Farview: Disaggregated Memory with Operator Off-loading for
Database Engines

Dario Korolija
dario.korolija@inf.ethz.ch
ETH Zurich
Switzerland

Konstantin Taranov
konstantin.taranov @inf.ethz.ch

Dimitrios Koutsoukos
dkoutsou@inf.ethz.ch
ETH Zurich

Switzerland USA

Dejan Milojici¢
dejan.milojicic@hpe.com

Kimberly Keeton*
kimberlykeeton @acm.org
Hewlett Packard Labs

Gustavo Alonso
alonso@inf.ethz.ch

ETH Zurich Hewlett Packard Labs ETH Zurich
Switzerland Switzerland
ABSTRACT computing; and the amount of data to be processed keeps growing

Cloud deployments disaggregate storage from compute, providing
more flexibility to both the storage and compute layers. In this paper,
we explore disaggregation by taking it one step further and apply-
ing it to memory (DRAM). Disaggregated memory uses network
attached DRAM as a way to decouple memory from CPU. In the
context of databases, such a design offers significant advantages
in terms of making a larger memory capacity available as a cen-
tral pool to a collection of smaller processing nodes. To explore
these possibilities, we have implemented Farview, a disaggregated
memory solution for databases, operating as a remote buffer cache
with operator offloading capabilities. Farview is implemented as an
FPGA-based smart NIC making DRAM available as a disaggregated,
network attached memory pool capable of performing data process-
ing at line rate over data streams to/from disaggregated memory.
Farview supports query offloading using operators such as selection,
projection, aggregation, regular expression matching and encryption.
In this paper we focus on analytical queries and demonstrate the
viability of the idea through an extensive experimental evaluation of
Farview under different workloads. Farview is competitive with a
local buffer cache solution for all the workloads and outperforms it
in a number of cases, proving that a smart disaggregated memory can
be a viable alternative for databases deployed in cloud environments.

1 INTRODUCTION

Historically, databases have invested significant efforts to reduce
I/O overheads. Initially, memory was very limited in capacity and
disks were slow. Over time the bottleneck shifted as faster storage
became available (SSDs, Non-Volatile Memory (NVM)), memories
became larger, and multicore emerged. Yet, the I/O overhead remains
a major factor in the overall performance. To minimize it, databases
have relied on keeping more and more data in memory, a trend that
cannot continue for two main reasons: databases induce considerable
data movement, which is known to be highly inefficient in modern

*Now at Google

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution, provided that you attribute the
original work to the authors and CIDR 2022. 12th Annual Conference on Innovative
Data Systems Research (CIDR ’22). January 10-13, 2022, Chaminade, USA.

while DRAM capacity does not.

Optimized query plans typically push down selection and pro-
jection operators to filter out the base tables as early as possible.
However, filtering base tables to get the data actually needed by the
query is an expensive step. Base tables are fetched from storage as
blocks that are placed in a buffer cache in memory. From there, a
query thread reads the data and filters it to form the input to the rest
of the query plan. Often, most of the data is dropped because it does
not match the query’s selection predicate. As more data is involved,
the overhead becomes larger. Data movement has been identified
as one of the biggest inefficiencies in computing [24, 25], making
the way databases operate intrinsically problematic from a systems
perspective, even if main memory could grow indefinitely.

However, DRAM capacity is also a major limitation, because the
size of data processed by analytical databases keeps growing [47].
The current approach to tackle such a limitation is to use NVM,
introduced as an alternative that is both cheaper and has higher
capacity than DRAM (and persists data), but has larger latency.
In databases, it is increasingly used to improve and expand the
memory hierarchy [10-12, 57, 69, 70]. Such designs do not address
the overhead of moving large data sets to the CPU, only to have
most of it filtered or projected out. Specialized hardware between
memory and the CPU has even been proposed to filter data as early
as possible, minimizing bus congestion and cache pollution [4, 30].

An alternative approach for addressing memory pressure is to
exploit the distributed nature of database engines, particularly in the
cloud, to take advantage of non-local memory. In such distributed
settings, the coupling of storage, compute, and memory capacity is
problematic both cost-wise and performance-wise: the inability to in-
dependently provision each of those elements leads to inefficiencies
due to over-provisioning. For instance, allocating large amounts of
memory for tasks that are not compute-heavy leaves CPU unused, as
other applications might not be able to run on the remaining memory.
Conversely, allocating many virtual CPUs to a task may result in the
memory being underutilized for lack of compute capacity for other
tasks. Due to these challenges, essentially all cloud architectures fol-
low a clear trend towards disaggregation. Currently, the most visible
form of disaggregation is the separation of compute and storage. The
next step is the disaggregation of memory and compute, which is
being pursued in various forms: disaggregated DRAM [34, 48, 49],

SELECT T.a, S.b ”T.a,s‘b()

FROMT, S >

WHERE T.id = S.id

ANDT.c>50 ANDS.d<2012; ZraTid(0T.c>50(T)) sbs.id(05s.d<2012(S))

SELECTR.d, S.b 7rd,s6()
FROMR, S ™
WHERE R.id = S.id

AND R.a =3.14 AND S.a <> 2012; RdR.id(ORa=3.14(R)) 7sps.id(0s.a<>2020(S))

Compute node

Query thread: ! Operator offloadin
1- ﬂT.a,s.b() ”T.a,T.id(O'T.c>50(T))
S s b s.id(s.d<2012(S)) |

H RDMA Operator offloadin,

.
.
.
.
.
.
.
Buffer|
.
.
.
.
.
U
L4

o [7R aria(ora=314(R))] | Cache
Query thread; $7sbs.id(05.a<52020(S))

1 Zrasn() e —————
L]

Figure 1: Farview query execution: Offloading of query operators to the smart disaggregated memory and splitting the query plan

between compute and memory nodes

disaggregated persistent memory [52, 68], far memory [3, 7] and
smart remote memory [45, 67].

In this paper we demonstrate that databases are uniquely posi-
tioned to exploit disaggregated memory to address both the issues
of inefficient data movement and DRAM capacity. Our approach
is based on physically detaching query processing from memory
buffer management. The buffer pool is placed on network attached
disaggregated memory, with query processing nodes provisioned on
demand to run a query by reading the data from the network attached
buffer pool. This design presents multiple advantages. Consider, for
example, queries with low selectivity (e.g., TPC-H Q6) or an ag-
gregation after a GROUP BY statement. In the first case, the query
reads a large amount of data from the buffer pool just to discard
most of it. In the second case, a query of the form SELECT T.a,
COUNT (x) FROM T GROUP BY T.a will usually return only
a handful of tuples, but it still requires reading the entire table. The
smart disaggregated memory we propose offers the opportunity to
(1) reduce data movement by pushing down operators to the dis-
aggregated memory, so that the processing nodes receive only the
relevant data; and (2) reduce memory requirements for computing
nodes by centralizing the buffer cache in disaggregated memory and
removing unnecessary copying of the data to the compute nodes.
Figure 1 shows an example where projection and selection of two
concurrent queries are offloaded to smart disaggregated memory,
while the join and the final projection happen at the compute nodes.

To prove that these ideas can work in practice, we have developed
Farview (FV), a novel platform for data processing over disaggre-
gated memory. Farview supports near-data processing to compensate
for the added latency of accessing memory through the network by
moving data reduction operators (selection, projection, aggregation,
etc.) to the disaggregated memory. Farview is based on a smart NIC
built on top of Coyote, an open source FPGA shell [46] that enables
the FPGA to support dynamic operator push down on concurrent
streams reading from memory. The smart NIC supports RoCE v2 at
100 Gbps using an open source RDMA stack [67], optimizing the
interaction between network and memory as well as minimizing the
network processing overheads on the computing node CPU, thereby
freeing processing capacity. From a database perspective, Farview
acts as a disaggregated memory buffer pool with operator push down
capability that is byte addressable by the threads running queries at
the computing nodes.

For reasons of space, in this paper we focus on the design, ar-
chitecture, and experimental evaluation of Farview when running
queries, leaving other aspects such as cache replacement policies

and query processing elasticity to future work. Farview currently
supports a wide range of query operators: selection, projection, ag-
gregation, distinct, group by, regular expression matching, and en-
cryption. All these operators achieve near line-rate speed, adding
insignificant latency to baseline network overheads. Farview also
supports concurrent access, with multiple clients all accessing the
same disaggregated memory. Our experiments show that Farview
induces almost no overhead over operating on local memory and
provides significant performance gains when data can be reduced in
the disaggregated memory.

2 BACKGROUND AND RELATED WORK

In this section we motivate Farview and discuss related work. Farview
is based on extensive experience in data center, computer, and proces-
sor design [19, 31]. For reasons of space, we focus here only on two
salient aspects: memory disaggregation and near-data processing.

2.1 Coping with memory pressure

Data growth has turned DRAM into a major bottleneck [29, 47].
To cope with this bottleneck, advances in memory technologies
and networking are leveraged to increase effective DRAM capacity.
Within a local node, studies have explored compressing cold pages
into local DRAM [47] or using local NVM directly as memory or
with DRAM acting as a transparent caching layer [28, 59, 62]. These
designs have also been used in databases in different ways, to expand
virtual memory [57], directly as memory [10], or as a cache [69].
While in many cases there are performance advantages, these efforts
require significant redesign in the database engine and do not address
the underlying problem of inefficient data movement.

In a distributed setting, the notion that memory can be shared
across a cluster of machines has been around for decades [8]. More
recently, the advent of fast networks like InfiniBand FDR/EDR has
renewed interest in exploiting memory (DRAM or NVM) accessed
over the network. Remote memory, a distributed memory infrastruc-
ture where a group of comparably equipped compute nodes make
their memory available to their peers, has been exposed to applica-
tions as a remote paging device [7, 37], as a file system [1], and as
distributed shared memory [27, 54, 66]. Although this organization
leverages existing resources and can improve resource utilization of
otherwise unused memory, it entangles compute and memory for
provisioning and expands the failure domain and attack surfaces of
each machine [2, 47].

In contrast, disaggregated memory systems use network attached
memory that is distinct from the memory in the compute nodes [49,
68]. This approach allows the disaggregated memory to scale inde-
pendently of the system’s computing or storage capacity [48], and
removes the need to over-provision one resource to scale another.
From the database perspective, this is a promising architecture. An
evaluation of existing database engines (MonetDB and PostgresSQL)
using LegOS [65], an operating system for disaggregated memory,
indicates that the network overhead is the main bottleneck [75, 76].
The authors conclude that disaggregated memory has potential, but
significant performance loss occurs due to the use of sub-optimal
algorithms and lack of suitable data structures.

In Farview, we demonstrate that disaggregated memory is es-
pecially suitable to database engines when used as a buffer pool
(also suggested in [75]). This makes the integration of disaggregated
memory a more natural way to address the memory capacity limita-
tion as neither the interface to memory needs to be changed nor the
memory hierarchy expanded. What remains to be addressed are the
data movement inefficiencies and network overheads.

2.2 Efficient data movement

Data movement inefficiencies can be addressed by using near-data
processing. Expanding on decades-old work that memory and stor-
age can be active components [43, 58, 60, 61], several approaches
to memory disaggregation explore increasing the intelligence of
network-attached memory. Far memory [3] proposes simple hard-
ware extensions to reduce the number of network traversals to access
non-local memory, and support for efficient notifications to facilitate
consistency of data cached in the local memory of the nodes. In the
context of databases, the advantages of processing data in the dis-
aggregated memory have also been suggested [75, 76], but without
proposing a possible implementation. The argument in favor of such
designs is simple: push down selection and projection operators (as
well as potentially other operators such as grouping, aggregation or
even joins where one of the tables is small) to the memory or storage
so that the base table is filtered out in-situ and irrelevant data does not
need to be moved or sent. Although to our knowledge not yet used
with disaggregated memory, the idea mirrors a growing trend to push
SQL operators near the data, until now mostly to storage [41, 71].
Even more ambitious are accelerators embedded in the data path
between memory and CPU caches [22, 30], which can filter data as
it is read from memory to reduce data movement and cache pollution.
Finally, in the cloud, systems like Amazon’s AQUA [13] use SSDs
attached to FPGAs to implement a caching layer for RedShift that
supports SQL filtering operations and operator push-down to mini-
mize the amount of data movement from storage to the processing
nodes. These designs are based on introducing a bump-in-the-wire
processor to be able to process data closer to where it initially resides,
instead of moving it first and then processing it. In Farview we adopt
a similar design, with operators placed directly in the path of the
network and memory. Farview requires neither changes to the stor-
age layer interface nor specialized processors, whilst adding a layer
of dynamicity provided by the reconfigurable platforms. Moreover,
we focus on disaggregating the buffer pool in DRAM, rather than
introducing additional caching layers between storage and compute.

The network overheads can be addressed using advances in net-
working (in addition to compensating for it by using near-data pro-
cessing). Most of the work on different forms of disaggregated
memory utilizes low-latency RDMA instead of TCP/IP, often ex-
tending one-sided operations on RDMA to offload group-based op-
erations for storage replication (e.g., HyperLoop [45]), concurrency
and transactions for data structures (e.g., AsymNVM [52]), and
memory access operations for key-value stores (e.g., StRoM [67]).
RDMA employs the network protocol (InfiniBand [38], RoCE [39])
and the Network Interface Card (NIC) to move data directly be-
tween the memory of different machines. At the speed at which
networks operate today, RDMA can be used to efficiently transfer
large amounts of data across machines at the rates of DRAM mem-
ory channels [33]. It is thus especially suitable for disaggregated
memory and databases [5]. It has been shown to speed up distributed
operators such as data shuffling [50], joins [14, 15], transactional
workloads [16], and indexing [77]. In Farview, we use RDMA to
efficiently transfer data through the network so that the query pro-
cessing thread directly gets the data from the remote buffer pool. As
suggested by current architectural trends in the cloud, Farview is
implemented on top of an FPGA-based smart NIC. It supports SQL
operators acting on the RDMA data streams as they move along
the data path connecting the disaggregated memory to the network.
The design efficiently combines near-data processing with faster
network transfers, while removing the need for a conventional CPU
to support the disaggregated memory (a design that resembles that
of AQUA, which also uses FPGAs instead of conventional CPUs,
and that is aligned with how FPGAs are deployed in Microsoft’s
Azure [20, 32, 63]).

3 FARVIEW: SYSTEM OVERVIEW

Farview is a smart disaggregated memory attached to the smart NIC
with operator offloading capabilities that behaves as a database buffer
pool. Traditionally, query processing threads access base tables by
reading them from the buffer pool and copying the data to their
private working space. With Farview, nothing changes for the query
thread, except that the read operation is on a remote disaggregated
memory rather than local memory, potentially with a subset of the
operators already applied.

3.1 Smart buffer pool with operator offloading

Farview exposes a data API to the buffer pool (Section 4.2) that can
offload operators to the disaggregated memory. Farview executes
an operator pipeline with one or more operators (e.g., a selection
and then an aggregation) to process the data as it is read from dis-
aggregated memory, effectively functioning as a bump-in-the-wire
stream processor (Section 5). As done in conventional query pro-
cessing, operator pipelines are constructed from individual blocks
that implement a given operator and provide standard interfaces to
combine them into pipelines. The modular nature of these pipelines
and the reconfigurability of the FPGAs allows the list of operators to
be swapped and easily extended in the future (e.g., join operators).
Farview currently supports a range of operators, including: (1)
projection operators to reduce the columns returned (and potentially
reduce memory accesses) (2) selection operators that filter data
according to a collection of predicates; (3) grouping operators that

combine tuples (e.g., distinct, group by and aggregation); and (4)
system support operators that process data in-situ before sending the
data (e.g., encryption/decryption) and perform system optimization
tasks like packing the data to reduce the overall network usage.

3.2 FPGA-based architecture

Prototyping smart disaggregated memory requires several compo-
nents, including DRAM, memory controllers, a network stack, a
mechanism to support concurrent access to the memory, and stream
processing capacity for operator push-down. Modern FPGAs are a
natural match for such functionality, as high performance and flexi-
bility can all be combined in a single device rather than having to
connect separate components such as processor, NIC, and memory,
all inducing significant data movement overheads. FPGAs can also
support substantial amounts of local memory, directly attached to
the FPGA. This on-board memory is usually organized in multiple
channels (even High Bandwidth Memory (HBM)) [6]. Farview’s
design (Section 4) leverages these characteristics to implement dis-
aggregated memory as a lean component.

To deploy operators that can process data on the disaggregated
memory, the FPGA is divided into multiple isolated virtual dynamic
regions that operate concurrently. These dynamic regions can be
obtained by different clients and can process different query requests.
Each dynamic region serves an access request to the disaggregated
memory and can implement a separate operator pipeline that can
execute a set of different queries. These regions are dynamically
reconfigurable: the logic deployed in them can be swapped at runtime
without having to reconfigure the whole FPGA. This swap takes on
the order of milliseconds, depending on the size of the regions [46].

A combination of operators is precompiled as an operator pipeline
into a hardware design that is dynamically loaded into the FPGA
at runtime, upon a request from a client (i.e., a thread processing
a query at a computing node). The operators and their pipelines
can be modified or extended, and new ones can easily be added by
combining the existing ones or changing their parameters.

4 FARVIEW: IMPLEMENTATION

Farview is implemented on top of Coyote, our open source FPGA
shell [46]. The shell provides a layer of abstraction hiding services
like RDMA network stack and memory virtualization from concur-
rent system users behind high level interfaces.

4.1 Architecture

As shown in Figure 2, Farview is organized around three main mod-
ules: the network stack, the memory stack, and the operator stack.
The network stack (Section 4.3) manages all external connections
and RDMA requests, providing fair share mechanisms across all
concurrent accesses. The memory stack (Section 4.4) implements
the buffer pool, and can be used as regular memory, with block-
s/pages being loaded from storage as needed. The memory stack
houses the memory management unit (MMU), which handles all
address translations to the on-board memory attached to the FPGA
and provides the necessary arbitration and isolation between con-
current accesses. The operator stack (Subsection 4.5) contains the
dynamic logic necessary to push down operators to the disaggregated
memory. It lies between the memory and the network stacks and can

oe==(0000] === [EJDIE]E]--------- [D[][DE] ceee

DRAM DRAM DRAM
Channel 1 Channel 2 Channel M
| Arbiter1 | | Arbiter 2 | Arbiter M
1

tegeeps||| [eee——

I
! per i
» channel DMA_II DMA 2 oo

' | Memory Management Unit (Virtualized Layer) | !

‘---1-1-------- i) I ——

Memor

lstack

ceccccsccccca?

coe?

Operator Stack
S peyea

cecccccdedecccccccccna

Dynamic Region Dynamic Region I

Operators
1

Operators

ceccccccccca,

| Y ——
Network Stack _

Roce v2 RDMA
Network Stack

Secccccccccccccccccccccccccccccccsna?

cooon
\}
coaces

Figure 2: High level view of Farview’s architecture

be seen as a specialized stream processor acting on the data as it
moves from the memory stack to the network stack. It also controls
how data is retrieved from the memory stack. The operator stack is
reconfigurable, and its operator logic can be changed at any point
without affecting the operation of the rest of the system.

Clients access the disaggregated memory by opening a connection
with Farview to one of the dynamic regions, each able to contain
one of the possible operator pipelines. Whenever a client makes
a request to Farview, the network stack routes the request to the
correct virtual dynamic region in the operator stack belonging to
the client that initiated the request. The read request is forwarded to
the memory stack, which translates the virtual address to a physical
address in the on-board FPGA memory, and then issues the actual
data request. The clients have the local catalog information that is
used to determine the addresses of the tables to be accessed. The
returned data is streamed back to the dynamic region, where the
loaded operators are applied. Finally, the resulting data is forwarded
to the network stack, and further sent directly to the memory of the
client.

The interfaces of the data and the requests are all based on a sim-
ple AXI stream handshaking protocol [26], which provides uncom-
plicated synchronization, pipelining, and backpressure mechanisms,
all allowing Farview nodes to support processing at high through-
put. The standard interfaces help with portability across different
boards. The dynamic region where the operators are loaded always
exposes the same set of interfaces to the operators, thereby simpli-
fying the task of creating the operators. This protocol also permits
deep pipelining of the overall design, which allows processing to
occur simultaneously in different areas of the system.

To attain high frequencies and reduce the impact of the phys-
ical distance between the stacks, data is buffered in queues as it
traverses from one stack to the other. The queues, as well as any
temporary state created by Farview operators, are implemented using

fast on-chip FPGA memory. The buffering allows clear decoupling
of processing stages, which helps with structuring the overall sys-
tem and allows Farview nodes to achieve the operating frequencies
necessary to sustain processing at line speeds. The frequencies of
the components in Farview range between 250 MHz (network stack,
operator stack) and 300 MHz (memory stack).

Compared to existing FPGA frameworks (which support arbitrary
functionality), in Farview the dynamic regions must be connected to
the network and memory stacks, which have fixed locations within
the FPGA, thus reducing the degrees of freedom in placement and
sizing. Farview’s management infrastructure must cope with net-
work speeds of 100 Gbps (and even higher internal speeds), which
require wide buses (at least 512 bit) [64, 67], further restricting re-
gion placement and sizing. We choose predefined dynamic regions
to accommodate these placement and sizing restrictions. In practice
this implies that the size of each virtual dynamic region is fixed and
cannot be changed. However, each region is more than large enough
for the purposes of offloading the operators we intend to support.

4.2 Farview programmatic interface

Farview exposes a simple high level data API covering both the
critical path operations and connection management operations. The
former utilize the high performance 100G fabric, whilst the lat-
ter are handled via regular TCP/IP connections. The critical path
operations include both standard low level one-sided RDMA read
and write commands to read (write) data from (to) memory and
an extra Farview command, which invokes the operator(s) in the
Farview node directly over the read data stream. We use the Farview
command as the basis for more complex SQL expressions.

A client running on a remote computing node begins by estab-
lishing a connection to Farview. In response, it gets a created object
representing the connection (QPair), which holds all the necessary
information for the connection and is used as an argument to sub-
sequent Farview methods. The following function is used for this
purpose:
bool openConnection (QPair *gp, FView *node);

The client can then at any point request that a different operator
pipeline be loaded. Operator pipelines are precompiled and kept
in the operator pipeline library on the target Farview node. The
operation is executed with the following command, where the opid
is a unique id of the requested pipeline:

bool loadPipeline(QPair =*qgp, 1int32_t opid);

Farview memory is virtualized, and internal management is han-
dled by the MMU in the Farview node. Since we are focusing on
read-only scenarios, Farview does not currently provide concurrency
control. Clients allocate memory for tables using the following allo-
cation functions:

bool allocTableMem (QPair* gp, FTable *ft);
void freeTableMem (QPair +gp, FTable xft);

Regular RDMA requests for simple reading/writing of the remote
table can be sent with the following two functions:

void tableRead(QPairx gp, FTable xft);
void tableWrite (QPair* gp, FTable *ft);

Farview’s request corresponds to a specialized InfiniBand verb [38]
that invokes the remote processing capabilities with an arbitrary pa-
rameter set, specific to each operator pipeline. This verb is invoked
in the following generic function, which is used as the basis for build-
ing additional higher level functions supporting specific operator
combinations and queries:

void farView (QPairx qgp, FTable xft, uint64_t
< xparams) ;

As an example higher level function, we present a selection oper-
ator with real number predicates:

void select (QPairx gp, FTable xft, uinté64_t
— «projection_flags, uint64_t =
— selection_flags, float predicate);

This function can be used for the following type of queries:
SELECT S.a FROM S WHERE S.c > 3.14;

In this case, the projection_flags variable signals column
a while selection_flags signals column c. The predicate is
passed as a value. More complex variations are possible: for instance,
if the hardware operator supports it, the predicate operand could also
be a variable.

The interface presented here is intended to be used by the query
compiler in Farview, rather than directly by the client. The develop-
ment of the query compiler is left as future work.

4.3 Network stack

Farview’s network stack implements a reliable RDMA connection
protocol, building on an existing open source stack [67] that imple-
ments regular one-sided RDMA read and write verbs. We extend
the original stack with support for out-of-order execution at the
granularity of single network packets. The out-of-order execution,
along with credit-based flow control and packet based processing,
allows Farview to provide fair sharing, an important feature in a
system shared by multiple separate clients concurrently. Crucially,
it prevents any malevolent behaviour by any of the users that could
lead to a complete system stall.

Similar to other remote memory systems based on RDMA (e.g.,
[52]), we add a Farview verb (based on InfiniBand SEND) to con-
trol the operators. Requests sent using this verb are directly written
into receive queues in the FPGA fabric instead of into the memory.
Because of this, the operators can react to these requests directly,
incurring no additional memory latency overheads. This verb can
contain an arbitrary number of additional operator-specific param-
eters to indicate to the disaggregated memory how to access and
process the data. The network stack manages connections and keeps
the necessary state, while remaining highly customizable for further
extensions.

In RDMA, the information describing a single node-to-node con-
nection or RDMA flow is associated with a queue pair; every net-
work packet sent is associated with a queue pair. Each connection
flow contains a set of unique identifiers, which are used to differenti-
ate the flows and to provide network and hardware isolation between
flows. The isolation extends to the MMU, where it provides the
necessary protection of the memory regions associated with each
queue pair. Queue pairs also keep track of the memory buffers in

Farview nodes where the tables reside, and the client nodes where
results are written. As part of establishing the connection flow, the
client sends the virtual address of its local buffer to the Farview node.
Upon completion of query requests, Farview will load results into
this client buffer using one-sided RDMA operations. The buffer in
the Farview node can also be shared between different queue pairs,
enabling multiple requests to share intermediate results. The current
prototype focuses on read-only operators and has no transactional
memory support.

Upon connection establishment, each network connection flow
and its corresponding queue pair are associated with one of the
available virtual dynamic regions and in turn with one data stream
from the Farview memory stack. This data stream is used to read
the queried data into the dynamic regions, process it, and send it
over the network. The flow is ready to process data once the operator
pipeline corresponding to the flow is present in the dynamic region.

4.4 Memory stack

The memory stack implements the buffer pool memory using the
on-board DRAM memory attached to the FPGA. It handles dynamic
memory allocations, address translations, and concurrent accesses.

The central part of this stack is the MMU, which is responsible for
all memory address translations to a shared dynamically allocated
memory. It propagates and routes all memory requests and subse-
quent data. It supports the issuing of multiple outstanding requests
and has fully decoupled read and write channels. It provides parallel
interfaces, isolation and protection for the requests stemming from
different dynamic regions with a set of arbitrators, crossbars, and
dedicated credit-based queues. Farview’s MMU supports naturally
aligned 2 MB pages, which greatly reduces the coverage problem
of smaller pages. The MMU contains a translation lookaside buffer
(TLB) implemented on Block RAM (BRAM), the fast on-chip FPGA
memory. Farview’s TLB holds all virtual-to-physical address map-
pings for the dynamic regions.

The on-board DRAM memory is organized into multiple channels.
The “softcore” memory controllers for these channels are instanti-
ated in the fabric of the FPGA. Each memory channel can provide
a certain amount of memory bandwidth. Our prototype uses the
Xilinx Alveo u250 [72], which has up to four separate memory chan-
nels. For the tests in this paper we utilized up to two channels, each
with its own softcore controller that runs at 300 MHz. The width
of the interface to the memory channel controller is 64 bytes. This
implies a maximum theoretical bandwidth of 18 GBps per channel
(Figure 2). The bandwidth matches the bandwidth usually found on
more conventional systems with general purpose CPUs [17].

The multiple channel organization of on-board FPGA memory
offers additional parallelization potential. Farview’s MMU provides
an interleaved abstraction for DRAM accesses that aggregates the
bandwidth from multiple memory channels. It does this by allo-
cating memory in a striped pattern across all available memory
channels [46], thus maximizing the available bandwidth to each
dynamic region. The higher bandwidth available to each dynamic
region also enables a vectorized processing model (Section 5.3).

A Wr +Rd 512 * N_DDR_CHAN Write‘
memory DATA:
requests

H DYNAMIC REGION K
']
: ~C T '
]]
1 | Projection] Operator | ,
] N .]
s | Operator - Pipeline |
']
: Set of operator :
‘ parameter queues '
--------------------------- L4
Farview network

Wr+Rd | equests

base

RDMA Farview network 512 Read

requests responses DATA

Figure 3: Single dynamic region in the operator stack

4.5 Operator stack

The operator stack is where the operator pipelines attached to con-
nection flows to/from memory are deployed. The stack is imple-
mented as a collection of predefined dynamic regions. The opera-
tors deployed in the dynamic regions use the interfaces exposed by
Farview’s network and memory stacks.

Operator pipeline logic can be deployed and swapped on-the-fly
without affecting the integrity and operation of the system or other
operator pipelines belonging to other clients. These regions and their
access to memory are isolated from each other (see Section 4.4).
Such functionality is typically not available in commercial systems,
but very often studied in the literature, e.g., [44, 51, 74].

Figure 3 illustrates how a single dynamic region processes a
query request. The base RDMA read and write requests forward the
virtual address and transfer length parameters directly to the memory
stack and to the MMU (the blue path in Figure 3), bypassing the
dynamic region. If the request is a simple RDMA read/write request,
it contains no additional parameters. If the request is a Farview
command, it carries a number of operator-specific parameters (green
path), along with information about the virtual memory locations
it is accessing. The number of parameters can vary depending on
the specific operators that are present in the operator pipeline. The
write path allows RDMA updates to the memory. The operators’
bump-in-the-wire data processing occurs along the read data path.
The width of the data path’s input to the dynamic region scales with
the number of available memory channels. As a result, with the
aforementioned striping technique, each dynamic region gets the full
bandwidth potential of the disaggregated memory and its multiple
memory channels. The output is forwarded to the network stack
using a 64-byte datapath width, the same as the provided network
interface.

Query responses are sent via the response channel (green path),
which initiates one-sided RDMA transfers to the client. The operator
pipeline dynamically generates these responses for each result packet
only when the packet is ready to be sent to the client node. This
approach enables the operators to dynamically control the size of the
result data transfers, which is important for operators (e.g., filtering)
where the size of the result data is unknown when the request arrives,
prior to processing. The direct data streams between the memory

Requests
f(to RAM)

Data Operator
(from DRAM)‘ p?pvlim'

Keys : cocwecee ‘.
71 Decryption & |.
] ['
Annotations § 0
. .]
m Projection % | .
]]
Query ' 1 '
N N M
;:::::: Predicates : Selection I, R:egular expressions .
]
] i []
smart. o T .
addressing Aggregation Group by/Distinct/Aggregation :
]]
]
Network : '
parameters g 1 (]
Packing + Sending (RDMA) |:
[S —— I ——————— 4
Requests Data
(from client) (to client)

Figure 4: Operator pipeline example

controller, the operator, and the network are scaled so as to saturate
the bandwidth in each module and to provide optimal performance.

5 FARVIEW: OPERATORS AND PIPELINES

In this section we discuss operator pipelines and four classes of
operators: projection, selection, grouping and system support.

5.1 Operator pipelines

As described above, a query is transformed into an operator pipeline,
which is deployed on a dynamic region allocated to the correspond-
ing client. An operator pipeline contains one or more operators that
provide partial query processing on datapath operations to disaggre-
gated memory. This processing is effectively a bump-in-the-wire
that operates on data without introducing significant overheads.

Figure 4 illustrates a generic operator pipeline that includes a
broad set of operator classes, including projection, selection (e.g.,
predicate selection, regular expression matching), grouping (e.g.,
distinct, group by, and aggregation), and system support (e.g., en-
cryption/decryption).1 These example operators are described in
more detail in the remainder of this section. Which operators are ac-
tually present in the pipeline depends on the requested set of queries
to be executed. In one scenario, the pipeline can support projec-
tion, followed by selection and group by. In another, it can support
regular expression matching on encrypted strings, which requires
decryption early in the pipeline. The reconfigurable nature of the
regions provides flexibility, as it allows arbitrary operator types and
combinations to be natively supported by the system.

When a query request arrives, it is first forwarded to the query
request handler, which requests the data from the memory stack
via smart addressing. At the same time, any necessary parameters
for additional processing are forwarded to the remaining operators
in the pipeline. Data arriving from the memory is processed in a
streaming fashion by these operators. Once the processing is done,

'We assume that all data is stored in row format, but there is nothing intrinsic preventing
support for column data.

the resulting data is sent back to the client over the network. Each
pipeline has the potential to be fed with input data each FPGA clock
cycle. In query terms, this translates to each pipeline being fed with
up to a single tuple in each cycle. In the same manner, a pipeline has
the potential to produce results on the output of every cycle. Using
this design, operator processing overhead can be efficiently hidden
behind the memory and network operations.

Operators are written by the Farview developer as part of the
smart disaggregated memory system design, using common hard-
ware description languages like VHDL or Verilog or in the C++-like
syntax supported by high-level synthesis tools such as Vivado HLS.
The operator pipeline is precompiled, so that it can be deployed to a
dynamic region at runtime. Operator implementations use Farview’s
network, memory and operator stack interfaces, rather than the in-
terfaces of the underlying FPGA board, which makes the operators
portable across Farview deployments on different platforms.

5.2 Projection operators

Projection: A common operation in databases is projection,
which returns a subset of a table’s columns. Consider for exam-
ple a projection of the form SELECT S.car, S.price FROM
S, where S.car and S.price are non-consecutive attributes and
have a number of fixed-length attributes between them. The pro-
jection operator reads the table from the disaggregated memory,
parses the incoming data stream based on query parameters describ-
ing the tuples and their size, and projects the requested tuples into
the pipeline for further processing using annotation. During pars-
ing, the tuples are annotated with parameters from the requested
query, and obtained from the parameter queues. These parameters
are simple flags that state which of the columns are part of the se-
lection, projection or grouping phases. Their interpretation depends
on the actual combination of operators being used and their specific
implementations.

Smart addressing: In scenarios where queries request only a
small subset of the columns from a very wide table, performance
would benefit from reading only the requested columns from mem-
ory, rather than reading full rows and applying the projection on
the incoming data stream. For this purpose, we implement a smart
addressing optimization that issues multiple, more specific, data
requests to memory. Smart addressing is most effective when the
total number of columns per tuple is large and the number of pro-
jected columns is much smaller than the total; otherwise, it is more
efficient to read entire tuples and project using annotations, as de-
scribed above, since the memory access is sequential. We explore
the crossover point between these two modes in Section 6.3.

5.3 Selection operators

Selection operations that filter data directly map to the SQL WHERE
clause (e.g., in queries of the form SELECT *+ FROM T WHERE
T.a > 50). These operators have the ability to greatly reduce the
amount of data to be processed by later stages and ultimately the
overall amount of data sent through the network, thus reducing the
overall network bandwidth usage. For example in TPC-H Q6, only
2% of the data is finally selected. Pushing the filtering to the disag-
gregated memory reduces the I/O overhead by orders of magnitude.

Farview’s selection operators consist of predicate selection, regular
expression matching and vectorized selection operators.

Predicate selection: For selection, the value of an attribute is
compared against a constant provided in the query. In FPGAs, such
a comparison can be implemented in different ways. We choose to
hardwire the selection predicate as an actual matching circuit instead
of creating a truth table as done in [71], as Farview has the ability to
dynamically exchange the operators. This approach uses fewer re-
sources and, at the same time, supports a variety of different possible
predicates. It also permits complex predicates defined over different
tuple columns, which can be split into multiple pipelined cycles.
The supplied annotations from the request determine which of the
columns in the tuple are evaluated during the predicate matching
phase.

Regular expression matching: String matching is becoming an
increasingly important operator in SQL (e.g., using either LIKE
predicates as in TPC-H Q16 or regular expression matching). It is
even more important in unstructured data types, such as in the case of
JSON fields in PostgreSQL. In Farview we have integrated an open
source regular expression library for FPGAs [40] and use it to filter
strings. In these operators, data is retrieved from the remote node
only when it matches the given regular expression. The operator
implements regular expression matching using multiple parallel
engines, instantiated in the operator stack. The parallelization allows
the module to fully sustain processing at line rate. Unlike software
solutions, the performance of the operator is dominated by the length
of the string and does not depend on the complexity of the regular
expression used [40].

Vectorization: Farview implements a limited form of vector-
ization as an optimization to improve the performance of stateless
operators like selection. To alleviate the inefficiencies of the tuple-
at-a-time query processing model [36] and its next () function
calls that pass tuples from one operator to the next, the database
community has adopted query compilation [56] and column stores.
Column stores either process data in full batches like MonetDB [18],
or in smaller vectors like VectorWise [78]. The latter allows the
use of tight loops and/or SIMD instructions to process column data,
allowing DBMSs to take advantage of the latest CPU advances for
data processing. In Farview, we use a vectorized model similar to
that of VectorWise, but with a vector size that is chosen based on
the degree of memory striping (described above), rather than trying
to fit the size of the processor’s L1 cache. With vectorization, data
is read in parallel from multiple memory channels, and individual
tuples are emitted to a set of selection operators executing in parallel.
The number of parallel operators is chosen based on the number of
memory channels and the tuple width. This approach achieves both
higher read bandwidth from the memory stack (due to memory strip-
ing) and higher processing throughput (due to the parallel operators).
At the moment the operator pipeline with vectorization is enabled
for the simpler queries and workloads that can be easily parallelized
without data dependencies (e.g., selection).

5.4 Grouping operators

Distinct: The distinct operator eliminates repeated column en-
tries before they are sent over the network. It directly maps to the
SQL DISTINCT clause, in queries such as: SELECT DISTINCT

LRU cache

LOOKUP
RESPONSE

LOOKUP
REQUEST

5 [S1[=] ees[=] Requests Responses | Updates

: [|

: [orR]

z [i] |
| TR — &

Cuckoo hash tables

Figure 5: Architecture of the DISTINCT operator

T.a, T.b FROM T. It operates by hashing the values and pre-
serving the entries in the hash tables present in the fast FPGA on-chip
memory. As the complete hashing is calculated in the FPGA, the dis-
tinct operation can be done on multiple columns without noticeable
performance overhead, but using more FPGA resources.

To sustain the line rate without negatively affecting the overall
pipeline processing, the distinct operator needs to be fully pipelined
in order to overcome the latency of the lookups and updates of
the hash table. This pipelining creates potential data hazards, in
the case where two successive tuples with the same value will be
inserted into the hash table and ultimately sent over the network
as distinct elements. Because of the latency of the hash table, the
second (following) tuple cannot see the update produced by the
first one. To approach this problem we apply the strategy explained
in [71] by implementing an LRU cache to hide the hash table latency.
The main difference is the far higher line rate that we have to sustain
in our system (over 40 times greater), yielding additional design
constraints.

To guarantee full pipelining and constant lookup times, the hash
table that we implement does not handle collisions. Instead, col-
lisions are written into a buffer, which is sent to the client to be
deduplicated in software. To greatly reduce the collision likelihood,
we implement cuckoo hashing, with several hash tables that can
be looked up in parallel. Upon eviction from one of the tables, the
evicted entry is inserted into the next hash table with a different
function. This occurs in the background and does not affect the full
pipelining of the operator.

To successfully hide the latency of the hash table, we implement a
cache to hold the most recent keys. The cache needs to be a true Least
Recently Used (LRU) cache in order to guarantee protection from
possible data hazards. The standard implementations of LRU caches
come with a lot of overhead, as pointers and extra history-keeping
data structures need to be present. For this reason, we implement
the cache with a shift register, which adds a negligible latency to the
data streams (the amount depends on the number of cuckoo hash
tables), but is able to efficiently provide a quick lookup. The nature
of the shift register provides a true LRU replacement policy and
this solution thus fully satisfies the strict requirements imposed by
Farview. The design of the distinct operator is shown in Figure 5.

Group by: In many applications, data is read and grouped to
perform some form of aggregation (e.g., TPC-H Q1). Operations like
these directly map to the SQL GROUP BY clause (e.g., queries such
as SELECT T.b, COUNT(x) FROM T GROUP BY T.b).

Farview provides a group by operator with a structure similar to
the distinct operator, with analogous challenges and design choices.
The same cuckoo hash tables are used to preserve the groups. The
implemented cache in this case is write-through, as it is no longer
sufficient to just discard the data prior to sending it. The operator
reads the complete table and all of its tuples without sending anything
over the network, to perform the full aggregation. At the same time, it
inserts the distinct entries into a separate queue. Once the aggregation
has completed, the queue is used to lookup and flush the entries from
the hash table along with any of the requested aggregation results to
the network.

Aggregation: Aggregation operators can easily be supported in
FPGAs as standalone, where simple computations are performed
directly on the passing data streams, or on top of the group by
operator, where each entry in the hash table contains an additional
aggregation result. Farview supports a range of standard aggregation
operators like count, min, max, sum and average.

5.5 System support operators

Encryption/decryption: A key concern for both remote memory
and smart disaggregated memory is the need for data encryption [47].
Farview implements encryption so that the data is treated similarly to
Microsoft’s Cypherbase [9], where a database stores only encrypted
data, but can still answer queries over such data by using an FPGA
as a trusted module. We have implemented encryption as an operator
using 128-bit AES in counter mode. Since the AES module is fully
parallelized and pipelined, it can operate at full network bandwidth.
This means that no throughput penalty is paid when this operator is
applied on the stream, incurring only a negligible overhead in latency.
This allows the data to be stored securely. Because no real processing
penalty is incurred, encryption/decryption can be placed at both the
input and the output of the operator pipeline. Similarly one could
provide additional system support operators such as compression,
decompression, etc.

Packing: At the end of the processing pipeline, the annotated
columns are first packed based on their annotation flags in a bid to re-
duce the overall data sent over the network. Multiple columns across
the tuples are packed into 64 byte words prior to being written into
the output queue. This packing uses an overflow buffer to efficiently
sustain the line rate. In case of the vectorized processing model, the
tuples are first combined from each of the parallel pipelines with a
simple round-robin arbiter.

Sending: The sender unit is the final step before the results are
emitted to the network stack. It monitors the queue where the packed
results are written, and, based on the queue’s status, issues specific
RDMA packet commands needed to produce correct packet header
information in the network stack. The sender module’s dynamic
approach to handling RDMA commands allows us to create RDMA
commands even when the final data size is not known a priori, as is
the case with most of the operators.

6 EVALUATION

In this section we evaluate Farview’s performance, and compare it
with alternatives using a local buffer cache or a remote buffer cache.
We first describe our experimental setup, including the hardware

Table 1: Resource consumption of Farview

Configuration CLB LUTs | Regs | BRAMtiles | DSPs
6 regions 24% 23% 29% 0%
Operators (per dynamic region) | CLB LUTs Regs | BRAM tiles | DSPs
Projection/Selection/Aggregation <1% <1% 0% 0%
Regular expression 2.3% <1% 0% 0%
Distinct/Group by 2.1% 1.3% 8% 0%
En(de)cryption 3.6% <1% 0% 0%
Packing/Sending <1% <1% 0% 0%

implementation details of our platforms. We then measure base-
line RDMA performance using microbenchmarks, individual query
performance using various operators, and query performance with
multiple clients.

6.1 Experimental setup

We compare Farview’s smart disaggregated buffer pool (FV) with
two different baselines: a buffer cache implemented in local (client)
memory, where the processing is done on the local CPU (LCPU),
and a remote buffer cache implemented on the memory of a different
machine and reachable through a commercial NIC via two-sided
RDMA operations (RCPU). This latter configuration resembles
what is being done today for storage, where part of the processing
is moved to a CPU located in the storage server. It also matches
the definition of remote memory proposed in the literature. For
RDMA microbenchmark experiments, we compare remote reads
from Farview (FV) to remote reads to a different machine using
one-sided RDMA operations over a commercial NIC (RNIC) that
accesses the remote memory over PCle. Finally, in the selection tests
we also use a version of Farview with vectorization (FV-V).

We have implemented Farview on a Xilinx Alveo u250 board [72].
The board is part of the XACC cluster [73], which contains 10
different Alveo boards connected by a switch. The board has up to
4 DRAM channels (16GB each) connected directly to the FPGA.
Each channel has a softcore (running as reconfigurable logic on the
FPGA) DRAM controller with a maximum theoretical bandwidth of
18GB/s. In our tests we used two of the four available channels to
reduce compilation times. The tests can be done with four channels
as well, which might yield some additional performance in specific
cases. The board has two (QSFP) 100Gbps network ports. We use
six dynamic regions in our experiments; Farview has been tested
with up to ten regions, the empirical limit for our device. Similarly to
DRAM channels, we choose six regions to limit compilation times
and routing complexity.

The CPU baselines contain Intel Xeon Gold CPUs: LCPU uses a
Xeon 6248 (clocked at 3.0-3.7 GHz), and RCPU uses a Xeon 6154
(clocked at 2.5-3.9 GHz). For the remote buffer cache and one-sided
RDMA microbenchmark baselines (RCPU and RNIC, respectively),
we used a commercial Mellanox 100G card (ConnectX-5 VPI) [53].
For the CPU-based baselines we used all available compiler and
code optimizations.

As shown in Table 1, Farview requires only modest FPGA re-
sources (less than 30% of the total on-chip resources) to implement
the operator stack, the network stack, and the memory stack. The
majority of the utilized on-chip memory is attributed to the memory
management unit and the state keeping structures of the operator

Throughput [GBps]
12 -

Response time [us]
10 —

10 | == FV 87|FV
8§ | = A- RNIC 0 rnic
6 ¢

4 — 4 —

2 - g~

0

512 2k 8k

128 512 2k 8k 32k
Transfer size [bytes] Transfer size [bytes]
(a) (b)

Figure 6: RDMA throughput and response time

and network stack. Most of the implemented operators are not com-
pute heavy and do not consume many resources, making it easier to
combine them.

6.2 RDMA throughput and response time

For each experiment, we measure the running time until the final
results are written to the memory of the client machine for both
Farview and the baselines. This makes the performance numbers
comparable, as the initial and end states are the same. We evaluate
performance for a range of the operators and supported queries.
Unless otherwise mentioned, our base tables consist of 8 attributes,
where each attribute is 8 bytes long. The results for each experiment
are averaged over multiple runs. As the CPU configurations may
experience interference (e.g., due to context switches, interrupts),
the LCPU and RCPU results are averaged over 10000 runs. Because
the FPGA circuits provide more deterministic behavior, the Farview
(FV) experiments are averaged over 1000 runs.

To characterize the system, we measure the network throughput
and response time of RDMA reads from Farview (FV). For reference
and to establish a baseline we also provide the results for reads of
remote memory accessed with a commercial RDMA NIC (RNIC).

Figure 6(a) shows the median throughput for RDMA read op-
erations. In Farview, a single dynamic region is present. To obtain
valid read measurements, we measure the network Round Trip Time
(RTT) and average it over 1000 runs. The transfer size represents
the total data sent over the network for a single request. We vary
this parameter until we saturate the network, using a 1kB packet
size. The results show the that when we use RDMA, the network
bandwidth is under-utilized for small requests. Below 4 kB, where
the saturation takes place, RNIC achieves better throughput. This
happens because RNIC uses a specialized circuitry running at a
higher clock rate, which provides better performance for small pack-
ets. Reading from local on-board FPGA memory peaks at 12 GBps,
less than the 18GBps memory channel bandwidth. This indicates
that the network is the main bottleneck. In the RNIC case, where
memory is accessed over PCle, throughput peaks at ~11 GBps be-
cause it is bound by the PCle bus bandwidth. This result shows the
limitation of PCle-attached memory as proposed in remote memory
approaches, regardless of whether it is DRAM or NVM.

In Figure 6(b), we present the median response time for an RDMA
read operation. The setup is the same as for the throughput mea-
surements. The results show the response times of accessing remote
memory over PCle in comparison to accessing remote on-board

Response time [us]
800 —
coo | WFvsa Drvoses Brvisios

400 —
200 —
0

256 512 1k 2k
Number of tuples

4k 8k 16k

Figure 7: Standard projection vs. smart addressing

FPGA DRAM memory. The difference during reads is ~1 us, con-
sistent with PCle latencies [55]. The reduction in response time pro-
vided by Farview is substantial (at least 20%). RNIC offers lower
response times for smaller transfer sizes, but for higher transfer sizes
the multi-packet processing and page handling in the FPGA network
stack performs better. The network round trip latency dominates the
overall time. Above 8 kB, the amount of data causes a substantial
increase in response times.

6.3 Projection

To investigate how to maximize the efficiency of accessing DRAM,
we compare the standard projection operator, where the whole table
is fetched from memory and projection is done in the first pipeline
stage, versus the smart addressing operator, which issues individual
memory requests only for the target projected columns. In this ex-
periment, we project three contiguous 8-byte columns from a larger
row. Figure 7 illustrates execution times for the smart addressing
operator on a 512-byte tuple (FV-SA) and the standard projection
operator with tuple sizes of 256 bytes and 512 bytes (FV-t256B
and FV-t512B, respectively). For smaller tuples (FV-t256B), it is
more beneficial to read the whole table sequentially from the DRAM
memory and handle the projection in the operator pipeline. Once the
tuples become larger (512 bytes), it is better to use smart addressing
to read only the columns that are required by the query (FV-SA). In
the following experiments, which use 64B tuples, smart addressing
is not used.

6.4 Selection

As mentioned, selection in Farview can have more than one predicate,
even on multiple columns. The overhead of the selection on the
overall processing is negligible and is fully hidden behind memory
operations. For the evaluation, we run the following query:

SELECT x FROM S WHERE S.a < X AND S.b < Y;

We compare Farview with the aforementioned baseline systems. The
64-byte tuples are equal to the width of the pipeline, which leads
to the highest pipeline throughput (i.e., a tuple is forwarded each
cycle). We vary the selectivity of the query and present our results
in Figure 8.

As we observe, in all cases (FV, FV-V) Farview outperforms both
LCPU and RCPU. LCPU incurs high overheads, as it must read
the input data from DRAM (not from the processor cache) and then
write the results back to DRAM. The RCPU baseline additionally
has to transfer the data through the network, leading to consistently

Response time [us]

Response time [us]

Response time [us]

400 fppvy Orv Brceu Breru 400 gpv.y Orv Bicru Brevu 400 fppv.y Orv Brcru Breru
300 — 300 — 300 —
200 — 200 — 200 —
100 — 100 — 100 —
64k 128k 256k 512k 1M 64k 128k 256k 512k 1M 64k 128k 256k 512k 1M
Table size [bytes] Table size [bytes] Table size [bytes]
(a) (b) (©

Figure 8: Response times for selection queries with (a) 100% selectivity, (b) 50% selectivity, and (c) 25% selectivity

Response time [us]

Response time [us]

Response time [us]

600 —
rv Orcru Brep
5007I Oicru Hreru

1,500 7‘|FV Orcru Breru ‘

IS PP e g cp |

400 —
300
200 —
100 —

1,000 —

64k 128k 256k 512k
Table size [bytes]

(a)

IM

64k

Table size [bytes]

300 —
200 ~ | == FV =A= LCPU =—@=— RCPU ‘
100 —

500 — ‘
A A A O)
0 0 A4 A4 v N X

128k 256k 512k

M 256 512 1k 2k 4k
Number of groups
(b) (c)

Figure 9: Response time comparisons for (a) a distinct query, (b) a group by query with aggregation on an increasing number of
distinct elements, and (c) a group by query by with aggregation on a stable number of elements

slower response times than LCPU. The advantage of the bump-in-
the-wire processing present in Farview is clear, especially as the
amount of data becomes larger. We now go into specific details for
each selectivity level.

On Figure 8(a), the query does not discard any tuples and it
fetches the whole table. The query is equivalent to executing:

SELECT * FROM S;

Since no data is excluded from the selection predicate, FV and
RCPU send the whole table through the network. Farview has similar
performance for the vectorized (FV-V) and non-vectorized (FV)
models of processing, because the available network bandwidth is the
bottleneck (i.e., parallelization does not provide additional benefit).
The memory bandwidth of the remote node is thus underutilized in
this specific scenario.

Figure 8(b)’s 50% selectivity query alleviates the pressure on
the network and permits more utilization of the DRAM bandwidth,
leading to higher overall performance for Farview. In this case,
the vectorized model is slightly more performant than the standard
execution model, as the parallelization of the processing allows
the reads from DRAM to occur at higher speeds. Still, even at this
selectivity, the network is the bottleneck and the DRAM bandwidth
is not fully utilized for a single client. The execution times of the
baselines improve relative to 100% selectivity, especially as the input
size grows, but they are still slower than both of Farview’s execution
models.

With 25% selectivity, only a small portion of the data is sent
over the network, so the network is no longer the bottleneck. For
LCPU, the data movement between the DRAM and the CPU is
reduced because less data is written back; as a result, its performance
is better when compared to 50% selectivity, but still worse than

Farview. For Farview’s non-vectorized model (FV), the bottleneck
shifts to the bandwidth of a single query pipeline and performance
is similar to the 50% selectivity case. The pipeline parallelization of
the vectorized model (FV-V) can fully utilize the available memory
bandwidth, and thus FV-V is roughly twice as fast as FV.

6.5 Grouping

In this section we evaluate the performance of the DISTINCT and
GROUP BY grouping operators. We use the same baselines as in
the selection experiments. For these operators, our baselines use
a hashing implementation based on a very fast hash map libraryz‘
Figure 9(a) presents the results for the following query:

SELECT DISTINCT (S.a) FROM S;

The number of distinct elements is randomized and the results are
averaged out over a number of runs. For the cuckoo hash table
implemented in Farview, we assume that no hash collisions occur.
In the case of collisions, they would be written in an overflow buffer
and sent to the CPU for post-processing. Farview outperforms both
baselines, and the baseline runtimes increase dramatically as the
input size gets larger. We attribute part of the difference to reading
from/writing to DRAM, as in the case of selection. Two additional
factors contribute to the slowdown of the baselines: 1) the memory
resizing of the hash table as more elements are added and 2) the
ability of FPGAs to hash much faster than CPUs, even when the
hash function is complex [42]. Additionally, in Farview the query
is fully pipelined and there is not much overhead compared to the
base selection. Finally, the number of distinct tuples has an impact
on performance, similar to the impact of selectivity in the selection

2https:// github.com/greg7mdp/parallel-hashmap

Response time [us]

20 — ‘IFV Oicru IRCPU‘
15 —

5 :2! |ﬂ| |][£| Iﬂl lﬂl Ll

16k

String size [bytes]
Figure 10: Regular expression matching

experiments. The lower the number of distinct elements is, the lower
the amount of data moved through the network, leading to better
performance.

Next, we execute a simple query that has a GROUP BY and an
aggregation (SUM):

SELECT S.a, SUM(S.b) FROM S GROUP BY S.a;

In Figure 9(b) and Figure 9(c), we present the performance of
the query for increasing data sizes and number of tuples, respec-
tively. The GROUP BY operator performs a similar operation as the
DISTINCT operator. The main difference is that for GROUP BY,
we calculate aggregated statistics for each of the distinct tuples in
the hash table. After the aggregation is complete, all of the (unique)
entries in the hash table along with their aggregations are sent over
the network. This process adds a small amount of latency to the
operator execution. The response time is thus bigger if the number
of aggregates is higher. Even with this added latency, Farview out-
performs the LCPU and RCPU baselines for both experiments, for
the same reasons that were mentioned in the distinct experiment.

6.6 Regular expression matching

We compare the performance of Farview and the baselines for regu-
lar expression matching for different string sizes, where the regular
expression matches 50% of the generated strings. The baselines use
the highly optimized Google RE?2 regular expression library [35].
FV outperforms both LCPU and RCPU. FV’s regular expression
operator is able to sustain the full line rate regardless of the predicate
complexity, due to its use of deep pipelining and parallel regular
expression engines, which take advantage of the spatial architecture
of the FPGA. This implementation outperforms RE2, as the imple-
mentation on the CPU has far less parallelization potential and the
overhead of the data movement from/to DRAM is quite high.

6.7 Encryption/decryption

As an example of a commonly used system support operator, we
explore encryption/decryption. The encryption algorithm used in
Farview is a 128-bit AES in parallelized counter mode. The op-
erator can be placed at the beginning or the end of the operator
pipelines (handling decryption and encryption) with only a small
extra overhead. This allows Farview to decrypt data residing in dis-
aggregated memory for processing and sending it to the client; to
encrypt data after processing to secure the transmission to the client;
or to decrypt the data, process it, and encrypt it again for transmis-
sion. The response time graph in Figure 11(a) compares the time
taken to decrypt data being read in Farview and in the two baselines.

Response time [us] Throughput [GBps]

1,250 |0 Frv 10 - p—
1,000 - u LCPU 8 — -_ZT FV-RD+Dec
750 | B rcpu 6
500 — 4
250 — 9
0 0
128k 256k 512k 1M 256 1k 4k
Table size [bytes] Transfer size [bytes]
(a) (b)

Figure 11: Encryption response time and throughput

Response time [us]

800 |BFv Drcru Erecru ‘
600 —
400 —
200 —

64k 128k 256k 512k M M
Transfer size [bytes]

Figure 12: Multiple clients

The ability of the FPGA to sustain line rate processing yields a big
advantage, as the overhead of the encryption is fully hidden. FV
significantly outperforms the LCPU and RCPU baselines, which
use the same encryption/decryption scheme through the Cryptopp
[23] library. The difference in execution time is caused by both the
cold caches as well as the decryption overhead in the CPU compared
with the highly parallelizable AES implementation available in the
FPGA. The throughput graph in Figure 11(b) compares an RDMA
read operation in Farview (FV-RD) and the same operation together
with the decryption (FV-RD+Dec) on the read data stream. As the
throughput graph shows, there is no noticeable performance penalty,
indicating that encryption/decryption can be easily combined with
all the previous operators without changing the overall performance.

6.8 Multiple clients

We finally evaluate the behaviour of the system with multiple clients
reading from memory at the same time. We use six clients run-
ning the distinct query in both Farview and the two CPU baselines
(LCPU, RCPU). The number of distinct elements is small to prevent
the network from becoming the main bottleneck and to maximize
DRAM performance in all of the clients. For the CPU baselines, we
use MPI with 6 processes. The measurements shown in Figure 12
represent the time taken until all six client queries have completed.
Farview achieves better performance than both CPU baselines due
to the spatial parallelization between multiple dynamic regions, each
containing a separate client. The decoupling of the DRAM and the
fair sharing (Section 4.4) provide optimal distribution of the DRAM
bandwidth between all dynamic regions and their clients. Both CPU
baselines compete for access both to the DRAM and the shared
caches, causing interference that affects the overall performance.

7 CONCLUSIONS

Farview implements network-attached disaggregated memory with
the capability to offload query processing operators directly to the
memory. In this paper, we have discussed the design of Farview and
how it helps to address DRAM capacity challenges (by allowing us
to move the buffer pool to a central location) and data movement in-
efficiencies (by enabling near-data processing to filter the data before
it is sent through the network). Through the use of RDMA, Farview
provides performance that is comparable to that attainable using
local memory, a performance advantage that is augmented by the
ability to process data in-situ. The next steps for the Farview project
are to develop a query optimizer that takes the new capabilities of
the system into consideration, to design suitable cache management
strategies to move data back and forth to persistent storage, and to
expand the range of operators supported. We also want to explore, as
part of a query optimizer, options such as performing joins against
small tables in the memory by reading the small table into the FPGA
and matching the tuples read from memory against it. Additionally,
we plan to port Farview to Enzian [21], a heterogeneous research
platform that offers both more network and memory bandwidth.

ACKNOWLEDGEMENTS

We would like to thank Xilinx for the generous donation of the
equipment used to perform the experiments in the paper and for
access to the XACC ETHZ Cluster. The work of Dario Korolija has
been funded in part by a donation from HPE.

REFERENCES

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,
Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018. Remote Regions:
a Simple Abstraction for Remote Memory. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference. 775-787.

Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. 2017. Remote Memory in the Age of Fast Networks. In Proceedings
of the 2017 Symposium on Cloud Computing. 121-127.

Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.
2019. Designing Far Memory Data Structures: Think Outside the Box. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 120-126.
Kathirgamar Aingaran, Sumti Jairath, and David Lutz. 2016. Software in Silicon
in the Oracle SPARC M7 Processor. In 2016 IEEE Hot Chips 28 Symposium
(HCS). 1-31.

Gustavo Alonso, Carsten Binnig, Ippokratis Pandis, Kenneth Salem, Jan
Skrzypczak, Ryan Stutsman, Lasse Thostrup, Tianzheng Wang, Zeke Wang, and
Tobias Ziegler. 2019. DPI: The Data Processing Interface for Modern Networks.
In CIDR 2019, 9th Biennial Conference on Innovative Data Systems Research,
Online Proceedings.

Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan Kara,
Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling Hardware/Software
Co-design from a Database Perspective. In CIDR’20.

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout,
Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020.
Can Far Memory Improve Job Throughput?. In Proceedings of the Fifteenth
European Conference on Computer Systems. 14:1-14:16.

Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Peter J. Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. 1996. TreadMarks:
Shared Memory Computing on Networks of Workstations. IEEE Computer 29, 2
(1996), 18-28.

Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,
and Ravi Ramamurthy. 2015. Transaction processing on confidential data using
cipherbase. In ICDE’15. 435-446.

Joy Arulraj and Andrew Pavlo. 2017. How to build a non-volatile memory database
management system. In Proceedings of the 2017 ACM International Conference
on Management of Data. 1753-1758.

Joy Arulraj and Andrew Pavlo. 2019. Non-volatile Memory Database Management
Systems. Synthesis Lectures on Data Management 11 (2019).

2

[3

[4

[5

[6

[7

8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[35]
[36]

[37]

[38]

[39]

Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. 2019. Multi-tier Buffer
Management and Storage System Design for Non-volatile Memory. arXiv preprint
arXiv:1901.10938 (2019).

AWSCloud. 2020. AQUA (Advanced Query Accelerator) for Amazon Redshift.
https://pages.awscloud.com/AQUA _Preview.html

Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015.
Rack-scale in-memory join processing using RDMA. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. 1463—1475.
Claude Barthels, Ingo Miiller, Timo Schneider, Gustavo Alonso, and Torsten
Hoefler. 2017. Distributed join algorithms on thousands of cores. Proceedings of
the VLDB Endowment 10, 5 (2017), 517-528.

Claude Barthels, Ingo Miiller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong consistency is not hard to get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proc. VLDB Endow. 12, 13 (2019),
2325-2338.

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow.
(2016).

Peter A Boncz, Martin L Kersten, and Stefan Manegold. 2008. Breaking the
memory wall in MonetDB. Commun. ACM 51, 12 (2008), 77-85.

K. M. Bresniker, S. Singhal, and R. S. Williams. 2015. Adapting to Thrive in a
New Economy of Memory Abundance. Computer 48, 12 (2015), 44-53.

Adrian Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
and et. al. 2016. A Cloud-Scale Acceleration Architecture. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Tur-
owski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Licciardello, Kristina
Martsenko, Reto Achermann, Gustavo Alonso, and Timothy Roscoe. 2022. En-
zian: an open, general, CPU/FPGA platform for OS research. In Proceedings of
the 27th International Conference on Architectural Support for Programming
Languages and Operating Systems.

Oracle Corporation. [n.d.]. Accelerating Spark SQL Using SPARC with DAX.
CryptoPP. Accessed 2021. Crypto++® Library 8.6. https://www.cryptopp.com/.
William Dally. 2011. Power, programmability, and granularity: The challenges of
exascale computing. In 2011 IEEE International Test Conference. IEEE Computer
Society, 12-12.

William J Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63,7 (2020), 48-57.

ARM developer. 2021. About the AXI4-Stream protocol. https://pages.awscloud.
com/AQUA _Preview.html

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast Remote Memory. In /1th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14).

Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In European Conference on Computer
Systems.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing
DRAM Footprint with NVM in Facebook. In European Conference on Computer
Systems (EuroSys) 2018.

Yuanwei Fang, Chen Zou, and Andrew Chien. 2019. Accelerating Raw Data
Analysis with the ACCORDA Software and Hardware Architecture. In Proc.
VLDB Endow.

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond Processor-centric Operating Systems. In /5th Workshop on Hot Topics in
Operating Systems (HotOS XV).

Daniel Firestone, Andrew Putnam, Hari Angepat, Derek Chiou, Adrian Caulfield,
Chun Chung, Matt Humphrey, and et. al. 2018. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation.

Carsten Binnig Andrew Crotty Alex Galakatos and Tim Kraska Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment 9, 7 (2016).

Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network
Requirements for Resource Disaggregation. In OSDI. 249-264.

Google. Accessed 2021. re2 Library. https://github.com/google/re2.

Goetz Graefe. 1990. Encapsulation of parallelism in the volcano query processing
system. ACM SIGMOD Record 19, 2 (1990), 102-111.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In /4th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). 649—
667.

InfiniBand. Accessed 2021. InfiniBand™ Architecture Volume 1 and Volume 2.
https://www.infinibandta.org/ibta- specification/.

InfiniBand. Accessed 2021. InfiniBand™Architecture Specification Release 1.2.1
Annex A16: RoCE. https://cw.infinibandta.org/document/dl/7148.

https://pages.awscloud.com/AQUA_Preview.html
https://www.cryptopp.com/
https://pages.awscloud.com/AQUA_Preview.html
https://pages.awscloud.com/AQUA_Preview.html
https://github.com/google/re2
https://www.infinibandta.org/ibta-specification/
https://cw.infinibandta.org/document/dl/7148

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Zsolt Istvan, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelligent Dis-
tributed Storage. Proc. VLDB Endow. (Aug. 2017), 1202-1213.

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel
D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: A High-Performance Database
System Leveraging In-Storage Computing. Proc. VLDB Endow. 9, 12 (2016),
924-935.

K. Kara and G. Alonso. 2016. Fast and robust hashing for database operators. In
2016 26th International Conference on Field Programmable Logic and Applica-
tions (FPL). 1-4.

Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. 1998. A Case
for Intelligent Disks (IDISKs). SIGMOD Rec. 27, 3 (1998), 42-52.

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. 2018. Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). 107-127.

Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Honggiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas
Sekar, and Srinivasan Seshan. 2018. HyperLoop: Group-Based NIC-Offloading
to Accelerate Replicated Transactions in Multi-Tenant Storage Systems. In Pro-
ceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 297—-312.

Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions
make sense on FPGAs?. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 991-1010.

H. Andrés Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Ra-
doslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid
Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ran-
ganathan. 2019. Software-Defined Far Memory in Warehouse-Scale Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 317-330.

Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated memory
for expansion and sharing in blade servers. In 36th International Symposium on
Computer Architecture (ISCA 2009). 267-278.

Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012. System-level impli-
cations of disaggregated memory. In [EEE International Symposium on High-
Performance Comp Architecture. 189-200.

Feilong Liu, Lingyan Yin, and Spyros Blanas. 2019. Design and Evaluation of
an RDMA-aware Data Shuffling Operator for Parallel Database Systems. ACM
Trans. Database Syst. 44, 4 (2019), 17:1-17:45.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yangiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A Hypervisor for Shared-
Memory FPGA Platforms. In ASPLOS ’20. 827-844.

Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu, and Xuehai
Qian. 2020. AsymNVM: An Efficient Framework for Implementing Persistent
Data Structures on Asymmetric NVM Architecture. In ASPLOS’20. 757-773.
Mellanox. Accessed 2021. ConnectX®-5 VPI Card. https://www.mellanox.com/
files/doc-2020/pb-connectx-5- vpi-card.pdf.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-Tolerant Software Distributed Shared
Memory. In USENIX Annual Technical Conference ATC 2015.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
Lépez-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking (SIGCOMM ’18). 327-341.

Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment 4,9 (2011), 539-550.

Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR.

Mark Oskin, Frederic T. Chong, and Timothy Sherwood. 1998. Active Pages: A
Computation Model for Intelligent Memory. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, ISCA 1998, Barcelona, Spain,
June 27 - July 1, 1998. 192-203.

Onkar Patil, Latchesar Ionkov, Jason Lee, Frank Mueller, and Michael Lang. 2019.
Performance characterization of a DRAM-NVM hybrid memory architecture for
HPC applications using intel optane DC persistent memory modules. In MEMSYS
2019. 288-303.

David A. Patterson, Thomas E. Anderson, Neal Cardwell, Richard Fromm, Kim-
berly Keeton, Christoforos E. Kozyrakis, Randi Thomas, and Katherine A. Yelick.
1997. A case for intelligent RAM. IEEE Micro 17, 2 (1997), 34-44.

David A. Patterson, Krste Asanovic, Aaron B. Brown, Richard Fromm, Jason
Golbus, Benjamin Gribstad, Kimberly Keeton, Christoforos E. Kozyrakis, David R.
Martin, Stylianos Perissakis, Randi Thomas, Noah Treuhaft, and Katherine A.
Yelick. 1997. Intelligent RAM (IRAM): The Industrial Setting, Applications and
Architectures. In Proceedings International Conference on Computer Design VLSI
in Computers and Processors. 2-1.

Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green. 2019. System evaluation
of the Intel optane byte-addressable NVM. In MEMSYS ’19: Proceedings of the

[63

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

International Symposium on Memory Systems. 304-315.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, and et. al.
2014. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Ser-
vices. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA).

Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso, and Sergio Lopez-
Buedo. 2019. Limago: An FPGA-Based Open-Source 100 GbE TCP/IP Stack. In
FPL 2019. 286-292.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In OSDI.
69-87.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed Shared Persis-
tent Memory. In ACM Symposium on Cloud Computing (SOCC) 2017.

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.
2020. StRoM: Smart Remote Memory. In EuroSys’20. 29:1-29:16.

Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating Persistent
Memory and Controlling Them Remotely: An Exploration of Passive Disaggre-
gated Key-Value Stores. In USENIX ATC 2020.

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing non-volatile memory in database systems. In Proceedings of the 2018
International Conference on Management of Data. 1541-1555.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent memory I/O primitives. In Proceedings of the 15th
International Workshop on Data Management on New Hardware.

Louis Woods, Zsolt Istvdn, and Gustavo Alonso. 2014. Ibex - An Intelligent
Storage Engine with Support for Advanced SQL Off-loading. Proc. VLDB Endow.
7, 11 (2014), 963-974.

Xilinx. Accessed 2021. Alveo U250 Data Center Accelerator Card. https://www.
xilinx.com/products/boards-and- kits/alveo/u250.html#specifications.

Xilinx. Accessed 2021. Xilinx Adaptive Compute Cluster (XACC) Program.
https://www.xilinx.com/support/university/XUP- XACC.html.

Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. In ASPLOS’20.
845-858.

Qizhen Zhang, Yifan Cai, Sebastian Angel, Vincent Liu, Ang Chen, and
Boon Thau Loo. 2020. Rethinking Data Management Systems for Disaggre-
gated Data Centers. In CIDR 2020, 10th Conference on Innovative Data Systems
Research, Online Proceedings. www.cidrdb.org.

Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu,
and Boon Thau Loo. 2020. Understanding the Effect of Data Center Resource
Disaggregation on Production DBMSs. Proc. VLDB Endow. 13, 9 (2020), 1568—
1581.

Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing distributed tree-based index structures for fast
RDMA-capable networks. In Proceedings of the 2019 International Conference
on Management of Data. 741-758.

Marcin Zukowski and Peter A Boncz. 2012. Vectorwise: Beyond column stores.
IEEE Data Engineering Bulletin 35, 1 (2012), 21-27.

https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#specifications
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html#specifications
https://www.xilinx.com/support/university/XUP-XACC.html

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Coping with memory pressure
	2.2 Efficient data movement

	3 Farview: System Overview
	3.1 Smart buffer pool with operator offloading
	3.2 FPGA-based architecture

	4 Farview: Implementation
	4.1 Architecture
	4.2 Farview programmatic interface
	4.3 Network stack
	4.4 Memory stack
	4.5 Operator stack

	5 Farview: Operators and pipelines
	5.1 Operator pipelines
	5.2 Projection operators
	5.3 Selection operators
	5.4 Grouping operators
	5.5 System support operators

	6 Evaluation
	6.1 Experimental setup
	6.2 RDMA throughput and response time
	6.3 Projection
	6.4 Selection
	6.5 Grouping
	6.6 Regular expression matching
	6.7 Encryption/decryption
	6.8 Multiple clients

	7 Conclusions
	References

