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ABSTRACT

Named Entity Disambiguation (NED) is the task of mapping textual
mentions to entities in a database. A key challenge in NED is gener-
alizing to rarely seen entities, termed tail entities. Traditional NED
systems use hand-tuned features to improve tail generalization, but
these features make the system challenging to deploy and maintain,
especially in multiple locales. In 2018, a subset of the authors built a
self-supervised NED system at Apple, which improved performance
over its hand-tuned predecessor on a suite of downstream products.
Motivated to understand the core reasons for this improvement,
we introduce BOOTLEG, a clean-slate, open-source, self-supervised
NED system.! We first demonstrate that BOOTLEG matches or ex-
ceeds state-of-the-art performance on three NED benchmarks by
up to 5.8 F1 points. Importantly, BOOTLEG improves performance
over a BERT-based NED baseline by 41.2 F1 points on tail entities
in Wikipedia using a simple transformer-based architecture and a
hierarchical regularization scheme. Finally, we observe that embed-
dings from self-supervised models like BOOTLEG are increasingly
being served to downstream applications, creating an embedding
ecosystem. We initiate the study of the data management challenges
associated with this ecosystem.

1 INTRODUCTION

Named entity disambiguation (NED), the process of mapping strings
to entities in a database, is a core data management problem and a
required step in personal assistants, search, and data cleaning. Users
submit queries to these applications that span a long tail of entities,
and thus success in NED involves capturing subtle reasoning clues
to disambiguate rare (i.e. tail) entities. For example, in the query
"What role does Harry play in Dunkirk?" (Figure 1 (left)), "Harry"
refers to popular actor/singer Harry Styles—not Harry Collett or
Harry Truman—and "Dunkirk" refers to the movie—not Dunkirk,
Indiana or the evacuation of Dunkirk. Alternatively, if the query was
"What roles does Harry play in Dunkirk and Dolittle?", "Harry" would
refer to Harry Collett as only he plays in both movies Dunkirk and
Dolittle. The relationships between Harry Collett and the movies
he acts in signals the less popular "Harry".

In 2018 at Apple, a subset of the authors built and deployed a first-
of-its-kind NED system to use self-supervision — a paradigm which
eliminates the need for engineers to hand-label data and manually
curate features. Apple’s NED system and its output embeddings —
which were integrated into downstream tasks — improved product
performance, dramatically reduced engineering effort, and could
be extended to new languages and locales more easily.

The experience at Apple suggested that a self-supervised ap-
proach was a promising direction for designing an NED system.
However, as Apple’s system was integrated with other proprietary
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1BooTLEG is open-source at http://hazyresearch.stanford.edu/bootleg.

production systems, it was difficult to distill research takeaways.
Thus, we decided to start from scratch and initiate a clean-slate,
principled study to better understand how to achieve and maintain
high quality with self-supervised NED.

The lessons from industry highlighted two distinct challenges
in building and maintaining self-supervised NED systems:

(1) Tackling the Tail: A natural baseline for a self-supervised NED
system uses BERT [7] (or any deep language model) with en-
tity embeddings to memorize textual co-occurrences between
entities and words. This baseline performs well on popular enti-
ties which are well-represented in self-supervised data but can
struggle on tail entities as there is not enough training data to
learn co-occurrences. We find that the baseline achieves over
85 F1 points over all entities but less than 28 F1 points on tail
entities on a Wikipedia dataset. The tail however is critical for
production workloads. Search applications and voice assistants
are known to be tail-heavy: an overwhelming number of queries
appear infrequently [1]. Many real world entities also lack text
data: in Wikidata, only 11% of entities are in Wikipedia, and in
MusicBrainz, less than 1% of songs and artists are in Wikidata.

(2) Fixing Errors in an Embedding Ecosystem: Within organizations,
entity embeddings from NED models are shipped to down-
stream product teams like question answering and search. These
teams then use the embeddings in their product-specific mod-
els, which ship to millions of users. We define the training data,
embeddings, and the downstream product teams which use
the embeddings as forming an embedding ecosystem. Inevitably,
errors will occur in downstream products—like returning the
wrong "Harry"—due to poor embeddings for different entities,
especially at the tail. Today, downstream product teams inde-
pendently fix these errors which can lead to inconsistencies in
embeddings and varying user satisfaction across products. A
key challenge is understanding how to fix the embeddings from
the self-supervised model so that errors across the embedding
ecosystem are resolved in a consistent and maintainable way.

We take a first step towards addressing these challenges by
building BOOTLEG, a clean-slate, open-source, self-supervised sys-
tem for tail NED. BOOTLEG achieves state-of-the-art performance
on KORE50 [13], RSS500 [10], and AIDA CoNLL-YAGO [12] NED
benchmarks and improves over a BERT-based NED baseline that
uses no structured data by more than 41 F1 points for tail entities on
a Wikipedia dataset. We describe two core components of BOOTLEG:

(1) Incorporating Structured Data for the Tail: Structured data about
entities in the form of entity types and relations can be a readily
available resource for all entities, including the tail entities. In
Wikidata, 75% of entities that are not in Wikipedia have type
or knowledge graph connectivity information. We hypothesize
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Figure 1: (left) shows three reasoning patterns for disambiguation through two example sentences where the correct entity is

bolded and (right) shows the dataflow of BooTLEG taking an input sentence and outputting disambiguated entities.

that reasoning over this structured data can improve tail gener-
alization. For example, in the question "How tall is Lincoln?", an
ideal model can learn that person types have heights to know
that "Lincoln" must be a person, rather than a place or brand,
and can leverage this type pattern to disambiguate rare peo-
ple. A key challenge is how to incorporate structured data in a
self-supervised system. We show how BOOTLEG incorporates
structured data by learning an embedding vector for each type
and relation, allowing the model to reason over structured data.

—
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Managing the Training Set in an Embedding Ecosystem: As em-
beddings are simply a function of the training data, improving
the training data can help address the root cause of the errors
due to the embeddings. In particular, we envision a system
where embeddings are fixed upstream at the self-supervised
NED model through changes to the source training data. Fixing
at the source would obviate the need for each product team
to apply idiosyncratic fixes to the embeddings. We introduce
the data management challenges associated with this vision,
including managing unstructured and structured training data,
and present two promising approaches used in BOOTLEG to fix
the errors due to the embeddings.

The rest of the paper is organized as follows: in Section 2, we give
an overview of BOOTLEG. In Section 3, we introduce three reasoning
patterns for tail disambiguation and discuss how we encode these
patterns using a simple transformer-based architecture with a new
regularization technique. In Section 4, we define our vision of the
embedding ecosystem, and how embeddings from self-supervised
models like BOOTLEG operate in this ecosystem. In Section 5, we
present BOOTLEG’s state-of-the-art results, and demonstrate that
entity embeddings produced by BooTLEG are useful on downstream
tasks, leading to improvements of 8% in a production task at Apple.

We hope the insights from our work will be broadly applicable
to the data management challenges inherent to using, managing,
and monitoring self-supervised systems. Embeddings are shipped
in production at Apple, experienced first-hand by millions of cus-
tomers. The era of embedding everything both enables exciting

new applications and introduces new challenges at the intersection
of Al and data management.

2 BOOTLEG OVERVIEW

We now give an overview of BOOTLEG and motivate our use of struc-
tured data for tail disambiguation. Although we focus on BOOTLEG's
process, the inputs and outputs are standard for all NED systems.

BooTLEG Dataflow BOOTLEG takes a sentence as input and out-
puts the set of entities from an entity database participating in the
sentence (dataflow shown in Figure 1). Given the sentence "What
roles does Harry play in Dunkirk and Dolittle?", BOOTLEG queries an
entity database to find mentions in the sentence and extracts entity
candidates for each mention and each candidate’s associated en-
tity profile. "Dunkirk", for example, has candidates Dunkirk (film),
Dunkirk, Indiana, and Dunkirk (battle). This database also contains
structural information about an entity: its set of types (Dunkirk
(film) is a movie type), knowledge graph relationships (Dunkirk
(film) was directed by Christopher Nolan), possible mentions, and
other entity-features. The profile information is encoded as an en-
tity payload (described in Section 3) which is input to BOOTLEG’s
model. BOOTLEG selects the most likely candidate (possibly None)
from the set of candidates for each mention.

The Motivation for Structured Data To understand the chal-
lenges and requirements of tail NED, we start with a natural self-
supervised NED baseline, which we refer to as NED-Base. NED-Base
incorporates entity embeddings into BERT and is modeled after the
system in Févry et al. [9]. BERT gives the baseline the ability to
remember phrases in context by learning word co-occurrences and
the relative and absolute positions of words. This method excels at
disambiguating popular entities as it has seen the entity enough
times to memorize distinguishing contextual cues but can struggle
on tail entities which are rare in the training data.

Consider disambiguating "Lincoln" in the following: (1) “How tall
is president Lincoln?” and (2) “What ingredients are in a Lincoln?”.

For (1), NED-Base should be able to correctly disambiguate to
“Abraham Lincoln” as this entity occurs with the phrase “president”
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over 3,200 times in the training set. For (2), the baseline is not
expected to correctly disambiguate to "Lincoln cocktail" as it has
not seen the entity “Lincoln cocktail” during training, and as a
result, has not learned the association of “in a” or “ingredients”
with the entity. As an approximation of how many times NED-Base
must see a pattern to memorize it, we measure the performance
on a Wikipedia dataset: the baseline achieves 79.3 F1 points on
entities it has seen 11-1000 times during training but only 27.8 F1
on entities it has seen 10 or fewer times.

A key insight is that structural resources are more readily avail-
able for tail entities than text data, meaning reasoning patterns
over structured data can help generalize to the tail. If we extend
NED-Base to reason over type cues, for example, it could disam-
biguate the Lincoln cocktail because beverage, not people, types
have ingredients. Additionally, these general patterns can be more
sample efficient. On a uniform sample of Wikipedia data, there are
2,800 types that each map to more than 100 entities. This means
that to disambiguate an entity of a particular type, the NED system
can leverage patterns seen for any of the 100+ entities of the corre-
sponding type. To get the same amount of signal without type cues,
each of the 280K entities would need to see all of those patterns
independently. In BOOTLEG, our goal is to leverage structured data
to learn generalizable patterns for the tail.

3 DISAMBIGUATING THE TAIL WITH
BOOTLEG

We now describe the implementation of BOOTLEG, a self-supervised
NED system designed to succeed on popular (head) and tail entities
by incorporating structured data, while being easy to maintain.
BooTLEG defines three reasoning patterns leveraging structural
signals (Section 3.1) and embeds the signals as inputs to a simple
architecture—stacked transformers—to transparently capture the
patterns of interest (Section 3.2).

3.1 Incorporating Structured Data

BoOTLEG assembles a three-layer hierarchy (see Figure 1 (left))
of signals that leverages textual information and the structural
resources, e.g., types and knowledge graph relations. Our hierarchy
represents the tradeoff between discriminativeness and generality
of signals with the most discriminative signal at the base.

o Entity Patterns: These patterns consist of entity-level textual
co-occurrences (e.g., the entity "Harry Styles" is associated with
the phrase "Dunkirk") and can be learned by the NED-Base model
(Section 2). Entity patterns need to be seen per entity during train-
ing. This may be difficult to scale to applications that encompass
millions of entities, like search (e.g., there are 88M entities in
Wikidata). As the most discriminative and least general patterns,
entity patterns form the base of the hierarchy.

Knowledge Graph (KG) Relations: Relationships between can-
didates in a sentence can also serve as cues for disambiguation. In
the example "What roles does Harry play in Dunkirk and Dolittle?",
there are multiple "Harry"’s who act in Dunkirk, but only Harry
Collett has a KG relationship "acts in" to Dolittle, the 2020 film,
indicated by the phrases "roles" and "play in". This memorization
occurs at the relation-level so each textual pattern only needs
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Figure 2: BOOTLEG’s architecture.

to be seen per relation rather than per entity. KG relations are
binary and we find that 22% of mentions participated in a relation
from a sample of Wikipedia, making them the middle layer of
our hierarchy.

o Type Patterns: Semantic or linguistic cues may indicate that
a mention must be of a certain type. In "What role does Harry
play in Dunkirk?", "play" suggests that "Dunkirk" refers to the
movie, not the WWII evacuation. Type memorization occurs at
the type-level so an entity of a particular type can leverage textual
patterns learned from every other mention of that type. As 96%
of mentions have some type, they are the most general signals
and form the top of our hierarchy.

This hierarchy captures a key point of tension in self-supervised
models: models will more easily learn the more discriminative, less
generalizable features. However, to improve disambiguation of tail
entities, we need to incorporate structural resources and encourage
the model to learn the more general patterns. We now discuss how
we leverage embeddings to encode these patterns.

Embedding the Hierarchy We encode the signals by taking an
"embedding-centric" view and represent each layer of the hierarchy
as a set of embeddings. All embeddings are jointly learned during
training. Each entity, type, and KG relation is assigned its own
embedding vector, allowing each property to store relevant disam-
biguation cues. For example, if the "movie" type learns cues such
as the words "stars in" or "viewed", every entity with the movie
type will receive the same cues in the movie embedding vector.
Given an input sentence and the set of candidate entity profiles
(described in Section 2), BOOTLEG queries the relevant embedding
matrix for each candidate’s entity, type, and relation embeddings to
form the entity payload. We use BERT to encode the sentence into
contextual word embeddings. The word embeddings and the entity
payloads are passed to BOOTLEG’s backbone model, described next.

3.2 Learning Reasoning Patterns

Given the word embeddings and the entity payloads, BOOTLEG uses
two modules of the standard transformer architecture [27] to learn
each reasoning pattern. One module is for phrase memorization
(left of Figure 2) and the other is for co-occurrence memorization
(right of Figure 2), which encompasses entity, type, and KG co-
occurrence patterns; e.g., when entities are of similar types, such
as entities in a list. This allows for the embeddings for each level
of the hierarchy to learn dependencies between related phrases as
well as between embeddings. For each entity candidate, BOOTLEG
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adds the outputs of the two modules and scores the result via an
MLP softmax layer. The most likely candidate for each mention is
selected as the correct entity.

Hierarchical Regularization Without interference, BooTLEG
will overly-leverage more discriminative, entity-specific features
over more general ones. To improve tail generalization, we dis-
courage the model from relying on entity-specific textual cues to
disambiguate more rare entities by regularizing ("zeroing out") the
entire entity embedding with frequency proportional to the inverse
of the entity’s popularity (e.g., the more popular the less regular-
ized). We find this boosts performance by up to 2.8 F1 points over
entities occurring 10 or fewer times and 13.6 F1 points over enti-
ties unseen during training compared to not masking the entity
embedding. This can be repeated at each level of the hierarchy.

4 MANAGING THE TRAINING SET IN AN
EMBEDDING ECOSYSTEM

We now describe our vision of how embeddings are becoming a
new medium for data storage and sharing, presenting exciting data
management challenges.

4.1 The Embedding Ecosystem Vision

Embeddings from NED models can improve performance in down-
stream products that leverage knowledge of entities (e.g., question
answering, news, search). For instance, using BOOTLEG embeddings
at Apple leads to up to 8% improvements in a downstream task
used to answer factoid questions. With the recent advances in self-
supervised models such as BERT [7] and GPT-3 [2], embeddings
are increasingly used in products and becoming a powerful and
complex data storage tool in industry pipelines [18, 25, 29]. This
trend is occurring across products and companies, and we believe
it is part of a larger shift in the future of data management.

We refer to the training data, embeddings, and the downstream
products that consume them as forming an embedding ecosystem.
As shown in Figure 3, the ecosystem is instantiated by training self-
supervised models like BOOTLEG on structured and unstructured
data sources. These models then generate embeddings which are
stored in an embedding server—similar to models being stored in a
model store [11]. This server then shares the stored embeddings
among downstream products. The embedding, a complicated func-
tion of the input training data, is therefore becoming an efficient
medium to store and share data.

4.2 Data Management Challenges in the
Embedding Ecosystem

An ecosystem where embeddings are the central data format presents
numerous new data management challenges. We will focus our dis-
cussion on the challenge of managing embedding quality in down-
stream products, specifically in the context of entity embeddings.
We highlight other future directions below.

In today’s pipelines, downstream products may make errors
(often over the tail) due to failure modes and poor quality of the
embeddings. When these errors occur, downstream product teams
often patch the embedding errors independently. This can lead
to inconsistencies between embedding versions, which can cause
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products to disambiguate entities differently from each other and
users to experience varying quality across products. Moreover, the
idiosyncratic fixes by each team do not address the root cause of
the embedding error: the embedding failed to capture some signal
in the training data.

Our envisioned solution to this problem is for embeddings to be
fixed upstream at the source task (e.g., the NED system) by treating
this as a data management problem. Specifically, we imagine fixing
the self-supervised NED models through managing the training
data, not the model architecture or training scheme.

During training, NED models can leverage two types of data:
unstructured data, such as the Wikipedia page text, and structured
data, such as an entity’s types and relationships from a knowledge
graph. We now describe the data management challenges for each
below and our proposed solutions.

4.2.1 Managing Unstructured Data. For self-supervised NED mod-
els trained on unstructured data (e.g., textual data from Wikipedia),
errors arise because the data is often incomplete or naturally sparse
over the tail.> We now introduce two data management techniques
that BOOTLEG uses to improve the unstructured training data: (1)
training set refinement to globally improve the data quality, and
(2) model guiding through data to address targeted errors. Finally,
we describe open challenges for managing unstructured data in the
embedding pipeline.

Training Set Refinement: To globally improve data quality, we
apply weak supervision [22], a technique to noisily, but efficiently,
label data, by using heuristic labeling functions to label unlinked
mentions. For each entity’s Wikipedia page, we label pronouns
and known entity mentions as links to the entity. Our initial work
shows that this refinement technique improves performance by up
to 2.6 F1 points over entities unseen during training.

Model Guiding through Training Data: A targeted error is one
where a model consistently mispredicts a specific textual, type, or
relation cue. We will use the running example of a model predicting
national sports teams as countries (e.g., predicting England (coun-
try) rather than the correct England (soccer team) in the sentence
“England played Spain in soccer”. To correct targeted errors, we
apply three techniques: data augmentation [30], data slicing [3],
and weak supervision [22].

o Textual augmentation involves applying transformations to
original training examples to boost the size of the training

2This parallels traditional DBMS problems of KB and relational data cleaning.
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dataset and provide more diverse signals to the model. In
BOOTLEG, we take examples where a positive signal is present
(e.g., examples with a national sports team rather than a
country) and augment these examples by swapping mentions
of similar types and KG relations.

e Data slicing is a technique for training an inexpensive mixture-
of-experts model where an expert specializes on a specific
subset (e.g., a subset where a national sports team is the
correct answer).

e Weak supervision, as described above, can also be modified
to increase coverage for specific missed signals. For example,
we can add examples with national sports teams by labeling
sports news data or using sport-specific heuristic labeling
functions to label Wikipedia.

We find that applying these techniques on targeted errors increases
model performance by 2-12 F1 points.?

While our initial results on refinement and guiding are promising,
there remain open challenges in understanding how these tech-
niques can be combined, how to evaluate the trade-offs between
them, and how to automate and optimize the process.

4.2.2 Managing Structured Data. Structured data, like unstructured
data, can also be incomplete and sparse on tail entities. While well-
developed knowledge base and relational database cleaning tech-
niques [16, 24] can address some challenges around missing and
incomplete data, there remain open challenges of correctly manag-
ing signals of different generalities and creating structured data for
resource-poor languages or topical domains such as medicine or
music. We discuss each in turn.

First, the signals in structured sources face trade-offs between
generality and discriminativeness. For example, in BOOTLEG, types
are more general but less discriminative than KG relations, which
are less discriminative than entities (Section 3.1). In BOOTLEG, we
find that regularizing our entity signals by inverse popularity in
training data greatly improves model performance (Section 3.2),
but it remains an open challenge to help developers automatically
manage and regularize these different signals. We need new meth-
ods to evaluate signals’ generality and discriminativeness and new
techniques for automating the application of signal regularization.

Second, rare languages and locals, such as Greenlandic and Tahi-
tian, have limited representation in knowledge bases such as Wiki-
data. Extracting candidate entities and labeling these entities with
Wikidata types and relations is manually intensive. Certain lan-
guages or topical domains such as medicine may also introduce
types and relations that differ from standard English Wikidata. It
remains an open challenge to develop self-supervised approaches
for creating knowledge graphs and extracting relevant relations to
support these new domains.

4.2.3 New Opportunities in an Embedding Ecosystem. Although
we detail the challenges of managing unstructured and structured
data in the new embedding ecosystem to fix model errors, there
are many other exciting data management challenges and oppor-
tunities. Some relevant open questions are how to search to find

3We used the three techniques to correct two under-performing subsets where the
model, trained on a 400K sentence subset of Wikipedia, was predicting countries
instead of airports and locations instead of football teams.
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Table 1: We compare BooTLEG to the best published num-
bers on three NED benchmarks. “-” indicates that the metric
was not reported. Bolded numbers indicate the best value.

Benchmark Model Precision Recall F1

Hu et al. [14]* 80.0 79.8 799
KORES0 BooTLEG 86.0 854 85.7

Phanetal [21] 823 823 823
RS5500 BooTLEG 82.5 82,5 825

Févry et al. [9] - 96.7 -
AIDA BooTLEG 96.9 96.7 96.8

relevant embeddings efficiently, how to monitor and detect out-of-
date embeddings, how to measure the quality of embeddings, and
how to efficiently store and version embeddings.

As industry organizations maintain ever-expanding data lakes,
another significant challenge is inspecting the data to discover
sources of error. We imagine that the embeddings generated from
the data could be used to extract more structured information from
the data lake (i.e., using standard information extraction techniques).
The structured signals could then be used in a feedback loop to
refine the original embeddings (shown in Figure 3).

5 EVALUATION

We demonstrate that BOOTLEG (1) achieves state-of-the-art perfor-
mance on three NED benchmarks, (2) outperforms a BERT-based
baseline on the tail, (3) maintains performance under inference-time
memory optimizations, and (4) improves performance in down-
stream tasks in a production system at Apple (Section 5.1). We
further investigate the limitations of BooTLEG through examining
buckets of BOOTLEG errors (Section 5.2).

Experimental Setup We define our database as the set of entities
in Wikipedia (for a total of 5.3M entities), and use Wikipedia, YAGO,
and Wikidata to mine for the type and relation information needed
for our entity profiles. We allow each mention to have up to 30
possible candidates and train on Wikipedia anchor links from the
Nov 2019 dump with training set refinement. The entire Wikipedia
dataset has a total of 57M sentences.

We train all models over Wikipedia sentences with a maximum
word token length of 100 using 8 NVIDIA V100 GPUs for two
epochs. For our benchmark model (only used in Table 1), we train
for one epoch and add a title embedding, sentence co-occurrence,
and Wikipedia page co-occurrence feature.

5.1 BooTLEG Performance

We discuss BOOTLEG’s benchmark and tail performance, perfor-
mance under memory constraints, and performance on a down-
stream task in industry.

Benchmark Performance To understand the overall performance
of BOOTLEG, we compare against reported state-of-the-art numbers
of two standard sentence benchmarks (KORE50, RSS500) and the
standard document benchmark (AIDA CoNLL-YAGO). For AIDA,

4 Although Hu et al. [14] does end-to-end entity linking, their reported KORE50 result
is the current SotA, beating the result of 78 from Phan et al. [21].
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Table 2: We compare BooTLEG to a BERT-based NED base-
line (NED-Base) on validation sets of a Wikipedia dataset.
‘We report micro F1 scores.

Validation Set NED-Base BOOTLEG # Mentions
All Entities 85.9 91.3 4,066K
Torso Entities 79.3 87.3 1,912K
Tail Entities 27.8 69.0 163K
Unseen Entities 18.5 68.5 10K

we follow standard procedure and fine-tune the BOoTLEG model on
the training set, choosing the test score associated with the best
dev score’. In Table 1, we show that BOOTLEG achieves up to 5.8 F1
points higher than prior reported numbers.

Tail Performance To validate that BOOTLEG improves tail disam-
biguation, we compare against NED-Base (see Section 2).° NED-
Base learns entity embeddings by maximizing the dot product be-
tween the gold entity candidates and the BERT-contextualized rep-
resentations of the mention. Both NED-Base and BOoOTLEG take
approximately 14 hours per epoch.

NED-Base is successful overall and achieves 85.9 F1 points, which
is within 5.4 F1 points of BooTLEG (Table 2). However, when we
examine performance over the torso and tail, we see that Boot-
LEG outperforms NED-Base by 8.0 and 41.2 F1 points, respectively.
Finally, on unseen entities, BOOTLEG outperforms NED-Base by
50 F1 points. Note that NED-Base only has access to textual data,
indicating that text is often sufficient for popular entities, but not
for rare entities.

Memory Optimized Inference As 99% of the model size is taken
up by the entity embeddings, we explore how to optimize inference
by only using a subset of entity embeddings. This reduces the overall
memory requirement and allows for larger batch sizes. Specifically,
we reduce the memory consumption by 95% by keeping the entity
embedding for the top 5% of entities ranked by popularity. For
the remaining entities, we use the same entity embedding, chosen
randomly from the embeddings for unseen entities. We find that
this memory reduction only sacrifices 0.8 F1 points overall and,
in fact, improves tail performance by 2 F1 points. We hypothesize
that this improvement is due to the fact that the majority of entity
candidates all have the same learned embedding, decreasing the
amount of conflict among candidates from textual patterns.

Industry Use Case We demonstrate how the learned entity em-
beddings from a BooTLEG model provide useful information to a
system at Apple that answers factoid queries such as "How tall is the
president of the United States?". We use BOOTLEG’s embeddings in
the Overton system [23] and compare to the same system without
BooTLEG embeddings as the baseline. We measure the overall test
quality (F1) on an in-house entity disambiguation task as well as
the quality over the tail slices which includes unseen entities. The
relative quality is reported as a percentage of the baseline; e.g., if the
baseline F1 is 80.0 and the subject F1 is 88.0, the relative quality is

SWe use the standard candidate list from Pershina et al. [19] for fine-tuning and
inference for AIDA CoNLL-YAGO. For the other benchmarks, we follow Phan et al.
[21] and allow for mention boundary expansion and generate candidates by choosing
the top scoring candidates based on their title and Wikipedia page context.

5Code is not publicly available for baseline models reported in Table 1.
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Table 3: Relative quality of an Overton model with BooTLEG
embeddings over one without in four languages.

Validation Set  English Spanish French German

All Entities 1.08 1.03 1.02 1.00
Tail Entities 1.08 1.17 1.05 1.03

88.0/80.0 = 1.1. Table 3 shows BOOTLEG’s embeddings consistently
result in a positive relative quality, even over Spanish, French, and
German, where improvements are most visible in the tail entities.

5.2 Error Analysis

We have shown that BooTLEG succeeds on NED benchmarks, tail
NED, and downstream tasks. To understand BOOTLEG’s limitations,
we identify four key buckets of errors made by BooTLEG.

e Granularity BooTLEG struggles with granularity, predicting
an entity that is too general or specific (e.g., Academy Award
vs. Academy Award for Best Actress). The set of all examples
where BOOTLEG’s predicted entity is a Wikidata sub-type
(too specific) or super-type (too general) of the gold entity
covers 12% of overall and 7% of tail errors.

e Numerical Entities containing numerical tokens are chal-
lenging for BOOTLEG to disambiguate. This may be because
the BERT model represents certain numbers with sub-word
tokens and is known to under-perform other language mod-
els on numbers [28]. The slice of data where the entity title
contains a numerical year (e.g., 1976 Summer Olympics) cov-
ers 14% of overall and 25% of tail errors.

e Multi-Hop Multi-hop reasoning involves utilizing informa-
tion that is not present in the sentence but is linked to the
present entities through hops over edges in the KG. For exam-
ple, two city entities in a sentence are not directly connected
in the KG, but both are connected to the same state entity.
The set of examples requiring two-hop reasoning covers
6% of overall and 7% of tail errors. BOOTLEG only encodes
single-hop patterns (direct KG connections), so multi-hop
reasoning is a fundamental limitation of the current model.

e Exact Match BooTLEG struggles on examples where the
exact entity title appears in the text. In 28% of the examples
where NED-Base is correct but BOOTLEG is incorrect, the
textual mention is an exact match of the gold entity title. We
attribute the performance drop to BOOTLEG’s regularization
scheme: mention-to-entity similarity would be encoded in
BOOTLEG’s entity embedding, but the regularization encour-
ages BOOTLEG to not rely on entity-level information.

These error buckets are key opportunities for future work alongside
extending BOOTLEG to new languages and new domains, which may
lack representation in resources such as Wikidata and Wikipedia.

6 RELATED WORK

We discuss related work in terms of both NED and entity resolution
systems, and the broader landscape of self-supervised models and
tail data. NED and entity resolution, also called record linkage, are
both entity matching problems that aim to find occurrences of enti-
ties. NED involves matching free text to a record in a knowledge
graph, while entity resolution involves matching the same struc-
tured record in different datasets. Standard approaches to entity
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matching have leveraged statistical techniques (e.g., link counts and
feature similarity), but these systems tend to be hard to maintain
over time, with the work of Petasis et al. [20] building a model
to detect when a rule-based NED system needs to be retrained
and updated. In recent years, deep learning systems have become
standard (see Mudgal et al. [17] for a high-level overview of deep
learning approaches to entity matching problems). Jin et al. [15]
and Hoffart et al. [13] study disambiguation at the tail, and both
rely on phrase-based language models for feature extraction. Un-
like our work, they do not fuse various type or knowledge-graph
information for disambiguation.

Recent work in Ré et al. [23] demonstrates the importance of
fine-grained performance metrics (data slices), support for weakly
supervised data, and pretrained embeddings. BOOTLEG is another
such system showing the benefit of these methods.

AutoML focuses on automatic search of model architecture and
hyperparameters [8]. In BOOTLEG, we take the position that the data
is more important than the architecture. The work of Chepurko
et al. [4] adopts a similar position and focuses on automating the
data discovery and curation process for ML.

The work of Tata et al. [26], Chung et al. [6], and Chung et al. [5]
all focus on the importance of the tail during inference and the chal-
lenges of capturing it during training. They all highlight the data
management challenges of monitoring the tail (and other missed
slices of data) and improving generalizability. The augmentation
and weak supervision techniques in BOOTLEG are similar to Chung
et al. [5]’s synthetically generated training examples.

7 CONCLUSION

In this work, we present BOOTLEG, a state-of-the-art self-supervised
system for NED. BOOTLEG leverages structured and unstructured
data to learn reasoning patterns that generalize to rarely seen tail
entities, while maintaining high performance on popular entities.
BooTLEG improves performance over a BERT-based NED base-
line by over 41 F1 points on tail entities on a Wikipedia dataset,
and BooTLEG embeddings improve performance on a downstream
production task at Apple by 8%. More broadly, embeddings from
self-supervised systems like BOOTLEG are used in suites of down-
stream products and are becoming a core medium for storing and
sharing data. We introduce and discuss the data management chal-
lenges associated with this new embedding ecosystem. We hope
this work inspires future research towards realizing the vision of
an embedding ecosystem surrounding self-supervised models.
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