
Flying Yellow Elephant:
Predictable and Efficient MapReduce in the Cloud

Jörg Schad
Supervised by: Prof. Dr. Jens Dittrich

Information Systems Group, Saarland University
http://infosys.cs.uni-saarland.de

ABSTRACT
Today, growing datasets require new technologies as standard tech-
nologies — such as parallel DBMSs — do not easily scale to such
level. On the one side, there is the MapReduce paradigm allow-
ing non-expert users to easily define large distributed jobs. On the
other side, there is Cloud Computing providing a pay-as-you-go
infrastructure for such computations. This PhD project aims at im-
proving the combination of both technologies, especially for the
following issues: (i) predictability of performance, (ii) runtime op-
timization and (iii) Cloud-aware scheduling. These issues can re-
sult in significant runtime overhead or non-optimal use of comput-
ing resources, which in a Cloud setting directly correlates to high
monetary cost. We present preliminary results that confirm a signif-
icant improvement on performance when addressing some of these
issues. Further, we discuss research challenges and initial ideas for
above mentioned issues.

1. INTRODUCTION
We currently face an enourmous growth of datasets — up to

PetaBytes — including customer data, Web logs, web indexes,
sales data and many more. As datasets grow, the difficulty of an-
alyzing such datasets increases as well, because parallel DBMSs
require massive effort to scale up to such level. Hence, new types
of frameworks for data analysis scaling to this level are required.
Technologies as MapReduce and Cloud Computing are emerging
to deal with this.

On the one side, the MapReduce framework, introduced by
Google in 2004 [19], aims at dealing with large scale datasets by
utilizing large commodity hardware clusters. Users only have to
provide two User Defined Functions (UDFs) — map and reduce
— and do not have to worry about parallelization, fault-tolerance,
or tuning several parameters of the system. The main motivation
of developing the MapReduce framework was to create the billion-
page web index. Today, MapReduce is used for 80% of the data
analysis at Google including machine learning problems, usage re-
ports, and even processing of satellite image data [41]. In particu-
lar, with the Apache open source framework Hadoop [4] the usage

.

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25  30  35  40  45  50

R
un

tim
e 

[s
ec

]

Measurements

EC2 Cluster Local Cluster

Figure 1: MapReduce Performance on the Cloud compared to
a Local Cluster

of MapReduce has been spread to a large number of other applica-
tions as well. MapReduce is currently used by a growing number
of companies like Yahoo!, Facebook, AOL, A9, Last.fm, and The
New York Times [5].

On the other side, Cloud computing is a model that allows users
to easily access and configure a large pool of remote computing
resources (i.e. a Cloud). This model has gained a lot of popularity
mainly due to its ease of use and its ability to scale up on demand.
As a result, several providers such as Amazon, IBM, Microsoft, and
Yahoo already offer this technology. For many users, especially
for researchers and medium-sized enterprises, the cloud comput-
ing model is quite attractive because it is up to cloud providers to
maintain the hardware infrastructure.

These two technologies — especially in combination — make
large-scale data analysis feasible even for non-expert users: while
MapReduce allows non-expert users to perform complex tasks over
large datasets, Cloud Computing provides the necessary infras-
tructure for running such large-scale applications. For example,
the New York Times used Hadoop and Amazon EC2 to convert
over 400, 000 large TIFF images and additional metadata of the
TimeMachine [10] — which is an archive of full-page scans of New
York Times issues from 1851–1922 — to smaller web ready repre-
sentation as well as to generate the Java Script code needed for the
mouse-over effects in under 36 hours.

1.1 Motivation
For many users, especially for researchers and medium-sized en-

19

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore



terprises, Cloud computing model is quite attractive because it is
up to the cloud providers to maintain the hardware infrastructure.
Despite the attention paid by cloud providers, some cloud comput-
ing nodes may attain orders of magnitude worse performance than
other nodes [13]. This indeed may considerably influence perfor-
mance of MapReduce jobs, which are usually long-running jobs
and thus more sensible to hardware performance variations. For
example, we show the runtimes of a MapReduce job for a 50-node
EC2 cluster and a 50-node local cluster in Figure 1. We can easily
see that performance on EC2 varies considerably.

Performance unpredictability in the cloud is in fact a major issue
for many users and it is considered as one of the major obstacles
for cloud computing [13]. For example, researchers expect compa-
rable performance for their applications at any time, independent
of the current workload of the cloud; this is quite important for
researchers because of repeatability of results. Another example
are enterprises that depend on Service Level Agreements. A way
to deal with such a performance unpredictability is to modify the
execution plans of jobs according to the current performance of
the Cloud. Nevertheless, MapReduce uses the same physical query
plan for processing any job. This usually yields to inefficient query
plans for MapReduce jobs and does not allow for any change in the
plan. This usually results in long runtimes that directly correlates
to high monetary cost in public Clouds.

2. PROBLEM STATEMENT
MapReduce allows non-expert users to perform large-scale data

processing, while Cloud computing offers the required infrastruc-
ture for such analysis. This is already commonly done, e.g. Ama-
zon Elastic Map Reduce Service. However, there are several open
issues — such as performance variance on the cloud and static
scheduling of MapReduce jobs — that are not addressed yet and
have a negative impact on performance of applications.

Hence, the problem we consider is how to efficiently execute
MapReduce jobs in a Cloud computing setting.

We discuss the research challenges we face when dealing with
above problem in the next section and discuss related work in Sec-
tion 4. We then discuss and present our first prototype to solve
above problem and our preliminary results in Section 5. Finally,
we conclude this paper in Section 6.

3. RESEARCH CHALLENGES

3.1 Predictability of MapReduce Jobs on the
Cloud

If the Cloud will serve as the underlying platform for perform-
ing large scale analysis, one has to deal with a number of issues
not present in a controlled local environment: High runtime vari-
ance, node failures, straggling nodes, and varying availability. For
example the runtime variance is shown in Figure 1 where the same
MapReduce job is executed on a 50 node virtual EC2 cluster and
on a 50 virtual node local cluster. The observed cloud variance
makes experimental results hard to interpret and compare. Also,
predictability of runtimes is virtually not possible which limits the
usage of Cloud Computing for a number of applications such as
scientific benchmarking.

3.2 Runtime Optimizations of MapReduce
The current implementation of Hadoop uses a hard-coded exe-

cution plan often yielding overhead. For example, data access is al-
ways performed in a scan-like fashion and cannot use other access

paths such as indexes. A recent study [33] showed that shared-
nothing DBMSs outperform standard MapReduce by a large factor
in a variety of tasks. The key for DBMSs to achieve such perfor-
mance is a flexible physical query plan that can exploit metadata,
such as data schema or distribution. On the other hand, MapReduce
provides a simple interface allowing non-expert users to run com-
plex jobs in a scalable manner, which is not the case for standard
DBMSs. However, in a large pay-as-you-go cluster runtime easily
amounts to considerable monetary cost.

Therefore, the challenge is to make the performance of MapRe-
duce comparable to shared-nothing DBMSs without changing the
MapReduce programming paradigm. But also, we should make
only minor changes to the MapReduce execution framework so as
to keep it compatible with future implementation versions. Addi-
tionally, another aspect to consider is the execution of concurrent
jobs — a setting frequently occurring in Cloud Computing —, be-
cause they may compete for computing resources and input data.

3.3 Cloud-Aware MapReduce Scheduling
One key feature of Cloud Computing is flexibility; users can eas-

ily adjust the required computing resources on the fly and for ex-
ample aquire additional nodes. Also, there exist usually a variety
of different instance types having different CPU, IO, or Memory
performance and pricing [23]. This feature yields a number of op-
portunities for a MapReduce scheduler which normally is dealing
with mostly static clusters:

1. Optimal Cloud Size. In contrast to a normal cluster the
number of nodes in Cloud is not fixed and could even be
changed during job runtime. As more nodes usually result in
higher monetary cost, an interesting application is to obtain
an optimal setting constraint by some monetary cost. For in-
stance, a non-expert user desiring to run a MapReduce job
within 2 hours would need the scheduler to automatically as-
sign the number of node instances to run the job.

2. Heterogeneous Cloud. As the different instance types de-
liver different performance — often vendors offer special
high I/O performance or high CPU instance nodes — at dif-
ferent prices, a given MapReduce cluster might consist of
different node types which need to be optimally used. The
goal again would be to achieve the best performance/price
ratio. For example, I/O intensive tasks might be better
scheduled to nodes instances having high I/O performance,
while CPU intensive tasks might be scheduled to high-CPU-
performance node instances.

3. Dynamic Scheduling. As with Cloud Computing the above
mentioned points also may change during runtime of a job,
the scheduler needs to be dynamically react to such changes
— such as reacting to change in the workload or even to fail-
ing nodes.

4. Cost-awareness. As in public Clouds users are charged for
the computing resources they use, the scheduler should con-
sider monetary-cost constraints given by users. For example,
one user may desire to run one MapReduce job paying at
most $100 and receiving the best possible performance for
this price.

20



4. RELATED WORK

4.1 MapReduce
Over the past three years MapReduce has attained consider-

able interest from both the database and systems research commu-
nity [15, 27, 38, 31, 34, 25, 11, 36, 16, 37, 29, 17]. As a result, some
DBMS vendors have started to integrate MapReduce front-ends
into their systems including Aster, Greenplum, and Vertica. How-
ever, these systems do not change the underlying execution system:
they simply provide a MapReduce front-end to a DBMS. Recently,
[11] proposed HadoopDB, a new system that combines techniques
from DBMSs, Hive [36], and Hadoop. In summary, HadoopDB
can be viewed as a data distribution framework to combine lo-
cal DBMSs to form a shared-nothing DBMS. The results in [11]
however show that HadoopDB improves task processing times of
Hadoop by a large factor to match the ones of a shared-nothing
DBMS. Nevertheless, above systems are still databases. There-
fore, in contrast to MapReduce, they require advanced knowledge
from the user-side on database management, data models, schemas,
SQL, load distribution and partitioning, failure handling, and query
processing in general, but also on the specific product in particu-
lar. On the other side, much work has been done on scheduling
MapReduce jobs with different goals in mind. Hadoop for exam-
ple include a Fair and Capacity scheduler with the aim of shar-
ing computing cluster among jobs [4]. However, the homogeneity
assumption made by Hadoop might lead to a degradation on per-
formance in heterogenous clusters such as the Cloud. Zaharia et
al. [40] proposed a scheduler to schedule MapReduce jobs in het-
erogeneous MapReduce clusters. Nonetheless, this work does not
allow users to neither dynamically change the setup of their exper-
iments nor take into account monetary costs of jobs. Deshpande et
al. considered the aspect of adaptive query processing in traditional
Database Systems ([20]), which also yields interesting aspects for
MapReduce; especially with long running queries on large datasets
it becomes important to adaptivly tune the query.

4.2 Cloud Computing
Cloud computing has been the focus of several research works

and is still gaining more attention from the research community.
There exist a number of research works on testbeds for cloud com-
puting. For example, the Open Cloud Consortium [6] and OpenCir-
rus [14] aim at developing a cloud computing infrastructure, target-
ing the research community in particular. Also, some grid testbeds
started to make efforts to fuse grids with clouds [7, 9]. Other efforts
such as Eucalyptus [30] and Tashi [8] aim at providing software in-
frastructure for implementing and managing cloud computing on
clusters. However, none of these works focuses on the particular
issues raised by cloud computing mentioned earlier.

Cryans et al. [18] compare the cloud computing technology with
database systems and propose a list of comparison dimensions.
Garfinkel [24] evaluates the different cloud services of Amazon in
terms of cost and performance, but he does not provide any evalua-
tion of the possible impact that performance variance may have on
users applications. Finally, new projects that monitor the perfor-
mance of clouds have recently emerged. For example, CloudCli-
mate [1] and CloudKick [2] already perform performance monitor-
ing of different clouds. EC2 also offers CloudWatch [3] which pro-
vides monitoring for Amazon Web Services cloud resources. How-
ever, none of the above works focuses on evaluating the possible
performance variability in clouds or even give hints on how to re-
duce this variability.

Unfortunatly there is little research concerning the intersection
of Cloud Computing and MapReduce or the particular challenges

arising there, which we briefly discuss in the following section.
Besides the mentioned works there exist a number of other pa-

pers ([28, 26]) in the field of distributed query processing having
relevance to this topic, but most of them do not consider (a) the
specific challenges of MapReduce and (b) the flexible and chang-
ing Cloud environment.

5. PRELIMINARY RESULTS
In order to solve the problem of efficiently uniting MapReduce

and Cloud Computing we propose the following approaches.

5.1 Predictability of MapReduce Jobs on the
Cloud

Both Cloud Computing and MapReduce are two technologies
that have gained a lot of popularity mainly due to its ease-of-
use and its ability to scale up on demand. As a result, MapRe-
duce jobs are a popular application on the Cloud. For many users
— especially for researchers and medium-sized enterprises — the
Cloud Computing model is quite attractive because it is up to cloud
providers to maintain the hardware infrastructure. However, de-
spite the attention paid by Cloud providers, some nodes may at-
tain orders of magnitude worse performance than other nodes [35].
This indeed may considerably influence the performance of their
MapReduce jobs.

Unfortunately, it is currently not possible to deal with this issue
from the application layer. Users should therefore conduct wall
clock experiments with considerable care. With this in mind, we
believe that applications can be variance-aware so as to produce
more meaningful results, i.e. normalize results according to the
variance experienced by applications.
Preliminary Results. We evaluated the performance variance
of popular cloud provider EC2 [23] since we experienced large
performance variance when running large MapReduce jobs 50
node cluster on the cloud (see Figure 1). More detailed experi-
ments showed that this MapReduce variance arises from variance
at the different components. For example, the CPU performance
variance of a series of measurements is shown in Figure 2. But
we could also show that a large part of this variance arises from
differences in the underlying architecture and could be reduced
when considering those differences [35]. But even when consid-
ering those differences, the performance varies significantly due
to contention by different virtual machines. We also gave hints on
how to reduce the runtime variance. As future work we plan to
inject several performance micro benchmarks into MapReduce so
as to normalize results and make them comparable. Those micro
benchmarks should be invisible to user and not change MapReduce
system. Therefore we plan to introduce so called Trojan Bench-
mark by overwritting or wrapping one of the user defined functions.

5.2 Runtime Optimizations of MapReduce
When optimizing the performance of MapReduce jobs, one faces

a number of manual decisions, which are not trivial for users to
make. For this reason, systems like Pig [32] and Hive [36] include
a query optimizer in their query language. However, these sys-
tems have several drawbacks. First, they use ruled-based optimiza-
tions, which essentially only consider basic optimizations such as
predicates pushdown, partition pruning, and map-side joins. Sec-
ond, they simply translate queries (specified in their own query lan-
guage) to MapReduce jobs, which are finally performed by MapRe-
duce framework using the same query physical plan yielding to
inefficient query plans for several queries. Third, as they only com-
pile queries into MapReduce jobs, they cannot take into consider-

21



 0

 100000

 200000

 300000

 400000

 500000

 600000

Week 52 Week 53 Week 1 Week 2 Week 3

C
PU

 P
er

fo
rm

an
ce

 [U
be

nc
h 

sc
or

e]

Measurements per Hour

US location EU location

Figure 2: CPU performance on large EC2 instances.

ation dynamic settings such as current load of nodes. Finally, they
force users to use SQL-like query interfaces, which is one of the
reasons why users move from DBMSs to MapReduce.

Even though, Hadoop has a fixed query plan (which does not
always allow for the optimal execution plan [21, 12]) it still allows
the user to specify user defined functions. Using Hadoop users
can not only specify the two user defined UDFs -Map and Reduce-
as one would expect but actually one can specify up to 10 different
UDFs concerned with reading data, sorting and more. One example
could be the use of an index instead of an entire file by changing the
InputFileFormat. In order to make this decisions without changin
the Hadoop framework or involving the user we need to “inject”
the functionality into the framework.

One example of such “injection“ is the Trojan Index, which is our
solution to integrate indexing capability into Hadoop. The salient
features of this approach include being non-invasive and providing
optional index access path.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 3: Trojan Index Data Layout.

We illustrate the core idea of Trojan Index in Figure 3. For each
split of data (SData T) a covering index (Trojan Index) is built.
Additionally, a header (H) is added. It contains indexed data size,
index size, first key, last key and number of records. Finally, a split
footer (F) is used to identify the split boundary.

Join processing is another area where we can apply the idea of
trojan techniques. Currently in MapReduce, two datasets are joined
using re-partitioning: partitioning records by join key in the map
phase and grouping records with the same key in the reduce phase.
The reducer joins the records in each key-based group.

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial differences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more difficult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into different
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword ⊕ postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T �1

...

R2

T �2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

uffl
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed 
File System

Distributed 
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed 
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed 
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

Figure 4: Co-partitioned Data Layout

Trojan Join is our solution to support more effective join pro-

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e 

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

Figure 5: Runtime Improvements related to Indexing and Join
Processing

cessing in Hadoop. The core idea is the use of schema information
to co-partition the data at load time — i.e. given two input rela-
tions, we apply the same partitioning function on the join attributes
of both the relations at data loading time — and place the co-group
pairs, having the same join key from the two relations, on the same
node. The resulting data layout is shown in Figure 4. Trojan joins
are now processed locally within each node at query time and hence
reduce the network traffic significantly.
Preliminary Results. By introducing simple non-invasive new in-
dex and join techniques, we have seen that simple optimizations can
significantly improve runtimes of MapReduce jobs without chang-
ing the underlying framework. Therefore we are building a sys-
tem coined Hadoop++ [22]. We compared it against the original
Hadoop and HadoopDB [11] using the benchmark as defined in
[34] on Amazons EC2 [23]. The performance of the join task is
shown in Figure 5. We observe that Hadoop++ performs about
a factor 20 better than the original Hadoop and is comparable to
HadoopDB, which utilizes the indexes and optimizations of the
underlying DBMSs. In contrast to HadoopDB, Hadoop++ does
not require underlying Database Systems and does not change the
standard MapReduce interface to SQL. As future work we plan to
introduce more flexibility into Hadoop to allow for more complex
optimizations.

5.3 Cloud-Aware MapReduce Scheduler
In addition to the usual mapping of tasks to individual nodes, the

Scheduler in the Cloud setting will have to also consider the optimal
cluster configuration with respect to number of nodes and different
instance types. We also integrate the heterogeneity resulting from
the different instance types when scheduling tasks.

In the beginning, we consider this simply an optimization prob-
lem with given constraints such as maximal cost or runtime. The
Scheduler will be a deeper change to the Hadoop framework, but
as the Scheduler is a pluggable component [39] we do not need to
change core Hadoop code.

6. CONCLUSION
In this paper, we discussed several challenges arising when exe-

cuting MapReduce jobs on the Cloud. We showed that there exist
several open problems caused by the unpredictability of Cloud per-
formance. But also, we showed that there are a number of oppor-
tunities for improving MapReduce jobs performance on the Cloud,
such as Cloud-aware scheduling. As users of public Clouds are
charged for the computing resources they use, runtime optimiza-

22



tions are crucial to decrease cost for users. We strongly believe one
can significantly improve MapReduce performance on the Cloud.
The preliminary results of our first efforts confirm in fact a signifi-
cant improvement on performance when taking into account some
of the ideas we discuss in this paper such as Trojan Indexes and
Trojan Joins techniques. But again, further optimizations are still
possible. This motivates us to carry on our research efforts on this
trend with the aim of efficiently executing MapReduce jobs in a
Cloud computing setting.

7. REFERENCES
[1] CloudClimate, http://www.cloudclimate.com.
[2] CloudKick, https://www.cloudkick.com.
[3] CloudWatch, http://aws.amazon.com/cloudwatch.
[4] Hadoop, http://hadoop.apache.org/mapreduce/.
[5] Hadoop users, http://wiki.apache.org/hadoop/poweredby.
[6] Open Cloud Consortium, http://opencloudconsortium.org.
[7] PlanetLab, http://www.planet-lab.org.
[8] Tashi project, http://incubator.apache.org/tashi.
[9] TeraGrid, http://www.teragrid.org.

[10] Timesmachine, http://timesmachine.nytimes.com.
[11] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin, and

A. Silberschatz. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. In PVLDB, 2009.

[12] F. Afrati and J. Ullman. Optimizing Joins in a Map-Reduce
Environment. In EDBT, 2010.

[13] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the Clouds: A
Berkeley View of Cloud Computing. EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[14] R. Campbell, I. Gupta, M. Heath, S. Ko, M. Kozuch, M. Kunze,
T. Kwan, K. Lai, H. Lee, M. Lyons, et al. Open CirrusTM Cloud
Computing Testbed: Federated Data Centers for Open Source
Systems and Services Research. In USENIX Workshop on Hot Topics
in Cloud Computing, 2009.

[15] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and Efficient Parallel
Processing of Massive Data Sets. In PVLDB, 2008.

[16] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. Mad
Skills: New Analysis Practices for Big Data. In PVLDB, 2009.

[17] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears. MapReduce Online. In USENIX NSDI, 2010.

[18] J.-D. Cryans, A. April, and A. Abran. Criteria to Compare Cloud
Computing with Current Database Technology. In Conf. on Software
Process and Product Measurement, 2008.

[19] J. Dean and S. Ghemawat. Mapreduce: Simplified Data Processing
on Large Clusters. In OSDI, 2004.

[20] A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Processing.
Foundations and Trends in Databases, 1(1):1–140, 2007.

[21] D. DeWitt, E. Paulson, E. Robinson, J. Naughton, J. Royalty,
S. Shankar, and A. Krioukov. Clustera: an Integrated Computation
and Data Management System. In PVLDB, 2008.

[22] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, V. S. Yagiz Kargin, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). In PVLDB, 2010.

[23] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
[24] S. Garfinkel. An Evaluation of Amazon’s Grid Computing Services:

EC2, S3 and SQS. Technical Report TR-08-07, Harvard University,
July 2007.

[25] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a
HighLevel Dataflow System on Top of MapReduce: The Pig
Experience. 2009.

[26] A. Gounaris, R. Sakellariou, N. Paton, and A. Fernandes. A Novel
Approach to Resource Scheduling for Parallel Query Processing on
Computational Grids. Distributed and Parallel Databases,
19(2):87–106, 2006.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building Blocks.

In EuroSys, 2007.
[28] D. Kossmann. The State of the Art in Distributed Query Processing.

ACM Comput. Surv., 32(4):422–469, 2000.
[29] K. Morton and A. Friesen. KAMD: A Progress Estimator for

MapReduce Pipelines. In ICDE, 2010.
[30] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov. The Eucalyptus Open-Source
Cloud-Computing System. In IEEE/ACM International Symposium
on Cluster Computing and the Grid. IEEE Computer Society, 2009.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

[32] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

[33] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[35] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance. In
PVLDB, 2010.

[36] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive - A Warehousing Solution
Over a Map-Reduce Framework. In PVLDB, 2009.

[37] C. Yang, C. Yen, C. Tan, and S. Madden. Osprey: Implementing
MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed
Database. In ICDE, 2010.

[38] H. Yang, A. Dasdan, R. Hsiao, and S. Parker. Map-Reduce-Merge:
Simplified Relational Data Processing on Large Clusters. In
SIGMOD, 2007.

[39] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Job Scheduling for Multi-User Mapreduce Clusters. EECS
Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-55, Apr, pages 2009–55, 2009.

[40] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous
Environments. In OSDI, 2008.

[41] J. Zhao and J. Pjesivac-Grbovic. MapReduce: The Programming
Model and Practice. In SIGMETRICS, 2009.

23




