Harnessing Data Management Technology for Web
Mashups Development

Ohad Greenshpan

Under the supervision of Prof. Tova Milo
Tel-Aviv University

ABSTRACT

Web mashups are Web applications that integrate heteroge-
nous data sources, services and full applications, on the web.
The new evolving mashup technology stems from the un-
derstanding that the number of assets being available on
the web and the needs to combine them to meet user re-
quirements, are growing rapidly. Mashups aim to enable ad
hoc reuse of existing assets, the emphasis being on GUI and
programmingless specification.

Our research focuses on two main dimensions of mashup
construction: (1) Mashup Design: Help mashup designers
plan, construct and develop their mashups; (2) Mashup Us-
age: Assist users to utilize mashups and exploit the potential
and advantages mashups can offer. We also plan to enhance
our focus in the future to Mashup Optimization aiming to
find ways to improve mashups performance and usability.

1. INTRODUCTION

A (music) mashup is a composition created from the com-
bination of music from different songs. Web mashups, in a
similar spirit, stem from the reuse of existing data sources,
services or Web applications into more complex assets, with
the emphasis being on GUI and programmingless specifica-
tion. The concept of mashups originated from the under-
standing that the number of applications available on the
Web and the needs to combine them to meet user require-
ments, are growing very rapidly. However, these applica-
tions are often complex, provide access to large and hetero-
geneous data, varied functionalities and built-in GUIs, so
that it becomes in many cases an impossible task for IT
departments to build them in-house as rapidly as they are
requested to. The role of mashups is to facilitate this rapid,
on-demand, software development task.

Mashups aim to enable the user ad hoc integration of a
wide variety of full applications, live data sources and ser-

*This research was partially supported by the Israeli Min-
istry of Science, the Israel Science Foundation, the US-Israel
Binational Science Foundation, and IBM Research.

Copyrightis heldby theauthor/owner(s).
VLDB 2010PhDWorkshop,Septembefi3,2010,Singapor

vices, and rich navigation that involves them all, and there-
fore they have to be based an abstract generic model that
support development of tools for mashup assembly and uti-
lization. Since they aim to enable high customizability and
adaptivity to the requirements of each and every user, they
have to be modular and be based on high inference and
recommendation techniques. Since they have high level of
interaction with the end-user in real time, they have to be
adaptive to changing needs. All these requirements call for
advanced set of solutions that are based on sound theoretical
foundations. Let us illustrate things with an example.

Example. A simple example of a mashup is shown in Fig-
ure 1. The mashup is composed of basic components that
we call mashlets. A mashlet can be GUI-based (e.g., a wid-
get) or not (e.g., Web Service or RSS stream). To allow
for modular application development, a mashup can itself
serve as a mashlet in some other (more complex) mashups.
The screenshot here (see Figure 1) contains the following
mashlets: an Electronic Health Record (EHR) mashlet (at
the top left corner), a map, a weather status application,
a calendar, a medical search engine, an SMS mashlet, and
a medical data analyzer. Once connected, these mashlets
could interact in many ways and therefore enrich the func-
tionality and experience mashups users have. For instance,
addresses of doctor appointments can be pulled from the
calendar and then be fed into the map for display; The ap-
pointment times can be retrieved from the calendar and sent
as SMS reminders to phone numbers taken from the patient
EHR. This may be done automatically by the application
(e.g. in response to some events), or on user demand (e.g.
by drag and dropping a calendar entry on the SMS mashlet).

Figure 1: Example Mashup

We will now describe several key challenges that we iden-
tified in mashup development. These will be the main focus
of our research.

e Mashup Design: This is the planning phase in which the
mashup is composed. Since mashups combine already-given

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore

applications, services and data sources, mashup designers
first need to find the relevant components that suit best their
goal, out of all available components on relevant reposito-
ries. Then, they need to learn their specification and de-
cide how these should be glued to one another to form a
mashup. This will be done by defining what data would be
transferred and when. Since mashups are widely developed
on the web for various purposes, it is desirable to provide
users the ability to make use of work done by other designers
who encountered similar problems. This described process
is complicated since it involves both the requirements and
constraints the mashup designer addresses, as well as expe-
rience of other designers encountering similar problems and
inventing similar solutions. We focus on providing tools to
facilitate this process for mashup designers.

e Mashup Usage: Mashups integrating existing web compo-
nents, from different types, under a single application, enrich
user experience and navigation, but at the same time might
impose burden on their users. Users working with composed
mashups need tools that will help them orient better, study
their mashups’ capabilities and understand how these can
be used to accomplish various tasks. They need tools which
would assist them navigate in the mashed-up assets, query
relevant data and perform actions. We will focus on devel-
opment of such tools to facilitate mashup usage.

e Mashup Optimization: Since mashups enable integration
of large amount of remote assets at real-time, optimization
is required to make composed mashups perform better, more
effectively and with minimal use of resources. We will ex-
plore ways to enable optimization of the resources mashups
consume and optimization of mashup usability to users.

The solutions that we proposed to some of the challenges
described above were presented in [1, 2, 13, 6], some are still
under development and some are planned for future work.
In the following sections we will describe what has been
achieved, and what is yet planned to be explored.

2. MASHUP MODEL

In order to facilitate development of solutions for the chal-
lenges mashups pose, a formal model that captures well the
notion of mashup in its globality, needs to be devevloped.
Since there was no appropriate model that covers all aspects
of mashups, this was our first contribution of our research.
Previous works have typically focused on specific aspects of
mashups. Among those, one can list works dealing with
service composition [21, 22], works that studied (semantic)
data integration [3], and works considering interaction be-
tween mashup components and interaction with users [9].

Each such aspect is clearly interesting in itself. However,
we believe that it is also essential to understand the notion
of mashup in its globality, and in particular the interaction
between the various facets previously mentioned.

We next briefly overview the main components of our
Mashup model. For space constraints, we mostly focus on
key components that will be used in the following sections.
Full details can be found in [1].

Mashlets and Glue Patterns. The basic components of
the model are atomic mashlets. A mashlet is a module that
implements a specific functionality and supports an inter-
face of variables and methods visible from other mashlets.
For mathematical simplicity, the model is based on relations
as in relational database systems: the state of a mashlet is

97

oy SimPle Marker (m3)

Map (m1)
0

ey Video Marker (md)

Video and Panel
Markefr (m5)

Yahoo!

Figure 2: Inheritance of Mashlets and Glue Patterns

maintained and represented by a set of relations, and the
logic of the mashlet (which includes its interaction with the
external world) is represented by a set of Datalog-like (ac-
tive) rules. A distinction, however, is that the standard
relational model assumes first normal form, i.e., the compo-
nent of a relation is a tuple of atomic values. This restric-
tion is relaxed here and the model is not strictly first-order,
but is more in the spirit of nested relations. In particular,
to model complex mashlet data, tuples in mashlet relations
may contain other relations, and even entire mashlets. More
concretely, an atomic mashlet has the following components:

e Input and Output Relations: they capture the input and
output fields respectively of a mashlet. This constitutes
the external interface of the mashlet that is manipulated
by other mashlets or users in the system.

e Internal relations: they define local data of the mashlet.
They can be specified as visible or not outside the mashlet.

e Rules: they specify the logic implemented by a mashlet.
This logic describes how the output relations are populated
based on the values of the input relations and the local data.
In the model, this logic may be encoded using Datalog-style
active rules, which enables taking advantage of advanced
existing technology, notably query optimization. The logic
may alternatively be provided in a high-level programming
language. In that case, the mashlet behaves as a black box.

The left column of Figure 2 shows two example atomic
mashlets named “Map” and “Yahoo! Map”. The “Map”
mashlet contains a coordinate input relation with attributes
such as longitude, latitude, and zoom, that control the lo-
cation displayed on the map. “Yahoo! Map” may contain
and additional view input attribute, controlling whether the
map displays a satellite view or a normal view.

A compound mashletis typically composed of other (atomic
or not) mashlets. Thus, in addition to the above men-
tioned components, a compound mashlet may include im-
ported mashlets, as well as rules to specify how its imported
mashlets interact with each other (e.g. how the output of
one mashlet is transformed into the input of another). Since
the main contribution of such mashlets reside in the “glue”
they provide between the mashlets they use, we call them
Glue Patterns (GPs for short).

Figure 2 shows four GP examples, labeled GP1 - GPA4.
For instance, GP1 combines the basic “Map” mashlet with
a “Simple Marker” mashlet to display a list of locations on
a map using simpler markers. GP2 performs the same task
but uses the “Video Marker” mashlet for the markers. In
both cases, the GP passes information from one mashlet to
the other using the corresponding external interfaces.

The model presented above includes both syntactic and
semantic features for mashlets and GPs. Reasoning about
semantics is clearly challenging, given also that the logic of
mashlets may be implemented in different languages. Thus,

the work presented in the following section focuses mostly
on the syntactic aspects of the mashlet, i.e. its input and
output interfaces, which can be identified easily from its
specification. Similarly, a GP is modeled as the graph of
connections between the input and output relations of the
mashlets that it links.

Inheritance. Mashlet inheritance plays a central role in the
design of mashlets and in the autocompletion mechanism we
introduce in the paper.

The high-level observation is that, similar to software com-
ponents, mashlets may share properties with other mashlets
and comply with the inheritance paradigm. As an exam-
ple, observe that the “Map” and “Yahoo! Map” mashlets
implement very similar functionality, and it may be actu-
ally possible to use a “Yahoo! Map” in any GP that uses
a “Map” as one of its components. Based on this intuition,
we analyzed in detail Programmableweb.com, currently the
most extensive collection of mashups on the Web. This led
us to the understanding that a large number of mashups
are similar to each other, in their components and in the
logic they offer to users. For example, at the time of our
study, 1669 mashups (39% of all mashups) included maps
provided by various vendors (Google, Yahoo!, etc.). Since
their characteristics are often standard, it is easy to reuse
the composition logic defined for one mashlet on another
similar mashlet. Even if some of the functionalities may not
be enabled, the core logic should be reusable.

One can define syntactic or semantic notions of inheri-
tance that express how mashlets/GPs relate to one another.
We focus here on the syntactic notion that bases the inheri-
tance relationship on their external interface, since these are
usually exposed by developers following the mashup paradigm.

More specifically, a mashlet mo inherits from mashlet m1
if the interface of ma (its input/output relations) is a super-
set of the interface of m1, and for each input (resp. output)
relation of mi, the attribute-set in the corresponding re-
lation in my is a superset of that in my. This definition of
syntactic inheritance implies that mashlet ms can substitute
m1 in any composition that uses an instance of m;.

Similarly, we can define syntactic inheritance among GPs.
In this case, the inheritance relationship is defined based on
the mashlets linked by a GP. Formally, a GP ¢» inherits
from GP g if there is mapping h from the mashlets linked
by g1 to the mashlets linked by g such that if h(m) = m’
then m’ inherits from m. As an example, GP2 in Figure 2
inherits from GP1, in the sense that GP1 can also link a
“Map” to a “Video Marker”, and thus it can be used in any
composition that uses G P2.

3. MASHUP DESIGN

Following the described model, a programmer builds a
mashup by selecting specific mashlets and specifying the
GPs that link them. Several mashup editors are available on
the market to perform this task [19, 14]. However, building
a mashup-based application, as done nowadays in many IT
departments (e.g. for health-care or government-support),
is still a fairly complex (and error-prone) task. It involves
not only finding the most suitable domain-dependent mash-
let components, but more importantly, gluing them together
in an effective way. This gluing is non-trivial as the names
of the mashlets input/output variables are not always mean-
ingful /uniform, they include state variables that one is not
always aware of, types are inconsistent, etc. To address this

98

problem, we developed MATCHUP, a system that allows for
rapid, on-demand, intuitive development of mashups, based
on a novel autocompletion mechanism.

3.1 Our Approach

The key observation guiding the development of MATCHUP
is that mashups developed by different users, in similar con-
texts, typically share common characteristics, i.e., they use
similar classes of mashup components and glue them to-
gether in a similar manner. It can thus be very helpful to
use the “wisdom” of other users in order to determine the
wirings among the components of a new mashup. How-
ever, a given mashlet might have been used/glued (in differ-
ent contexts) in thousands of different mashups; browsing
through all to identify common and suitable wirings is too
time consuming. This is precisely where our system comes
into play—it instantly retrieves those GPs that are poten-
tially most relevant to the user’s current needs.

We draw our inspiration from integrated development tools
and propose the use of autocompletion. The idea is simple
and intuitive: The user selects some initial mashlets that are
indicative of the mashup that he/she aims to build, and the
system proposes possible completions with GPs and possi-
bly other mashlets. The user can then select one or more
possible completions, refine them, and continue building the
mashup in an iterative fashion. Given a database of mashlets
and GPs with some inheritance relationships, and a set of
mashlets selected by the user, the goal would be to identify
and rank GPs that link a subset of the selected mashlets.

The mashup autocompletion problem needs to address
two unique challenges. The first concerns the identifica-
tion of potentially relevant GPs. Intuitively, a good GP
would glue all the mashlets selected by the user without
introducing additional mashlets in the mashup. Such a GP,
however, may not exist in the database, in which case the
system should try to relax the requirements. For instance,
a GP may link a proper subset of the selected mashlets, or
introduce additional mashlets. Another option is to use a
GP that does not link the exact mashlets, but instead links
mashlets that are similar to them. The second important
challenge is the ranking of candidate GPs so that the system
can propose to the user a meaningful short list of comple-
tions. The rank of a candidate GP intuitively depends on
its “tightness”, i.e., the omission of mashlets or the intro-
duction of additional mashlets should penalize the quality of
a candidate. At the same time, it is important to also take
into account the tightness of the GP with respect to inheri-
tance relationships. Intuitively, GPs that link mashlets that
are more general than those specified by the user take less
advantage of these mashlets specific capabilities. Finally, it
is important to take into account the “collective wisdom” of
the user community when presenting choices to the user.

3.2 Algorithm

We introduce a very high-level description of our algo-
rithm that can solve the aforementioned problem efficiently.
The detailed description, along with proof of correctness and
optimality, can be seen in [13].

Setting and Definitions. As described above, we assume
that we have a database of database of mashlets and GPs
with some inheritance relationships, and a set of mashlets
selected by the user.

We then model each GP in the database to a point in a

multi-dimensional space, having scores that reflect its popu-
larity and relevance (either direct or the one that takes into
account inheritance relationship) to the user selected mash-
lets. The “ideal” GP that links just the selected mashlets is
also mapped to a point in this space. The distance between
this point and a GP point is the basis to rank the GPs.

We store these scores as follows: Each mashlet m in M,
the repository of all mashlets and GPs, is associated with a
G Pset, Ly,, that records the GPs that link the mashlet m or
its generalizations (as explained in the Inheritance section),
along with the penalty of the generalization.

DEFINITION 1. For a given mashlet m, the GPSet L, is
a set of (g,w) where g is a GP that links m with genelization
penalty of w. Formally, Lm = {(g,w)|lg € M A g:m —
m’' A w = Dist(m — m'}.

We assume that the elements of L,, can be accessed in in-
creasing order of the weight w, and we use Ly,[i] to denote
the i-th element of L,, in that order. We also define the
ImportanceSet, Lo, that contains all GPs and their impor-
tance metrics, and we assume a similar sorted access model.

DEFINITION 2. The ImportanceSet, Lo, is the set of (g, w)
that stores each GP g, along with its distance in impor-
tance from the GP with the highest importance. Formally,
Lo = {(g,w)|lg € M A

w =

max{Imp(g’)|g’ €M} —Imp(g) }
max{Imp(g’)|g’ €M} —min{Imp(g")|g’ EM}

Clearly, these sets can be built off-line by examining M.
The sorted access can be provided by indices (primary or
secondary) over the sets.

Following these definitions, each GP ¢ is a multi-dimensional
point of which scores are held in the ImportanceSet, Lo, and
the GPSets of all mashlets in the repository M.

Our algorithm is a version of top-k algorithms, a la TA [11],
with some improvements that address the special charac-
teristics of our problem that might appear in other similar
problems in Web environments. We will discuss these char-
acteristics after we provide a brief sketch of the algorithm.

Initial Approach. Our basic algorithm accesses sequen-
tially the lists L1,..., La that correspond to the database
mashlets, plus list Lo. The access is round-robin. For each
accessed element (g, w), the algorithm finds the definition of
g, computes S(g), and places g to an output queue O that
holds the best K GPs that have been identified thus far. Let
O[1],...,O[K] denote the completions identified thus far, in
decreasing order of their scores. The algorithm maintains a
per-mashlet threshold ¢; that is always set to the w compo-
nent of the last accessed element (g, w). The algorithm also
maintains a threshold ¢ on the best potential score of unex-
amined completions. The threshold is computed as the score
of a conceptual candidate ¢’ that corresponds to a point in
the multi-dimensional space, having the value t; for the i*"
coordinate, ¢ =0... M. When S(O[K]) > t, it is not possi-
ble to generate a better completion than the ones contained
in O. Hence, the algorithm terminates and returns the K
completions in O.

Given the monotonicity of the score function & and the
fact that the algorithm follows essentially the same princi-
ples as the standard TA-style algorithms, it is easy to prove
that the algorithm is correct. Nevertheless, it has one sig-
nificant drawback. Observe that the number of lists that

99

the algorithm manages is very large; it is equal to the num-
ber of mashlets in the database and a typical database may
contain thousands of mashlets [?]. Note also that typically,
most mashlets are totally unrelated to the user mashlets. It
is clearly desirable to ignore those and focus on the much
smaller set of mashlets directly reflecting the user’s interest.

Improved Approach. Our improved algorithm has the same
definition as Algorithm 1 except that it employs the boxed
lines. It accesses only the lists L1, ..., L, that correspond to
the user mashlets (plus, as before, the list Lo describing the
GPs importance). In order for the algorithm to still provide
correct results, a more careful computation of the thresh-
old t is required. The threshold is computed as the score
of a conceptual candidate ¢’ that has importance tg, links
each user mashlet m through a generalization with penalty
tm, for 1 < m < n, and does not link any other mashlets.
Therefore, we assign ¢ with maximum penalty, in the lists
that correspond to mashlets that are not part of the user
mashlets. The proof of correctness, along with discussion on
its optimality, is given in [13].

MatchUp. These algorithms served as a basis for the de-
velopment of MatchUp, a system that facilitates mashup
design. The system enables the user to place some initial
mashlets in her mashup and ask the system for autocomple-
tion, i.e. mashlets and GPs that would best fit. MatchUp
was presented in [2, 13].

4. MASHUP USAGE

Up until now, we focused on techniques for mashup de-
sign. As described in section 1, another important aspect
of mashup construction is Mashup Usage. Due to the com-
plexity of mashup applications, users often find it difficult
to orient in the involved mashed-up assets and navigate to-
wards their offered functions. Mashup platforms will there-
fore require mechanisms to provide such guidance.

As shown earlier, mashups are web applications integrat-
ing a set of complementary Web services and data sources,
referred to as mashlets. Previous works typically considered
mashlets as isolated atomic services [2, 18, 23]. In real-
life, however, mashlets are often incorporated as services
within larger applications. For instance, the patient drugs
list may be part of an Electronic Health Record application
(EHR); the pharmacies directory may be part of a phar-
maceutical Web site, etc. The gluing of mashlets, in this
case, yields a set of inter-connected Mashed-up Applications
(abbr. MashAPP). Development of such MashAPPs is a
current trend, and their number, as well as the number of
their users, are estimated to significantly grow in the near
future [16, 17].

Users of MashAPPs may navigate, in parallel, in several,
interacting applications. For instance, consider a patient
wishing to find out where her prescribed drugs are sold.
Without exploiting the interactions between applications,
she could navigate separately within the EHR, pharmaceu-
tical, and map applications: this may require her to login
to her EHR account, retrieve the prescribed drugs, then
login to the pharmaceutical application, manually search-
ing for pharmacies that offer these drugs, then turn to the
map and repeatedly search for the location of relevant phar-
macies. Alternatively, she can exploit the MashAPP inter-
connections to complete her navigation much faster: she
may still need to first login to her account at the EHR and

at the pharmaceutical application, due e.g. to security con-
straints imposed by the applications, but now a single click
on each prescribed drug feeds the data to the pharmaceuti-
cal application, that retrieves pharmacies offering this drug,
and the pharmacies locations then appear on the map.

The above example illustrates two connections within the
MashAPP, but there are typically many others (e.g. infor-
mation on pharmacies offering deals may be found in med-
ical forums, payment may be done online, etc.). This im-
plies that the number of possible relevant navigation flows
in a MashAPP may be very large (even in a single applica-
tion, the number of flows is large [4] and inter-connections
between the applications further increase it). Some of these
navigation options exploit the MashA PP structure in a much
better way and are significantly better for the user than oth-
ers (e.g. save work, induce less errors, etc.), but identifying
them may be a significant challenge [22].

The growing popularity of MashAPPs [17], along with the
difficulty of users in optimally exploiting such MashAPPs
[22], calls for a solution that assists users in their navigation.

Model Enhancement. In order to provide such solution,
our original model had to be enhanced, to support interac-
tion between integrated applications, and the possible nav-
igation flows within the MashAPP. The new model pre-
serves the Mashlets and GPs, and adds the notion of Web-
Applications which defines a flow that connect Mashlets.

For the definition of a Web-Application, we assume a do-
main £ of mashlet names; following the definitions in section
2, each such mashlet name [€ L is associated with two sets
of relations: a set of input relations, denoted by in(l), that
must all be fed so that the mashlet may operate, and a set
of output relations, denoted by out(l), that are the output
of the mashlet operation.

A Web-Application is then modeled as a directed node-
labeled graph, corresponding to an application site-map.

We then define the notion of a MashAPP as a collection
of Web-Applications whose mashlets are inter-connected via
Glue Patterns (abbr. GPs). Intuitively, a GP connects a
source mashlet of one application to a target mashlet of
another application, supplying some of its required input.

DEFINITION 3. A MashAPP is a pair M = (Apps, GPs)
where Apps is a set of Web-Applications and GPs is a set
of Glue Patterns. A Glue Pattern (GP) is a pair gp = (s,t)
where s and t are two nodes of distinct applications in Apps.
We call s (t) the source (resp. target) of gp, and denote it by
source(gp) (target(gp)). We require that for every mashlet
in Apps that is the source of multiple GPs, the target nodes
of these GPs belong to distinct applications in Apps.

A Navigation Flow is an actual instance of navigation
within a MashAPP, consisting of a sequence of navigation
steps. Intuitively, a flow of a single stand-alone application
starts at the application starting point and follows its edge
relation, with the input of each mashlet along the flow being
fed either by the output of the previously activated mashlet,
or by the user. The navigation point of each application is
captured by the location (node) of the application along its
flow. As for a MashAPP that combines several applications,
the navigation point is modeled via a Program Counter (PC)
signifying the current locations of the flow in all applications.

A navigation flow in a MashAPP induces parallel navi-
gation in all participating applications and is captured by a

100

Drugstore

login_—+ EHR
MAP

Mainpago @ Pharmacies
nline
/
Search // ‘
bydvugé |

| Q
Shuw‘ |

login

Search =—® Show login ?
Getalls address|
Show Show on, \

Search by
pharmacy

\

pharmaciest, |
. o
ST Spoupnons M T '}?) drugs
number - "~ rugs
N A orosmr Zoom@_/ Pharmac{ss 9
e i inAyBC infABC
adug i Qoo Qoo
“Choose, |
’ O

Show Consyrmption

Showfdeal Show drug
details.

Payment
options

i
/
Confirm

Figure 3: MashAPP Structure

Buy with BUy with
cash credit

sequence of PCs. In the absence of GPs, a navigation step in
a MashAPP is a single step in one application, updating the
corresponding PC node and keeping all others intact. How-
ever, GPs allow to bypass the standard application flow, and
have mashlets be activated by other applications and receive
their input from them. Thus, a mashlet m in application A
may be activated even if the PC node of A has not reached
it, but rather the combination of outputs of mashlets (in
other applications) glued to it, along with the output of the
current mashlet of A, feed its required input. In this case,
the PC node of A may “jump” to m, continuing the flow
from there. A formal definition of PCs is given in [5].

Recommendations. As can be seen, for a given MashAPP,
there is a large number of possible flows that users might
choose to achieve a certain goal. Some of the flows are
considered better than others, e.g. due to preferences and
constraints involved with the user or with the goal to be
achieved. In order for the user to define his goal, we de-
veloped a query language which is modeled as a graph pat-
tern over the MashA PP, which aims to provide as a result
a set of flows that may guide the user to achieve her goal.
In order to rank the various flows, we developed a weight
function that allows to weigh the possible flows based upon
user-specified criteria (e.g. number of clicks, popularity).
In order to enable the desired navigation, there is a need
for an efficient algorithm that, given such query and the
current user location within the MashAPP, finds the k best-
weighted continuations, which should be presented to the
user during navigation. As described in [6], the problem is
fP-hard (data complexity). However, further analysis shows
that the complexity depends on the number of GPs connect-
ing the applications within the MashAPP, and on the query
size. We show [5] that both are relatively small in practical
cases, and present a algorithm that returns such top-k paths
efficiently. The algorithm receives as input a MashAPP, a
query, a Program Counter indicating the current user po-
sition, and a number k of requested results, and outputs
the top-k qualifying navigation flow continuations in a data
structure referred to as Out. The algorithm considers in par-
allel all possible invocation orders for the GPs (compatible
with the query constraints). For each order O, it computes
the top-k navigation flows conforming to O, by computing
the top-k partial navigation flows in-between each two con-
secutive GP sources in O, then combine the results to obtain
top-k full navigation flows for each such order.

Compass. The model and algorithms described here served
as the basis for the development of Compass [6], a system
that assists users in their navigation through MashAPPs.
Users of COMPASS are presented with an abstract graphical
representation of the MashA PP, they easily form queries and
are given back top-k navigation flows satisfying the query.
The system was presented in [6].

S. RELATED WORK

We give in this section a review of related work, highlight-
ing the relative contributions of our results. Due to space
constraints we give here only a limited subset of the related
results. See [1, 2, 13, 6] for further review.

Mashup Composition and Assembly. Several works pro-
vide complementary tools to assist in Mashup assembly. [21]
proposes a tag-based navigation technique to compose data
mashups. [9] analyzes the data currently viewed by the user
to suggest widgets that might handle this data. However
it does not provide the glue to connect the proposed wid-
gets with the present mashup (in our terminology, the best
fitting GPs). [8] recommends users a set of possible out-
puts for a specific mashup. Once such output is chosen, it
computes an extension of the mashup which will achieve the
selected output. Our solution however recommends GPs for
a specific set of mashlets, and therefore these two can be
complementary for mashup designers.

Navigation Assistance. Various works [4, 7] considered
analysis of navigation flows within the context of a single
application. Most of these works analyze also the data ma-
nipulated by the Web-Application; as noted in [7], querying
the combination of execution flows and data they manipu-
late, and the interplay thereof, incurs very high complexity.
[4] took an approach similar to ours of querying application
structure and suggested a PTIME evaluation algorithm for
the restricted setting of a single application. We show that
there is an inherent added hardness in the MashAPP set-
tings which calls for dedicated algorithms and optimization
techniques that presented here. We also note that while our
model resembles that of Petri Nets [20], it bears a weaker
(vet sufficient for capturing real-life MashAPPs structure)
expressive power allowing for efficient query evaluation.

Top-k Queries. Top-k queries were studied extensively in
the context of relational and XML data [12, 15]. In graph
theory, the problem of k-shortest paths was studied exten-
sively (e.g. [10]). We present here novel versions of top-
k query evaluation that suits the web environment with
large volumes of information which needs to be narrowed,
as shown in section 3, and helps in navigation in multiple
applications in parallel, as shown in section 4.

6. FUTURE WORK

In previous sections we summarized the results obtained
so far. We now review our main goals for further research.

Query Facility. Over the past few years, the number of
mashups and mashlets that are available for developers is
growing rapidly. Therefore, an advanced mechanism to search
and query these assets is required to facilitate mashup con-
struction. Such mechanism will be based on techniques to
compare mashups, propose alternative compositions, and so
on. The retrieved mashlets can then be provided as input
to the recommendations mechanism presented in section 3.

Collaborative Mashup Design. Currently, mashups are
developed by different users over the web, independently and
asynchronously. We would like to facilitate collaborative
design of mashups, by enabling users to recommend relevant
components, define how data flow between them.

101

User Preference and Context. The work done until now is
generic for every user and state. It is agnostic to the context
of users and to their preferences. We would like to refine the
recommendations we propose during the mashup design, by
enabling the system to identify what users need and prefer
at any time and place, and integrate these as factors in the
proposed recommendations for assets to use and on how
to use them. This requires the development of a generic
framework for defining (and identifying) relevant contextual
information, as well as for exploiting such information.

Mashup Optimization. Due to the complexity mashups
impose, development of appropriate optimization techniques
are required to improve their performance. They integrate
various components that each may consume large number of
sources, and they are used by large amount of users on the
web in parallel. Therefore they are required to scale up well.
We plan to develop various optimization techniques, such as
cost-based optimization to maximize performance and min-
imize cost on system resources, data-centric optimization
that focuses on the data being consumed, and others.

7. REFERENCES

[1] S. Abiteboul, O. Greenshpan, and T. Milo. Modeling the

mashup space. In WIDM’08.

[2] S. Abiteboul, O. Greenshpan, T. Milo, and N. Polyzotis.

Matchup: Autocompletion for mashups. ICDE ’09.

[3] A. Ankolekar, M. Krotzsch, T. Tran, and D. Vrandecic. The
two cultures: Mashing up web 2.0 and the semantic web. Web
Semant., 6(1):70-75, 2008.

D. Deutch, T. Milo, and T. Yam. Goal Oriented Website
Navigation for Online Shoppers. In VLDB ’09.

Daniel Deutch, Ohad Greenshpan, and Tova Milo. Navigating
in complex mashedup applications. In Submitted.

Daniel Deutch, Ohad Greenshpan, and Tova Milo. Navigating
through mashed-up applications with compass. In ICDE ’10.
A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In ICDT, ’09.
H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin. Mashup
advisor: A recommendation tool for mashup development. In
ICWS ’08.

RJ. Ennals and MN. Garofalakis. Mashmaker: mashups for the
masses. In SIGMOD ’07.

D. Eppstein. Finding the k shortest paths. In 35th IEEE
Symp. Foundations of Comp. Sci., 1994.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System
Sciences, pages 614-656, 2003.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci., 2003.

O. Greenshpan, T. Milo, and N. Polyzotis. Autocompletion for
mashups. PVLDB ’09, 2(1):538-549, 2009.

IBM Mashup center.
http://www-01.ibm.com/software/info/mashup-center/.

B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic xml.
In Proc. of VLDB, 2007.

Narayanan Kulathuramaiyer. Mashups: Emerging application
development paradigm for a digital journal. J. UCS,
13(4):531-542, 2007.

Cheng-Jung Lee et al. Toward a new paradigm: Mashup
patterns in web 2.0. WSEAS Trans. Info. Sci. and App.,
6(10), 2009.

B. Lu et al. sMash: semantic-based mashup navigation for data
API network. In WWW ’09.

Microsoft Sharepoint. http://www.microsoft.com/SharePoint/.
T. Murata. Petri nets: Properties, analysis and applications.
Proc. of IEEE, 77(4), 1989.

A. Riabov et al. Wishful search: interactive composition of
data mashups. In WWW ’08.

J. Wong and JI. Hong. In CHI 07, New York, NY, USA.

J. Yu et al. A framework for rapid integration of presentation
components. In WWW ’07.

4]
5]
6]
(7]

8]

9]
(10]

(11]

[12)
[13]
[14]
[15]

(16]

(17]

(18]

(19]
(20]

(21]

[22]
(23]

