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Abstract
Distributed systems are difficult to program and near im-
possible to debug. Existing tools that focus on single-node
computation are poorly-suited to diagnose errors that involve
the interaction of many machines over time. The database
notion of provenance would appear to be a better fit for
answering the sort of cause-and-effect questions that arise
during debugging, but existing provenance-based approaches
target only a narrow set of debugging scenarios. In this pa-
per, we explore the limits of provenance-based debugging.
We propose a simple query language to express common
debugging questions as expressions over provenance graphs
capturing traces of distributed executions. When programs
and their correctness properties are written in the same high-
level declarative language, we can go a step further than
highlighting errors by often generating repairs for distributed
programs. We validate our prototype debugger, Nemo, on
six protocols from our taxonomy of 52 real-world distributed
bugs, either generating repair rules or pointing the program-
mer to root causes.

1. INTRODUCTION
Distributed systems permeate our world but we are only

just beginning to understand how to program and manage
them. The challenges of programming and reasoning about
orchestration of long-running computations that span large
numbers of independent physical machines while tolerating
partial failure and unpredictable delay [6, 13] are the exact
same factors making them seriously difficult to debug. Con-
ventional approaches such as process-centric debuggers are
of little help, as the observed effects of distributed bugs are
often remote from their causes in space and time.
Once again, the database community is in a position to

advance the state of the art in distributed systems by dusting
off an old database idea: data provenance [8]. We strongly
believe the high-level, data-centric explanations of computa-
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tions obtained via provenance collection to be the right way
to debug errors spanning multiple communicating machines.
Recently, we have seen tantalizing evidence (sometimes at
venues such as CIDR!) that provenance could become the
basis of the debugging tool sets of the future [11, 29, 10, 28].
Existing provenance-based debugging approaches such as

differential provenance [11] (highlighting code and data re-
gions where an execution went wrong) are ideal for identifying
the causes of a class of programmer errors we call errors of
commission. Errors such as specifying an incorrect state tran-
sition, a faulty configuration line, or an off-by-one loop bound
are common in all programs, but in distributed systems are
sometimes triggered only by rare events (e.g., crashes and
message reordering). Because repairing such bugs is easy once
these lines have been identified, techniques like differential
provenance are extremely effective at debugging them.
Unfortunately, nearly as common in large-scale distributed

systems are errors of omission, as we quantify in Section 4.1.
Here, the problem is not so much a mistake but an oversight:
the programmer has insufficiently developed the protocol.
Examples include insufficient synchronization between com-
municating processes (leading to race conditions) and insuffi-
cient redundancy (e.g., retry and replication) to ensure avail-
ability and durability in the face of faults. State-of-the-art
provenance-based debugging is of no help to the programmer
here, because there is no offending line of code to point to!
In this paper, we explore the limits of provenance-based

forensics by recasting debugging as a question-and-answer
process over provenance graphs that represent traces of dis-
tributed executions (successful and failed). Debugging ques-
tions, e.g., “what do all successful runs have in common?” or
“how did this failed run differ from this other failed run?”, are
posed as graph queries using a simple algebraic language with
familiar set-theoretic operators. We show how the question of
differential provenance (“how does the failed run differ from
successful ones?”) is subsumed by this approach. The answers
to all of these questions identify code regions to present to a
programmer for further study, and are only effective against
errors of commission.
We then show the surprising result that when programs

are appropriately constrained, we can go a step further and
in many cases repair errors of omission. The key idea is that
when programs and their specifications are written in the
same provenance-enhanced relational logic language, we can
co-analyze the provenance of system state with the prove-
nance of the specification predicates. Because the specifica-
tion describes the non-distributed behavior of the program,



1 // Initially, client Cli sends request Pload to
2 // primary node Prim via the network (@async).
3 request(Prim, Pload, Cli)@async :-
4 begin(Cli, Pload);
5
6 // Asynchronous version of primary/backup:
7 // On receipt of a request, the primary immedi-
8 // ately sends an acknowledgment to the client.
9 // Clients persist acknowledgments.

10 ack(Cli, Prim, Pload)@async :-
11 request(Prim, Pload, Cli);
12 acked(Cli, Prim, Pload) :-
13 ack(Cli, Prim, Pload);
14
15 // The primary replicates received requests
16 // in background to all replicas Rep.
17 replicate(Rep, Pload, Prim, Cli)@async :-
18 request(Prim, Pload, Cli),
19 replica(Prim, Rep);

20 // Primary and all replicas write received
21 // requests durably to local storage.
22 log(Prim, Pload) :-
23 request(Prim, Pload, Cli);
24 log(Rep, Pload) :-
25 replicate(Rep, Pload, _, _);
26
27 // Correctness specification:
28 // As soon as a client received an acknowl-
29 // edgment for its request (pre),
30 // the request’s payload is durably stored
31 // on some alive node (post).
32 pre(Pload) :-
33 acked(Cli, Prim, Pload);
34 post(Pload) :-
35 log(Node, Pload),
36 primary(Prim, Prim),
37 notin crash(Node, Node, _),
38 Node != Prim;

Figure 1: Asynchronous primary/backup (“Async P/B”) replication protocol in Dedalus. Persistent relations in bold.

it guides the generation of code changes that correct the
distributed program towards compliance with its sequential
specification. These program modifications often amount to a
few lines of code, avoiding the complexities of combinatorial
program synthesis.
We make the following contributions:
• We propose a query language for expressing debugging
questions as queries over provenance graphs represent-
ing distributed program executions. We show how a
number of debugging best practices can be expressed
by this paradigm, including differential provenance.
• We provide a new taxonomy for 52 real-world dis-

tributed bugs from large-scale distributed systems [18],
determining for each whether our framework can suggest
program corrections or provide debugging assistance.
• We present Nemo, a prototype automated debugging
tool. We verified its effectiveness in repairing errors
of omission and identifying root causes of errors of
commission on six protocol implementations, of which
we discuss four in case studies.

2. BUGGY PROTOCOL MOTIVATION
To motivate our approach, we start with a simple, “buggy”

protocol implementation. Figure 1 shows a programmer’s
first attempt at implementing primary/backup replication [1]
in the declarative programming language Dedalus [4]. A sin-
gle “primary” node accepts requests to write data items,
disseminates them to passive “backup” nodes, and ultimately
responds to clients. The correctness specification for prima-
ry/backup is shown in lines 32–38 of Figure 1. If a payload
was marked as acknowledged in table acked at the client (an-
tecedent predicate pre, lines 32–33), then it must appear in
the log of some non-crashed node in the system (consequent
predicate post, lines 34–38). In any run where this is not
the case the correctness expectation is violated (details in
Section 3.2). The rest of the protocol works as: the primary
accepts requests from clients (request, lines 3–4) and repli-
cates them to all replicas (replicate, lines 17–19), which
store them durably in their local state (log, lines 22–25).

Unfortunately, the programmer has tried to optimize this
protocol for performance. Lines 10–13 show that an acknowl-
edgment for a request is sent from primary to client immedi-
ately when it was received. Primary crash or loss of replication
messages could prevent the request from becoming durable
despite having been acknowledged at the client!
Suppose the programmer found the bug during a test and

was able to reproduce it. The laborious process of finding its
root or proximal causes has only just begun. Conventional
debugging approaches like grep’ing through logs from all
nodes or attaching legacy debuggers to each are no help at all,
as this protocol-level bug arises not on individual nodes per se,
but in their interactions across space and time. Distributed
provenance [28, 21, 2] stitching together node-local views
into explanations of how data transited a distributed system
seems a more appropriate tool for this kind of debugging.
Abstracting from details specific to the collection process, in
Figure 2 we show a provenance graph explaining how a tuple
marking establishment of predicate post was computed in a
successful run of the protocol from Figure 1. Unfortunately,
even the trivial motivating protocol presented here produces
in total a set of provenance graphs with 280 vertices and 205
edges, making it impractical to debug by staring at them.
Differential provenance by Chen et al. [11] refines prove-

nance to specifically aid in root cause analysis. By automat-
ically visualizing the difference between a successful and a
failed provenance graph, it allows users to quickly identify
key events that differentiate between an observed failed and a
known successful run. Unfortunately, while differential prove-
nance has been shown to help highlight critical errors in
configuration, input data, and even program logic (i.e., the
presence of a mistake), the bug in our replication protocol has
no such smoking gun. Rather, it is the absence of necessary
synchronization that makes the protocol fail to uphold its
contract—there is no bad line or tainted data to point to.
Readers familiar with replication protocols know how to

work around the problem: the primary has to postpone client
acknowledgment until after confirmation from backups. Im-
plementing this fix, however, requires more than finding and
fixing an incorrect program statement—something is missing



Figure 2: Simplified representation of the consequent prove-
nance graph for a successful run of the Async P/B protocol
from Figure 1 in reverse chronological order top to bottom.
Consequent predicate post (lines 34–38 in Figure 1) is shown
as the rectangular vertex at the top. Red-bordered octagonal
vertices represent message-passing events (postfixed @async
in Figure 1). Red-dashed vertices capture network connec-
tivity to the respective other node. The two red-boxed gears
hint at computations that might not take place in a failed run,
preventing the protocol from establishing the post predicate.

and needs to be added. We appear to be at an impasse. We
cannot debug the program by comparing successful and failed
runs, because the successful runs provide no hint about how
to fix the fundamental problem. Instead, the programmers
need to rethink the program’s logic. Or do they? In this work
we provide evidence that we are able to generate corrections
for these kind of problems in a great many cases.

3. DEBUGGING METHODOLOGY
We begin this section by reviewing the assumptions we

make for our strategies to be effective and introduce neces-
sary terminology. We then describe the query language and
capabilities of our provenance debugging framework.

3.1 Assumptions and Terminology
We expect the distributed system under inspection to op-

erate in the omission fault model, in which messages may be
lost and processes may fail by crashing, but do not exhibit
Byzantine behavior. We assume the system to consist of at
least two processes that communicate via messages. As input
to our strategies, we expect a collection of provenance graphs
from a series of runs of the program. Figure 2 represents
one such provenance graph for the consequent of a successful
run of the protocol from Figure 1 reduced in detail to show
the structure of expected graphs. In case we identify a re-
producible violation of the correctness specification (a bug),
it is going to be the last run which we thus call failed. All
others are successful runs produced under different schedules,
message orderings, or faults. A program with at least one
failed run is buggy, otherwise it is correct. We assume to be
operating in concert with an experiment selector that gen-
erates these graphs (e.g., integration tests). In practice, we
imagine this to be a tight loop, such as the layout visualized

in Figure 3: the selector identifies a bug, the bug is fed into
our strategies where corrections are generated, and an oper-
ator attempts to apply the suggestions. Repaired programs
are resubmitted to the selector until all bugs are resolved.

3.2 Correctness Specifications
Any verification solution expects that a system under test

be accompanied by a description of what it means to be
correct. We require correctness specifications in the form of
implications, A → C, where antecedent A and consequent C
are first-order logic formulae over the set of relations com-
prising the system’s distributed state. Invariants such as
“account balance is positive” can be captured in C with A
set to true. C must thus hold in all runs, as we would ex-
pect of an invariant. Many distributed correctness properties,
however, are not bare invariants. Due to the possible faults
in distributed systems, there exist runs in which properties
that require communication are never achieved. A reliable
broadcast protocol disseminating a message to a group of
nodes will never succeed if all nodes or the network stop func-
tioning. Thus, distributed correctness properties are most
commonly expressed as implications where A holds when the
run is not vacuously correct and C then enforces expected
distributed behavior.
Put differently, A is true when a possible good state is

achieved and C describes the state that, given A, must occur.
For example, the specification for reliable broadcast reads: “If
a correct process delivers a message (A), then all correct pro-
cesses deliver it (C)”. Agreement safety in commit protocols
could say: “If a participant commits (aborts) a transaction
(A), then all participants commit (abort) (C)”. Durable repli-
cated data stores require: “If a write is acknowledged at the
client (A), then it is durably stored on all alive replicas (C)”.
For our strategies, the program under test and its correct-

ness specification are expressed in the same logic program-
ming language. As part of program state, records of A (pre
in Figure 1) and C (post in Figure 1) are enriched with
provenance describing how they occurred. Every record in
A comes with an explanation why the run that produced it
was not vacuously correct, while every record in C provides
an explanation why the run upheld the property of interest.

3.3 Provenance Debugging Framework
The debugging strategies presented here manipulate the

set of provenance graphs P from the runs of the distributed
program under inspection. Elements of P are directed acyclic
graphs describing the provenance for A or C of run i =
1, . . . , n. Members of P are called Provi

A or Provi
C , depending

on their role in the specification. For one successful and one
failed run this amounts to P = {Prov1

A, Prov1
C, Prov2

A, Prov2
C}.

In short, P :=
⋃n

i=1{Provi
A, Provi

C}.
Independently, the provenance graphs are of little imme-

diate use for distributed debugging, as we saw in Section 2.
But as we will see, a variety of simple queries over these
graphs helps reveal both root causes of observed bugs as
well as—surprisingly—potential bug fixes. To enable such
queries we require a collection of graph operations, each of
which produces a new graph when applied to elements of P.
For intuition, we pun on the set operations intersection (∩),
union (∪), and difference (−). A∩B produces the graph that
only contains vertices and edges that A and B share. A ∪B
yields the graph with all vertices and edges from A or B or
both. A−B gives us what is left of A when all vertices and



Figure 3: We assume our lineage-driven distributed debugger to be tightly integrated with an experiment selector providing
the provenance graphs that form the basis of our analyses. A human operator applies the compiled suggestions.

edges of B are removed. Note, that intersection and union
seamlessly work for more than two graphs at once.
We need to be able to select specific vertices from the prove-

nance graphs in P and applications of the graph operations
among its members. Thus, we briefly introduce a number
of integral vertex selection functions informally. Function
propx=y(A) returns the subgraph of A for which property x
equals y on all vertices. Function normalize(A) yields the
reduced and simplified standard form of provenance graph A,
i.e., a more abstract representation of A where run specifics
are hidden, e.g., by collapsing chains of the same event type
into one, etc. Function leaves(A) produces all vertices of A
without an outgoing edge. Analogously, roots(A) returns all
vertices without an incoming edge. Considering a subset V
of the vertices of graph A, reachableA(V ) yields all vertices
in A reachable from each element in V .

3.4 Principal Strategies
We now show how our framework expresses common de-

bugging strategies that expose root causes of distributed bugs
and assists developers in writing permanent fixes.

3.4.1 Differential Consequent Provenance
Differential provenance [11] aids in root cause analysis by

revealing a frontier—a line distinguishing the point at which
the failed run departed from the successful path—highlighting
events that failed to occur. Expressing differential provenance
in our framework is straightforward. By construction, the
first run is successful, i.e., for run 1 it holds that A → C. Let
run f be the failed run, i.e., A holds but C does not at test
end. We can now reason about the set of program rules DiffC
that did not execute in the attempt of establishing C in the
failed run, by issuing the following query in our framework:

DiffC := leaves(Prov1
C − Provf

C)

We visualize computation of vertices DiffC over abstract
provenance graphs in Figure 4a. Changing the program to
ensure that the statements in DiffC always execute is sufficient
to repair the bug, but how should the programmer do so? If
the problem is an error of commission, the appropriate fix will
often involve making a change to the program that is near
the frontier identified in DiffC—for example, by repairing an

off-by-one error. Differential provenance can help debug some
errors of omission as well. For example, if the bug involved
an unhandled exception the code that threw the exception
is likely to be close to the unexecuted statements in DiffC,
and hence the appropriate repair will be close as well.
Unfortunately, repairs for errors of omission are not al-

ways straightforward, and this approach can be a dead end.
Consider again the protocol presented in Section 2. DiffC
identifies the rules that failed to fire when messages were
dropped between the primary and backups. Focusing nar-
rowly on this slice of the program, the obvious fix would
appear to be retrying these messages in order to overcome
loss. But for any pattern of retransmission there is a corre-
sponding pattern of loss, and an intelligent bug finder will find
it! The fundamental flaw of the program is that the primary
acknowledges the client too soon. Differential provenance
alone leads us away from this bug.

3.4.2 Skeleton Differential Consequent Provenance
When more than one successful run is available, we can

take this idea of extensions based on differential provenance
one step further. Instead of relying on only one successful run
to determine what comprises success, we use all of them and
create a skeleton—essentially, the prototype of a successful
run. Let f ≥ 3 denote the failed run again. We thus have
at least two successful runs available for our query. Let s =
f − 1, such that 1, . . . , s refer to the respective successful
runs. Incorporating the idea of a “protocol core extraction”
reduces to the task of intersecting the consequent provenance
graphs of all successful runs prior to obtaining their difference
set SkelDiffC with the failed run’s consequent provenance:

SkelDiffC := leaves((
s⋂

i=1

normalize(Provi
C))− Provf

C)

For intuition, we show a simplified computation of vertices
set SkelDiffC in Figure 4b. Oftentimes, protocol runs vary
slightly in flow, e.g., in specific number of message retries due
to coping with message loss. By focusing on rules present in
all successful runs, we aim to remove important but secondary
protocol behavior. This helps us direct attention on increas-
ing redundancy of indispensable yet missing program rules



(a) Computation of strategy Differential Consequent Provenance over example graphs.

(b) Computation of strategy Skeleton Differential Consequent Provenance over example graphs.

(c) Computation of strategy Corrections Generation over example graphs.

Figure 4: Exemplary visualization of our three principal strategies for provenance-based debugging. Per strategy, equal vertex
numbers identify the same logical event. Red-dashed boxes denote the result of operation leaves on a subgraph, blue boxes
show the outcome of operation reachable. Orange-colored indices at the lower right of a vertex mark that the respective
property evaluates to true for that vertex, e.g., vertex with ID 3 is part of propA=true(Prov1

A) in (c).

in the failed run. Trying to look beyond specific features
of the individual successful runs, we suggest to introduce
redundancy updates that enable the rules SkelDiffC to fire
under more fault settings.

3.4.3 Corrections Generation
The two debugging strategies above provide high resolu-

tion pointers into program logic, guiding the programmer’s
attention to regions of the program where it is likely that
the bug lies. But as we discussed in Section 3.4.1, for some
classes of omission bugs there simply is no code region that
requires repair. Rather, as in the case of asynchronous pri-
mary/backup, the protocol has been insufficiently developed
and additional program logic needs to be added. Traces of
successful and unsuccessful runs are not enough.
We have one other tool at our disposal, however: the cor-

rectness specifications themselves. If we observed a failed run,
we know thatA held but C did not at the end of the execution.
Thus, there must have existed a window in the protocol flow
during which an injection of the right combination of faults
left the protocol no chance to ever establish C. Increasing
the number of ways for C to eventually be established might
make the protocol more robust to faults, but it will only
postpone the time at which the bug finder injects the right

faults that forfeit C once more.
Going back to our protocol from Figure 1 that is intended to

provide durable replication, we see that no matter how often
we instruct the primary to send replicate messages again,
dropping all of them or crashing all replicas will still prevent
C from being established. No matter how many redundancy
measures we add, an intelligent bug finder will always identify
at least one run that violates the specification.
One way to rule out the anomalous execution is to ensure

that the conditions for establishing C become conditions for
establishing A as well. Colloquially, instead of repairing the
program by making it easier to establish C, we can rule
out the anomaly more effectively by making it harder to
establish A. We can identify the rules leading to C and
generate updated dependencies for A that precisely include
those that cause C to be established. Put differently, only
report a good protocol state being achieved (A) when we
know the consequent state (C) has already been as well. We
obtain the updated dependencies set DepsA by querying:

DepsA := reachableProv1
A

(leaves(propA=true(Prov1
A)))

∪ leaves(propC=true(Prov1
C))

Omitting details of an actual protocol execution, the up-



dated dependencies set DepsA for A based on exemplary
provenance graphs Prov1

A and Prov1
C is shown in Figure 4c.

Distributed correctness properties such as durability are typ-
ically global predicates (e.g., “there exists a replica on which
the data is stored”), and hence making it possible to test
them may require non-trivial changes to the protocol to cen-
tralize the required information. If C indeed ranges over more
than one node, it does not suffice to simply add the missing
triggers for C as dependencies to A, due to their separate log-
ical locations. Instead, communication schemes are required
that allow all nodes establishing A to reason about remote
state on all nodes establishing C. In these situations, DepsA
will differ such that leaves(propC=true(Prov1

C)) is replaced
with knowledge about the remote states through messages.

Invoking this strategy, the programmer will be presented
with a set of rule suggestions to add and a set of dependencies
to adjust, that, if applied appropriately, close the window
between establishment of A and C permanently—fixing the
bug. While final adjustments have to be made by the pro-
grammer, we will see in Section 4 that these appear easy
enough for developers inexperienced with the protocol to
devise and insert into the protocol code.

4. EVALUATION
We validate our debugging strategies using real-world bugs

from the TaxDC collection by Leesatapornwongsa et al. [18].
The collection describes, labels, and categorizes distributed
concurrency bugs, i.e., bugs caused by the non-determinism of
distributed events inherent to distributed systems. Based on
bug tracker reports from large-scale distributed systems such
as Cassandra, Hadoop MapReduce, HBase, and ZooKeeper,
Leesatapornwongsa et al. extract triggering conditions, a
description of steps leading to the bug, and official fix if
available. Beginning with the TaxDC corpus, we performed
an initial filtering pass that excluded bugs that would be dif-
ficult to reproduce given the limitations of the bug finder [2]
we used. We then classified the remaining bugs according to
root cause, noting for each class whether it is correctable or
debuggable with our framework. At the time of writing, we
had classified more than half of them. We present the result-
ing taxonomy, based on the 52 bugs we analyzed in detail, in
Section 4.1 and Table 1. We implemented the principal strate-
gies from Section 3.4 in our prototype debugger Nemo [25]
and successfully analyzed and fixed six of the bugs from
our taxonomy. We present four case studies to demonstrate
effectiveness and limitations of Nemo in Section 4.2.

4.1 Bug Taxonomy
In Table 1, we categorize distributed concurrency bugs

into bugs due to timing issues and bugs due to node-local
logic mistakes. These root causes correspond almost precisely
with our informal rubric of omission (timing) and commission
(logic) errors. Prominent representatives for the first cate-
gory are race conditions. We distinguish message-message,
message-local, and local-local races, where message is a data
item in network transit and local a node-local computation.
As the TaxDC bugs do not come with a correctness specifi-
cation of the form A → C, most races come down to event
order on one node. Thus, category premature success for
bugs where A is established too permissively and C fails to
be established until test end due omission faults, currently
only holds our protocol from Figure 1. On the other end of
the spectrum, root causes of logic bugs ultimately amount to

node-local logic errors. Bugs of this type continue to occur
even when all omission faults have been incapacitated. We
classify further into bugs in which a protocol stops working
correctly due to a wrong or missing state transition in re-
sponse to an event, has been run with a wrong configuration,
does not have any or the wrong fallback behavior to errors,
or features a basic concept or implementation bug.
Of 52 bugs, 24 are potentially repairable by our corrections

generation strategy (Table 1, column “Corrections”). These
are precisely the bugs in the timing category, demonstrat-
ing the ability of our framework to help fix these errors of
omission. The remaining 28 bugs root in logic mistakes and
thus cannot be corrected through generated protocol-level
changes. However, debugging 12 of them will reduce to highly-
targeted rule comparisons by assistance of our queries rooted
in differential provenance (Table 1, column “Assistance”).
Further 11 bugs are general mistakes and the effectiveness
of our methods depends on the bug at hand. Finally, only
for bugs with wrong fallback behavior appear our strategies
of no advantage in assistance over conventional debugging.

4.2 Case Studies
We implemented three timing and three logic bugs [25]

from Table 1 in Dedalus [4] and submitted them to Molly [23],
the reference implementation of lineage-driven fault injec-
tion [2]. For each, Molly found omission faults violating their
correctness specification. We confirmed the effectiveness of
our corrections strategy by successfully fixing the timing
bugs—we present how so below. Additionally, we show how
Nemo brings us in close proximity of the root cause when
analyzing one of the logic bugs it cannot automatically repair.

CA-2083 (Message-Message Race). We start with
Cassandra bug 2083, representative of the class message-
message races in which protocols behave correctly when
messages are received in expected order, but violate their
specification in the event of a network reordering. In CA-
2083, a schema message creating a new keyspace and a data
message carrying data for the new schema race to one of
the nodes. If the data message unexpectedly arrives first,
it will get dropped because of the unknown keyspace. The
canonical and official fix is to buffer the data message if it is
received first and enforce processing of schema message prior
to delivering the data message. Nemo identifies this race and
synthesizes a modification of one line of protocol code that
results in enforcement of the correct order. A subsequent
Molly-Nemo loop confirms our success. Additionally, Nemo
suggests improving the fault tolerance of some critical net-
work events prone to omissions. When included, we obtain a
correct CA-2083 protocol resistant to severe message loss.

ZK-1270 (Message-Local Race). ZooKeeper bug 1270
is a race not between messages but a message and a local
computation that runs for longer than expected. After an
election, a new leader sends a confirmation message to a
follower and awaits a response, which it can only accept af-
ter moving to AWAIT state. If this computation is delayed
(e.g., due to a garbage collection pause), the leader could
receive a response before transitioning, and ignore the reply.
When it eventually moves to AWAIT, it blocks, because it
will never receive another message. The official fix delays re-
sponse delivery until the transition completes. Nemo resolves
the race by synthesizing a single line of code enforcing the or-
dering constraint: success(L) :- sent_flag(L), ack(F).
Here, adding sent_flag(L) to the dependencies for leader



Bug Class & Description
Correc-

tions
Assis-
tance Bugs Canonical Fix

message-message
Two messages race each other. 4 4 9 Sending node checks specification: Add communication

about progress of local event before sending message.

T
im

in
g

message-local
A message races a local event. 4 4 14

Local node checks specification: Add message queue
between sender and node. Wait for message delivery or
computation completion before progressing.

local-local
Two local events race each other. 4 4 1

premature success
Consequent races with end of test. 4 4

Async
P/B

Add communication about consequent state in system to
nodes enforcing specification. Expand success conditions
by positive response.

state transition
State transition in response to an
event is wrong.

8 4 11
Fix: Add missing transition for unexpected event.
Assistance: Differential provenance points to missing
completion event of vulnerable state.

L
og

ic

config
Misconfiguration. 8 4 1

Fix: Configure system correctly.
Assistance: Differential provenance points to line that
differs in specific config value.

fallback behavior
Actions in response to perceived
error are wrong.

8 8 5 Fix: Rewrite wrong fallback logic or add it at all.
Assistance: None.

bug
Concept or implementation error. 8 m 11 Fix: Depends on bug. Assistance: Depends on bug.

Table 1: Taxonomy of 52 distributed concurrency bugs from the TaxDC collection [18] and the asynchronous primary/backup
protocol from Figure 1. Legend: 4 = yes, 8 = no, m = it depends.

L to ultimately declare a run a success prevents a run from
prematurely becoming successful in case an acknowledgment
is processed before the leader moved to AWAIT. After repair
is confirmed, Nemo suggests improvements in the form of
end-to-end retries of confirmation messages.

MR-2995 (State Transition). In Hadoop MapReduce
bug 2995, we face a local-logic state transition bug. A man-
ager is prone to crash when it receives an expiration instruc-
tion for a resource it is still initializing. No protocol-level
change that Nemo can generate will fix this root cause. Nemo
falls back to differential provenance in this case, identifying
the first program statement that fired in the successful exe-
cution but failed to fire in the faulty one: the “completion”
message indicating that initialization succeeded. The pro-
grammer will need to rewrite this line of code, to either ignore
the expiration message or delay its processing.

Async P/B (Premature Success). We close the circle
by returning to our protocol from Figure 1. Due to premature
optimizations a client considers its payload durable as soon as
it has received acknowledgment from the primary, but before
verification of payload presence in all node logs. Because
the specification references global system state, our repair
has to consolidate that state at a single node. The fix is
to ensure the client knows its payload to be durable before
declaring success. Nemo suggests to introduce ack_log to
inform the client about replica state and making receipt
of ack_log from all nodes condition for success. All in all,
Nemo proposes to modify four lines of code, after which
a subsequent run confirms our success in eliminating the
bug and making the system indeed durable. Additional fault
tolerance analysis suggests to increase the resilience of rules
replicate, request, ack_log, and ack, leading to a correct
and more robust primary/backup replication protocol that
resembles in code what the specification describes as correct.

5. RELATED WORK
Provenance [8] provides explanations for why and how data

was computed. The concept originated in the database com-
munity [12, 5, 9], but has seen applications in big data analyt-
ics [20, 16], operating and storage systems [7, 24], and network
diagnostics [11, 29, 30, 10]. Differential provenance [11], like
Nemo, focuses on the use of provenance as a debugging tool.
Reducing representation complexity of provenance graphs,
differential provenance reveals the difference between a graph
of a successful and a failed run, as the root cause of the differ-
ent behavior is likely to be nearby. We show that differential
provenance is a special case of a query in our framework.
Wu et al. [29] also explore the use of provenance to guide
program repair in the context of software-defined networks.
Nemo extends this idea to arbitrary distributed programs,
provided that they satisfy the assumptions given in Section 3.
Nemo is complementary to the huge body of work on bug

finding for distributed and concurrent systems [26, 15, 17, 31].
Our debugger is designed to work in concert with a bug finder;
for our prototype, we integrated with an implementation of
lineage-driven fault injection (LDFI) [2]. FCatch [19], much
like LDFI, specifically focuses on bugs that are triggered
by faults such as machine crashes and message loss. Like
Nemo, FCatch validates their approach using the TaxDC
bug collection. Input minimization techniques (e.g., delta
debugging [22] and DEMi [27]) are likewise complementary
to our approach, which begins with a reproducible bug.

6. CONCLUDING REMARKS
We built Nemo to explore the use of data provenance as

a basis for the distributed debugging tool sets of the future.
Although we report nascent work, we showed strong evidence
that the question-and-answer process of bug identification
and repair can be posed as queries over traces of system



execution, identifying root causes of errors of commission.
We also demonstrated Nemo’s surprising ability to use this
provenance querying framework to synthesize protocol repairs
which cause the program to more closely fit its specification
in the case of errors of omission.
Nemo operates on an idealized model in which distributed

executions are centrally simulated, record-level provenance
of these executions is automatically collected, and computer-
readable correctness specifications are available. This was no
accident: we wanted to explore the limits of our approach in a
“perfect information” scenario. Generalizing these results to
large-scale distributed systems with shallow or non-existent
specifications, coarse-grained tracing and logging rather than
provenance collection, and a variety of industrial program-
ming languages will require additional research. We argue,
that oftentimes integration tests, service-level agreements,
and monitoring alerts are already available as a basis for
stricter correctness specifications. The generalization of LDFI
from the same idealized model to real-world deployments at
companies such as Netflix [3] and eBay [14] provides evidence
that these problems can be solved. To this end, encoding our
provenance framework into a simple, readily available DSL
for general-purpose applicability is future work.
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