifies the neighborhood among four labels {a, b, c, d}, where

each node denotes a unique label. We consider a graph G(V ,E ),
namely instance graph, which has labels from L for all the vertexes

in V , given as a labeling function λ : V → L, i.e., λ(v) ∈ L, ∀v ∈
V . For example, Figure 1(b) illustrates an instance graph with four

vertexes V = {1, 2, 3, 4}, where each vertex is associated with a

label from L = {a, b, c, d}. Since different vertexes may share the

same labels, the sizes of instance graphs are usually much larger

than constraint graphs (see statistics on real data in Table 3).
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ID Address City Tel

1 No.721, West Lake St. HZ 0571-624-8209

2 No.735, West Lake St. HZ 0571-625-7241

3 No.735, West Lake Street HZ ****-***-7241

4 640, West Lake Street HZ 0571-624-6317

(c) relation

Figure 1: Data repairing on similarity network

We say an instance graph G satisfies the constraint graph S , if

any two adjacent vertexes in G either share the same label or have

adjacent labels in S . A violation in G is an edge (v, u) ∈ E such

that λ(v) 6= λ(u) and (λ(v), λ(u)) 6∈ N . For example, in Figure

1(b), edge (1, 3) with labels a, d indicates a violation, as a, d are

not adjacent according to the constraint in Figure 1(a). To elim-

inate violations w.r.t. integrity constraints, existing data repairing

techniques [3, 19] modify values to make the data conform to in-

tegrity constraints. Following the same line, we should modify at

least one value (label) of the vertexes v, u in order to address the

violations in the instance graph, e.g., repairing vertex 3 with label b

to eliminate the violations to vertexes 1, 2, 4. We illustrate several

typical scenarios below to motivate the vertex relabeling work.

1.1 Motivation Examples
The general idea of data repairing is to suggest possible repairs

of a tuple t by other tuples with (equality or similarity) relationships

to t. Instead of the rigid equality in conventional functional depen-

dencies (FDs), the similarity/distance relationships between tuples,

captured by differential dependencies (DDs) [23], enable the toler-

ance of small variations, e.g., “Street” and its abbreviation “St.”.

Without such tolerance of variations, the number of tuples with

(strict equality) relationships to a being repaired tuple t is quite

limited, and thus the equality based repairing methods (such as FD

based [3]) often fail to suggest possible repairs.

Example 1 (Similarity Networks). Consider a relation in Figure

1(c) which collects customer information from various sources. A

DD (Address,City → Tel, 〈[0, 6], [0, 0], [0, 5]〉) states that if two

tuples have similar Address values (i.e., with distance1 in the range

1e.g., edit distance (see [22] for a survey of string similarity)
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Figure 2: Example of workflow networks

of [0, 6]) and the same City values (with distance in [0, 0]), they

should have similar Tel values as well (distance within [0, 5]) by

sharing the same area code and another two digits for the same

region. For instance, tuples 1 and 2 of customers in the same street

(of the same city) have similar Tel numbers by sharing the same

prefix “0571-62”. Such DDs rules can either be specified by domain

experts or discovered from data [24].

We model the similarity relationships by graphs as follows. First,

in Figure 1(a), a constraint graph is constructed to represent the

similarity/distance requirements on Tel (right-hand-side attribute in

the DD) values, where each node denotes a distinct value of Tel do-

main in the relation. We put an edge between two nodes if their dis-

tance is within [0, 5] specified by the DD. Next, an instance graph is

built according to the similarities on Address and City (left-hand-

side attributes in the DD) of tuples as shown Figure 1(b). Each ver-

tex corresponds to a tuple in the relation, with its Tel value as the

label, while an edge indicates that the Address and City values of

these two tuples have distance within [0, 6] and [0, 0], respectively.

To validate whether a relation satisfies the DD, it is equivalent to

investigate whether the corresponding instance graph satisfies the

constraint graph. That is, for each tuple pair with similar Address
and same City (having an edge in the instance graph), their Tel val-

ues must be similar as well (the pair of labels belong to an edge in

the constraint). Since the data are collected from sources with var-

ious representation formats and dirty information, violations exist.

For instance, suppose that several digits of Tel are lost/hidden in tu-

ple 3. The distance on Address of tuples 3 and 2 (equal to 4 within

[0, 6]) and their equal City values (distance 0 in [0, 0]) indicate an

edge between vertexes 3 and 2 in Figure 1(b). However, their Tel
numbers are not similar (with distance 7 not in [0, 5]), i.e., the la-

bels of vertexes 3 and 2 denoted by d and b, respectively, are not

an edge in Figure 1(a).

Consequently, the data repairing is to relabel vertex/tuple 3 by

b:0571-625-7241, since it is the Tel value/label most similar to the

observed d that can satisfy the constraint (see more discussion on

repairing cost in Section 3). Given an FD (Address,City → Tel),
the existing equality based repairing method [3] obviously cannot

suggest such a repair, since tuple 3 does not have any other tuple

with equality relationships on Address in Figure 1(c). That is, no

repair candidates can be suggested w.r.t. the FD.

The execution of workflow or business process should follow

certain specifications of business rules [10]. The notations of undi-

rected graph in Figure 1 can be easily extended by adding direc-

tions to support workflow networks, where the constraint graph

is analogous to workflow specification and the instance graph is

workflow execution. A workflow execution G is invalid w.r.t. the

workflow specification S , if some edge (v, u) in execution G has

labels (λ(v), λ(u)) not belonging to an edge in specification S .

Example 2 (Workflow Networks). Consider a workflow of part de-

sign in a train manufacturer (see Section 8 for more details about

the real dataset in experiments). The constraint of workflow spec-

ification, in Figure 2(a), states that once a part is designed, insula-

Figure 3: Example of protein interaction networks

tion proof or electrician proof as well as check inventory steps can

be processed. After that, the part design is evaluated and archived.

Figure 2(b) illustrates an execution (instance) of the workflow. How-

ever, inconsistencies are often introduced due to erroneous record-

ing of step names, e.g., for simplicity in practice, a curt abbrevi-

ation “eva” may sometimes be manually inputted standing for the

step “evaluate”. By using neighborhood constraints of steps such as

check inventory→evaluate or evaluate→archive, we are able to

repair the step names (labels) in the imprecise execution instance.

Note that multiple instances [26] often exist in workflow net-

works. For example, for a high sensitive evaluate step, it should

be conducted/evaluated multiple times by (often different) staffs

in a department, i.e., after staff A evaluating, another staff B will

evaluate it again for sure. Such multiple instances of evaluate lead

to a workflow instance of evaluate→evaluate. By allowing two

adjacent nodes sharing the same label, our relabeling settings can

naturally support such multiple instances.

Without altering inaccurate information, it is unlike to conduct

advanced analysis over workflow data [4]. Cleaning the workflow

data is highly non-trivial and known as the first challenge in the

Process Mining Manifesto by the IEEE Task Force on Process Min-

ing [25]. To our best knowledge, this is the first attempt of the task.

1.2 Hardness and Special Cases
According to our analysis (Theorem 1) in Section 4, it is highly

nontrivial (NP-hard) to conduct the relabeling w.r.t. neighborhood

constraints. The difference between neighborhood constraints in

graphs and integrity constraints in databases prevents applying ex-

isting data repairing techniques [3, 19]. Indeed, due to the spread of

violations during the relabeling, the widely used greedy heuristics

even fail to terminate as illustrated in Section 5.

Thereby, we investigate interesting special cases that may be ef-

ficiently solved or possibly approximated. The problem is found

tractable in clique constraints case, where the transitivity of neigh-

borhood on labels is observed. For instance, the constraint graph in

Figure 1(a) consists of two cliques, {a,b,c} and {d}, where {d} is

a clique with one single vertex.

Another class of star constraints is also interesting and worth in-

vestigating, where a center label connects to all the other labels in

the constraint graph. This center is not only practically found im-

portant but also theoretically essential to improve the performance

of finding solutions. Although the case of star constraints is still

hard (by leveraging the connection to the vertex cover problem in

Theorem 2), the approximation can be improved (Theorem 3).

Example 3 (Protein Networks). Consider protein interaction net-

works constructed from statistically assessed pair-wise protein in-

teraction affinities (see Section 8 of experiments for more details).

Each vertex in the network denotes a protein, e.g., 1:ITGA7 in Fig-

ure 3(b). An edge is drawn between two vertexes (proteins) if their

affinity level is above a pre-selected threshold [14]. Each protein is

associated with a gene ontology2 (GO) term description as vertex

2www.geneontology.org
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label, e.g., c:Plasma membrane for 1:ITGA7. Two proteins in a

high affinity level probably belong to the same or correlated GO

terms [30]. Proteins with high affinity but irrelevant GO terms may

contain faults. For example, 1:ITGA7 and 4:FHL3 have an edge

(high affinity) in Figure 3(b), but their labels c:Plasma membrane
and f:Nucleus are not adjacent (irrelevant) in Figure 3(a).

Such faulty GO terms are prevalent during the automatic func-

tional annotation. The commonly reported accuracy of GO anno-

tation can only reach about 65–70% in practice [9]. Our proposed

relabeling techniques can be applied to locate and suggest repairs

of those wrongly annotated GO terms.

Figure 3(a) is a star constraint, where the GO term a:Cellular
component can be regarded as a center term that correlates to all

the other gene products (describing the parts of a cell or its extracel-

lular environment). By changing any label in violation to the spe-

cial center label (e.g., replace f:Nucleus of 4:FHL3 by a:Cellular
component), it guarantees to eliminate violations in the graph.

1.3 Contributions
This paper presents the first study on repairing vertex labels un-

der neighborhood constraints. We focus on efficient repairing meth-

ods in general cases and investigate the corresponding performance

in special cases. Table 1 summarizes our major theoretical results.

(1) We investigate the complexity of the relabeling problem (in

Section 4). The general relabeling problem is proved to be NP-

complete. For the special case of star constraints, we find that it

can be approximated within a constant factor, while the clique con-

straints case can be solved in PTIME.

(2) We study greedy heuristics for relabeling (in Section 5). The

rationale behind greedy method’s failure is that relabeling a vertex

to eliminate some violations may introduce new violations to other

vertexes. Nevertheless, we illustrate that the greedy method always

terminates in the special case of star constraints.

(3) We develop a contraction method which guarantees termina-

tion (in Section 6). The contraction operation requires the con-

tracted vertexes to have the same label in order to stop the violation

spread. We prove that the total number of contraction operations

is bounded, while the contraction results may be arbitrarily bad in

terms of relabeling cost due to enforcing the same labels. For the

special case of star constraint, the contraction method shows sur-

prisingly good performance as a factor-2 approximation.

(4) We present a hybrid approach by putting together the advan-

tages of greedy and contraction techniques (in Section 7). Refer-

ring to non-termination of greedy method and possibly bad results

of contraction, the hybrid approach conducts the high cost contrac-

tion operation when no further greedy relabeling can be applied.

(5) We report an extensive experimental evaluation for the pro-

posed relabeling methods on both synthetic and real data sets (in

Section 8). The experiments verify major theoretical results in-

cluding termination, approximation bound, time performance and

relabeling accuracy of frauds. In particular, the f-measure accuracy

of repairing with DD in similarity network is significantly higher

than that of existing methods with FD. The hybrid approach per-

forms very well in practice, with high effectiveness and efficiency.

2. RELATED WORK

Constraints on Graphs. Label neighborhood constraint is a

binary constraint that involves the labels of two vertexes. A con-

straint is considered n-ary if it involves n variables. The constraint

satisfaction problem (CSP) [21], which finds an assignment of val-

ues to variables (analogous to labels and vertexes, respectively)

such that certain constraint is satisfied, is known generally hard.

Given a binary constraint graph, the problems are different between

assignment and relabeling. CSP with binary constraints finds a bi-

jection (assignment) from instance graph to constraint graph. In our

relabeling problem, however, vertexes in the instance graph have

already been assigned with labels. We target on relabeling some

vertexes to eliminate violations to the constraint graph.

Besides the binary constraint graph studied in this work, pattern

graphs can also be considered as more complex constraints, e.g.,

by associating comparison operator on attributes of vertexes [11]

or extending edges to reachability constraints of paths [7]. The ma-

jor difference between graph pattern matching and our relabeling

problem is about the satisfaction. Informally, a match of the pat-

tern graph is a subgraph of the instance graph G such that each edge

in the pattern exactly corresponds to an edge in the subgraph [12],

i.e., it is not required that each edge in G could be mapped to the

pattern graph. In contrast, the satisfaction in our study enforces two

vertexes of each edge in G to have the same label or two labels as

an edge in the constraint graph.

Data Repairing. To eliminate data violations w.r.t. integrity

constraints, there are a variety of repair models proposed in pre-

vious work. Among them, two typical models, i.e., deletion and

modification, can be adapted to the graph data.

The deletion based model [8] allows deleting elements in the

data instance, in order to eliminate violations to the constraints.

In terms of graph notations, it is to delete vertexes (as well as the

incident edges). However, the data instance will lose information

in this deletion model. In particular, the structural information, an

important aspect of graph data, could be lost after deletion.

The modification based model [29] performs value modification

instead of deletion. In this paper, we also adopt this value modifica-

tion model, i.e., vertex relabeling. An interesting variation [19] is

studied by allowing a value modified to a variable that stands for a

special value outside the current domain. This special value, which

will not introduce violations to the existing data, plays a similar role

as the center label in a special type of star constraint (Definition 2).

Besides deletion and modification, the insertion based model [1]

introduces value insertion and is used for constraints on existence,

e.g., adding tuples to satisfy inclusion dependencies in relational

databases. In our constraint graph of label neighborhood, since

there is no effect to violation elimination by adding vertexes, the

insertion model does not help towards graph constraint satisfaction.

The idea of equivalence classes [3] is often used in repair algo-

rithms, where tuples are grouped into classes each of which has a

certain equal value. Unfortunately, such equivalence classes do not

exist w.r.t. neighborhood constraints as pairwise relationships in a

general graph. Thereby, for the general constraint graph, existing

techniques [3, 19, 8] developed on the equivalence of tuples cannot

be applied to our relabeling problem.

3. PRELIMINARIES
In this section, we introduce syntax for representing constraints

in graph. Table 2 lists the frequently used notations.

Syntax. We say two labels ℓ1, ℓ2 match a constraint graph S(L,N ),
denoted by (ℓ1, ℓ2) ≍ S , if either ℓ1 = ℓ2 denotes the same label

or (ℓ1, ℓ2) ∈ N is an edge in S . For example, in Figure 1(a), we

have (a, a) ≍ S , (a, b) ≍ S , but (a, d) 6≍ S . It is worth noting

that (a, a) ≍ S implies the self-loop relationship of labels in S .
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Table 1: Major theoretical results

Constraints Complexity Hardness of approximation Greedy method Contraction method

General NP-complete – no guarantee of termination guarantee to terminate

(Theorem 1) (Example in Section 5) (Proposition 5)

Star NP-complete NP-hard to within a factor α ≈ 1.36 (lnn+ 1)-approximation factor 2-approximation

(Theorem 2) (Theorem 3) (Proposition 4) (Proposition 6)

Clique PTIME – – –

Table 2: Notations

Symbol Description

S(L,N ) constraint graph S with label set L, neighborhood N

G(V ,E) instance graph G with vertex set V , edge set E

λ labeling of vertex

≍ labels match constraint

� graph satisfies constraint

δ cost of relabeling a vertex

∆ cost of relabeling a graph

T (v, λ(v)) set of vertexes with violations to vertex v having λ(v)

R a node of contracted vertexes

An instance graph G(V ,E ) satisfies a constraint graph S(L,N ),
denoted by G � S , if (v, u) ∈ E implies (λ(v), λ(u)) ≍ S ,∀(v, u) ∈
E . That is, for any edge (v, u) ∈ E , their labels λ(v), λ(u)
must match the constraint graph S with either λ(v) = λ(u) or

(λ(v), λ(u)) ∈ N .

We call (v, u) a violation to the constraint graph S , if (v, u) ∈ E

and (λ(v), λ(u)) 6≍ S . For example, in Figure 1(b), the edge (1, 3)
indicates a violation to S , as their labels (a, d) 6≍ S are neither the

same nor adjacent in Figure 1(a) of constraints.

Cost Function. The relabeling cost is evaluated by the differ-

ence between the original and repaired data. More precisely, the

repairing target is to return a modified result that minimally dif-

fers from the original data [3]. This minimum change principle is

widely adopted in improving data quality, under the rationale that

people try to make as few mistakes as possible.

Therefore, following the same line of repairing in databases [3],

we formalize the relabeling cost in graph by evaluating the mod-

ification on vertex labels. Let G′ be a relabeled graph of G. The

relabeling cost is given by,

∆(G′
,G) =

∑

v∈V

δ(λ(v), λ′(v)), (1)

where λ′(v) is the new label of v ∈ V in the repaired G′, and

δ(λ(v), λ′(v)) denotes the (distance) cost of relabeling vertex v

from label λ(v) to λ′(v). The distance metric δ could be any string

distance function or simply the count of modifications [19].

Problem Statement. We are now ready to formalize the rela-

beling problem: For a constraint graph S and an instance graph G,

it is to find a relabeled G′ of G such that G′
� S and the relabeling

cost ∆(G′,G) is minimized.

4. PROBLEM ANALYSIS
Before discussing technical details, we first analyze the hardness

of the relabeling problem, and consequently identify special cases

that may possibly be addressed efficiently.

Theorem 1. For a constraint graph S , an instance graph G and a

constant c, the problem of determining whether there exists a rela-

beled G′ of G such that G′
� S and the relabeling cost ∆(G′,G) ≤

c is NP-complete.

Proof idea. To show the hardness, we give a reduction from the

set cover problem, which is known to be NP-hard [2]. Due to the

limitation of space, please refer to the full version technique report

of this paper [13] for proof details.

Tractable Special Case. Recognizing the hardness, we iden-

tify special cases of the relabeling problem that turn out to be tractable.

Definition 1. We call S(L,N ) a clique constraint, if transitivity on

neighborhood is satisfied, i.e., for any (ℓ1, ℓ2) ∈ N and (ℓ2, ℓ3) ∈
N , it implies (ℓ1, ℓ3) ∈ N .

Transitivity of neighborhood on labels can be applied inside each

clique. Such clique constraints with transitivity feature are practi-

cal. For example, the Tel numbers in the same region are similar

with each other by sharing the same area code and another two dig-

its denoting the region, i.e., a clique in S in Figure 1. Indeed, for a

DD with equality constraints [0, 0] on the right-hand-side attributes,

the corresponding constraint graph consists of cliques with sizes 1

(see the example of real dataset RSNT in Section 8).

Consequently, the relabeling process is to find connected com-

ponents in the instance graph G(V ,E ). To repair a connected

component by a clique, it is to substitute all the vertex labels not

belonging to the clique by a label from the clique that minimally

differs from the original label. For each connected component, we

select a clique with the minimum total cost to relabel. The instance

graph G can be relabeled efficiently in polynomial time.

Special Case of Star Constraints. Motivated by the center

roles existing in some constraint graphs, such as the cellular com-

ponent correlated to all the other GO terms (as mentioned in the

introduction and observed in the real dataset HPRD in Section 8),

we consider a special type of constraints with a star shape.

Definition 2. We call S(L,N ) a star constraint, if there exists a

center label ℓ0 ∈ L that is adjacent to all the other labels (ℓ0, ℓi) ∈
N , and δ(ℓ0, ℓi) < δ(ℓj , ℓi), i 6= j, i = 1, . . . , |L| − 1; j =
1, . . . , |L| − 1.

That is, the label ℓ0 is adjacent to all the other labels in the con-

straint graph and has the relabeling cost δ(ℓ0, ℓi) less than others.

It serves as a center of the constraint graph, thus we call such a

structure star constraint.

Unfortunately, the problem is still hard in this special case.

Theorem 2. For a star constraint S , the problem of relabeling a

graph with the minimum cost is NP-hard.

Proof idea. To prove the NP-hardness, we show reduction from the

vertex cover problem, which is one of Karp’s 21 NP-complete prob-

lems [18]. Please also refer to the full version technique report of

this paper [13] for proof details.
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Although it is still hard in the special case, the problem with star

constraint turns out to be different in an approximation-preserving

way. As illustrated below, there exists constant factor approxima-

tion for the special case of star constraint. The rationale is that re-

pairing with the center label will never introduce new violations and

thus stop the violation spread. This center label plays a similar role

as the special value outside the domain in database repairing, which

stops evoking violations to other functional dependencies [19]. It is

unlikely however to approximate within an arbitrary small factor.

Theorem 3. For a star constraint S , the problem of relabeling a

graph with the minimum cost is NP-hard to approximate to within

any factor less than 10
√
5− 21 ≈ 1.36.

Proof idea. The proof follows by showing that the reduction in

Theorem 2 is gap-preserving. Please also refer to the full version

technique report of this paper [13] for proof details.

Outline of Approximation Approaches. In the following,

we focus on heuristics, which may empirically show good perfor-

mance. We first study several greedy heuristics and show that their

termination cannot be guaranteed. Then, we develop a contraction

method which ensures termination but may have bad approxima-

tion results. Finally, we put things together as a hybrid approach

which shows good performance in practice. Performance guaran-

tees of the proposed algorithms are also analyzed for special cases.

5. GREEDY HEURISTICS
In this section, we investigate greedy methods. Typical examples

are employed to explain pros and cons of the proposed techniques.

By default, we use Figure 4(a) as the constraint graph for all the

examples in the following sections.

How Greedy Methods Fail. Intuitively, in each step of re-

labeling, it is desirable to eliminate more violations without intro-

ducing new ones by paying less cost. Motivated by the connection

to classical combinatorial problems (in Theorem 1), it is natural to

adopt the greedy method as follows.

We define the violation set of a vertex v with label λ(v),

T (v, λ(v)) = {u | (v, u) ∈ E , (λ(v), λ(u)) 6≍ S},
which denotes the set of neighbors u of the vertex v whose labels

λ(u) have violations to λ(v). It is to greedily select a vertex with

the maximum violation set to relabel in each iteration, i.e.,

argmax
v∈V

|T (v, λ(v))|.

This straightforward greedy function is analogous to selecting a

set with the largest number of uncovered elements in the set cover

approximation. Once a vertex v is selected, we find a new label

λ′(v) for the vertex to eliminate violations.

We aim to eliminate more violations by each relabeling. Instead

of greedily selecting a vertex with the maximum violations, we can

choose a vertex relabeling that can eliminate the most violations.

Thereby, the greedy function is revised to evaluate the number of

violations that are eliminated by changing λ(v) to λ′(v),

argmax
v∈V ,λ′(v)∈L

|T (v, λ(v))| − |T (v, λ′(v))|. (2)

Moreover, when the relabeling cost between labels is considered,

we may further normalize the violation elimination gain by the re-

labeling cost δ(λ(v), λ′(v)),

argmax
v∈V ,λ′(v)∈L

|T (v, λ(v))|
δ(λ(v), λ′(v))

− |T (v, λ′(v))|. (3)

Figure 4: Counter example of termination in greedy method

That is, a number of violations |T (v, λ(v))| is eliminated by pay-

ing the cost δ(λ(v), λ′(v)) with the least new violations |T (v, λ′(v))|
introduced. It is notable that simply normalizing formula (2) by

the cost, i.e.,
|T(v,λ(v))|−|T(v,λ′(v))|

δ(λ(v),λ′(v))
, is not a valid attempt. A

relabeling operation may introduce more violations than it elimi-

nates, i.e., having |T (v, λ(v))| < |T (v, λ′(v))|. In such cases, the

greedy function irrationally favors a relabeling with a higher cost

δ(λ(v), λ′(v)), as the violation reduction value is negative.

Unfortunately, the greedy approach is not guaranteed to termi-

nate (which is observed in the following experiments as well). In-

deed, for any vertex relabeling selected with the maximum greedy

value, if it has |T (v, λ(v))| ≤ |T (v, λ′(v))|, the number of viola-

tions has no reduction after a greedy step.

Example 4. Consider the example in Figure 4 with relabeling cost

δ(c, d) = δ(g, d) = 1. According to the greedy function in for-

mula (3), the best choice is to repair vertex 5 with label d. While

the violation between vertexes 5 and 6 is eliminated, a new viola-

tion between vertexes 5 and 4 is introduced after relabeling vertex 5

to d. Based on the greedy function, the best choice next is to repair

vertex 5 back to c. The relabeling steps repeat and cannot termi-

nate. Similar counter examples are observed when adopting the

straightforward greedy function, i.e., repeatedly relabeling vertex 6

between d and g.

Special Case of Star Constraints. In the introduction, we

have illustrated the importance of star constraint with a center role.

Surprisingly, when given a star constraint, the greedy method is not

bad, which can terminate and return a result with certain guarantee.

Proposition 4. For a star constraint S , the greedy method termi-

nates, and outputs a G′ having
∆(G′,G)
∆(G∗,G)

≤ lnn + 1, where G∗ is

the relabeled graph with the minimum cost and n = |E |.
Due to the limitation of space in this paper, we leave the proof

details in the full version technique report [13]. Nevertheless, the

experimental results on both synthetic and real (HPRD) data with

star constraints in Section 8 verify that the greedy method can al-

ways terminate and show relatively high repairing accuracy.

6. CONTRACTION RELABELING
In this section, we present a contraction based method which is

guaranteed to terminate by enforcing certain vertexes to the same

labels to stop violation spread.

6.1 The Idea of Contraction

Intuition. Recall that greedy relabeling fails as vertexes could be

repaired back and forth with possible new violations generated in

the follow-up steps. Intuitively, we consider a group of vertexes as a

whole, called a super node or simply a node, which always ensures

no violations inside. The vertexes in a node can only be repaired

together to the same label. To eliminate violations among vertexes

from two nodes, a node contraction operation is employed, i.e.,

merging all the contents (vertexes and edges) of a node R1 into the
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Figure 5: The idea of contraction

other R2. All the vertexes in the contracted node R1 are enforced

to assign the same label, which can avoid introducing violations in

the new node R2.

Example 5. Suppose that there are three nodes, R1,R2,R3, formed

in the previous steps, as shown in Figure 5(a). A vertex (say t+ 2

for instance) can only be relabeled again together with all the other

vertexes in node R1 that has been contracted, in order to stop the vi-

olation spread inside the node. To eliminate the violation between

R1 and R2, node R1 is contracted toR2 by enforcing all the vertexes

in R1 to the same label f (more technique details for the contrac-

tion operation will be explained soon). The contraction terminates

as there is no further violation between the remaining nodes R2 and

R3. Consequently, all the violations are eliminated in Figure 5(b),

by ensuring that no violations exist inside a node.

It is easy to see the termination by eventually contracting all the

vertexes into one node. We simply enforce a same label on all the

vertexes to eliminate violations. Such a straightforward solution

will unnecessarily relabel the vertexes without any violation. We

propose to eliminate violations by paying less relabeling cost.

Framework. To perform the contraction, we first introduce sev-

eral notations as follows. Let R denote a node in contraction, con-

sisting of a group of vertexes contracted to R. Each node R has a

unique host h(R) which is a vertex in the original graph. The re-

maining vertexes in R are grouped into a set of nested nodes Ri,

namely guests denoted by the set U (R). Each guest Ri ∈ U (R) is

previously contracted to R via a contraction operation. Let V (R)
be the set of all vertexes in the original graph belonging to R, which

includes both the host and the vertexes in all guests

V (R) =
⋃

Ri∈U(R) V (Ri) ∪ {h(R)}.
The host and guests do not need to share the same label but should

have no violations. As we will see soon, the host is essential to

ensure that there always exists a valid candidate label to assign in

the contraction. All the vertexes in a guest Ri ∈ U (R) must have

the same label, which is assigned by the contraction operation.

Example 6. In Figure 6(b), we illustrate an example with three

nodes, in dash-dot circles. Each node has a unique host (e.g., vertex

5 in R5) and none or multiple guests (in shaded area). All the ver-

texes in a guest should share the same label, e.g., vertexes (6, 7, 8)

with label b, while the vertexes among different guest nodes/host

ensure no violations but do not have to share the same label.

Algorithm 1 presents an overview of the contraction procedure.

Initially, each vertex v in the graph forms a single node R with

host h(R) = v and an empty set of guest nodes U (R) = ∅. The

contraction is then conducted between two nodes, say R1 and R2

for example, whose vertexes have violations. Suppose that R2 is

contracted to R1 with the new label ℓ2 (the decision of R1, R2,

candidate label ℓ2 and cost(R2) will be discussed soon). Then, all

the vertexes in the original graph belonging to R2 will be relabeled

to ℓ2, i.e., λ(v) = ℓ2, v ∈ V (R2). The node R2 is added to R1 as

a guest node by U (R1) = U (R1) ∪ {R2}. The host of R1 after

contraction leaves unchanged, i.e., still h(R1). We have V (R1) =
V (R1) ∪ V (R2) after the contraction. The contraction relabeling

terminates, when there is no violation to contract.

Algorithm 1 CONTRACT(G,S)

Input: An instance graph G and a constraint graph S
Output: A relabeled G satisfying S
1: for each vertex v in the graph G do

2: create a new node R

3: h(R) := v
4: U (R) := ∅
5: while G not satisfying S do

6: R1,R2 := the nodes with most violations
7: ℓ1, ℓ2 := the candidate labels for R1,R2, respectively
8: if cost(R2) > cost(R1) then

9: swap R1,R2 {To contract R2 to R1}
10: for each v ∈ V (R2) do
11: λ(v) := ℓ2
12: V (R1) := V (R1) ∪V (R2)
13: U (R1) := U (R1) ∪ {R2}
14: return G

The contraction on R1 and R2 will eliminate all the violations

on the edges across these two nodes. Following the same intuition

of violation elimination in greedy heuristics, as shown in Line 6 of

Algorithm 1, each step would like to select a pair of nodes with the

most violations between them, i.e.,

argmax
(R1,R2)

|{(u, v) ∈ E | u ∈ V (R1), v ∈ V (R2), (λ(u), λ(v)) 6≍ S}|.

Finally, each guest node Ri records all the vertexes in the original

graph that are relabeled to the same ℓi, i.e., relabeling results.

Correctness. Once two nodes with vertexes in violation are con-

tracted, they will always satisfy constraints by enforcing the con-

tracted node to a same label and stop violation spread inside the

node. Although new violations may be introduced outside the node

after a contraction operation, the contraction relabeling is guaran-

teed to terminate referring to the reducing of violation upper bound.

Proposition 5. The contraction relabeling always terminates.

Proof. In each contraction operation, we reduce one node in the

graph. The total number of contraction operations is bounded by

the maximum number of nodes, i.e., the size of vertexes |V | in G.

Therefore, the contraction relabeling repeats at most |V | times.

Each contraction operation eliminates all the violations on edges

between nodes R1 and R2, i.e., related to |E |. Both Line 6 for

choosing nodes with maximum violations and Line 7 for deciding

candidate labels (see details below) in Algorithm 1 have to consider

all possible violations in edges between two nodes, with O(|E |)
cost. According to Proposition 5, the iteration terminates in at most

|V | contraction operations. Thereby, the computational complexity

of Algorithm 1 is O(|V | · |E |).
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Figure 6: Example of contraction operation

6.2 Technique Details
Consider the contraction of any edge with violations in the cur-

rent graph. It is expected to eliminate violations while keeping the

relabeling change as small as possible. Following this discipline,

the contraction operation mainly needs to address two issues: i)

what are the candidate labels for relabeling the nodes involved in

the edge (analogous to Line 7 in Algorithm 1); and ii) which side

of the edge should be contracted (Line 8).

Deciding the Labels. We first study the selection of candidate

labels ℓ1, ℓ2 for nodes R1,R2, respectively. Let’s take R2 for ex-

ample. The new label ℓ2 for R2 should not introduce any violations

to the current vertexes in R1.

It is notable that a new label for R2 in the contraction always

exists. Recall that host h(R1) should have label with no violations

to any guest node in R1. Thereby, the straight-forward method is to

assign the host’s label as the new label of R2.

Consider all the possible candidate labels for R2, denoted by

L(R2) = {ℓ′ | (ℓ′, λ(h(R1))) ≍ S , u ∈ V (R1), v ∈ V (R2)

[(u, v) ∈ E ⇒ (λ(u), ℓ′) ≍ S ]}.
That is, the new label ℓ′, assigned to the vertexes v in R2, must

match the label of the host h(R1) and should not introduce viola-

tions to the existing vertexes u in R1. It is worth noting that match-

ing with host (ℓ′, λ(h(R1))) ≍ S is necessary, which ensures the

aforesaid existence of a valid candidate label for the following con-

traction operations. For any candidate ℓ′, let

T (R2, ℓ
′) = {u | ∃v ∈ V (R2) [(u, v) ∈ E ∧ (λ(u), ℓ′) 6≍ S ]}

be all the vertexes u in the graph that are adjacent to some vertex v

in R2 and have violations to the new label ℓ′ assigned to v.

Following the same principle of eliminating violations as greedy

methods, we select the label ℓ2 for R2 as

argmax
ℓ′∈L(R2)

|T (R2)| − |T (R2, ℓ
′)|, (4)

where T (R2) = ∪v∈V (R2)T (v, λ(v)) denotes the previous viola-

tions to the vertexes in R2 before the contraction.

Example 7 (Example 6 continued). In Figure 6(b), suppose that

we want to decide the candidate label of R4 for the contraction

to R5. To avoid introducing violations to R5, we have L(R4) =
{a, b}. However, the label a for R4 will introduce a new violation

to vertex 1 with |T (R4, a)| = 1, while relabeling with b eliminates

all violations, i.e., |T (R4, b)| = 0. According to formula (4), the

candidate label for R4 is b.

Deciding the Contraction. We now have two candidates for

contraction, either relabeling R1 to ℓ1 or relabeling R2 to ℓ2. The

corresponding costs raised by different relabeling are various.

We define the contraction cost as follows, say relabeling R to ℓ′,

cost(R) =
∑

v∈V (R)

δ(λ(v), ℓ′)−
∑

Ri∈U(R)

cost(Ri). (5)

The first part
∑

v∈V (R) δ(λ(v), ℓ
′) denotes the cost of enforcing all

vertexes v in R to the new label ℓ′. Intuitively, by paying the cost

of relabeling all these vertexes, we eliminate the violations not only

for the current contraction of R but also the former contractions of

Ri that happened inside R. However, the violations w.r.t. guest

nodes Ri have already been eliminated in the previous contraction,

i.e., all the vertexes in Ri already have the same label when Ri

was contracted as a guest node to R. Thereby, the previously paid

contraction costs,
∑

Ri∈U(R) cost(Ri), would not be counted again

in the current contraction of R and deserve to be “paid back”.

Example 8 (Example 6 continued). In Figure 6(b), we consider the

candidate label d for contracting R5 to R4. By relabeling all five

vertexes {5, 6, 7, 8, 9} to the same d, it eliminates violations not

only w.r.t. R5 but also the previously contracted R7. However, the

cost of eliminating violations w.r.t. R7 has already been counted in

the former contraction of R7 to R5, in Figure 6(a), and should be

deducted from the current cost for eliminating violations of R5.

Consequently, we can select the one with smaller cost to con-

tract. For instance, in Figure 6(b), suppose that we have cost(R2) =
cost(R3) = cost(R7) = cost(R9) = 1 in the previous steps. The

candidate labels for R4,R5 are b, d, respectively, with δ(b, d) =
δ(a, d) = δ(b, g) = 1. According to formula (5), it follows

cost(R4) = 2δ(b, d) + δ(b, g)− cost(R2)− cost(R3)

= 3–1–1 = 1,

cost(R5) = 2δ(a, d) + 3δ(b, d)− cost(R7)− cost(R9)

= 5–1–1 = 3.

Thereby, R4 is contracted to R5 as illustrated in Figure 6(c), ac-

cording to cost(R4) < cost(R5).

6.3 Performance Analysis
Unfortunately, the contraction result could be arbitrarily bad in

terms of relabeling cost in general cases.

Example 9. In Figure 7, a contraction will be conducted for the

violation in (1, 2). To eliminate the violation, the candidate label

of contracting R1 with host 1 could be g, and the candidate label

of R2 could be b. Suppose that the relabeling costs are δ(a, g) =
2, δ(b, f) = 1. That is, we have cost(R1) = δ(a, g) = 2 which

is greater than cost(R2) = δ(b, f) = 1. The node R2 will be

contracted to R1 as presented in Figure 7(b). Following the same

principle, the node R3 with host 3 will be contracted to R1 as well.

By keeping on contracting nodes Ri with host i to R1, i = 2, . . . , n,

and assigning a new label b, the total relabeling cost is n−1. How-

ever, it is easy to see that the relabeling with the minimum cost is

to relabel vertex 1 to g with cost 2.
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Figure 7: Counter example of contraction effectiveness

Special Case of Star Constraints. Although the contraction

results could be bad in general case, the performance of contraction

method is surprisingly good under star constraints.

Proposition 6. For a star constraint S , the contraction method

terminates, and outputs a G′ having ∆(G′, G) ≤ 2 · ∆(G∗,G),
where G∗ is the relabeled graph with the minimum cost.

Again, we leave the proof details in the full version technique

report [13], due to the limitation of space in this paper. The ex-

perimental results on all the four real datasets in Section 8 show

that the contraction method can always terminate. In particular, the

experiments on synthetic data verify the bounded approximation

performance compared with the optimal solution.

7. PUTTING THINGS TOGETHER
While the greedy method might not terminate, the contraction

results could be bad in terms of relabeling costs. On the other side,

as we will also see in the experiment, the contraction method al-

ways terminates, whereas the greedy heuristics could achieve good

results in practice once the program terminates. It motivates us to

find a method to combine the advantages of these two approaches.

The Idea of Hybrid Approach. Intuitively, the greedy method

succeeds with good performance in some case (termination case)

as it always selects a relabeling that can eliminate most violations.

Unfortunately, even this maximum violation elimination could be

negative, which leads to the non-termination case. In such a sce-

nario, the contraction operation is instrumental in carrying on the

relabeling process. However, the contraction enforces all the ver-

texes in the contracted guest nodes to have the same label, which

may hurt the results in terms of the relabeling cost. We should

avoid contraction when unnecessary.

To incorporate the advantages of both greedy and contraction

methods, we can eliminate violations by the greedy method first.

When no violations could be further reduced, the contraction op-

eration is applied. These two types of operations are conducted

alternatively, where the greedy operation has a higher priority.

Hybrid Algorithm. Algorithm 2 illustrates the pseudo-code of

the hybrid relabeling. First, Lines 2-4 are the violation elimina-

tion operation from the previous greedy method. In particular,

Line 3 specifies an additional condition that the relabeling should at

least eliminate some violations, i.e., |T (v, λ(v))| > |T (v, λ′(v))|.
When no such greedy elimination could be applied, i.e., no further

violations can be reduced as aforesaid by the currently best relabel-

ing λ′(v), the contraction is conducted in Line 6.

Proposition 7. The hybrid relabeling always terminates.

Proof. Since there are at most |V | vertexes considered for contrac-

tion, according to Proposition 5, the number of contraction opera-

tions in the while loop is bounded by |V |. Between two contraction

operations is a series of greedy relabeling operations. |T (v, λ(v))| >

Algorithm 2 HYBRID(G,S)

Input: An instance graph G and a constraint graph S
Output: A relabeled G satisfying S
1: while G not satisfying S do
2: (v, λ′(v)) := the vertex with maximum greedy value
3: if |T (v, λ(v))| > |T (v, λ′(v))| then

4: update v with λ′(v) in G {one greedy operation}
5: else

6: conduct a contraction in G
7: return G

|T (v, λ′(v))| ensures at least one violation on an edge is eliminated

in each greedy operation. As the number of violations is bounded

by |E |, the number of greedy steps between two consecutive con-

traction operations is in O(|E |). To sum up, the while loop exe-

cutes at most |V | · |E | iterations, i.e., always terminates.

According to the above proof, the number of contraction oper-

ations is bounded by O(|V |), while each contraction step takes

O(|E |) in Algorithm 1. Between two contraction operations is a

series of greedy relabeling operations, where the number of greedy

operations is bounded by the maximum number of violations |E |.
Thereby, the complexity is O(|V | · |E |).

Example 10 (Example 9 continued). We consider the example in

Figure 7 again. The greedy relabeling will always be applied first

when appropriate. By relabeling vertex 1 from a to g, we have

|T (1, g)| = 0 less than the original |T (1, a)| = 1. Thereby, this

greedy relabeling is conducted with a total cost 2, instead of n− 1
by the pure contraction method.

For the case of star constraints, since the center label will not in-

troduce violation to any other labels, we can eliminate at least one

violation in each greedy step (by using the center label). That is,

each iteration in Algorithm 2 will always choose the greedy oper-

ation in Line 4. Since no contraction operation is conducted, the

approximation performance of the hybrid algorithm is also guaran-

teed, the same as for the greedy algorithm.

Proposition 8. For a star constraint S , the hybrid algorithm ter-

minates, and outputs a G′ having
∆(G′,G)
∆(G∗,G)

≤ lnn+1, where G∗ is

the relabeled graph with the minimum cost and n = |E |.

Proof. Since the center label ℓ0 in star constraints can eliminate all

violations, i.e., |T (v, λ(v))| > |T (v, λ′(v))| = 0 is always true,

the contraction operation in Line 6 of Algorithm 2 will never be ex-

ecuted. In other words, the hybrid Algorithm 2 is equivalent to the

pure greedy algorithm. The property of termination and approxi-

mation bound are directly inherited from Proposition 4.

Finally, our experimental evaluation below shows that the hybrid

approach can always terminate as the contract one while it keeps

the accuracy performance as high as the greedy method.

8. EXPERIMENTS
This section reports the experiments of proposed relabeling meth-

ods, on both synthetic and real data sets. All the algorithms are

implemented in Java. The program runs on a server with four

2.67GHz CPUs and 128GB main memory.

8.1 Experiments on Approximation Ratio
In order to verify the performance of approximation methods

proposed in Sections 5, 6 and 7, the first experiment is conducted

on synthetic data to observe the difference between the optimal re-

labeling and the returned approximate answers.
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Figure 8: Approximation ratio on synthetic data

Table 3: Data set statistics

Data set Instance size Constraint size Type
Vertex Edge Label Neighborhood

Restaurant 864 2288 12 0 Clique

Coauthor 1680 3089 648 2092 General

WFNT 4742 34221 174 172 General

HPRD 9460 34998 305 6255 Star

USCC 180946 84294 1919 1891 General

CiteSeer 200000 4537 128637 0 Clique

We employ the widely used graph generation tool [6, 17], Graph-

Gen3, to generate 10 testbeds with 9-13 vertexes in instance graphs

and 6-11 vertexes in constraint graphs.

The evaluation focuses on the approximation ratio of approx-

imate answers compared with the optimal one. First, we com-

pute the optimal solution G∗ with the minimum relabeling cost

∆(G∗,G). For any approximate solution G′, the approximation

ratio of G′ to G∗ is reported by
∆(G′,G)
∆(G∗,G)

.

Figure 8 illustrates the approximation ratio performance of the

proposed methods, including Greedy4, Contraction and Hybrid ap-

proaches. Both general constraints and the special case of star con-

straints are considered. As illustrated, the Greedy method cannot

terminate and fails to return results in Tests 6, 7 and 10 in Figure

8(a), i.e., non-termination observed in 30% of randomly generated

graphs. Meanwhile the Contraction approach can terminate in all

the 10 tests. These results verify our conclusion of termination for

the Contraction method in Proposition 5. Moreover, according to

Proposition 6, the approximation ratio of the Contraction method

should be no greater than 2 in star constraints, which is also ob-

served in all the tests in Figure 8(b). Finally, the Hybrid method

can achieve much better approximation ratio performance (equal to

1 in many tests) than Contraction while still guaranteeing termina-

tion, in both general and star constraints.

8.2 Experiments on Repairing Performance
The second group of experiments evaluates both the effective-

ness and efficiency performance of the proposed methods in prac-

tice. We employ six real data sets in the experiments. Statistics of

data sets are summarized in Table 3.

Since the original data are clean without violations (except Coau-

thor Networks), we randomly replace labels as fraud tagging. The

relabeling methods are then applied to repair graph labels. In-

stead of observing approximation ratio by computing the optimal

solution, which is indeed not affordable for the large real data,

we study the accuracy of relabeling results by comparing with the

truth of fraud data previously replaced. In particular, let truth be

3www.cse.ust.hk/graphgen
4the advanced greedy function with normalization in formula (3)
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the set of (vertex, label) pairs that are randomly replaced in G,

i.e., the original true data. Let found be the set of (vertex, label)

pairs that are relabeled in G′, i.e., relabeling results. To evalu-

ate the accuracy, we use f-measure of precision and recall [27],

given by precision = |truth∩found|
|found|

, recall = |truth∩found|
|truth|

, and f-

measure= 2 · precision·recall
precision+recall

. It is natural that higher f-measure

is preferred. Besides accuracy, we also observe time costs of ap-

proaches to study the efficiency performance.

8.2.1 Experiments on Similarity Networks

To evaluate our proposed relabeling techniques over similarity

networks, we directly implement an existing repairing method based

on FD [3] (does not rely on the proposed notations of graphs).

Restaurant Similarity Network, is a collection of 864 restau-

rant records5 that contains 112 duplicates and is widely used for

record matching [16]. We employ a DD discovered from the data,

(Name,Address → Areacode, 〈[0, 0], [0, 6], [0, 0]〉), and a corre-

sponding FD (Name,Address → Areacode). Following the steps

in the introduction, we construct similarity networks w.r.t. the DD.

Note that the distance constraint on Areacode in the DD is [0, 0],

5http://www.cs.utexas.edu/users/ml/riddle/data.html
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i.e., equality. Therefore, the constructed constraint graph belongs

to clique constraints where transitivity is applicable.

CiteSeer6 is a dataset of 200000 citation records. The similarity

network is constructed according to a DD (Title,Author → Subject,

〈[0, 0], [0, 5], [0, 0]〉). To compare with the existing data repairing

method [3], we employ a corresponding FD (Title,Author → Subject).
First, in Figure 9, we compare the approximation methods with

the exact algorithm (implemented following the standard branching

and bound strategy). Unfortunately, even for such a small Restau-

rant dataset, conducting the exact algorithm over the entire dataset

is unlikely. As illustrated, it already takes more than 250000 sec-

onds (about 70 hours) for a subset of 70 vertexes. Considering the

NP-hardness of computing the optimal solution (Theorem 1), we

didn’t carry on the experiments on larger data sizes for evaluating

the exact relabeling program. For such a small data size, we con-

sider a number of 5 inserted frauds, and thus the results may not be

stable in such a small sample. As shown, the exact algorithm could

achieve better accuracy but with extremely higher time costs.

While the greedy method failed to terminate (see more discus-

sion below), we report the results by Hybrid, Contract, and the ex-

isting FD based repairing [3], in Figure 10. Since data set is small,

we mainly observe performance variances by increasing the num-

ber of inserted frauds from 10 to 100. Generally, with the growth

of frauds, the f-measure accuracy drops, while the relabeling time

cost increases. Since frauds are randomly inserted, time costs and

f-measure may not strictly grow or decrease with the increase of

frauds. As illustrated, Hybrid and Contract approaches show al-

most the same results, since the Greedy technique fails to work.

Recall that the major superiority of our proposed graph relabel-

ing approach is the ability of considering more similar neighbors

in similarity networks than the FD repairing which only considers a

limited number of tuples with equality relationships. For the same

reason analyzed in Example 1, owing to the rigid equality, the exist-

ing FD repairing fails to detect the relationships of tuples with small

variations, which are successfully captured by similarity networks.

Since more repair candidates can be suggested, as shown in Figure

10(d), the recall accuracy of the proposed similarity network based

Hybrid approach is significantly higher than that of FD.

Figure 11 evaluates the scalability of repairing methods over var-

ious sizes of similarity networks. As shown, the time costs of all

the approaches increase similarly and slowly with the increase of

the number of vertexes, while the corresponding accuracy perfor-

mances are stable. Again, the accuracy of Hybrid approach is sim-

ilar to Contract and higher than FD.

8.2.2 Experiments on Coauthor Networks

Coauthor Network is motivated by the entity resolution task [15].

We note that there are different authors sharing the same name,

e.g., Lei Chen (HKUST), Lei Chen (Wisconsin), Lei Chen (Pur-

due), Lei Chen (RPI), etc. It is non-trivial to identify which Lei

Chen is involved in a specific citation record (e.g., from CiteSeer

where different authors sharing the same name are not fully dis-

tinguished). Existing approach (such as CENTER [15]) employs

clustering techniques by computing the similarity on coauthors.

We employ the coauthor relationships from DBLP7, where differ-

ent Lei Chen(s) are distinguished, and model them as the constraint

graph. As shown in Figure 12, in the instance graph, each author in

a citation record (from CiteSeer) denotes a vertex. An edge denotes

that this author (in the record) coauthors with another in the same

citation record. The relabeling problem is to find the “right” label,

6http://citeseerx.ist.psu.edu/
7http://dblp.uni-trier.de/db

Figure 12: Example of coauthor networks
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Figure 13: Coauthor networks with various sizes

e.g., Lei Chen (HKUST) or Lei Chen (Wisconsin), for the origi-

nal imprecise one (simply Lei Chen without identification). For the

existing CENTER approach, each author corresponds to the center

node of a cluster, and the coauthor list of the author from DBLP

is used as the features in classification. To evaluate the accuracy,

the publication records in DBLP (with different authors sharing the

same name fully distinguished) are used as the ground truth of the

corresponding citation records in CiteSeer.

As shown in Figure 13, while the recall of CENTER method is

somehow close to our proposed Hybrid/Contract approach, the pre-

cision of CENTER is significantly lower. F-measure is improved

from 0.3 (of CENTER) to 0.98 by our proposed Hybrid/Contract

method. With both the constraint (DBLP) and the instance (Cite-

Seer with imprecise labels embedded) from truly real datasets with-

out any manual manipulation, this experiment demonstrates the su-

periority of our proposal in dealing with real imprecise values.

8.2.3 Experiments on Larger Data Sets

WFNT is a set of 490 workflow networks collected from a train

manufacturer [28], each of which corresponds to a workflow ex-

ecution with 4–45 activities (vertexes). All these workflow exe-

cutions compose the instance graph. Since the activities do not

occur in random and should confirm to certain specifications on

predecessor-successor relationships, we employ these specifications

as the constraint graph. As mentioned in the introduction, any two

activities can appear adjacently in a workflow execution network if

their adjacency is specified in the workflow specification.

HPRD8, Human Protein Reference Database, consists of a hu-

man protein interaction network. It is often used as a massive net-

work, e.g., for finding maximal clique [5]. As introduced in Section

1, edges denote the binary protein-protein interactions. Protein’s

GO term is used as the vertex label. The constraint graph repre-

8http://www.hprd.org/download
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Figure 14: WFNT with various inserted frauds

 0
 50

 100
 150
 200
 250
 300
 350
 400

10 20 30 40 50 60 70 80 90 100

T
im

e
 C

o
s
t 

(s
)

Number frauds

(a) time performance

Hybrid
Contract
Greedy

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

F
-m

e
a

s
u

re

Number frauds

(b) accuracy performance

Hybrid
Contract
Greedy

Figure 15: HPRD with various inserted frauds
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Figure 16: USCC with various inserted frauds

sents GO term correlations. Since the GO term cellular component

is correlated with all the others, the constraint is in star shape.

USCC9, US City and County Web Data, provides city and county

location data in US. We treat each city as a vertex with a county la-

bel. An edge is added between two cities in the instance graph if the

corresponding geographic distance is less than 100km, i.e., nearby.

An edge between two counties in the constraint graph indicates that

there exists at least two nearby cities from these two counties, re-

spectively. For any two nearby cities, they should be either in a

same county or in two counties that are not far away.

Since there are no existing methods for repairing over these datasets,

we focus on comparing the techniques proposed in this paper. The

Greedy heuristics performs well, i.e., with high accuracy and low

time cost as shown in Figure 15, if it can terminate. Unfortunately,

as illustrated in Figures 14 and 16, the Greedy method fails to ter-

minate in most tests of WFNT and USCC with general constraints,

especially when the number of frauds is large. On the other hand,

although the Contraction method can always terminate in all the

tests, as presented in in Figures 14(b) and 15(d), the f-measure ac-

curacy could be bad, which verifies our analysis of the Contrac-

tion approach in Section 6. Nevertheless, as illustrated in Figures

15(b) and 16(b), the f-measure of Hybrid approach is as good as

that of the greedy method in almost all the tests (where the greedy

algorithm can terminate). The Hybrid approach also guarantees ter-

mination as the Contraction method does, while the corresponding

accuracy is as good as the Greedy heuristics one.

Figures 17, 18 and 19 report the performance of scalability by in-

creasing the number of vertexes up to 180k in instance graphs (test

beds with smaller sizes of n vertexes are prepared by using the first

n vertexes listed in the data set). As shown in figures, the time

9http://explore.data.gov/d/veb9-7ksg
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Figure 17: WFNT varying graph sizes
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Figure 18: HPRD varying graph sizes
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Figure 19: USCC varying graph sizes

performance scales well, which grows almost proportionally with

data sizes. The results verify the complexity analysis of Contract

and Hybrid algorithms in Sections 6 and 7, respectively. Note that

WFNT data consist of 490 small workflow networks. When prepar-

ing tests with less vertexes, e.g., 474 in Figure 17, isolate activities

(vertexes) may be selected such that neighborhood based repair-

ing cannot perform. Nevertheless, the results turn to be higher and

stable when test sizes are large (greater than 1896).

Specific tests may zigzag such as Figures 18 and 19 for two rea-

sons: 1) As mentioned, the randomly inserted frauds in different

tests may affect performance results. 2) The heuristic relabeling

steps could be easily influenced by a small difference among tests.

Consequently, the f-measure accuracy may vary greatly among dif-

ferent data sizes due to the random insertion of frauds, for instance,

as presented in Figures 18(b) and 19(b).

In most figures, only two different curves are observed for two

reasons. 1) The greedy algorithm cannot terminate and has no re-

sult, e.g., in Figures 14 and 17. 2) When the greedy algorithm

terminates, the hybrid approach can show (almost) equally good

results, e.g., in Figures 15 and 18. In the second case, there are in-

deed three curves in the results. The curves of Hybrid and Greedy

methods overlap since they show similar performance. These re-

sults verify our analysis that 1) the greedy algorithm cannot termi-

nate in a number of tests, and 2) the hybrid approach is comparable

to the greedy algorithm if the greedy one can terminate.

To summarize, 1) experiments in Figures 9, 10 and 11 illustrate

that hybrid and contraction methods show similar/better perfor-

mance compared with existing techniques, while the greedy tech-

nique fails and has no much effect in the hybrid approach. 2) Fig-

ures 13, 15 and 18 demonstrate that hybrid and greedy approaches

show similar and better results than that of the contraction method.
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3) Most importantly, in Figures 14 and 17, the hybrid approach can

still show good performance, when both greedy and contraction ap-

proaches fail (Greedy fails to terminate and Contract has low accu-

racy). In short, by taking advantages in both techniques, the hybrid

approach always has the best performance in all the experiments.

9. CONCLUSIONS
This paper studies a novel problem of repairing vertex labels un-

der the constraints of label neighborhood. Graph constraint sat-

isfaction and relabeling have many application scenarios, ranging

from similarity networks w.r.t. integrity constraints involving dis-

tance metrics, workflow networks of business processes, to protein

interaction networks. The relabeling problem is generally hard.

Spreads of violations during relabeling prevent the approximation

methods performing. We show that greedy heuristics cannot guar-

antee termination. Therefore, a contraction-based relabeling method

is devised, which can always terminate, but may have bad results

in terms of relabeling cost. For the special case of star constraints,

however, both methods perform surprisingly good, where the greedy

method theoretically guarantees termination and the contraction ap-

proach turns out to be factor-2 approximation. Nevertheless, to put

together the beauty of violation elimination heuristics and termina-

tion, we present a hybrid approach by cooperating contraction and

greedy relabeling. Experimental evaluation on both synthetic and

real data verifies our major theoretical analysis, and demonstrates

that the hybrid approach always takes the advantages of one of the

proposed greedy/contraction techniques (if the other fails).
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