Exploiting Latent Information in Relational Databases via Word
Embedding and Application to Degrees of Disclosure

Rajesh Bordawekar
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
bordaw(@us.ibm.com

ABSTRACT

Cognitive Databases is a new approach for enabling Artificial Intel-
ligence (AI) capabilities as standard features within relational data-
base systems. Relations are textified and the text is used to build a
Word Embedding (WE) model that captures the latent relationships
between database tokens of various data types. For each database
token, the model includes a low dimensional vector (say, 200) that
encodes the token’s relationships with other tokens. The vectors
are used in the existing SQL query infrastructure via UDFs. Queries
use the model vectors to express semantic similarity/dissimilarity,
inductive reasoning, analogies and seamlessly utilize knowledge
from external sources such as Wikipedia and PubMed.

WE enables novel capabilities such as the controlled disclosure of
database information in a variety of ways. The degree of disclosure
may depend on the sensitivity of the information and the recipient’s
need to know, e.g., test results may be considered sensitive and
should be only be openly disclosed to divisions concerned with
them. Disclosure may be viewed as a new kind of controlled sharing
of information for cooperation and integration purposes.

There are some challenges in integrating WE methods into the
database engine, necessitating new techniques. There are also in-
teresting theoretical problems concerning the WE coding power.

ACM Reference format:

Rajesh Bordawekar and Oded Shmueli. 2019. Exploiting Latent Information
in Relational Databases via Word Embedding and Application to Degrees
of Disclosure. In Proceedings of 9th Biennial Conference on Innovative Data
Systems Research(CIDR’19), Asilomar, California, USA, January 2019 (CIDR
2019), 6 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Traditionally, relational databases have been used to analyze enter-
prise datasets that comprise mostly of well-qualified typed entities
(e.g., character(n), decimal, float, or timestamp). However, over the
years, relational databases have been increasingly used to store and
process free-formed unstructured text data (e.g., customer reviews).
It is intuitively clear that databases with such unstructured text
entities have a significant amount of latent semantic information.
However, columns that contain different types of data, e.g., strings,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIDR 2019, Asilomar, California, USA

© 2019 ACM. 978-x-xxxx-xxxx-x/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Oded Shmueli

CS Department, Technion
Haifa, Israel 32000
oshmu@cs.technion.ac.il

numerical values, images, dates, etc., possess significant latent in-
formation in the form of inter- and intra-column relationships. The
usual way to utilize this information is using SQL and extensions,
such as text extensions, or User Defined Functions (UDFs) to handle
exotic data types. However, these extensions are rather limited in
their smarts. Specifically, SQL queries rely on value-based analytics
to detect patterns. In addition, the relational data model neglects
many inter- or intra-column relationships. Thus, traditional SQL
queries lack a holistic view of the underlying relations, and thus
are unable to extract and exploit semantic relationships that are
collectively generated by tokens in a database.

A Cognitive Databases [1, 2] is a novel relational database sys-
tem, which uses word embedding techniques [6, 8, 9, 11] to extract
latent knowledge from a database table or a collection of tables. The
generated word-embedding model captures inter- and intra-column
semantic relationships between database tokens of different types.
For each database token (value, field, object), the model includes
a vector that encodes contextual semantic relationships. A cog-
nitive database seamlessly integrates the model into the existing
SQL query processing infrastructure and uses it to enable a new
class of SQL-based analytics queries called Cognitive Intelligence
(CI) queries. CI queries use the model vectors to enable complex
semantic queries over relational data such as semantic similarity or
dissimilarity, inductive reasoning queries such as analogies or se-
mantic clustering, and predictive queries using entities not present
in a database but only in corpora on which the model is co-trained.

There are interesting implications of word embedding based
modeling for enabling selective information dissemination for rela-
tional data. We illustrate how the word-embedding approach can
enable a cognitive database to: (1) reveal various degrees of infor-
mation, (2) invoke semantic CI queries over encrypted data, and (3)
provide limited disclosure via semantic encoding of the underlying
database schema and data.

2 COGNITIVE DATABASE DESIGN

In the database context, vectors may be produced by either learning
on text transformed and extracted from the database itself and/or
using external text sources, such as Wikipedia. Training a word-
embedding model from a relational database requires two stages.
The first stage, textification, takes a relational table with different
SQL types as input and returns an unstructured but meaningful
text corpus consisting of a set of sentences. This transformation
allows us to generate a multi-modal embedding model with uniform
semantic representation of different SQL types. In addition to text
tokens, our current implementation supports numeric values and
images (we assume that the database being queried contains a
VARCHAR column storing links to the images). We use different



strategies for converting a non-text relational data to text: e.g.,
values in a numeric column are first clustered using a standard
clustering approach (e.g., K-Means), and then replaced by a text
token that represents the corresponding cluster. For images, one
approach classifies images into classes using a pre-trained model
and then represents each image by a string token that represents
its class. Alternatively, one can first extract text features from an
image using off-the-shelf image services, such as IBM Watson Visual
Recognition Service [5], and then use the extracted features to train
the embedding model.

Usually, to focus learning, the relevant portion of a table to be
learned is defined by using a relational view. We use an unsuper-
vised training approach based on the Word2Vec (W2V) [7] imple-
mentation to build the word embedding model from the generated
text corpus (other training approaches perform similarly). The text
corpus is organized as a set of English-like sentences, separated by
stop words (e.g., newline). Each sentence correspond to a row in the
relational view and is used as a neighborhood context during the
training of the word embedding model. Hence, the inferred semantic
meaning of the relational entities reflect the collective relationships
defined by the associated relational view (generated by relational
operations such SELECT, PROJECT, and JOIN.)

Our training implementation builds on the standard W2V im-
plementation, but it varies from the that approach in a number of
important aspects: (1) A sentence generated from a relational row
is generally not in any natural language such as English. Therefore,
the underlying assumption from word2Vec that the influence of any
word on a nearby word decreases as the word distance increases, is
not applicable. In our implementation, every token has the same
influence on the nearby tokens in the context. (2) Another conse-
quence is that unlike an English sentence, the last word is equally
related to the first word as to its other neighbors. To enable such
relationships for the last word, the first word can be viewed as its
immediate neighbor). (3) For relational data, we provide special
consideration to primary keys, which are unique (and therefore
usually have a limited number of appearances which hinders learn-
ing). First, the standard W2V discards less frequent words from
learning. In our implementation, every token, irrespective of its
frequency, is assigned a vector. Second, irrespective of the distance,
a primary key is considered a neighbor of every other word in a
sentence and included in the neighborhood window for each word.
Also, the neighborhood extends via foreign key occurrences (of a
key value) to the row in which that value is key. (4) Finally, our
implementation is designed to enable incremental training, i.e., the
training system takes as input a pre-trained model and a new set of
generated sentences, and returns an updated model. This capability
is critical as a database may be updated regularly and one can not
rebuild the model from scratch every time. External information
may be incorporated in two basic modes: (a) by providing text
that augments the database-derived text for training, and (b) by
providing external pre-trained models derived from the external
information. The use of pre-trained models is an example of trans-
fer learning, where a model trained on an external knowledge base
can be used either for querying purposes or as a basis of forming
a new model. This of course necessitates management of models

as well as models’ identification when used within user-defined
functions (UDFs).

3 COGNITIVE INTELLIGENCE QUERIES

A cognitive relational database is an extension of the underlying
relational database, and thus supports all existing standard rela-
tional database features. In addition, a cognitive relational database
supports a new class of business intelligence (BI) queries called Cog-
nitive Intelligence (CI) queries. The CI queries extract information
from a relational database based, in part, on the contextual semantic
relationships among database entities, encoded as meaning vectors.
At runtime, the SQL query execution engine uses various UDFs that
access the trained vectors from the system table, as needed, and
answers CI queries. Similarly to other relational queries, CI queries
take relations as input and return a relation as output. CI queries
augment the capabilities of the traditional relational BI queries and
use all standard existing SQL operators.

Our current implementation is built on the Apache Spark 2.2.0 in-
frastructure. The implementation supports, via UDFs, four types of
CI SQL queries: similarity queries, inductive reasoning, prediction,
and cognitive OLAP. These queries can be executed over databases
with multiple data types: we currently support text, numeric, and
image data. The similarity queries compare two relational variables
based on similarity or dissimilarity between the input variables.
Each relational variable can be either a set or sequence of tokens.
In case of sequences, computation of the similarity value in some
UDFs takes the ordering of tokens into account where the closest
the token to the beginning of the sequence, the higher the weight.
The similarity value is then used to classify and group related data.
The inductive reasoning queries exploit latent semantic information
in the database to reason from part to whole, or from particular to
general [12, 13]. We support different types of inductive reasoning
queries: analogies, semantic clustering, analogy sequences, clus-
tered analogies, and odd-man-out. Given a token from an external
data corpus (which is not present in a database), the predictive CI
query can identify database tokens that are similar, or dissimilar, to
the external token by using the externally trained model. Finally,
cognitive OLAP allows SQL aggregation functions such as MAX(),
MIN() or AVG() over a set that is identified by contextual similarity
computations.

To demonstrate the capabilities of Cognitive Databases, consider
a semantic clustering CI query on a relational multi-modal database
(Figure 1): the original database lists national parks with string
tokens representing image file names, e.g.,
n00015388_18458. jpeg. We first create a training table using text
features extracted from the images by using the Watson VRS sys-
tem. The training table is then used to build a multi-modal word
embedding model that captures relationships between text and
image features. This model is then used to answer CI queries that
use both text and image variables. For example, the goal of query
shown in Figure 1 is to identify all images that are similar to every
image in the set of user chosen images. Such images share one or
more features with the input set of images. For this query, we select
images of a lion, a vulture, and a shark as the input set and use the
combinedAvgSim() UDF to identify images that are similar to all
these three images. Although the input images display animals from



Input

n00015388_18458 n01316422_255

B % P

Lz
n01316422_1684
glutton_wolverine

n01604330_12473
andean_condor, condor
sloth_bear

n01315581_997

n01324431_7056
andean_condor, tayra

Find all images whose similarity to user
chosen images of [lion, vulture, shark]
using combinedAvgSim UDF is greater
than 0.75. Exclude the input images and
sort the result in descending order of
their similarity score.

SELECT X.imageName,
combinedAvgSim(X.imagename,
’n00015388_18458.jpeg’,
’n01316422_255.jpeg’,

’n01315581_997.jpeg’) AS SimScore

FROM ImageDataTable X WHERE

(X.imagename <>’'n00015388_18458.jpeg’) AND
(X.imagename <>’'n00015388_19237.jpeg’) AND
(X.imagename <>’'n00015388_18797.jpeg’) AND
(combinedAvgSim(X.imagename,
’n00015388_18458.jpeg’,
’n01316422_255.jpeg’,

’n01315581_997.jpeg’) > 0.75)

ORDER BY SimScore DESC

Figure 1: Inductive reasoning CI query for semantic clustering of images

three different classes, they share one common feature: all three
animals are carnivorous. The UDF computes the average vector of
the three input images and then selects those images whose vectors
are similar to the computed average vector with similarity score
higher than 0.75. Figure 1 shows the top three image results: an-
dean condor, glutton wolverine, and tyra. Although these animals
are from different classes, they all are carnivores, a feature that is
shared with the animals from the input set.

To further illustrate CI capabilities, consider a query to find all
images of animals whose classD similarity score (in ImageDataT-
able) to the concept of Hypercarnivore of Wikipedia, which does not
appear in the database, exceeds 0.50. Exclude animal images that
are already tagged as carnivore, herbivore, omnivore or scavenger.
The query is presented in Figure 2. The query uses a UDF called
proximityAvgExtKB(). See [1] for further details.

4 CONTROLLED DISCLOSURE VIA WORD
EMBEDDING

We now outline interesting implications of using word embedding
models for querying relational databases. We will use the process
illustrated in Figures 3 and 4 as a running example.

Consider a single relational database relation R with five columns:
A, B, C, D and E. Further, assume its first column, A, contains the pri-
mary key, a string that is unique for each relation tuple (record, row).
In disclosing R to a recipient we identify the following Disclosure
Steps:

(1) Deciding which columns should be completely eliminated,
say due to a very high degree of sensitivity. In our example,
we decide to eliminate column E.

(2) Deciding the content of which columns should be encrypted
prior to producing word vectors. In our example, we decide
that column D should be encrypted. This keeps equality

between equal entries in different tuples (rows) for this col-
umn, but severs identifying these values in other columns
(inter-column severance) as well as hides the true nature
of the content within an encrypted column. Denote the
modified relation R as R”.

(3) Vector construction based on texitifying R’. This step asso-
ciates a vector with each token in relation R’, see Figure 3.
Each row of the table Vectors depicts the 200 entries of
the vector associated with the database token in the Token
column.

(4) Deciding which columns of R’ are to be disclosed to the re-
cipient(s). In our example, we decide to disclose all columns,
A, B, C,and (the encrypted version of) D. Denote by R’’
the relation obtained by restricting R’ to the columns to
be disclosed (i.e., in our example, R’ =R’’).

(5) Deciding which R’’ columns, that are to be disclosed to re-
cipient(s), should be encrypted prior to disclosure. Assume
that, in our example, we decide to encrypt column B prior
to disclosure. Recall that the Associated Vectors were
produced prior to encrypting column B. The vector associ-
ated with any encrypted value in column B is the one that
was associated with the pre-encrypted value. For example,
in Figure 4, The vector of e200301 is the one associated with
C72Ho5C;N14014. We shall refer to the end-result relation
as Rf, see Figure 4.

(6) Disclosing Rf and the collection of pairs (w, v) in Associated
Vectors where w is a token occurring in the disclosed
columns of Rf and v is the associated vector.

4.1 Degrees of Disclosure

The end result of the outlined disclosure process is that the recipient
is presented with a relation (Rf in our example) and with each token,
its associated vector, see Figure 4. The important point to note is



Output

n01316422_10446 n01321579_5386

[hyena, spotted_hyena]

n01317541_6440
[hyena, water_dog_dog,
spotted_hyena]

n02075612_2316
[hyena, pouched_mammal,
spotted_hyena, bear_cub]

n01316422_10406
[hyena, spotted_hyena] [hyena, spotted_hyena]

Find all images of animals whose
classD similarity score to the Concept
of ““Hypercarnivore" of Wikipedia
using proximityAvgExtKB UDF is
greater than 0.5. Exclude images that
are already tagged as carnivore,
herbivore, omnivore or scavenger. Sort
the results in descending order of their
similarity score.

SELECT X.imagename, proximityAvgExtKB
("CONCEPT_Hypercarnivore’, X.classD)

AS SimScore

FROM ImageDataTable X WHERE

( (stringPresent(X.classD, ’scavenger’) == 0) AND
(proximityAvgForExtKB
('CONCEPT_Hypercarnivore’,X.classD) > 0.5)
ORDER BY SimScore DESC

Figure 2: A CI query using an external concept

-12.06 123

Vectors  CnHusCiNiOu 452 111 133

100099 -11.05 -10.02 222

#12 CroHasCIN; Oy 12 Ocean Ave. Ny 56%
#57 Ny 2 Marine Ave. A 66%
Relation R 43 CouHsNO 13 Houston St. NY 40%

v
#12

CraHosCIN1Osq 12 Ocean Ave.
#57 CyHFoNg 2 Marine Ave.
Relation R" =
: 2 CuHaNO 13 Houston St.
Relation R’

v
I N N O O N N N
#12 134 -20

Eliminate column E, Encrypt Column D
100099

298009

100099

Form Vectors, say using word2vec

-15.55 0.01 203

29 23 35

0.04 1212 054

Figure 3: Producing word vectors from a modified relation, Disclosure Steps 1-4

that the recipient obtains significant additional information beyond
the mere content of Rf. The vectors, in fact, encode knowledge
not present in Rf, i.e., knowledge accessible through the vectors,
say using CI queries. For example, column D is encrypted just prior
to disclosure. However, the vectors that are associated with the
encrypted tokens in column D were produced prior to performing
encryption. Therefore, these vectors embed knowledge regarding
these pre-encrypted tokens and their co-occurrences with other
tokens. This knowledge is no longer available in Rf in isolation (i.e.,
without vectors). This way, a fine line is drawn in that although
the precise identity of these encrypted columns is not disclosed,
knowledge about their nature and associations is disclosed indi-
rectly through their vectors. On the other hand, decoding vectors

and associating them to original relational tokens appears to be
a daunting task (the precise hardness is an open problem). There-
fore, indirect information disclosure via vectors provides a level
of information hiding that may be appropriate to many real-life
situations.

Let us consider another example over the same four columns
relation R to illustrate the interplay between exposed and hidden
information. Suppose this time our table is describing employees,
column A is the employee badge number and column C records em-
ployees’ addresses. This time, in the final stage of forming Rf, we
encrypt column C instead of column B (that describes expertise). Let
Rf’ denote the final disclosed relation in this case. We observe that
while forming vectors, column C was not encrypted (i.e., clear-text).



Relation R”

Relation Rf

-12.06 123
: 200301 52 111 133
Associated ©
Vectors

-11.05 -10.02 222

#12

CraHosCIN,(Osq 12 Ocean Ave.
L5 CorHafag 2 Marine Ave.

#63 CouHsiNO 13 Houston St.

#12 €200301 12 Ocean Ave.

#57 200328 2 Marine Ave.

#63 200554 13 Houston St.

I N O O O N N N
#12 134 -20

Encrypt column B

Both Rf and
Associated Vectors
are disclosed

-15.55 0.01 2.03

Figure 4: Producing word vectors from a modified relation, Disclosure Steps 5-6

If two employee addresses are identical, this is easy to detect in the
supplied information (although the addresses themselves cannot
be easily discerned) as these addresses are identically encrypted. If
two addresses are close (say, same town and street, different num-
ber), this information will likely be exposed in that the vectors of
these two addresses are likely to be close (i.e., high cosine similar-
ity). In this way, information may be hidden but partially exposed
to a certain degree. Note that the street address information will
also affect closeness of the employee’s, say Joe Smith’s, (badge)
column A value associated vector to other employees (badge) col-
umn A vectors values (as well as closeness to vectors for tokens in
other relation columns). Therefore, if one is interested in employees
close (according to some facets) to Joe Smith, this street address
information, that is encrypted in Rf’, will likely affect querying
results.

The Disclosure Steps outlined above introduce a sequence of mea-
sures of information hiding: eliminating columns, encrypting prior
to vector construction, eliminating a column prior to disclosure,
and encrypting a disclosed columns prior to disclosure. However,
there are measures that reduce information hiding. One such mea-
sure that increases information exposure is the use of external data
sources, e.g., Wikipedia. During training, we can mix the text ob-
tained by texitifying the relation with text derived from external
source(s). This way, the vectors of database tokens may encode
closeness to terms (tokens) that do not even appear in the database,
thereby exposing additional information. For example, suppose that
relation R deals with medical drugs. The word toxic may not appear
in R. However, column B contains chemical formulas. Certain com-
pounds may be identified by an external source as toxic. Training
on both R and the external text source may reveal closeness of a
token of a column, say B (or A) vector, to the vector of toxic even
though toxic does not appear in R at all.

4.2 Querying using Encrypted Tokens

As shown in Figures 3 and 4, a token used in forming the word
embedding model can be the encrypted version of the original
(cleat-text) data. This raises the question of what limitations are
imposed by encryption on querying. As CI queries use string to-
kens to access the associated vectors, they can operate on either
clear-text or encrypted versions of the tokens. Therefore, even if the
source database is entirely encrypted, the generated word embed-
ding model will be able to capture relationships between the tokens
as if they were in the clear-text (unencrypted) format. However,
there are some important limitations on querying:

(1) Usually when the SQL queries are composed, the encrypted
token names (e.g., €10099) are not known. Therefore, some
manual editing may be required prior to query execution.

(2) Encrypted columns cannot be compared to, or equated
with, non-encrypted values in the query.

Lastly, we mention the phenomenon of phantom connections.
Given a disclosed relation and associated vectors table, one can
textify the relation and produce new vectors for the tokens thus
presented. Then, one can compare closeness ranking of the sup-
plied vectors versus the closeness between newly generated vectors.
These closeness differences hint at sources of closeness that were
eliminated in the disclosed relation, for example a column that was
used originally in learning vectors and has been eliminated prior to
disclosure. This underlines the fact that information hiding in this
scheme is soft and is designed to make obtaining additional infor-
mation from the disclosed information harder, but not impossible.

4.3 Disclosing Information by Disclosing an
equivalent Synthetic-Text

Learning a model (vectors) on text obtained from various internal

and external sources is a key idea in expanding the expressive

power of SQL to use terms not explicitly mentioned in the source
data. This sub-section deals with providing an information source



with neither explicitly providing the underlying table or database
in any form, nor explicitly providing vectors per tokens. The idea
is to provide a synthetic text generator that essentially produces a
continuous stream of text upon demand (e.g., "provide the next 1000
words") with the concurrence statistics of the disclosed information
source. The tokens (words) that are generated are the ones from
the underlying information source. As in the case of controlled
disclosure, discussed above, one may drop certain columns and
encrypt others prior to preparing the data structure that enables
synthetic text generation. This enables further control over the
disclosed content.

Logically, the main data structure that enables synthetic text
generation includes records of the form:

(tokeny, tokens, ...,tokeny, tokengy:, prob)

The meaning is that if the last k tokens to be generated are token,
...,tokeny. then with probability prob the token to be generated is
tokengy . Conceptually, such records enable synthetic text genera-
tion after starting the text with an authentic sequence out of the
original text. Efficient implementation techniques of this idea are
presented in [3]. We note that the larger k is, the more precise the
captured statistics is. This provides another control level on (a) the
preciseness of disclosed information, and (b) the computational
cost of generating the synthetic-generation enabling data structure.

5 SYSTEM CHALLENGES

Cognitive Databases present new system requirements, these in-
clude:

(1) Efficiently training models at a large scale. This involves
efficient textification and model learning with a variety of
machine learning techniques.

(2) When new tokens are introduced, for reasonably large
databases, their vectors will have little influence on exist-
ing vectors. However, for query processing, new tokens
need be associated with vectors. This raises the need for
incrementally and quickly learning new vectors.

(3) Managing a vast collection of models, both internal and

external.

Efficiently performing UDFs. This is challenging as many

UDFs process a large collection of vectors. New algorithm

as well as hardware acceleration may be necessary. See

work in this area in [4].

Designing and integrating Al-oriented UDFs into the query

compilation and optimization process.

Automatically executing versions of the same query with

different parameters (e.g., executing a query with two dif-

ferent cosine distance bounds, choosing the ’better’ one).

“

=

5

=

6

=

6 CONCLUSIONS AND FUTURE WORK

In this paper, we briefly reviewed the concept of Cognitive Databases,
a novel relational database system, which uses unsupervised word-
embedding models to capture and exploit latent information in
relational data. We view Cognitive Databases as a precursor to a
new generation of relational databases that seamlessly integrate Al
capabilities into the database data manipulation capabilities, in a
uniform, dynamic and generic fashion. This should be contrasted
with the practice in which targeted learning is performed over

database-stored data in a separate system aiming at achieving a spe-
cific task. We discussed how the embedding approach can be used
for controlling data access by enabling various degrees of informa-
tion disclosure over relational tables. While our suggested methods
are preliminary, we hope they will spur further exploration and
analysis into this developing area.

A potentially important property of word embedding is its en-
abling the encoding of source databases. Consider a scenario where
a word embedding model with encrypted tokens is being used for
supporting CI queries. We conjecture that given just a word em-
bedding model with encrypted tokens and vectors of real-valued
numbers, it is not practically possible to deduce the schema and data
of the source data used to create the model (the source data can be
a database table or unstructured text corpus, or both). The precise
encoding power of word embedding techniques is an interesting
open problem. We hope this paper will encourage researchers to
investigate and explore the theory underlying word-embedding
(and other neural networks [10] based encoding schemes) for use
in relational databases.

REFERENCES

[1] Rajesh Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. 2017. Cog-
nitive Database: A Step towards Endowing Relational Databases with Artifi-
cial Intelligence Capabilities. CoRR abs/1712.07199 (2017). arXiv:1712.07199
http://arxiv.org/abs/1712.07199

[2] Rajesh Bordawekar and Oded Shmueli. 2017. Using Word Embedding to Enable
Semantic Queries in Relational Databases. In Proceedings of the 1st Workshop on
Data Management for End-to-End Machine Learning (DEEM’17). ACM, New York,
NY, USA, Article 5, 4 pages. DOI :https://doi.org/10.1145/3076246.3076251

[3] Rajesh Bordawekar and Oded Shmueli. 2018. System and method for natural
language processing using synthetic text. United States Patent 10,025,773 (2018).

[4] Michael Gunther. 2018. FREDDY: Fast Word Embeddings in Database Systems. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein (Eds.). ACM, 1817-1819. DOI: https://doi.org/
10.1145/3183713.3183717

[5] IBM  Watson. 2016. Watson  Visual Recognition  Service.
www.ibm.com/watson/services/visual-recognition/. (2016).

[6] Omer Levy and Yoav Goldberg. 2014. Linguistic Regularities in Sparse and
Explicit Word Representations. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, CoNLL 2014. 171-180. http://aclweb.
org/anthology/W/W14/W14-1618.pdf

[7] Tomas Mikolov. 2013. word2vec: Tool for computing continuous distributed
representations of words. (2013). github.com/tmikolov/word2vec.

[8] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting Similarities
among Languages for Machine Translation. CoRR abs/1309.4168 (2013). http:
//arxiv.org/abs/1309.4168

[9] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jef-
frey Dean. 2013.  Distributed Representations of Words and Phrases
and their Compositionality. In 27th Annual Conference on Neural In-
formation Processing Systems 2013. 3111-3119. http://papers.nips.cc/paper/

5021-distributed-representations- of-words-and- phrases-and- their-compositionality

[10

Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal
Talwar. 2017. Semi-supervised Knowledge Transfer for Deep Learning from
Private Training Data. CoRR abs/1610.05755 (2017). arXiv:1610.05755 http:
//arxiv.org/abs/1610.05755

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL.
1532-1543. http://aclweb.org/anthology/D/D14/D14-1162.pdf

David E Rumelhart and Adele A Abrahamson. 1973. A model for analogical
reasoning. Cognitive Psychology 5,1 (1973), 1 — 28. DOI:https://doi.org/10.1016/
0010-0285(73)90023-6

[13] Robert J Sternberg and Michael K Gardner. 1979. Unities in Inductive Reasoning.
Technical Report Technical rept. no. 18, 1 Jul-30 Sep 79. Yale University. http:
//www.dtic.mil/docs/citations/ ADA079701

[11

[12


http://arxiv.org/abs/1712.07199
http://arxiv.org/abs/1712.07199
https://doi.org/10.1145/3076246.3076251
https://doi.org/10.1145/3183713.3183717
https://doi.org/10.1145/3183713.3183717
http://aclweb.org/anthology/W/W14/W14-1618.pdf
http://aclweb.org/anthology/W/W14/W14-1618.pdf
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1309.4168
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://arxiv.org/abs/1610.05755
http://arxiv.org/abs/1610.05755
http://arxiv.org/abs/1610.05755
http://aclweb.org/anthology/D/D14/D14-1162.pdf
https://doi.org/10.1016/0010-0285(73)90023-6
https://doi.org/10.1016/0010-0285(73)90023-6
http://www.dtic.mil/docs/citations/ADA079701
http://www.dtic.mil/docs/citations/ADA079701

	Abstract
	1 Introduction
	2 Cognitive Database Design
	3 Cognitive Intelligence Queries
	4 Controlled Disclosure via Word Embedding
	4.1 Degrees of Disclosure
	4.2 Querying using Encrypted Tokens
	4.3 Disclosing Information by Disclosing an equivalent Synthetic-Text

	5 System Challenges
	6 Conclusions and future work
	References

