
Scalable OLTP in the Cloud: What’s the BIG DEAL?
The Database AND the Application Have a BIG DEAL: Their Isolation Semantics

Pat Helland
phelland@salesforce.com

Salesforce
San Francisco, California, USA

ABSTRACT
The pursuit of scalable OLTP systems has been the holy grail of my
career. Because OLTP systems are typically split into applications
and databases, the isolation semantics provided by the DB and used
by the app have a major impact on the scalability of the OLTP
system as a whole. The isolation semantics are a BIG DEAL!

This thought experiment explores the asymptotic limits to scale
for OLTP systems. An OLTP (OnLine Transaction Processing) sys-
tem is a domain-specific application using a RCSI (READ COMMIT-
TED SNAPSHOT ISOLATION) SQL database to provide transactions
across many concurrent users. This interface provides the contrac-
tual BIG DEAL between OLTP databases and OLTP applications.

Focusing on the BIG DEAL, shows today’s popular databases
unnecessarily limit scale. Similarly, we identify common app pat-
terns that inhibit scale. We can reimagine the way we build both
databases and applications to empower scale. All while complying
with the established SQL and RCSI interface (i.e., the BIG DEAL).

Perhaps, this can provoke discussions within the database com-
munity leading to new opportunities for OLTP systems. To me, that
would be a big deal! .

1 INTRODUCTION
Good academic papers make you think. Great academic papers
cause weeks of contemplation. The CIDR 2023 paper “Is Scalable
OLTP in the Cloud a Solved Problem?“[38] prompted a personal
reflection on the essence of OLTP[5, 15] systems, their databases,
their applications, and how they scale.

What are the limits to scale given unbounded resources? What
is a perfectly scalable application? With such an application, can a
database avoid adding its own limits to scale?

1.1 A Thought Experiment about Scale
This Gedanken Experiment[36] explores a narrow question:

“What are the asymptotic limits to scale
for cloud OLTP systems?”

To consider this, we first define the parts of the question!

1.2 What’s OLTP and What’s a Transaction?
OLTP (Online Transaction Processing) systems provide domain
specific business applications (e.g., banking, retail, travel booking)
for humans interacting with computers. Low latency (10s to 100s
of milliseconds) and high availability (typically targeting 99.99%

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA

availability) are important. In OLTP, both the app and the DB man-
age many concurrent small units-of-work. App-units-of-work
happen as humans and/or other computers interact at a rapid rate.
They examine database data, write new records, and send messages
back. DB-units-of-work are database transactions (TXs).

Each app-unit-of-work comprises one or more DB-units-of-work
hopefully fast enough for human users.

Figure 1: The BIG DEAL is the semantic contract provided by
the DB and used by the App. An OLTP application provides
domain specific behavior to online users.

Start with Existing SQL Database APIs→ The BIG DEAL
An OLTP system comprises an online application running on top
of a database. To make the thought experiment more challenging,
the application programming interface to the database is assumed
to be compatible with today’s SQL relational databases. Specifically,
we consider the very common RCSI (Read Committed Snapshot
Isolation)1. In this paper, we call it the BIG DEAL2. See Figure 1.

Many scalable systems proposals evolve the semantics of the
underlying DB or key/value storage system. Here, we explore scala-
bility without renegotiating the contract defined by the BIG DEAL.

What ismeant by “Asymptotic Limits to Scale”?Our thought
experiment assumes unlimited compute, storage, and network
resources.When does adding more resources fail to increase scale?

Asymptotic computational complexity ignores smaller deploy-
ments, focusing on the characteristics of a system as its size ap-
proaches infinity. Specifically, this is not a paper about performance
of some solution as long as the OLTP system is fast enough for
human users. Resource consumption costs are not a concern3.
1.3 Conclusion #1: BIG DEAL Semantics Scale
Today’s SQL RCSI interface supports arbitrary scale assuming the
database and the domain specific application both do their part.

The BIG DEAL splits scaling responsibilities:
• Scalable apps don’t concurrently update the same key.
• Scalable DBs don’t coordinate across disjoint TXs updating
different keys.

1Our usage of RCSI is called READ CONSISTENCY in Oracle[28] and READ COM-
MITTED in SQL Server[32] and PostgreSQL[29]. Snapshot Isolation is the default in
Oracle, PostgreSQL, and SQL Server Azure. , SQL Server supports snapshot isolation
by setting READ_COMMITTED_SNAPSHOT_ISOLATION=ON.

We assume READ COMMITTED with SNAPSHOT ISOLATION.
2 “BIG DEAL” connotes BOTH a contractual relationship AND a thing of importance.
3Linear increases in cost – O(N) scaling – would be ideal but scalable solutions typically
include a small O(N-log-N) increase in addition to the O(N) work.

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

The BIG DEAL (SQL + RCSI) Semantics
Empower Scalable DBs and Apps

Today’s DBs Coordinate across Disjoint Transactions
→ That Doesn’t Scale!

Today’s Apps Too Often Update the Same Key Concurrently
→ That Doesn’t Scale!

1.4 Conclusion #2: The BIG DEAL Offers
Guarantees & Exposes Weaknesses

The SQL RCSI interface has two aspects seen by databases:
• Guarantees that the DB must provide to the app.
• Weaknesses that today’s RCSI apps must tolerate or they
are buggy. These weaknesses may be exploited by the DB.

The BIG DEAL provides guarantees from the DB to the App:
• Reads: A scalable application can read all it wants.
• Updates to disjoint records don’t coordinate across TXs.
• Row-locks on disjoint records don’t coordinate across TXs.
See §2.2.

Applications must tolerate these BIG DEAL weaknesses today:
• Reads return snapshots: Records have no “current” value.
– Snapshots are immutable - Stale data is accurate!
• There is no NOW in a BIG DEAL database!
– There is no global NOW in an RCSI database!
– Time increases subjectively for each observer within the DB.
– Time provides ordering of BEFORE & AFTER across
record-versions, snapshots, transactions, servers,
and the data visible outside the DB.

• Transactions may abort any time but not too often.
• SELECT with SKIP LOCKED may subset the set of
qualifying records as it returns results.

1.5 Conclusion #3) Domain Specific Apps
Change Behavior as They Scale

Scalable apps use the BIGDEAL to provide domain specific function:

• Guarantees from the DB are used to build scalable apps.
• Weakened domain specific behavior is seen by human
users as the application scales.

Given sufficient traffic to an OLTP application, concurrent updates
or row-locks to the same records inhibit throughput.

To scale, an application must weaken the behavior exposed to
its users. Business state can’t be synchronously updated by mul-
tiple users. Recent changes to shared business state take time to
accumulate. They gain clarity over time.
Applications change business behavior as they scale:
• Business state after recent changes becomes less specific.
• Commitments to future business work becomes less specific.

Apps introduce ambiguity in biz domain specific ways:
• Online retail only promises to "Usually ships in 24 hours"
• Finances of a large company may take days to summarize.

1.6 Conclusion #4) Scalable Databases Have No
“Current” Data, Only Snapshots

With the BIG DEAL, applications only read data previously com-
mitted. Everything they read is frozen in time as-of their snapshot
time. There is no notion in the BIG DEAL of reading the "current"
value of data, only past values.

Each record update creates a new record-version visible to later
snapshots. Before an update is committed, the DB ensures that no
competing updates have changed that record. Future updates are
protected from concurrent changes.

Everything in the database is versioned by the record-version
commit time. This is necessary to provide snapshot reads for the
BIG DEAL. Organizing data by its creation time empowers scaling:
• Reads ← old record-versions as-of a past snapshot.
• Row-locks↔ Locked records unchanged until commit.
• Updates → new record-versions for later snapshots.

Today’s Databases Don’t Scale!

Reads & writes fight to access the "current" value of a record.

1.7 This Paper Hopes to Provoke Debate
This paper hopes to reflect on long held assumptions and think
systematically about the essential characteristics of scalable OLTP
systems. How can scalability happen and what are we doing wrong
as we tackle the problem?

How do databases get scaling wrong? For decades, I assumed
each record had a "home" for its “current” value within a partition,
a block, or a data structure (e.g. B+Tree[8]). I assumed the DB had
to go to the record’s “home” to update and/or read the “current”
value. For more than 45 years, I didn’t question this assumption.
I repent4 that belief. The BIG DEAL reads the past and verifies to
avoid conflicts in the future. There’s no NOW, no “current” values,
and no “home for a current value”.

How do applications get scaling wrong? Most OLTP applica-
tions synchronously aggregate application knowledge as it changes.
As systems scale, modifying records shared across users becomes
untenable due to increased contention. If an application cannot
aggregate changes synchronously, the best it can do is aggregate
knowledge gradually in later transactions. Scalable applications
coalesce their knowledge of the past slowly. They are also more
ambiguous about their commitments for the future. See §3.

We should proactively evaluate performance: Over many
years, scale and performance work has usually seemed a lot like
whack-a-mole5. This paper aspires to stand back and reflect on the
essence of scale and its limitations in an OLTP system. Hopefully,
it inspires others in the community to reflect on this, too.

This paper hopes to “pay it forward” by provoking debate about:
“The Limits to Scale of OLTP Systems”

1.8 What’s Coming in the Rest of the Paper?
Upcoming sections cover the following topics:
• The BIG DEAL – What Does the DB Provide to the App?
• Evolving Applications to Increase Scale
• The “Key” Scaling Challenges in Today’s MVCC Databases
• Rethinking OLTP Databases: A Strawman Architecture
• Scalable Application Queuing
• Massive Scale: It’s about Time!
• Related Work, Acknowledgements, and Conclusion

4Repent: "To think of (an action or omission) with deep regret or remorse."
5Whack-a-mole: (idiomatic, chiefly US & Canada) The practice of trying to stop
problems, etc., that repeatedly occur in an apparently random manner; also, the act of
dealing with such matters in a piecemeal way without achieving a complete solution.

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

2 THE BIG DEAL: WHAT THE DATABASE
PROVIDES TO THE APPLICATION

This section provides a perspective on the BIG DEAL between the
app and the DB. What are the abstractions and what are the tricks
that empower scale? This section describes the guarantees from
the database to the application. Later sections will describe how to
exploit the weaknesses not guaranteed to the application.

2.1 Historic Perspective: Isolation Semantics
Have Relaxed to Increase Scale

Prior to the advent of relational systems, locking and isolation took
many forms[5, 15–17]. Systems such as IMS[21, 22] provided non-
relational access to data with different isolation modes. IMS Fast-
Path had special mechanisms to allow highly concurrent updates
to in-memory values[12].

Defined in the mid-1970s, serializability [4, 5, 11, 15] gave a
notion of perfect isolation across concurrent TXs as the perception
of a serial order of execution. Supporting SERIALIZABLE isolation
caused scaling limitations that soon became important concerns.

Over almost five decades, SQL databases vendors provided op-
tions to their apps allowing relaxed isolation guarantees in ex-
change for increased scale. The BIG DEAL between the app and DB
evolved! While there are many varieties of isolation, we focus on
three major steps forward (on scale) and backward (in isolation):
• SERIALIZABLE→ REPEATABLE READ: This relaxed
the promise that missing records remain missing. While the
actual records read remain stable, the absence of records is
not ensured to the reading transaction.
• REPEATABLE READ→ READ COMMITTED: This re-
laxed the promise that records seen by a transaction don’t
change before the transaction commits. Transactions may
be aware of concurrent work when a record is read more
than once. Readers may stall if they attempt to read a record
concurrently being written by another transaction.
• READCOMMITTED→RCSI: RCSI (READCOMMITTED
SNAPSHOT ISOLATED) allows readers to ignore concurrent
writers. Reads (i.e., SELECTs) return records committed be-
fore their snapshot time. The database must keep multiple
versions of updated records6. This is called MVCC (Multi
Version Concurrency Control)[4, 5].
• RCSI→RCSI (with SKIP LOCKED):Using SKIP LOCKED
allows the database to subset the results returned from a
SELECT. Just leaving out data is OK7. See §2.3.

2.2 Row-locks: Separating Application
Semantics from Scaling and Concurrency

Most existing applications depend on row-locks for their correct-
ness. This works well as long as they don’t scale too large8.

Row-locks perform two BIG DEAL functions. They provide cor-
rectness guarantees to the application and allow the application to
ask the database for help with concurrency across transactions.
6Snapshot isolation proved very popular with application developers and RCSI is
available within Oracle, PostgreSQL, and SQL Server amongst others[28, 29, 32]. Read-
only transactions do not semantically stall waiting for updating transactions.
7SKIP LOCKED is valuable for high-traffic application queues. See §6 and §6.3.
8Row-locks are moot when scalable apps avoid concurrent updates to the same records.
This paper considers a BIG DEAL DB for both scalable and non-scalable apps.

Row-locks – Probabilistic concurrency control: Since trans-
actions may abort without cause, when locks are granted (for con-
currency control), the owning transaction may abort. Hence, the
order of work derived from lock ownership is not a guarantee9.
Using row-locks to provide application order of execution is very
useful, even if the order is occasionally violated.

Row-locks – Guarantee application semantics: Row-locks
offer important semantics to the application and its locking trans-
action. Row-locks ensure that transactional changes can depend on
the values seen within the locked records. Updates to other records
must not commit unless the locked record remains unperturbed.

2.3 SKIP LOCKED to Expand Concurrency
Even with RCSI, some application patterns are challenging. An
application may want to avoid waiting for a lock to increase con-
currency. One option is to use SELECT NOWAIT to return an
error when a SELECTed record is locked. Related to this is SKIP
LOCKED10. The SQL query:

SELECT <query> FOR [SHARE or UPDATE], SKIP LOCKED

allows the DB to omit locked records from the result. When un-
locked, these records may appear in later SELECT statements.

2.4 Access Patterns for RCSI: The Sweet Scaling
of Snapshot Isolation!

Let’s consider the access operations performed by a DB in four
broad categories: read, row-locks, updates, and transaction commit.

Read is always as-of a snapshot: Only record values commit-
ted before the snapshot are included in the result set. These reads
may be based on an exact key or a key-range.

Row-locks guarantee "What you see is what you get." The
locking transaction knows records won’t be changed by other trans-
actions. Competing transactions usually wait to allow the lock
holder to go first but that may be flawed.

Update combines both snapshot time and commit time:
Each update is performed on a single key as-of a snapshot time. If
another TX commits an update to the same key after that snapshot
time, this update won’t survive. Statement restarts may (or may
not) preserve earlier work within the TX, repeating the update with
a later snapshot including the interloping change.

Transaction commit is probabilistic: Commit may occur if
the RCSI rules are enforced. Records returned by SELECT FOR
SHARE or SELECT FOR UPDATE may not have been changed
by another transaction since the snapshot time of the SELECT
statement. Records updated by the transaction cannot have been
changed by another transaction since the snapshot time of the
update. Commit is only guaranteed to survive after it has completed.
Beforehand, it’s a gamble.

9Many distributed systems algorithms differentiate between liveness and safety. Safety
means the algorithm doesn’t do the wrong thing. Liveness means it avoids inordinate
delays. Similarly, row locks within RCSI have two aspects. They offer a guarantee of
safety to the locking transaction. Specifically, the transaction will commit only if the
value locked has not been changed by a concurrent transaction. Row-locks also help
the liveness of transactions when the DB uses them to function as a traffic cop.
10Recent versions of Oracle, MySQL, and PostgreSQL call this SKIP LOCKED. SQL
Server’s option is READPAST. DB2’s variant is SKIP LOCKED DATA (DB2 has READ
COMMITTED without MVCC).

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

Figure 2: As applications evolve for increased scale, users
see fuzzier promises about the future. Past status is more
ambigous at first and crisper as time passes.

3 EVOLVING APPS TO INCREASE SCALE
Evolving an app for scale usually requires changing its behavior.
Each app performs a role in some business domain such as online
retail, ERP (Enterprise Resource Planning), banking, hotel or airline
reservations, logistics, service call centers, and more. See Figure 2.

Simple non-scalable applications can immediately expose crisp,
clear, and accurate business state. As domain-specific apps are
augmented for scale, many of these details must become ambiguous.

Of course, crisp, clear, and accurate knowledge within the app
may or may not reflect the real world. Apps managing tangible
goods like hotel rooms or inventory may have inaccurate knowl-
edge of the physical world. To cope with this, even not-so-scalable
applications sometimes present fuzzy and/or delayed information.

Hot-spot records impede application scale. To reduce con-
tention on hot-spots, domain specific tricks are employed. Knowing
a “pretty good” estimate of the recent inventory for a book, along
with its expected purchase rate, allows the application to promise
the book “Usually ships in 24 hours.”

Users of the scalable OLTP system frequently can’t tell the dif-
ference between ambiguity within the computer and the computer’s
ambiguous understanding of the real world.

These ambiguities are domain-specific & exploiting them
must be domain-specific. This exploitation cannot easily be au-
tomated by a general purpose database or even an application
execution platform that is not domain specific.

3.1 My Application Is Successful. . . Help Me!
How do apps experience scaling challenges? These only emerge as
the usage of the application increases. Both business semantics and
the management of the application itself can impede scale.

Apps are rarely designed for scale when first created:With
rare exceptions, the first version of an application focuses on func-
tionality and ease of use. Simple techniques are used to manage
shared business data by directly updating shared records within
each app-unit-of-work. Typically, business state is aggregated syn-
chronously as changes occur. This is a wise choice. Most applica-
tions never need so much scale that simple synchronous aggrega-
tion is a problem. Working hard to ensure scaling before launching
the application only adds risk.

Simple strategies work well until the app is successful. As
the pace of work rises, concurrent writes to the same key throttle ac-
cess; app throughput slows. Work queues get clogged tracking their

head and tail. Writing the inventory balance throttles warehouse
shipments. Adding more servers doesn’t increase scale.

Synchronous aggregation updates business values as app-
units-of-work are performed. Consider an appmanagingwarehouse
inventory. As products ship, the item count is subtracted from
the warehouse’s inventory. Incoming supplies are added to the
inventory. When the transaction traffic rate is low, this is simple
and effective. As traffic increases, this may throttle business11.

Cross-TX contention on DB records may come from in-
ternal app maintenance. Sophisticated apps interleave synchro-
nous online work with asynchronous “batch style” processing. For
example, logically deleted records may be marked as not visible
to ongoing work. The application may later copy these "deleted"
records to an archival storage in batches driven by an application
queue. Even later, they may be garbage collected in batches.

Application queues may impede scale. Application queues
are commonly used for asynchronous application tasks. These may
interleave many small pieces of work or to ensure some long run-
ning multi-step workflow completes. Application queues are easy
at a small scale. They can be implemented by keeping work items
as records in a table. Combine the table with a head record and a
tail record to get a queue. This works great until it doesn’t. Under
extreme scale, application queues are complex. See §6.
3.2 Logarithmic Rollup of Business State
If business traffic grows exponentially, aggregating business state is
very hard. Aggregating in stages over multiple DB transactions can
address this. A sophisticated application can partition its changes
both by time and by other dimensions such as region, territory,
management structure. For each dimension, it aggregates by time
windows. Successive stages can break the aggregation into man-
ageable pieces gaining better resolution by iterating in stages.

Example logarithmic rollup – Large political elections:
Large political elections are great examples of scalable, distributed,
and parallel processing. In the United States, a national election
comprises tallying up results from many states, many counties
per state, and many voting precincts per county. Results gradually
accumulate after ballots close throughout these geographies.

Accuracy fights with timeliness: In some elections, the prob-
able outcome is clear very early. Trends and statistics based on exit
polls or early ballot counts are rapidly reported. A pattern favoring
one outcome may cause rapid acceptance of the probable winner.
Other times, the race is very close. Votes are counted and recounted.
The election outcome may be unknown for days, weeks, or longer.

Refining accuracy is hierarchical & logarithmic: Total votes
are aggregated across the geographic regions in a hierarchy. Re-
counted vote totals flow from precinct to county, state, and national
totals. Each recounted total ripples up the hierarchy step by step.

A new tally at a single precinct is gradually rolled into its county’s
total. Changes to the county total stimulate later changes to the
state total, etc. In this example, the depth of the political hierarchy
is four and each new tally causes three asynchronous refinements.

This becomes a logarithmic roll up of the summary count bound-
ing the churn on stages up the hierarchy. See Figure 3.
11Long considered important to OLTP work, the TPC (Transaction Processing
Council)[34] benchmarks forced synchronous aggregation. For example, TPC-B (1990)
was a "debit-credit" benchmark requiring atomic updates to the "branch balance" for
each teller’s bank interaction.

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

Chunking time to reduce churn: In the chaotic minutes after
election polls close, there’s a flurry of activity. At each stage of the
hierarchy, new summary counts stall a bit to incorporate changes
from below. This allows consolidation of results allowing scale.

Rapid churn leads to overlapping chunks of time: At large
scale, earlier time chunks may not yet finish consolidation before
new time chunks start. For example, the election results sent 10
minutes ago from a precinct to the county may not yet be incor-
porated when the next update from that precinct is sent to the
county. Many overlapping time chunks may be chasing each other
as they roll together. Newer chunks rolling up recent changes are
blurry and older chunks more accurate. Last week’s activity is more
accurately summarized than this week’s activity.

3.3 Gaining Wisdom and Clarity with Age
For large applications, the past is clear and the present is blurry.

The past may be examined in many dimensions. Time is
analyzed hierarchically by years, quarters, months, weeks, days, and
more. Quarterly financial results include errata to previous financial
summaries. Business transactions are scrutinized by geographies,
product types, business value, cost of goods and more. Today, it is
common to dynamically modify the analysis of the business. Like
viewing a digital photograph over the Internet, the picture starts
out grainy and blurry but comes into focus over time.

Making commitments based on blurry knowledge:We’ve
all seen the message: “Usually ships in 24 hours.” This guarantees
nothing but it’s very useful. At scale, you want a good guess. Even
if an airplane seat is reserved, the flight may be canceled; only when
the plane door closes do we know who is on board. Stale knowl-
edge about the old inventory state combines with the expected
consumption rate to decide on "promising" a future shipment.

Closing the loop on good guesses: At scale, resources are
promised if they’ll probably be there. Big apps use workflows to
confirm their promises have been met. After seconds or minutes, a
confirmation email is sent. Given some time, blurriness clears up.

3.4 Premature Aggregation in OLTP Apps
Business aggregations (e.g., warehouse inventory) can be derived
from the online changes from many domain-specific OLTP app-
units-of-work. Each of these transactions remembers what hap-
pened (e.g., performing a shipment). Business aggregations can be
adjusted later based on the “memories” from the online transactions.

Synchronous aggregation is challenging.Many OLTP apps
aggregate values synchronously as they interact with humans. Pub-
lic TPC benchmarks[34] (e.g., TPC-A, TPC-B, and TPC-C) mandated
these synchronous aggregations. By slowly aggregating these busi-
ness values, the application can scale in a domain-specific manner.

4 THE “KEY” SCALING CHALLENGES IN
TODAY’S MVCC DATABASES

When the app AND the DB both scale, the system scales. Scalable
apps avoid concurrent writes to any record. Scalable DBs avoid coor-
dination across transactions performing snapshot reads. They also
must avoid coordination across transactions updating or locking dis-
joint record keys. Unfortunately, today’s database implementations
fall short of these scaling requirements.

4.1 Snapshot Isolation: MVCC Helps Apps Scale
(at Least in Theory)

Snapshots relax dependencies between reads and writes of DB
records, increasing concurrency and scale. Theoretically, this means
that reading committed versions of records as of a snapshot should
not slow down when new updates to those records are performed.

MVCC databases maintain multiple versions of records.
Today’s major commercial databases do provide access to multiple
versions of records. Unfortunately, they slow down access as they
coordinate snapshot readers with concurrent transactions writing
new versions of records. This impedes scale for OLTP systems.

Minimizing unneeded coordination across concurrent TXs.
When concurrent TXs write to the same key, coordination across
these transactions is semantically required by the BIG DEAL. When
reading a key’s snapshot old value, coordination with any other
TXs is not required semantically. Scalable databases minimize or
eliminate unnecessary coordination.

Figure 3: Business summaries roll UP hierarchically over
time. Logarithmic roll up→ exponential capacity for changes.

4.2 Today’s Implementations of MVCC:
Fighting Your Way Home

Today’s major DBs implement MVCC by moving older ver-
sions elsewhere. The current version has a “home” location hold-
ing the most recently committed version of the record or perhaps
an uncommitted version. A record’s “home” may be a partition,
server, data structure (e.g., B+Tree), and/or block.

Updating a record happens by first moving any older versions of
the record elsewhere and recording where it may be found. Then,
the new version for the committed (or pending) new version of the
record is stored at the home.

To read a snapshot version of the record, the reading transaction
looks at the “home” for the record. If the version is later than the
snapshot, the read climbs back in history consulting consecutively
older locations until the latest version older than the snapshot is
located. Today’s major commercial databases all follow this pattern
albeit with different strategies for where to place the older versions
in their MVCC storage. See Table 1.

To update a record, exclusive access to the record’s home is
required. This causes infighting, contention, and coordination
between the updating TX and any concurrent reading TXs.

Multiple record’s may also experience cross-key contention when
their "homes" are stored in common data structures.

This severely limits the scalability
of the database and application(s) using it.

Coordination is needed to access the latest version: Access-
ing the “home” for the latest version requires a combination of
shared and exclusive locking (or latching in DB parlance). Since
a record’s “home” may have multiple granularities, each must be

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

DB
Product

MVCC
Approach

Where’s the
Newer Record?

Where’s the
Older Record? What Causes Coordination across Records?

Oracle Undo blocks Replaces older version Special undo blocks Update-in-place at the older version’s location
SQL Server Temp table Replaces older version Stored in temp table Update-in-place at the older version’s location
PostgreSQL Version range kept

with record key
Next to older record Next to newer record Update-in-place next to the older version’s location

Table 1: Today’s popular MVCC implementations coordinate snapshot reads with concurrent updates.
Storing new versions updates the older version’s location requiring exclusive access and interrupting snapshot reads.

navigated. Shared access to the home partition, home server, home
data structure (e.g., B+Tree), and/or a home page may be required.

Coordination is needed to access earlier versions. Since
these implementations force MVCC readers to start out looking at
the latest version of a key first, readers of snapshot values coordi-
nate for the record’s “home”. From the home, locations of the older
versions may be accessed. In many implementations these older
locations may require coordinated access, too. Readers coordinate
with concurrent writers and readers of each key. This happens even
when reading snapshots that are semantically immutable!

Coordination is needed to access neighboring records.
MVCC writers may need to coordinate access to key-ranges, even
for neighboring keys. Accessing key-ranges in B+Trees or similar
data structures that may be changing needs cross-transaction coor-
dination. Readers coordinate with writers. Writers coordinate with
readers. Readers coordinate with other readers! It’s unfortunate!

Today’s MVCC implementations coordinate across TXs.
This limits scale over and above the BIG DEAL’s semantics.

4.3 Today’s Partitioned (or Sharded) Databases:
Repartitioning Online Is Very Difficult!

A similar situation occurs with partitioned databases. Each record
is assigned a partition, typically by key-range. In today’s systems,
that is where the record is read and written12.

When each record’s changes go to ONE log, it has a "home".
Partitioned DBs typically assign a record to a home partition based
on its key. The partition creates new versions of the record by log-
ging into the partition’s transaction log. Each record (with a unique
key) sees its new record-versions written to a single log. Atomic TXs
across partitions need some variant of two-phase commit[5, 15, 26].

Write skew can skew-up your day! One major challenge
associated with today’s partitioned databases happens when the
write traffic to the database does not match the partitioning of the
keys being written. This is called write skew. Partitions may get hot
and cause performance problems for the application.

DB repartitioning means moving the "home" for records.
Moving record keys from one partition to another is complex and
impacts application availability. Earlier record versions were placed
in their old log. After repartitioning new versions must go to a new
log. This is difficult in the midst of ongoing updates.

Two-phase commit while repartitioning is complex. Since
two-phase commit is designed to be robust after crashes and restarts,
the state of the ongoing transaction and its disposition must be
durable. When the identity of each participant is bound to a single

12Sometimes, a log is used to ship changes to a backup system, replaying the log and
providing read-only access to slightly older record versions. In these systems, updates
only happen on the logging server. That is its "home".

log, it is clear who to contact to continue the two-phase commit after
failures. Ensuring these durable two-phase-commit responsibilities
are met usually forces partitioned databases to shut down work as
they repartition to clarify recovery responsibilities.

5 RETHINKING OLTP DATABASES: A
STRAW-MAN ARCHITECTURE

The toy system sketched in this paper trivializes MANY aspects
of real systems (e.g., failures, management, etc.).

We propose a new way to think about data & transactions.
It is NOT a complete system design and has many flaws.

MVCC scales better by separating the past from the future!
This can be done by organizing record changes first by time and
second by key. Consider the past and the future separately:
• PAST: Snapshot reads of historic immutable versions are
scalable.
• FUTURE: Protect against conflicting updates before com-
mitting future TXs.

If we independently consider past reads and future conflicts, it is
easier to avoid coordinating new writes with older reads.

Most current databases assign a home for each record (e.g., a
partition, a block, or a B+tree[8]). This means changes must modify
the record at home. It also means that reads must scamper to the
record’s home to find its value. This is hard to scale.

In contrast, our hypothetical DB organizes changes by commit
time first and then by key. We log all changes for a transaction into
its worker’s log. Atomicity is easy. Locating old versions of each
record is a bit harder.

Figure 4: Business summaries roll UP hierarchically over
time. Logarithmic roll up→ exponential capacity for changes.

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

5.1 A Hypothetical DB: Server Types and Duties
Consider a hypothetical architecture with the following types of
servers as shown in Figure 4.

Worker servers each have their own transaction log. They ac-
cept connections from app servers, perform transactions & their
queries, commit transactions to their per-worker log, and periodi-
cally flush committed new record-versions to the LSM. See §5.4.

Owner servers are a scalable set of servers partitioned by both
key-range and time-range. Repartitioning happens dynamically to
accommodate scale. Each TX is ordered with respect to all other
TXs sharing one or more records. Owners verify that concurrent
transactions have not created any conflicting updates for each
key row-locked or updated by the TX that optimistically hopes
to commit. See 5.8. Once committed, changes are visible to any
transaction using a later snapshot time. See §5.8.

LSM servers accept flushes from workers and incorporate them
into the orderly past stored in the LSM. Record-versions are orga-
nized first by time, second by key. By quickly processing committed
transactions from workers after they flush, the time between com-
mitting a transaction’s new record-versions to available in the LSM
by key value can be bounded and proportional to the logarithm of
the commit rate. See §5.5.

Traffic cops provide pessimistic concurrency control. They will
stall later transactions if they acquire a row-lock held by an earlier
transaction. This pessimistic ordering of transactions may be vio-
lated when failures happen. Semantic correctness will be enforced
by optimistic concurrency control prior to commit. See §5.6.

5.2 Centralized TXs Imply Decentralized Data
Centralized transactions offer easy atomicity:When a transac-
tion is centralized in a single log, the atomicity of the transaction
is not in question. All changes for each transaction are present in a
single log. If you can read the log, you can see the entire transaction
and know if it was committed. See §5.4.

Centralized transactions imply decentralized data: To read
as-of a snapshot, the latest version of each record before the snap-
shot must be found. The sequence of record-versions for a record
spans multiple logs (from different workers) over time.

Not only does the snapshot’s correct version of each key need
to be found, the keys present in a key-range as-of the snapshot
must be determined. Right after a new record-version’s transaction
commits, it becomes visible to read with a snapshot time after the
commit time. When these changes are new, it’s challenging to track
their location and make them visible quickly.

5.3 Guessing a Good Time to Commit
Each worker-server and owner-server has its own clock local to
the server. These are approximately synchronized either by a public
cloud provided mechanism or by aligning clock drift13.

When a worker decides to commit a transaction, it has a pretty
good idea of the owner-servers and the partitions touched by the
committing transaction. It also has a pretty good idea of the proba-
bly latency and clock drift involved in communicating to each of
these servers. Based on these guesses, it can select a future time to
commit the transaction14.
13Clocks can be probably kept in alignment via techniques such as described in §4.4
and §4.5 of the Decoupled Transactions paper[19].
14This scheme is explained in detail within §4 of [19] as well as in [37].

5.4 Workers: Centralized Atomic Transactions
The database has a scalable number of worker servers, each with its
own transaction log. As TX load increases, workers are added. Each
TX happens at a single worker server. The worker will:
• Accept incoming connections from application servers.
• Execute SQL statements:
– Reads with snapshots by key or key-range
– Row-locks are acquired using their unique record key,
– Update records by their unique key
• Commit: Guess a future time to hopefully commit:
– Verify updates don’t conflict with concurrent TXs.
– Verify row-locks don’t conflict with concurrent TXs.
– Log the transaction’s updates & commit record in the
worker’s local transaction log.

While the worker does get help from the LSM, owners, and traffic
cops, the actual work of the transaction is centralized and changes
(for each transaction) are centralized in the worker’s log.

5.5 Decentralized LSM for Older Snapshot Reads
LSMs (Log Structured Merge) trees [27] are organized first by time,
then by key. They stack recent changes on top of older changes.
Reading a snapshot version must read enough of these stacked
up versions. Each LSM layer contains record-versions for a band
of time. The boundaries of time between the layers are fuzzy and
evolve with LSMmerges (compactions) [25]. Newer record versions
(identified by key) are higher in the LSM and older are lower15.

Figure 5: LSMs merge records DOWN the tree in sort order.
Lower levels are better for efficient snapshot reads. Logarith-
mic roll down→ exponential capacity for stored records.

LSMs are scalable for readers: Because the underlying files
(called components) are read-only, it is easy to havemany thousands
of servers reading them concurrently. Readers gradually evolve
their view of the LSM as merges optimize reads but do not stall to
coordinate these LSM changes.

LSMs are very scalable forwriters: There may be thousands of
sources generating new versions of records, each time stamped with
transaction commit time. These are coalesced into time windows
and layered onto the LSM, organized first by time and second by
key. New time-layers are slapped on top once all sources of new
committed record-versions are scooped up and sorted by key. These
are then made visible to workers so they can read later snapshots.

If N worker servers are contributing new record-versions, a new
LSM time-window can be created with N-log-N resources. The
time delay (from commit to visible in the LSM) is proportional to
Log-N. This is scalable. It gradually coordinates without stalling
transactions reading snapshot data. See Figure 5.

With an LSM, the past scales without coordinating across
disjoint transactions reading and updating! [25, 27]
15The RUM Conjecture [1] describes trade-offs between Read, Update, and Memory to
manage data. For asymptotic limits to scale, all of these abound! Only coordination of
change is precious. Maybe we need a CRUM conjecture to include coordination!

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

5.6 Decentralized Traffic-Cops
Row-locks have two aspects: Guaranteeing TX semantics before
commit and helping coordinate concurrent TXs.

Traffic cops help coordinate concurrent transactions by
stalling later transactions competing for a lock16. The owner-servers
guarantee TX semantics before commit. See §5.7.

Row-locks are requested with an exact key. They ensure at
commit time the record’s contents aren’t concurrently changed and
also stall competing transactions to optimize throughput. These
stalls help throughput and performance but need not be perfect.

Traffic cops are a decentralized cluster of servers. Since
row-locks are by exact-key, the keys can be hashed for lookup.
Workers hash the key and send an RPC to the correct server in a
consistent hashing[23] cluster of traffic-cops. Traffic-cop servers
respond to RPCs from workers to perform traffic cop duty, looking
up locks by hashcode17.

Traffic cop blast radius of failure: Row-locks taken by a TX
cause the TX’s worker to add an optimistic check prior to commit-
ting the TX. This ensures correct TX locking semantics18. It’s OK for
the traffic-cop behavior to be inaccurate if it is rare.

5.7 Decentralized Owners: Optimistic Commit
The BIG DEAL’s rules are enforced for future transactions before
they are allowed to commit at a proposed future time.

Owner-servers enforce the BIG DEALs rules. They verify
that updates and row-locks don’t conflict with concurrent updates
since snapshot time. They also align the TX’s commit-time with
concurrent changes to the TX’s records.

Owner-servers align commit-time for records & workers.
As a commit-time for a transaction is guessed by the worker, every
update and row-lock must be verified:
• Updates: No conflicting updates from snapshot to commit.
• Row-locks: No conflicting updates from snapshot to commit.

If there are conflicts, the transaction may not commit.
Recent changes are verified by the owner-servers. Record-

versions not yet present in the LSM are optimistically verified by
the owner-servers prior to commit.

Older changes are verified in the LSM by the workers. If a
snapshot is old enough, the LSM itself may need to be checked for
conflicting updates no longer in owner-servers.

5.8 Decentralized Owners: Update, Lock, & Read
Before commit, the worker sends a proposed-update for each update
and a verify-lock for each row-lock.

Proposed-updates comprise:
[key, proposed-commit-time, snapshot-time, worker-id, &
record-value]

Verify-locks comprise:
[key, proposed-commit-time, snapshot-time, &worker-id]

16This database must support both scalable applications and also not-so-scalable appli-
cations. . Row-locks on disjoint keys should not require cross-transaction coordination.
17Hashcode collisions are rare and acceptable.
18The servers implementing partitions of the traffic cop for row-locks can be unreliable.
Failures of traffic-cop servers can allow reordering of the coordinated TXs. If this
happens too often, human users may get annoyed as they lose their partial work. If so,
replication of these servers can be added to reduce the likelihood of losing the traffic
cop’s pessimistic coordination.

Aligning time at the owner-servers: As incoming proposed-
updates and verify-locks arrive, they include a proposed-commit-time.
Incoming requests from workers hopefully arrive at owner-servers
before their local clock has reached the proposed-commit-time:
• Arrived after commit-time: Return an error and the TX aborts.
• Arrived before commit-time: The owner-server waits until its
local clock reaches commit-time.

Aligning the owner-server’s local time with the commit-time is
essential to the BIG DEAL. Every proposed-update and verify-lock
will be processed after other transactions in time order.

Verifying locks for verify-lock requests: As the commit-time
arrives at the local server’s clock, all records that may have con-
flicting updates will be known. The owner-servers must check back
in time to the snapshot-time for the lock being verified19. Any up-
dates by concurrent transactions to the exact-key value for this
verify-lock cause the transaction to abort by declining to verify.

Accepting new proposed-updates: The first step of processing
a proposed-update is similar to a verify-lock. As the commit-time ar-
rives at the local server’s clock, all records thatmay have conflicting
updates will be known. The owner-servers must check back in time
to the snapshot-time for update being proposed20. Any updates by
concurrent transactions to the exact-key value for this verify-lock
cause the transaction to abort by declining to verify.

The existence of a proposed-update in an owning partition means
the presence or absence of this newly committed record-version
is not yet confirmed as committed or aborted.

Resolving proposed-updates: Proposed-updates become ei-
ther confirmed-record-versions or aborted-record-versions. Usually,
this happens quickly as the transaction’s worker tells the owners
of the outcome. Sometimes, they may get stuck waiting to hear21.

Snapshot reads of recent record-versions:Workers may have
recent snapshots requiring they see committed updates since that
time. Workers can read record versions from owner-servers either
by exact-key or by key-range.

When a snapshot read arrives at an owner-server, it locates any
qualifying record-versions by their exact-key or key-range. Any
matching records with unresolved proposed-updates become a chal-
lenge. The snapshot-read cannot be serviced without determining
the disposition of the proposed-update.

Owner-servers respond to the reading worker describing their
dilemma22. This can be resolved in a number of ways:
• Wait for the LSM: Once the LSM includes records up to
commit-time, it will know.
• Ask the worker: If the worker is alive, it will know.
• Check the worker’s log: If the worker is unresponsive, the
transaction log can be fenced23 ensuring a clear outcome.

19We will see below in §5.9 that this is more complex than this initial description.
20Complexities processing proposed-update requests are also discussed in §5.9.
21Unresolved proposed-update requests will resolve over time as the LSM advances the
committed work it holds. The actual outcome of the proposed-update is contained in
the worker’s log. As time advances, the owner’s unresolved state is discarded. Since the
proposed-update is marked with the proposed-commit-time, it has a bounded lifetime.
22Both the commit-time (if it committed) and the worker-id are known.
23The updating transaction’s outcome is in the worker’s log. In our hypothetical DB
the log is in shared storage and can be read by another worker. This complex topic is
covered in great detail in §15 (Appendix D: Jitter-Free Log Repair) in [19].

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

5.9 Decentralized Owners: Partitions & Servers
Owners manage this interweaving of updates and snapshot reads
for two dimensional rectangles of a time-range and key-range. Snap-
shot reads of a key-range may need to union changes back in time
spanning owners and the LSM.

Owners are implemented in a scalable set of servers. These
servers holdmany partitions, each covering a rectangle of key-range
and time-range. As new record-versions are added by committing
transactions (via proposed-update and resolve-update), careful man-
agement of advancing time and partition capacity is essential.

Owner-partitions can get full and direct new proposed-updates
elsewhere. Each owner-partition is either:
• Closed for new business and accept worker requests for:
– Snapshot reads in their rectangle of key & time ranges,
– Proposed updates24 &
– Notifications of transaction outcome.
• Open for new business: Allowing four kinds of requests:
– Snapshot reads (by key or key-range) after their start-time,
– Notifications of transaction outcomes,
– New proposed-updates, or
– New verify-locks

The set of open-for-business owner-partitions covers all key-
ranges for the database and evolves as open partitions get full and
close for business, passing off their key-ranges to empty owner-
partitions to receive new proposed-updates and verify-locks25.

Owners-partitions unilaterally repartition by time & key.
At any time, the owner-server for an owner-partition may decide
that it is full. It may then redirect new proposed-updates to a dif-
ferent partition that is open for new business. Hence, write traffic
can be largely segregated from snapshot-read traffic26.

Repartitioning decisions can be unilateral with the catalog of
owner-partitions being updated later to reflect the new key-ranges
and time-ranges for both open and closed partitions. This allows
the system to cope with traffic changes.

Blast radius of failure as conflicts are checked leverages
the advancement of time and the LSM. If an owner-server holding
one or more owner-partitions crashes, it may or may not have its
contents replicated. If no replica survives, the system has a gap in
its recent history. New attempts to commit a TX might fail. The DB
must guarantee no lock or update violations prior to commit.

As the LSM processes committed updates from the set of workers,
the maximum time present in the LSM advances. The loss of owner-
partitions may mean that transactions accessing that key-range
must fail until time advances far enough. This causes temporary
loss of availability but only for the affected key-ranges27.

Blast radius for snapshot reads follows a similar pattern.
Loss of owner-partitions may cause a key-range & time-range for
snapshots to be unavailable until the LSM time advances28.

24Proposed-updates verify back to their snapshot (possibly visiting closed partitions).
25A closed partition can create new replicas of its contents should read traffic scale.
26If each owner-partition and the server on which it is placed have pre-allocated empty
partitions elsewhere, traffic may be simply redirected as the owner-partition detects a
problem. Storage capacity, read traffic, or rate of new proposed-updates can cause an
open owner-partition to become closed.
27Some implementations could choose to add replication to the owner-partitions to
reduce the likelihood of this.
28Older snapshots for a transaction don’t experience outages when owner-servers fail
unless they locked records in that key-range. These, too, will recover as time advances.

5.10 Centralized Logging per TX Is Less Brittle
As discussed in §5.2, a DB architecture must decide to either:
• Centralize TX logging: Here, all new record-versions for each
transaction are logged at the TX’s worker.
• Centralize data logging (i.e., a "home" for each record): Each
new record-version for a key is logged to the same log.

Centralized TX logging simplifies recovery of partitions.
As discussed above in §4.3, by centralizing the location of each data
record at a well-known “home”, data for a TX may be spread across
many partitions. This implies the use of Two-Phase-Commit[5, 15,
26] or some similar algorithm. This is especially pernicious when
supporting online repartitioning to cope with write skew should
the write patterns not match the pre planned partitioning.

Two-Phase-Commit (2PC) is a log-to-log protocol: It may
initially seem like a server-to-server protocol but this breaks down
as compute and storage are separated. Key-range partitions log in
per-partition logs. 2PC must manage the persistent state for both
TX participants and TX coordinator. These important 2PC state
transitions happen via logged records.

Moving "home" for a record-version makes 2PC complex.
If a data record is part of a transaction that is in-doubt during 2PC,
moving its logged "home" by repartitioning has many subtle races
and edge conditions.Which log is part of 2PC andwhen? In practice,
repartitioning is only performed while the partition is offline29.

6 SCALABLE APPLICATION QUEUING
Can an OLTP system have a queue that scales a million-fold above
today’s app queues?What must the app and DB do to scale queuing?

6.1 The Ambiguity of Scalable TX Queues
Scalable transactional queues are imperfect. Their order of process-
ing and timeliness are probabilistic.

Any transaction can abort and restart. The processing of the
first item in the queue may fail and be requeued for a later time.
Since dequeue is approximately ordered, it is not important for
enqueue to be perfectly ordered. Assuming perfect order of trans-
actional queues will result in occasional bugs in the application.

Dequeuing at scale can’t be in perfect order. Other items in
the queue may be dequeued and complete before the restarted item
gets another chance. Perfect order doesn’t scale past one at a time.

6.2 Choosing Disjoint Keys for Queued Work
Enqueuing work from independent application servers must scale.

A scalable queue has MANY app servers and one DB. Each
server enqueues with approximate time order. Enqueued keys
should very rarely collide with other keys.

ULIDs (UniversallyUnique Lexicographically Sortable IDs)
are provided by a standard open source library[35]. ULIDs are 26
character keys in approximate chronological order. They combine:
• 48 bits (time): Local time at the app server 30.
• 80 bits (random): An 80-bit pseudo random number.

29Repartitioning classic cross-partition log-to-log behavior is different than reparti-
tioning owner-partitions in this proposal. Owner-partitions do NOT have persistent
state. The atomic and persistent state of a TX’s outcome is in the single log of the
worker and eventually in the LSM.

Owner-partitions can be repartitionedWITHOUT needing two-phase-commit. This
can be a unilateral decision made by an over-full owner-partition.
30ULIDs begin with local time in milliseconds since Jan 1, 1970.

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

Enqueuing collisions are extremely rare and result in a TX abort. As
an app server uses a ULID for a queued record’s key, the chances
of collision are extremely low and result in a transaction abort.

6.3 Scalable Dequeue via SKIP LOCKED
Scalably dequeue at a massive scale is challenging. Let’s discuss
some techniques combining database and application behavior to
empower scalable application queues.

SELECT <query> FOR UPDATE SKIP LOCKED allows the
DB to return a subset of the qualifying records (see §2.3). The DB
may start looking for qualifying records using an older snapshot31
with a subset of the SELECTed keys32.

SKIP LOCKED allows scanning an old DB snapshot. When
SKIP LOCKED is used in a SELECT statement, the DB may perform
a key-range scan of an old snapshot, even if it includes records that
were later deleted33. Scalable dequeue can be done by app servers
with random exploration of ULIDs:

• Randomly positioning into the SELECTED key-range.
• Find a candidate key in an older snapshot in the LSM.
• Acquire a row-lock on the candidate key.
• Ensure the key has not been updated by any concurrent trans-
actions before commit. Dequeue completes exactly once.

This can be used to return the TOPNkeys qualifying for the SELECT
and not actively being processed by another application server.

A BIG DEAL DB can scale dequeue transparently. Suppose
a dequeuing app server SELECTS with SKIP LOCKED to get queued
keys from January 1st, 1970 (the lowest ULID) to the present. The
DB is free to omit any or all of the records in the queue34.

7 MASSIVE SCALE: IT’S ABOUT TIME!
Let’s consider how time impacts our scalable database. We discuss
the flow of time in a centralized BIG DEAL database, and how it
provides snapshots, commits, and external consistency.

7.1 What’s External Consistency?
External Consistency[13] ensures new incoming requests see all
previously exposed data, even by other database connections. Snap-
shot reads from new incoming work must be after all committed
work previously visible outside the database.

Ensuring external consistency gets more complex as the geo-
graphic scope of a DB grows past a single server or datacenter.
Pressure rises on the timeliness of snapshots seen for distant data
as well as optimistic conflict checking at commit time.

31This hypothetical DB moves older committed record-versions into its LSM in shared
storage. The read only LSM files may be replicated as needed ensuring scalable scans
over key-ranges such as ULIDs.
32Verifying the older records have not been modified since the record-version in the
LSM uses the exact-key of the record to access the owner-partitions. Similarly, checking
the traffic-cop servers is by exact-key. Both scale very well.
33SKIP LOCKED allows the DB to omit any records qualifying for the SELECT if it so
chooses. Ignoring newer records not yet in the LSM is OK.
34The DB could approximately track the key distribution of the ULIDs and randomly
position into dense key ranges with a slight bias for the older entries.

To minimize the impact of concurrent processing of a key can be provided by
checking both the traffic-cops and owner-partitions. In this way, a torrent of application
servers can pummel the queue and most will get work to process without colliding
with the rest of the gaggle. If dequeuing a key deletes it, each request is transactionally
processed exactly-once.

7.2 The Order of Time in Our Hypothetical DB
The interweaving of partial order and total order empowers scale
for our hypothetical DB. First, let’s consider when time must be
aligned using partial order for work distributed across servers:
• Snapshots assigned to new incoming work are AFTER
all earlier committed TXs visible outside the DB.
• Commit time for a TX is AFTER the TX’s snapshots.
• Committed record-versions for a key are AFTER its ear-
lier record-versions and BEFORE its later record-versions.
• Visibility to the app exposes the committed TX outside
the DB. It is AFTER the commit-time and may be delayed35.

These time alignments are easy in a centralized DB and more chal-
lenging in a distributed DB!

Time is totally ordered across TXs. Commit-time comprises:
• The time the worker guessed for a future commit, and
• A suffix with the worker-id.

These unique commit-times have total-order. Each separate key
within the TX has the same commit-time.

Time is totally ordered across record-versions for each key.
Each record (by key) has a sequence of record-versions labeled with
their commit-time. Time for the key advances one record-version at
a time. The most recent record-version may be unresolved (neither
committed nor aborted) until the outcome of its TX is determined.
Time marches forward for each key, one record-version at a time.

Time is totally ordered across a key-range’s record-versions.
Each key-range comprises a set of keys. As new record versions for
keys within the range see proposed-updates, the time-range for the
key-range expands36. Time-ranges have aminimum lower-time and
a maximum upper-time that includes unresolved proposed-updates.

Time is partially ordered across owner-partitions. Owner-
partitions may be open-for-business or closed-for-business. For any
TX sending a proposed-update as a part of optimistic commit, there
is exactly one open-for-business owner-partition to use37. For any TX
sending a snapshot read, a partially ordered time-ordered sequence
of owner-partitions must be accessed. These move from the snap-
shot time of the read backwards across one or more time-ranges.
Eventually, the time-ranges to search backward in time transition
to the LSM and its levels38.

Time in our hypothetical DB is relative:
• Total-order of committed TX.
• Total-order of snapshots seen within each TX.
• Total-order of record-versions per key.
• Partial-order across owner-partitions.
• Partial-order for external consistency:
– Commit visibility AFTER commit-time.
– Snapshots for incoming work AFTER visible commits.

35Delaying visibility expands the time between commit and visibility outside the DB.
36Unresolved proposed-updates have a well known proposed-commit-time. Until they
are resolved, the time-range includes these possible new record-versions, expanding
the time-range as needed.
37Actually, there is a window of time when the old open-for-business owner-partition
is closing and handing off responsibility. These may both be open-for-business and
have overlapping time-ranges. The older partition responds to check both for conflicts.

38Reading a key-range by snapshot-time means including the latest record-version for
each key in the key-range that is at or before the snapshot-time.

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

7.3 Time & Order: Centralized to Distributed DB
As a BIG DEAL database transitions from a centralized DB to our
massively distributed hypothetical DB, these time and order guar-
antees must be preserved. Consider two transactions, T1 and T2.
T1 commits and is seen outside the DB before T2 arrives as new
work. All snapshots of T2 must see the updates made by T1:
• Visibility(T1) is AFTER commit(T1)
• IF New-snapshot(T2) is AFTER visibility(T1)
THEN New-snapshot(T2) is AFTER commit(T1)

In a centralized database, snapshot times and commit times
are tightly controlled by a single server’s clock. Time emanates
from a single point in space:
• Commit time is grabbed from the server’s clock.
• Visible commit time is:
AFTER sending out committed work
AFTER its commit-time.
• Snapshot time for new work comes from the server’s clock.

For distributed DBs, snapshots for incoming work must still
be AFTER all visible committed TXs, even from distant servers.

Stretching Space Requires Stretching Time
As the database includes more servers, more time is needed

between Commit(T1) and Visibility(T1)

Delaying the DB’s post-Commit(T1) response
over its DB connection stalls Visibility(T1).

The time delay between Commit(T1) must be coordinated with
advancement of snapshots throughout the database.

The source of change moves from a point to a cylinder. As the
set of servers grows from one to many, it’s like moving from a point
to a circle surrounding the set of workers committing changes. To
align their snapshots and external visibility, time also stretches.

7.4 The Turbulence of NOW
Both databases and applications experience challenges immediately
after changes happen:
• Applications need time to aggregate their business values.
• Databases need time to separate snapshot reads & updates.

For our hypothetical database, the turbulence of now happens at
open-owner-partitions. These partitions support many keys in the
same key-range and must accept:
• Snapshot-reads
• Verify-locks, and
• Proposed-updates

This introduces the risk of coordination across disjoint transactions,
the official nemesis of our hypothetical scalable database.

Unilaterally repartitioning to survive the turbulence of NOW :
Owner-serverswith open-owner-partitions should preallocate empty
partitions on other owner-servers. These are available to accept
new traffic. When proposed-updates cause too much traffic, the
open-owner-partition may "close for business". It is then almost
read-only39. Closed-owner-partitions may be replicated for scale.

39Transaction-Outcome requests do modify closed partitions. Should a closed partition
be replicated, it’s OK for a Transaction-Outcome request to update only one replica. If
needed, the outcome can be rediscovered. Snapshot-reads and Verify-lock requests are

8 RELATEDWORK
Many papers discuss scalable systems. Most don’t discuss limits
to scale for today’s typical SQL DBs and their apps. This paper
examines the semantics of the BIG DEAL (or SQL + RCSI) as the
domain specific OLTP application works cooperatively with the
database. It points out the incredible power of snapshot isolation
with MVCC (Multi-Version Concurrency Control).

Ziegler et al[38] prompted this work by asking:
“What are the asymptotic limits to scale for OLTP systems?”

Their paper describes three archetypes for existing DBs: single-
writer, partition-writer, and multi-writer. Each of these existing
approaches assumes every record has a "home" for its current ver-
sion. They did not consider providing MVCC by separating reading
older versions from checking the validity of newer changes.

New scalable models of storage and DBs have been proposed
in other work. Many of these are forms of key-value stores[6, 7, 10,
24, 31] that do achieve large scale, albeit not with a SQL interface.

Partitioned writer SQL databases[2, 9, 14, 33] have been
around in various forms for many years. Each of these suffers from
write-skew as the transaction traffic updating the database may not
match the static or semi-static partitioning.

Workflow style business functionality for scale has been
proposed[18]. This approach is not transparent support for OLTP.

Replication approaches for both offline and for scale have
been considered in numerous papers. Shapiro et al[30] describes
CRDTs (Commutative Replicated Data Types). Hellerstein et al[20]
describes CALM (Consistency as Logical Monotonicity) and shows
how monotonicity provides a framework for to provide determin-
istic behavior from concurrent non deterministic. Bailis et al[3]
describe how to map SQL operations over replicated data to merge
their state into a form of a materialized view.

Each of these is addressing a different problem by looking at the
system as independent replicas, not a unfied OLTP system.

This work considers the impact of today’s BIG DEAL.What
are the limits to scale that can be achieved compatibly with today’s
model for OLTP systems? To our knowledge, this is the first paper
to point out the inherent scaling challenges with today’s imple-
mentations of MVCC. We also try to conceptually describe what is
needed to build a scalable application.

9 ACKNOWLEDGEMENTS
I’d like to thank my colleagues at Salesforce: Jamie Martin, Thomas
Fanghaenl, JimMace, Ben Busjaeger, Bryan Pendleton, SimonWong,
Xinan Yan, Shyam Antony, Atish Agrawal, Dave DeHaan, and Nat
Wyatt for their comments and discussions through the years. The
anonymous CIDR reviewers were very helpful. I am grateful for the
discussions with my friends Anastasia Ailamaki, Murat Demirbas,
Aleksey Charapko, Chuck Carman, and Shel Finkelstein. The sup-
port of Subho Chatterjee and Roy Chowdhuri has been invaluable.

Thanks to Michael Abebe for his review and insights. Special
thanks to my friend and colleague Daniel May for many hours of
help on this paper.

also supported. None of these requests to closed partitions require exclusively locking
in-memory data structures. Hence, they don’t coordinate across disjoint TXs.
The nemesis is defeated!

CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA Pat Helland

10 CONCLUSION
We’ve discussed possible future directions for DB and app research.
What got us to this point and where can it take us moving forward?

Our gedanken experiment asks about asymptotic limits to scale
for OLTP systems focusing on the BIG DEAL40. This has led to
some new insights into scale for both applications and databases.

The BIG DEAL narrows coordination. The gradual evolu-
tion of SQL database isolation semantics has provided major steps
forward (on scale) and backward (on isolation). It has done so by
narrowing the places at which transactions must coordinate.

The BIG DEAL clarifies expectations for the DB & the App.
A scalable DB must guarantee certain behavior to the application
including promising scalable execution of scalable operations (e.g.,
snapshot reads). Existing RCSI applications must already tolerate
some subtle behavior from the database. If they don’t they have
problems today. Our thought experiment leverages these existing
subtleties empower more scale in the database implementation.

The turbulence of NOW! Recent changes are more difficult to
understand than older changes. This is true for the application as it
changes business state. It is also true for the database as it layers
recently committed record-versions into visible snapshots.

Layering changes by time helps solutions scale. Narrower
time slices can bound the turbulence of NOW. In applications, ag-
gregating business state over a sequence of narrow time windows
reduces the turbulence of NOW! 41. In databases, quickly segregating
new changes from read-only historic state reduces the turbulence of
NOW 42. This can be accomplished by layering potential changes
in time-order on top of their predecessors.

SELECTs requiring key-ranges are one of the more challenging
aspects to RCSI databases. Older snapshots are easier in LSM style
systems as they span fewer levels. The older, the better43.

10.1 Evolving Apps & DBs for Scale
The proposed DB design has many issues, potentially fatal ones.
However, unlike partitioned DBs, it does not suffer from write
skew[13] as it seamlessly adapts to workload changes. We should
revisit our community’s tacit assumption that the "current" value
of a record has "a place to call home".

Similarly, as applications scale they should rethink concentrating
the aggregated values of business state in dedicated records. By
asynchronously aggregating, they can offer more scale.

10.2 Taking Time as You Slowly Share
I grew up with 3 brothers. None of us were in a hurry to share.
Scalable systems must not be in a hurry as they share resources.

Coordination is painful. It hurts to share across records in the
application, data structures in the database, or servers in a scalable
system. Sharing requires patience. You certainly don’t know when
your brother will return what he’s borrowed!

40The existing SQL + RCSI with SKIP LOCKED semantics.
41Of course other partitioning of business state (e.g., by region, management chain, or
product type) helps, too.
42Of course, additional partitioning by key helps, too.
43As someone with 45+ years working on database implementations, "older is better"
can be a comforting thought.

Exponential scaling requires logarithmic consolidation.
Increasing rates of change can become overwhelming, either in an
application or database. Can these copewith amillion-fold increase?
A hierarchy to consolidate changes avoids overwhelming any part
of the system. The depth of the hierarchy is proportional to the
logarithm of the scale as work is consolidated in stages.

Logarithmic consolidation can flow UP and DOWN.
Application consolidation flows UP a hierarchy as business values
are aggregated over time. Database consolidation flows DOWN
a hierarchy as an exponentially growing number of changes are
organized to be read by an exponentially growing set of keys. LSMs
are one way to provide logarithmic management of exponential
growth. See Figures 3 and 5.

10.3 Conclusions Reached in This Paper
Our introduction (§1.3, §1.4, §1.5, & §1.6) presented this paper’s
conclusions in some detail. We summarize these conclusions here.

#1) The BIG DEAL (SQL + RCSI) semantics are scalable.
The BIG DEAL splits scaling responsibilities:
• Scalable apps don’t concurrently update the same key.
• Scalable DBs don’t coordinate across disjoint TXs.

#2) The BIG DEAL has guarantees & weaknesses.
The SQL RCSI interface has two aspects seen by databases:
• Guarantees that the DB must provide to the app.
• Weaknesses that are tolerated today by RCSI applications
ensuring the DB may exploit them.

#3) Domain specific apps change behavior as they scale.
An application’s domain specific behavior weakens as it scales:
• Future commitments are fuzzier:
Human users get weaker promises.
• Past biz state is blurry at first & gets clearer over time:
The nature of this blurriness depends on the application’s
business domain.

#4) Scalable DBs have no “current” data, only snapshots.
Organizing data by its creation time empowers scalability:
• Updates create new record-versions
and should not coordinate with readers.
• Reads are always by snapshot time
and should not coordinate with updates.

Today’s Databases Don’t Scale!

Reads & writes fight to access the "current" record-version
on the way to the snapshot’s record-version.

Scalable OLTP in the Cloud: What’s the BIG DEAL? CIDR’24, January 14-17, 2024, Chaminade, Santa Cruz, CA USA

REFERENCES
[1] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica, Stratos

Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Meth-
ods: The RUM Conjecture. https://doi.org/10.5441/002/edbt.2016.42

[2] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickenson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor,
Marcel van der Holst, and Dale Woodford. 2017. Spanner: Becoming a SQL
System. SIGMOD 2017 Proceedings of the 2017 ACM International Conference on
Management of Data (May 14th-19th 2017), 331–343.

[3] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein,
and Ion Stoica. 2014. Coordination avoidance in database systems (Extended
version). arXiv preprint arXiv:1402.2237 (2014).

[4] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. SIGMOD Rec. 24, 2 (may
1995), 1–10. https://doi.org/10.1145/568271.223785

[5] Philip A. Bernstein, Philip A. Bernstein, and Nathan Goodman. 1981. Concurrency
Control in Distributed Database Systems. ACM Comput. Surv. 13, 2 (June 1981),
185–221. https://doi.org/10.1145/356842.356846

[6] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (June 2008), 26 pages. https://doi.org/10.1145/1365815.
1365816

[7] Shanshan Chen, Xiaoxin Tang, Hongwei Wang, Han Zhao, and Minyi Guo. 2016.
Towards scalable and reliable in-memory storage system: A case study with Redis.
In 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 1660–1667.

[8] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (jun 1979),
121–137. https://doi.org/10.1145/356770.356776

[9] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heider, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Llloyd, Sergey Melnik, David Mwaura978-0-321-84268-8, David Na-
gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s
Globally-Distributed Database. Tenth USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12) (October 8th - 10th 2012), 251–264.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples (Stevenson, Washington, USA) (SOSP ’07). Association for Computing Ma-
chinery, New York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[11] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of
Consistency and Predicate Locks in a Database System. Commun. ACM 19, 11
(nov 1976), 624–633. https://doi.org/10.1145/360363.360369

[12] Dieter Gawlick and David Kinkade. 1985. Varieties of Concurrency Control in
IMS/VS Fast Path. Technical Report. https://www.hpl.hp.com/techreports/
tandem/TR-85.6.pdf

[13] David Kenneth Gifford. 1981. Information storage in a decentralized computer
system. Stanford University.

[14] J Gray et al. 1987. NON-STOP SQL. In Proc. 2nd International Workshop on High
Performance Transaction Systems, Asilomar, CA.

[15] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann. 1070 pages.

[16] J. N. Gray, R. A. Lorie, and G. R. Putzolu. 1975. Granularity of Locks in a Shared
Data Base. In Proceedings of the 1st International Conference on Very Large Data
Bases (Framingham, Massachusetts) (VLDB ’75). Association for Computing Ma-
chinery, New York, NY, USA, 428–451. https://doi.org/10.1145/1282480.1282513

[17] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. 1994. Granularity of Locks
and Degrees of Consistency in a Shared Data Base. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 181–208.

[18] Pat Helland. 2017. Life beyond distributed transactions. Commun. ACM 60, 2
(2017), 46–54. https://doi.org/10.1145/3009826

[19] Pat Helland. 2022. Decoupled Transactions: Low Tail Latency TXs Atop Jittery
Servers. CIDR 2022. https://www.cidrdb.org/cidr2022/papers/p5-helland.pdf

[20] Joseph M Hellerstein and Peter Alvaro. 2020. Keeping CALM: when distributed
consistency is easy. Commun. ACM 63, 9 (2020), 72–81.

[21] IBM. [n. d.]. IBM Information Management System. https://www.ibm.com/
products/ims

[22] IBM-IMS:Wiki [n. d.]. Wikipedia: IBM IMS (Information Management System.
https://en.wikipedia.org/wiki/IBM_Information_Management_System.

[23] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina Panigrahy,
Matthew S. Levine, and Daniel Lewin. 1997. Consistent hashing and random
trees: distributed caching protocols for relieving hot spots on the World Wide
Web. In Symposium on the Theory of Computing. https://api.semanticscholar.org/
CorpusID:263889166

[24] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr 2010), 35–40.
https://doi.org/10.1145/1773912.1773922

[25] Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques: a survey.
The VLDB Journal (Jul 2019). https://doi.org/10.1007/s00778-019-00555-y

[26] C. Mohan, B. Lindsay, and R. Obermarck. 1986. Transaction Management in the
R* Distributed Database Management System. ACM Trans. Database Syst. 11, 4
(dec 1986), 378–396. https://doi.org/10.1145/7239.7266

[27] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.
https://doi.org/10.1007/s002360050048

[28] Oracle. 2011. Oracle DB Concepts 11g. https://docs.oracle.com/cd/E25054_01/
server.1111/e25789.pdf.

[29] PostgreSQL 2023. PostgreSQL 15.3 Docs. https://www.postgresql.org/
/files/documentation/pdf/15/postgresql-15-US.pdf.

[30] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-free replicated data types. In Stabilization, Safety, and Security of Dis-
tributed Systems: 13th International Symposium, SSS 2011, Grenoble, France, October
10-12, 2011. Proceedings 13. Springer, 386–400.

[31] Swaminathan Sivasubramanian. 2012. Amazon DynamoDB: A Seamlessly Scal-
able Non-Relational Database Service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 729–730.
https://doi.org/10.1145/2213836.2213945

[32] SQL Server 2023. SQL Server Isolation. https://learn.microsoft.com/en-us/sql/t-
sql//t-sql/language-reference?view=sql-server-ver16.

[33] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[34] TPC: Transaction Processing Performance Council [n. d.]. https://www.tpc.org/
information/about/history5.asp

[35] ULID [n. d.]. ULID: Universally Unique Lexicographically Sortable Identifier.
https://github.com/ulid/spec.

[36] Wikipedia contributors. 2023. Einstein’s thought experiments — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Einstein%27s_
thought_experiments&oldid=1143806192 [Online; accessed 30-July-2023].

[37] Xinan Yan, Linguan Yang, and Bernard Wong. 2020. Domino: Using Network
Measurements to Reduce State Machine Replication Latency inWANs. In Proceed-
ings of the 16th International Conference on Emerging Networking EXperiments and
Technologies (Barcelona, Spain) (CoNEXT ’20). Association for Computing Ma-
chinery, New York, NY, USA, 351–363. https://doi.org/10.1145/3386367.3431291

[38] Tobias Ziegler, Philip A. Bernstein, Viktor Leis, and Carsten Binnig. 2023. Is
Scalable OLTP in the Cloud a Solved Problem?. In 13th Conference on Innovative
Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January 8-11,
2023. www.cidrdb.org. https://www.cidrdb.org/cidr2023/papers/p50-ziegler.pdf

https://doi.org/10.5441/002/edbt.2016.42
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/356842.356846
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/360363.360369
https://www.hpl.hp.com/techreports/tandem/TR-85.6.pdf
https://www.hpl.hp.com/techreports/tandem/TR-85.6.pdf
https://doi.org/10.1145/1282480.1282513
https://doi.org/10.1145/3009826
https://www.cidrdb.org/cidr2022/papers/p5-helland.pdf
https://www.ibm.com/products/ims
https://www.ibm.com/products/ims
 https://en.wikipedia.org/wiki/
IBM_Information_Management_System
https://api.semanticscholar.org/CorpusID:263889166
https://api.semanticscholar.org/CorpusID:263889166
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/7239.7266
https://doi.org/10.1007/s002360050048
https://docs.oracle.com/cd/
E25054_01/server.1111/e25789.pdf
E25054_01/server.1111/e25789.pdf
https://www.postgresql.org//files/
https://www.postgresql.org//files/
documentation/pdf/15/postgresql-15-US.pdf
https://doi.org/10.1145/2213836.2213945
https://learn.microsoft.com/en-us/sql/t-sql/
https://learn.microsoft.com/en-us/sql/t-sql/
/t-sql/language-reference?view=sql-server-ver16
https://doi.org/10.1145/3318464.3386134
https://www.tpc.org/information/about/history5.asp
https://www.tpc.org/information/about/history5.asp
https://en.wikipedia.org/w/index.php?title=Einstein%27s_thought_experiments&oldid=1143806192
https://en.wikipedia.org/w/index.php?title=Einstein%27s_thought_experiments&oldid=1143806192
https://doi.org/10.1145/3386367.3431291
https://www.cidrdb.org/cidr2023/papers/p50-ziegler.pdf

	Abstract
	1 Introduction
	1.1 A Thought Experiment about Scale
	1.2 What’s OLTP and What’s a Transaction?
	1.3 Conclusion #1: BIG DEAL Semantics Scale
	1.4 Conclusion #2: The BIG DEAL Offers Guarantees & Exposes Weaknesses
	1.5 Conclusion #3) Domain Specific Apps Change Behavior as They Scale
	1.6 Conclusion #4) Scalable Databases Have No “Current” Data, Only Snapshots
	1.7 This Paper Hopes to Provoke Debate
	1.8 What’s Coming in the Rest of the Paper?

	2 The BIG DEAL: What the Database Provides to the Application
	2.1 Historic Perspective: Isolation Semantics Have Relaxed to Increase Scale
	2.2 Row-locks: Separating Application Semantics from Scaling and Concurrency
	2.3 SKIP LOCKED to Expand Concurrency
	2.4 Access Patterns for RCSI: The Sweet Scaling of Snapshot Isolation!

	3 Evolving Apps to Increase Scale
	3.1 My Application Is Successful… Help Me!
	3.2 Logarithmic Rollup of Business State
	3.3 Gaining Wisdom and Clarity with Age
	3.4 Premature Aggregation in OLTP Apps

	4 The “Key” Scaling Challenges in Today’s MVCC Databases
	4.1 Snapshot Isolation: MVCC Helps Apps Scale (at Least in Theory)
	4.2 Today’s Implementations of MVCC: Fighting Your Way Home
	4.3 Today’s Partitioned (or Sharded) Databases: Repartitioning Online Is Very Difficult!

	5 Rethinking OLTP Databases: A Straw-Man Architecture
	5.1 A Hypothetical DB: Server Types and Duties
	5.2 Centralized TXs Imply Decentralized Data
	5.3 Guessing a Good Time to Commit
	5.4 Workers: Centralized Atomic Transactions
	5.5 Decentralized LSM for Older Snapshot Reads
	5.6 Decentralized Traffic-Cops
	5.7 Decentralized Owners: Optimistic Commit
	5.8 Decentralized Owners: Update, Lock, & Read
	5.9 Decentralized Owners: Partitions & Servers
	5.10 Centralized Logging per TX Is Less Brittle

	6 Scalable Application Queuing
	6.1 The Ambiguity of Scalable TX Queues
	6.2 Choosing Disjoint Keys for Queued Work
	6.3 Scalable Dequeue via SKIP LOCKED

	7 Massive Scale: It’s about Time!
	7.1 What’s External Consistency?
	7.2 The Order of Time in Our Hypothetical DB
	7.3 Time & Order: Centralized to Distributed DB
	7.4 The Turbulence of NOW

	8 Related Work
	9 Acknowledgements
	10 Conclusion
	10.1 Evolving Apps & DBs for Scale
	10.2 Taking Time as You Slowly Share
	10.3 Conclusions Reached in This Paper

	References

