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ABSTRACT
A long-standing goal of data management systems has been to build
systems which can compute quantitative insights over large collec-
tions of unstructured data in a cost-effective manner. Until recently, it
was difficult and expensive to extract facts from company documents,
data from scientific papers, or metrics from image and video corpora.
Today’s models can accomplish these tasks with high accuracy. How-
ever, a programmer who wants to answer a substantive AI-powered
query must orchestrate large numbers of models, prompts, and data
operations. In this paper, we present PALIMPZEST, a system that
enables programmers to pose AI-powered analytical queries over
arbitrary collections of unstructured data in a simple declarative
language. The system uses a cost optimization framework — which
explores the search space of AI models, prompting techniques, and
related foundation model optimizations. PALIMPZEST implements
the query while navigating the trade-offs between runtime, financial
cost, and output data quality. We introduce a novel language for AI-
powered analytics tasks, the optimization methods that PALIMPZEST

uses, and the prototype system itself. We evaluate PALIMPZEST on a
real-world workload. Our system produces plans that are up to 3.3x
faster and 2.9x cheaper than a baseline method when using a single-
thread setup, while also achieving superior F1-scores. PALIMPZEST

applies its optimizations automatically, requiring no additional work
from the user.

1 INTRODUCTION
Advances in AI models have driven progress in applications such
as question answering [11, 25], chatbots [5], autonomous agents
[17, 18], and code synthesis [7, 9]. In many cases, these systems
have evolved far beyond posing a simple question to a chat model:
they are compound AI systems [24] that combine elements of data
processing, such as Retrieval Augmented Generation (RAG); ensem-
bles of different models; multi-step chain-of-thought reasoning; and
in many cases, cloud-based modules. It is easy for the runtime, cost,
and complexity of these AI systems to escalate quickly, particularly
when applied to large collections of documents.

The performance gap between traditional data processing compo-
nents and AI-powered components is profound. Naively scaling AI
systems to process workloads with thousands or millions of inputs
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requires spending a large amount of runtime and money execut-
ing high-end AI models. For instance, a high-quality open source
LLM on a modern GPU processes about 100-125 tokens per second,
yielding a throughput of less than 1 KB per second, assuming that
each token averages 5 bytes. OpenAI’s GPT-4o mini model costs
15 cents for 1M input tokens, equivalent to processing 5MB of data.
These numbers are many orders of magnitude worse than any other
component of the modern data processing stack, such as storage,
network bandwidth, SQL query processing time, and so on. Thus,
optimizing the use of AI components is crucial. Meanwhile, current
AI infrastructure is in tremendous technical flux. New models and
implementation techniques are published weekly, while model costs
and runtimes change frequently. Harnessing the latest advances in
model runtime, cost, and quality is complex, error-prone, and re-
quires developers of AI applications to constantly rewrite and retune
their systems.

AI engineers face a variety of technical decisions, including opti-
mizing prompt wording and strategy (e.g. chain-of-thought, ReAct
[23]), selecting the best model for each subtask while balancing
time, cost and quality, and deciding on the best implementation
approach for each subtask (e.g. using a foundation model query,
synthesized code, locally trained model, or a mixture of agents [20]).
Additionally, engineers must manage GPU cache and memory uti-
lization, handle LLM context limits, design efficient execution plans
for scaling to larger datasets, and integrate parallelized components
for optimal system efficiency. Decisions on integration with external
data systems also require careful parameter selection to achieve the
best trade-offs between speed, cost, and quality.

The space of possible decisions is vast, and choosing wisely de-
pends on low-level details of the exact task. Moreover, the definition
of "best" can change over time: a developer might prefer "cheap
and low-quality" execution when quickly testing initial proof-of-
concept ideas, then switch to "costly but high-quality" for customer
deployment. Finally, the changing technical landscape means that
the optimization choices made today might be obsolete tomorrow.

Our Goal: The key insight is that machines, not human engi-
neers, should decide how best to optimize AI applications. Engineers
should be able to write AI programs at a high level of abstraction
and rely on an optimizer to find a physical implementation that best
fits their use case. This concept echoes the circumstances that led to
the creation of the relational database query optimizer in the 1970s
— a period marked by the need for performance enhancements amid
significant technological shifts. While today’s technical challenges
differ, the principle of declarative program optimization remains
profoundly relevant.
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Algorithm 1 Optimized Plan Selection
Require: 𝑐𝑜𝑑𝑒 , 𝑝𝑜𝑙𝑖𝑐𝑦 # Step 1○

1: 𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑠 = getLogicalPlans(𝑐𝑜𝑑𝑒) # Step 2○
2: 𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝑠 = getSentinelPlans(𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑠) # Step 3○
3:
4: 𝑝𝑙𝑎𝑛𝑆𝑡𝑎𝑡𝑠 = {}
5: for 0...NUM_SAMPLES do
6: 𝑖𝑛𝑝𝑢𝑡 = getSampledInput()
7: 𝑠𝑡𝑎𝑡𝑠 = runAndProfile(𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙𝑠 , 𝑖𝑛𝑝𝑢𝑡 ) # Step 4○
8: planStats.update(𝑠𝑡𝑎𝑡𝑠) # Step 5○
9: end for

10:
11: 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑠 = getPhysPlans(𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑠 , 𝑝𝑙𝑎𝑛𝑆𝑡𝑎𝑡𝑠)
12: 𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑃𝑙𝑎𝑛𝑠 = naivePrune(𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑃𝑙𝑎𝑛𝑠)
13: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = scoreAndPrunePlans(𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑃𝑙𝑎𝑛𝑠 , 𝑝𝑙𝑎𝑛𝑆𝑡𝑎𝑡𝑠)
14: return chooseBestPlan(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , 𝑝𝑜𝑙𝑖𝑐𝑦) # Step 6○

Figure 1: Overview of the PALIMPZEST system. Users write their program(s) in a declarative language which undergoes compilation
1○, logical plan generation 2○, and physical plan generation 3○. Subsequent steps involve profiling sample plans 4○ and analyzing

performance statistics to estimate costs 5○. The optimal plan, tailored to user-specified preferences (e.g. to maximize quality at fixed
cost), is selected 6○ and executed, delivering relational results to the user 7○.

In this paper, we propose PALIMPZEST1, a system that enables en-
gineers to write succinct, declarative code that can be compiled into
optimized programs. PALIMPZEST is designed to optimize a broad
class of data-intensive AI workloads we term Semantic Analytics
Applications (defined in Section 2), which includes large-scale infor-
mation extraction, data integration, discovery from scientific papers,
image understanding tasks, and multimodal analytics. As shown in
Figure 1, when running an input user program, PALIMPZEST consid-
ers a range of logical and physical optimizations, then yields a set of
possible concrete executable programs. PALIMPZEST estimates the
cost, time, and quality of each one, then chooses a program based on
runtime user preferences. The system is designed to be extensible so
that new optimizations can be easily added in the future. Just as the
RDBMS allowed users to write database queries more quickly and
correctly than they could by writing traditional code, PALIMPZEST

will allow engineers to write better AI programs more quickly than
they could unaided.

Our Approach: A core challenge in building PALIMPZEST is
creating an optimizer that can marshal many optimizations to meet
a user’s cost, runtime, and quality goals. By using a high-level,
type-focused, and declarative language, PALIMPZEST can exploit
many optimizations that are not otherwise available. Another key
challenge involves designing a programming interface that simul-
taneously enables engineers to express the broadest possible set of
AI programs while imposing structure on their programs that the
optimizer can exploit. To this end, we created a Python library that
implements a thin abstraction over an underlying relational algebra.
The core intellectual difference between PALIMPZEST and previous
database-style systems is the addition of the relational convert op-
erator, which transforms an object of one user-defined schema to
another. This operator, implemented using various methods, often
based on foundation models — allows the programmer to implement
many AI tasks in a relational and optimizable style.

Contributions: In this paper we:

1Like an ancient palimpsest, our system entails constant revision and rethinking,
in our case by the optimizer. Only zestier! Please check the open-source code
https://github.com/mitdbg/palimpzest

• Introduce Semantic Analytics Applications (SAPPs), a prominent
yet demanding class of data-intensive AI workloads that can bene-
fit from many traditional ideas in data management. Addressing
them requires a range of solutions and abstractions. (Section 2.)

• Discuss the architecture of PALIMPZEST, including the convert
operator and the optimization module, and explore how it is de-
signed to tackle the challenges associated with SAPPs. (Section 3.)

• Describe a set of physical and logical optimizations implemented
and evaluated in our prototype. (Section 4.)

• Present experimental results demonstrating that with these opti-
mizations, PALIMPZEST can execute SAPP workloads in both
single and parallel modes, while offering a range of trade-offs that
are more favorable than those of a baseline approach. (Section 5.)

2 WORKLOADS
Before we describe the details of the PALIMPZEST system, it is
useful to discuss the workloads PALIMPZEST aims to support, in
particular, the semantic analytics applications — or, SAPPs.

SAPPs (1) combine traditional data processing and AI elements,
(2) potentially process large amounts of data, and (3) can be decom-
posed into a tree of operations over sets of data objects. As a running
example, consider a Real Estate Search task. In this task, the user
wants to search all of the real estate listings near Cambridge, MA to
find a house that is (a) modern and attractive, (b) within two miles
of MIT, and (c) within a certain price range.

This task meets the first criterion as it likely requires a vision or
text model to analyze textual listings and images to determine if a
house is "modern and attractive," and to extract price and location
data from text. The second criterion is met with Zillow currently
displaying 1,327 home listings in the Cambridge and Boston areas,
each with a text description and typically over 10 images. Finally, the
task can be decomposed into a tree of operations over the listing text
and images that compute fields (e.g. address, price, attractiveness)
and apply selection predicates.

Optimization Challenges. The ideal implementation of an AI
system for a SAPP workload will jointly optimize its AI- and con-
ventional data processing elements. For example, in Real Estate
Search, an extremely naive implementation might waste time and
money processing images of apartments to test whether they are
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1 import palimpzest as pz
2
3 class Email(pz.TextFile):
4 """Represents an email, subclass of text file"""
5 sender = pz.StringField(desc="The email address of the

sender", required=True)↩→
6 subject = pz.StringField(desc="The subject of the email",

required=True)↩→
7
8 # define logical plan
9 emails = pz.Dataset(source="enron-emails", schema=Email)

10 emails = emails.filter("The email is not quoting from a news

article or an article ...")↩→
11 emails = emails.filter("The email refers to a fraudulent scheme

(i.e., 'Raptor', ...")↩→
12
13 # user specified policy and plan execution
14 policy = pz.MinimizeCostAtFixedQuality(min_quality=0.8)
15 results = pz.Execute(emails, policy=policy)

Figure 2: PALIMPZEST code for an email processing task. The
user program constructs a sequence of logical operations (e.g.,
scan, convert, filter) which define an initial logical plan. The user
also specifies a policy, i.e., a preference for where to operate on
the Pareto frontier of physical plans. The plan and policy are
fed into pz.Execute, which compiles the initial logical plan into
a set of physical plans, chooses the physical plan that is Pareto-
optimal for the given policy, and executes that plan.

“modern and attractive" — only to discard them when they fail to
meet text-based constraints. A slightly more sophisticated implemen-
tation would reorder the plan so that it applies the cheapest and most
restrictive constraints first, thereby avoiding the time and expense of
invoking a vision model on candidates that will later be discarded.
The decisions around which optimizations to employ are unique and
specific for each new task and dataset.

Optimizing an AI system for SAPP workloads involves accurately
predicting runtime, cost, and quality for each data processing step,
which is particularly challenging for semantic tasks. For instance,
predicting the performance of a vision model requires understanding
the input/output tokens per record and the total processed records.
Additionally, assessing output quality without labeled data often
relies on error-prone heuristics or costly comparisons with a superior
model. The system must also forecast how various physical opti-
mizations, like using multiple models or reducing image resolution,
will affect these metrics. We discuss how PALIMPZEST performs
cost estimation and searches the space of physical plans in Section 3.

3 OVERVIEW
PALIMPZEST treats its programs primarily as a form of computing
relational views: the user specifies a (set of) input relation(s) (called
Datasets) and a target output relation to be computed. Each rela-
tion has a corresponding Schema. The user also describes a series
of operations to be applied that transform the input(s) into the output.
Figure 2 shows a short example program.

Unlike SQL, PALIMPZEST is intended mainly to be used as a
library in a host language: the current implementation is in Python
although there is no reliance on any language-specific features.

The logical relational operators supported by PALIMPZEST are
shown in Table 1. Some of the operators, such as groupby, aggre-
gation, and limit, are not showcased in Figure 2. These operators
currently follow their standard definitions from the data management
literature, but in the future groupby and aggregation could also be im-
plemented using AI-based operations. We emphasize that users don’t

Table 1: PALIMPZEST’s full relational algebra includes operators
which produce multiple relations (e.g., Group by).

Project : 𝜋(rel., cols) Group by : Γ(rel., group_cond., agg.)

Select : 𝜎(rel., predicate) Convert : 𝜒(rel., schema_a, schema_b)

Limit : 𝐿(rel., limit) Aggregate : 𝛼(rel., func)

need to specify the implementation of a particular operation. Instead,
it is the system’s job to implement and perform the operation. By
employing a range of different AI models and generation techniques,
PALIMPZEST can automatically compute an implementation for the
data-flow corresponding to a user’s program.

Convert: The Convert operator transforms a typed data object
with schema A into a new object with a different schema B, by
computing the set of fields in schema B which do not explicitly exist
in schema A. One physical implementation of convert uses an LLM:
the fields of schema A will be marshaled into a prompt as key-value
pairs along with the user-provided field descriptions, and the LLM
will be asked to produce the output field(s) for schema B.

The correct behavior of a convert operation is often implied only
by the user’s specification of the input and output Schemas. For
example, in Figure 2, the convert operator (implied by the call to
pz.Dataset with the specified schema) extracts the sender and
subject fields from raw text to produce an Email.

Cost Optimization Framework: At its core, PALIMPZEST

enables users to define and execute logical plans, which are se-
quences of relational operations on datasets. The declarative na-
ture of these plans often leaves the execution details underspecified.
PALIMPZEST’s cost optimizer plays a crucial role in identifying
(near) Pareto-optimal physical implementations of these plans that
meet user preferences. The process from program implementation
to the selection and execution of the most cost-effective plan is
illustrated in Figure 1 and algorithmically detailed in Algorithm 1.

Developers begin by writing declarative programs, such as the
one shown in Figure 2, which lazily constructs a sequence of data-
loading and processing logical operations. On line 14, the developer
specifies a policywhich determines how the system should choose
among multiple Pareto-optimal implementations of the logical plan.
(In this case, the plan with the lowest expected financial cost, subject
to a lower bound on quality, is preferred.) The current policies are
predefined to focus on runtime, cost, or quality, with customizable
parameters set by users. Upon executing Execute() on line 15,
this chain is compiled into an initial logical plan by the Program Op-
timizer (step 1○; Algorithm 1, line 1). This plan undergoes logical
optimization to generate functionally equivalent plans with varying
cost, runtime, and quality trade-offs (step 2○; Algorithm 1, line 2).
For our prototype implementation, the only logical optimization
we consider is filter pushdown, but more optimizations (e.g. join
re-ordering) could also be considered in the future.

For each logical plan, the Program Optimizer generates a larger
set of candidate physical plans (step 3○). This stage includes de-
cisions specific to AI systems, such as model choice and prompt
generation. For instance, combining multiple subtasks into a single
LLM query to reduce token duplication is an optimization similar
to FrugalGPT’s query concatenation method [4]. In the worst case,
this would require enumerating an exponentially large number of
physical plans and estimating the performance of each one. However,
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in practice, we make the simplifying assumption that operators are
independent. This simplifies our problem of estimating the runtime,
cost, and quality of each operator, which we can then compose to
estimate the runtime, cost, and quality of a much larger space of
plans. Our assumption of operator independence is strong, however
it makes estimating plan costs for an exponentially large space of
plans tractable and still results in the optimizer selecting plans which
perform well in practice (as we will show in Section 5).

To efficiently estimate per-operator statistics, PALIMPZEST exe-
cutes a set of sentinel plans on a small set of validation examples,
where each plan uses a different model for its LLM-enabled oper-
ations. In our prototype, the validation examples were the first 𝑁
records of the workload (for small 𝑁 relative to the workload size).
For each operator, we directly observe a distribution of runtimes
and per-record cost of execution. We also infer a distribution of the
quality of each operator by comparing its performance to that of
the operator which uses the “champion model" (e.g. GPT-4 in our
experiments, but generally the most expensive and/or highest quality
model). While there is no guarantee that the champion model’s out-
put is correct, computing quality in this manner guarantees that (at
worst) we can identify operators and plans which provide similar out-
put quality to the champion model at a fraction of the cost. (We may
also validate operator quality against groundtruth labels, although we
have left this to future work). Given these per-operator estimates of
runtime, cost, and quality, PALIMPZEST estimates the quality of each
physical plan by composing its per-operator estimates. Specifically,
it sums the runtime and cost of each operator and takes the product
of their qualities. For quality metrics such as accuracy, taking the
product of qualities is consistent with our operator independence
assumption. The Program Optimizer then generates a potentially
large set of programs consistent with the user’s input, varying across
the optimization space of runtime, financial cost, and quality. How-
ever, PALIMPZEST still needs to compute estimates of these metrics
for each physical plan (steps 4○ and 5○; Algorithm 1, lines 4-9).
The Plan Executor executes a small set of sentinel plans to gather
sample data on plan execution statistics. The quality of plan outputs
is then evaluated against the output from a “champion" plan, at the
granularity of an individual operator. (We currently test against the
plan which uses GPT-4 for every operation).

Finally, the Program Optimizer selects the best physical plan
based on its plan estimates and the policy provided by the user (step
6○; Algorithm 1, line 14). This choice is then executed by the Plan

Executor, which utilizes computation and financial resources, poten-
tially drawing on many external models and data service providers
(step 7○).

This optimization framework helps PALIMPZEST hypothesize,
select, and execute plans better optimized for user preferences.

4 PROGRAM OPTIMIZATION
Managing and exploiting a large space of useful optimizations is
PALIMPZEST’s core feature. In this section, we describe the key
logical and physical optimizations that can be used by PALIMPZEST.

Logical Optimizations: PALIMPZEST employs logical optimiza-
tions to refine the logical plan derived from a user’s program, aiming
to enhance runtime efficiency and reduce costs. These optimizations

generate logically equivalent plans that may differ in execution cost
and efficiency due to varying operation costs and filter selectivities.

The implemented optimizations include: (1) Filter Reordering,
permuting the order of selection filters in a logical plan. By evaluat-
ing all possible permutations, PALIMPZEST can potentially minimize
the number of records processed, even though initial selectivities are
unknown and estimated later during execution. (2) Convert Reorder-
ing, rearranging convert operations within the plan. It is particularly
effective when expensive convert operations can be postponed until
after selective filters that do not depend on their outputs, thus saving
computation. Dependencies between operations are considered to
ensure plan equivalence. These optimizations ensure that the logi-
cal plans remain semantically equivalent while potentially differing
in their physical execution, which is crucial for maintaining the
integrity of the results as described below.

Physical Optimizations: PALIMPZEST unlocks numerous low-
level optimizations that are unavailable through standard LLM API
services, thanks to our declarative programming framework. We
implement and evaluate these optimizations to demonstrate their
effectiveness:

(1) Model Selection, i.e., choosing different models and LLM
services to perform different operations. PALIMPZEST can decom-
pose high-level programs into smaller operations and choose the
most appropriate model for each. It might be fine to use a cheap,
small, fast model for easy operations, and only use the expensive
model for harder ones. The idea is simple, but implementing it is
not: because (1) a single program can comprise many operations, (2)
the exact operation decomposition can change depending on other
optimizations, (3) the difficulty of an operation can change over
time, and (4) model quality can fluctuate as LLM services make
updates. This optimization can easily become burdensome without
PALIMPZEST’s help.

(2) Code Synthesis, i.e., dynamically generating synthesized code
to handle specific operations where deep semantic understanding is
not crucial. By substituting LLM calls with synthesized functions
based on a set of sample inputs, PALIMPZEST significantly reduces
runtime and costs. PALIMPZEST uses an LLM to analyze sample in-
puts and generate functions for conversions, optimizing performance
and resource utilization.

(3) Multi-data Prompt Marshaling, i.e., determining the optimal
way to map user operations to LLM prompts, such as processing
data in a row-centric or column-centric manner. Row-centric pro-
cessing involves a single LLM call for multiple outputs from one
input record, while column-centric processing may enhance accu-
racy by focusing on one field at a time. The choice between these
approaches depends on various runtime factors, and PALIMPZEST

dynamically profiles and optimizes based on these considerations
and user-specified policies.

(4) Input Token Reduction, i.e., minimizing the input data re-
quired for specific operations, which enhances both cost-efficiency
and execution speed. For instance, in document processing, PALIMPZEST

can determine essential input regions for converting a PDF to a Sci-
entificPaper, significantly reducing token usage. This process,
similar to selecting key excerpts in a "micro-RAG" task, is facilitated
by PALIMPZEST’s ability to learn operator properties at the schema
level, optimizing input dynamically during program execution. This
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method’s applicability is limited in scenarios without clear schemas,
such as in the naive chat-processing use case.
PALIMPZEST is actively exploring a range of additional optimiza-
tions. These include reducing output tokens and strategically sched-
uling and batching requests that share similar characteristics to im-
prove memory and cache utilization, reduce wait times, and increase
throughput, all while maintaining data quality with minimal compro-
mise.

5 EVALUATION
Our Prototype: We have implemented an early PALIMPZEST proto-
type in about 9,200 lines of Python code. It implements the operators
in Table 1, and can run many programs, although in this paper we
primarily report detailed results for the Real Estate Search due to
its multi-modality, diverse operators, and challenging optimization
space. A comprehensive workload evaluation is available in our
technical report [12]. We have implemented the optimizations de-
scribed in Section 4: model selection, code synthesis, multi-data
prompt marshaling, and input token reduction. We currently test
the system using the gpt-3.5-turbo-0125, gpt-4-0125-
preview, and gpt-4-vision-preview OpenAI models [14]
and the Mixtral-8x7B-Instruct-v0.1 model served by the
Together.ai API [2]. We also use the Modal online service [1] for
bulk non-AI function execution, such as parallel PDF processing
and equation image extraction and conversion.

PALIMPZEST is implemented using the iterator model. Thus, plan
execution proceeds one record at a time with each operator blocking
until it receives the necessary input record(s) from its source oper-
ator(s). For clarity’s sake, most of our experiments report simple
single-threaded execution time, so we can better show the work
saved by system optimizations. However, many operations — in-
cluding the convert operator — have parallel implementations that
take advantage of parallelism offered by the underlying service or
hardware, and we report some experiments with parallelism enabled.

Evaluation Workload: We evaluated PALIMPZEST using the
Real Estate Search workload, which consists of 100 manually scraped
real estate listings from Boston and Cambridge, MA. Each listing
included descriptions in natural language and three images. We
manually labeled each listing based on whether it was in a specific
geographic area, within a given price range, and “modern and at-
tractive with lots of natural sunlight." Of the listings, 23 met all
criteria.

Optimization Trade-offs: Our first experimental claim is that
PALIMPZEST can use its three optimization strategies to create a
set of physical plans that offer appealing trade-offs regardless of
the user policy. To evaluate this claim, we ran PALIMPZEST up to
(but not including) the final step in Algorithm 1. We then took the
set of frontier plans, three baseline plans, and the top-𝑘 plans from
the reducedCandidates that were closest to the approximated Pareto
frontier, such that we ultimately executed 20 plans in total. Our three
baselines were the naive physical plans for each workload which
used only GPT-4, GPT-3.5, or Mixtral-8x7B, respectively. We chose
these plans as baselines because they represent the performance
one might expect if they naively implemented the system using a
single model without tuning or optimizing individual operators. The
optimization process took 13.1s.

Figure 3: Performance of different plans (bottom-right is better).
Black diamonds are naive plans and green circles are optimized
PALIMPZEST plans. PALIMPZEST plans are consistently on the
Pareto frontiers of runtime vs. quality and cost vs. quality.

Figure 3 shows the runtime, cost, and quality observed from the
execution of all the aforementioned plans. Plans closer to the bottom-
right are better. During sample-based statistics collection, we used
5% of the workload’s total input size to run our sentinel plans, which
gathered data to help estimate the cost of all plans.

We found that PALIMPZEST is capable of creating useful plans
at a number of different points in the trade-off space. PALIMPZEST

demonstrated its ability to generate physical plans that offer signifi-
cant improvements over baseline plans. Specifically, PALIMPZEST

was able to produce physical plans (e.g. PLAN 1) that obtained 3.3x
lower runtime, 2.9x lower cost, and up to 1.1x better F1-score than
the GPT-4 baseline. These performance improvements are especially
impressive considering the majority of the cost and runtime on this
workload are dominated by calls to the vision model — which cannot
be optimized away using the methods in our current prototype. In the
future, we will explore options for visual processing optimizations.

The physical plan for PLAN 1 achieved improved performance
relative to the GPT-4 baseline through the combination of two opti-
mizations. First, the plan re-ordered the execution of the convert and
filter operations such that the text-based operators were executed
before the image-based operators. This provided significant runtime
and cost savings by avoiding calls to the GPT-4 vision model al-
together. Second, the plan used input token reduction to trim the
real-estate listing text by 50%. This technique was particularly ef-
fective, as the home address and listing price regularly appear at the
top of the text for the listing.

It is worth mentioning that the GPT-4 baseline plan occasionally
failed to format its output(s) correctly, which contributed to its lower
F1-score. Implementing a regular expression to enforce formatted
output, as used in SGLang [26], could be a potential solution. How-
ever, users rarely know ahead of time whether a model will succeed
for a given prompt and input. A key benefit of using PALIMPZEST is
that it can detect bad plans for the user at runtime, and select better
ones instead.

We have shown that PALIMPZEST can generate plans like PLAN
1, which provides users with compelling performance trade-offs.
However, this does not automatically confirm that PALIMPZEST’s
optimizer will choose these plans during runtime. In the following
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Figure 4: PALIMPZEST selects plans with better costs, better runtimes, and comparable F1-scores relative to a naive GPT-4 baseline.
Table 2: PALIMPZEST selects plans which satisfy (or nearly sat-
isfy) the given policy constraint. Constraints were chosen to be
feasible but non-trivial to satisfy.

Policy Constraint Cost Runtime (s) F1-score

Max F1 Cost< $3 $1.87 577 0.79

Max F1 Time< 600 s $1.88 502 0.80

Min Cost F1> 0.80 $1.87 505 0.79

section, we demonstrate that for a variety of policies, PALIMPZEST’s
cost optimizer does indeed identify and select such plans.

Cost Optimizer and Performance Gains: Our second experi-
mental claim is that PALIMPZEST can identify plans that have better
end-to-end runtime, cost, and quality than a naive plan that uses the
same state-of-the-art language model for each operation. To test this,
we executed PALIMPZEST as outlined in Algorithm 1, including the
crucial final step of selecting the optimal plan for a given policy. We
implemented three specific policies: Policy A aimed to maximize
quality while keeping costs below $3. Policy B sought to maximize
quality with a runtime constraint of less than 600s. Policy C focused
on minimizing cost while ensuring an F1-score > 0.8. These thresh-
olds were designed to be challenging yet achievable based on our
findings in the previous experiments and detailed in Table 2.

Figure 4 presents our results across three performance metrics,
with each metric displayed in a separate column. The results are
further divided by the physical plan selected by the optimizer, with
each plan occupying a separate row. We compared the plans chosen
by PALIMPZEST to a baseline plan, which employs GPT-4 for all
conversion and filtering operations.

Overall, we found that PALIMPZEST identifies plans in the space
of physical candidates which (1) offer significant performance im-
provements over the GPT-4 baseline, (2) generally satisfy policy con-
straints, and (3) have speedups and cost savings which outweigh the
optimization overhead. The plans chosen by PALIMPZEST achieved
(on average) 67.5% lower runtime, 65.7% lower cost, and 6% better
F1-score than the baseline GPT-4 plan.

We also evaluated PALIMPZEST using parallel implementations
of the convert and filter operations, achieving substantial runtime
reductions while maintaining competitive costs and F1-scores com-
pared to a single-threaded baseline. Detailed results are available
in our technical report [12]. PALIMPZEST’s straightforward parallel
processing abstractions significantly enhance performance without
additional user effort.

6 RELATED WORK
The literature on programming frameworks for LLMs and foundation
models is extensive, focusing on prompt management and task-
specific functionalities. LangChain [6] and LlamaIndex [13] provide
libraries for managing prompt templates and user-provided examples,
yet they lack higher-level task representations. DSPy [8] enhances

prompt quality by translating high-level LLM goals into concrete
prompts, differing from PALIMPZEST in its focus and absence of
performance and cost considerations. SGLang [26] merges prompt
templating and output constraints with performance enhancements
like parallel execution, potentially complementing PALIMPZEST in
future integrations. However, the structured generation language
remains low-level, requiring developers to make numerous manual
decisions.

SkyPilot [22] optimizes the deployment of ML tasks across cloud
platforms focusing on cost efficiency, a goal shared with PALIMPZEST,
though PALIMPZEST also seeks efficient program-specific implemen-
tations. FrugalGPT [4] optimizes atop LLM platforms [14], aligning
with PALIMPZEST’s efficiency objectives, but lacks clarity in task
description and broader AI program integration. AutoGen [21] en-
visions LLM applications as agent conversations, differing signifi-
cantly from PALIMPZEST’s data processing model. This vision of
LLM applications is driven by a fundamentally different model from
our own, which is based more in the data processing tradition.

In query planning, Caesura [19] generates executable query plans
from natural language descriptions for multimodal data, but lacks
optimization capabilities, a gap PALIMPZEST addresses with explicit
programmer input for logic construction. ZenDB [10] focuses on
structural optimizations for document queries, sharing objectives
with PALIMPZEST but limited to text data and logical optimizations.
Evaporate [3] examines cost-quality trade-offs in LLM workloads
using static prompts and code generation, similar to PALIMPZEST’s
strategies but more narrowly focused on information extraction.
Lotus [16] offers extensive semantic operations with specialized
optimizations. However, its approach to query-level optimization
relies on user specifications and lacks automated logical and phys-
ical optimization processes. Recent work [15] employs LLMs as
digital crowd workers to refine prompt engineering, replacing human
tasks to enhance efficiency and manage trade-offs in LLM opera-
tions. Unlike crowd-based systems, PALIMPZEST leverages LLMs
to offer broader flexibility (e.g., rapid code generation), addresses
unique challenges like token optimization, and avoids issues with
inconsistent human labor.

7 CONCLUSION
PALIMPZEST allows users to program AI workloads using a declar-
ative language and optimizes them efficiently, enabling focus on
application logic rather than AI model intricacies. It integrates log-
ical and physical planning for optimal execution and uses sample
data to balance runtime, cost, and quality. This makes PALIMPZEST

valuable for developers and organizations leveraging modern AI
efficiently and affordably, particularly in developing SAPPs.
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