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ABSTRACT

LLMs demonstrate an uncanny ability to process unstructured data,
and as such, have the potential to go beyond search and run complex,
semantic analyses at scale. We describe the design of an unstruc-
tured analytics system, Aryn, and the tenets and use cases that
motivate its design. With Aryn, users specify queries in natural lan-
guage and the system automatically determines a sermantic plan and
executes it to compute an answer from a large collection of unstruc-
tured documents. At the core of Aryn is Sycamore, a declarative
document processing engine, that provides a reliable distributed
abstraction called DocSets. Sycamore allows users to analyze, enrich,
and transform complex documents at scale. Aryn includes Luna, a
query planner that translates natural language queries to Sycamore
scripts, and DocParse, which takes raw PDFs and document images,
and converts them to DocSets for downstream processing. We show
how these pieces come together to achieve better accuracy than
RAG on analytics queries over real world reports from the National
Transportation Safety Board (NTSB). Also, given current limita-
tions of LLMs, we argue that an analytics system must provide
explainability to be practical, and show how Aryn’s user interface
does this to help build trust.

1 INTRODUCTION

Large language models have inspired the imagination of industry,
and companies are starting to use LLMs for product search, cus-
tomer support chatbots, code co-pilots, and application assistants.
In enterprise settings, accuracy is paramount. To limit hallucina-
tions, most of these applications are backed by semantic search
architectures that answer queries based on data retrieved from
a knowledge base, using techniques such as retrieval-augmented
generation (RAG) [13].

Still, enterprises want to go beyond RAG and run semantic anal-
yses that require complex reasoning across large repositories of
unstructured documents. For example, financial services companies
want to analyze research reports, earnings calls, and presentations
to understand market trends and discover investment opportunities.
Consumer goods firms want to improve their marketing strategies
by analyzing interview transcripts to understand sentiment towards
brands. In legal firms, investigators want to analyze legal case sum-
maries to discover precedents for rule infringement and the actions
taken across a broad set of companies and cases.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

In addition to simple “hunt and peck” queries, for which RAG is
tailored, these analyses often require “sweep and harvest” patterns.
An example is a query like “What is the yearly revenue growth
and outlook of companies whose CEO recently changed?” For this,
one needs to sweep through large document collections, perform
a mix of natural-language semantic operations (e.g., filter, extract,
or summarize information) and structured operations (e.g. select,
project, or aggregate), and then synthesize an answer. Going a step
further, we see “data integration” patterns where users want to
combine information from multiple collections or sources. For ex-
ample, “list the fastest growing companies in the BNPL market and
their competitors,” where the competitive information may involve
a lookup in a database in addition to a sweep-and-harvest phase to
gather the top companies. We also expect complex compositions of
these patterns to become prevalent.

Aryn is an unstructured analytics platform, powered by LLMs,
that is designed to answer these types of queries. We take inspira-
tion from relational databases, from which we borrow the principles
of declarative query processing. With Aryn, users specify what they
want to ask in natural language, and the system automatically con-
structs a plan (the how) and executes it to compute the answer from
unstructured data.

Aryn consists of several components (see Figure 1). The natural-
language query planner, Luna, uses LLMs to translate queries to
semantic query plans with a mix of structured and LLM-based
semantic operators. Query plans are compiled to Sycamore, a docu-
ment processing engine used both for ETL and query processing.
Sycamore is built around DocSets, a reliable abstraction similar to
Apache Spark DataFrames, but for hierarchical documents. Finally,
DocParse uses vision models to convert complex documents with
text, tables, and images into DocSets for downstream processing.

The main challenge for an analytics system built largely on Al
is to give answers that are accurate and trustworthy. We use LLMs
and vision models for different purposes throughout our stack and
carefully compose them to provide answers to complex questions.
Unfortunately, LLMs are inherently imprecise, making LLM output
difficult to verify.

Aryn’s database-inspired approach addresses this challenge in
multiple ways. First, our experience working with customers has
shown how essential ETL is for achieving good quality for both
RAG and analytics use cases. By performing high-quality parsing
and metadata extraction, we can provide the LLM with the context
necessary to reduce the likelihood of hallucinations. Second, by
dynamically breaking down complex questions into query plans
composed of simple LLM-based operations, we can make the query
plan as a whole more reliable than RAG-based approaches. Third,
Aryn exposes the query plan and data lineage to users for better
explainability. A key component of Aryn is its conversational user
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Figure 1: Aryn Architecture

interface. Users can inspect and debug the generated plans, analyze
data traces from execution, and ask follow-up questions to dig in
and iterate. This approach makes it easier for users to navigate their
data and helps build trust in the answers.

In this paper, we describe the motivating use cases for Aryn,
tenets driving its design, and its architecture. We discuss how each
component of Aryn works and how they fit together, through an
end-to-end use case analyzing NTSB! incident reports, which con-
sist of a large collection of unstructured PDF documents containing
text, images, figures, and tables. We also present the user inter-
faces to inspect, analyze, and debug the plans generated by Aryn,
and highlight the simplicity of the Sycamore programming frame-
work that makes it easy to analyze vast collections of hierarchical
unstructured documents. Aryn is fully open source, Apache v2.0
licensed, and available at https://github.com/aryn-ai/sycamore.

2 USE CASES, CHALLENGES, AND TENETS

Enterprises often have document collections with a theme, such
as interview transcripts, earnings reports, insurance claims, city
budgets, or product manuals. Typically, these documents are a mix
of unstructured text with multi-modal data in tables, graphs, and
images. Users often want to ask complex questions or run analyses
that span multiple documents, if not across a broad subset of the
collection.

In working with customers, we see two main classes of use cases:

Ad-hoc Question Answering: There’s been a recent surge in Al
assistants and chatbots for customer support, typically powered by
technical documentation, ticketing systems like Jira, and internal
messaging boards like Slack. Beyond search-based bots, companies
are also building research and discovery platforms for ad-hoc, chat-
driven analytics. For example, financial and legal firms use such
platforms to aggregate internal research or case summaries and
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make them available for analysts to investigate and generate new
insights and strategies.

Report Generation and Business Intelligence (BI): As LLMs
become cheaper and faster, companies have started building LLM-
powered document pipelines to generate reports. For example, these
may be summaries of hours of user interviews, daily highlights ex-
tracted from medical notes of a patient, or legal claims derived from
accident reports. Going a step further, we see customers extracting
structured summary datasets from document collections to help
in critical business decisions. For example, auto insurance firms
want to extract damage and repair data from claim summaries to
understand trends and spot anomalies as potential fraud.

Challenges: LLMs have inspired many new enterprise use cases be-
cause of their remarkable ability to process unstructured documents.
While LLMs hold promise, they are not enough. LLMs inherently
hallucinate, which is a liability in the use cases described above. In
these settings, users need accurate and explainable answers.

RAG is a popular method to answer questions from documents,
but is fundamentally limited. RAG uses semantic search to retrieve
relevant chunks of documents that are then supplied to an LLM
as context to answer a question. While the RAG approach some-
what mitigates hallucination, LLM context windows are limited,
and studies show that LLMs with extremely long contexts cannot
“attend” to everything in the prompt [19]. RAG works for simple
factual questions where an answer is contained in a small num-
ber of relevant chunks of text, but fails when the answer involves
synthesizing information across a large document collection.

Another approach is to extract metadata from documents through
an ETL process (perhaps using LLMs) and load it into a database.
While this addresses scale concerns, this does not handle analyses
that require semantic operations at query time.

As an example, consider the question, “What are the top three
most common parts with substantial damage in accidents involving
single engine aircraft in 2023?”. In NTSB aviation incident reports
(about 170K PDFs reporting on incidents since 1962), the parts
damage details are in free form text descriptions of the incidents.
RAG fails for this because the relevant reports don’t fit into the
LLM context. Moreover, a pure database approach is unhelpful if
the fields to be queried have not been extracted during the ETL
phase. In contrast, Aryn generates a plan that quickly narrows to
the relevant incidents in 2023 with a metadata search, and extracts
the parts data at query time using LLM-based semantic operators.

Tenets: While our approach mitigates concerns of scale, halluci-
nations, and reliability, it does not completely eliminate them. We
argue that all systems and approaches built on Al inherently cannot.
To address these challenges, we adopted the following tenets in the
design of Aryn.

o Use Al for solutions hard for humans to come by, but easy
for humans to verify. The most successful applications of Al
have been where Al is used to generate solutions and those
solutions are verified independently. For example, GitHub
Copilot generates code, and developers verify its correctness
in their natural review and testing workflow. Similarly, Aryn
uses LLMs to generate an initial query plan from natural
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|A0i5tion Investigation Preliminary Report|

t3le"

[Cocation: | Modesto, CA | [Accident Number] WPR23FAQ92
Date & Time: Uanuary 18, 2023, Local [Reqi: i ] N4765G ]
[pircraft: | [Cessna4i4 | [Injuries: | [ Fatal

[Flight Conducted Under] [Part 91: General aviation - Personal [ ] [ I

Text
On January 18, 2023, at 1307 Pacific daylight time, a Cessna 414 airplane, N4765G, was
estroyed when it was involved in an accident near Modesto, California. The pilot was fatally

njured. The airplane was operated as a Title 14 Code of Federal Regulations Part 91 personal
light.

Text

Ehe airplane departed runway 10L at Modesto City-County Airport-Harry Sham Field (MOD) at
259. The pilot’s planned destination was Buchanan Field Airport (CCR), Concord, California.

Figure 2: Output of Aryn DocParse (including table and cell
identification) on a typical PDF NTSB accident report.

language, but a human is able to inspect and modify the plan
if needed.

o Ensure explainability of results. Answers to analytics ques-
tions are hard to verify without manually repeating the work.
We should make it easy for the user to understand the oper-
ation of the system and to audit the correctness of any re-
sult. For example, Aryn provides a detailed trace of how the
answer was computed, including the provenance of interme-
diate results. In addition, users can ask follow-up questions
to navigate the results and build trust.

e Compose narrow Al models and focused Al tasks into a larger
whole. Instead of attempting to build the one true model
in the vein of AGI, we have found it more practical to get
reliability and better quality if we take a systems approach. In
DocParse, we compose a variety of vision models for different
tasks: segmentation, table extraction, and OCR. Similarly,
instead of a single LLM invocation per query, we break down
queries into narrower, more focused operators, potentially
executed by different LLMs. This improves the reliability of
each task, and thereby reliability of the whole system.

3 ARCHITECTURE

Figure 1 shows the high level architecture of Aryn. The first step in
preparing unstructured data for analytics is to parse and label raw
documents for further processing. The Aryn DocParse service uses
modern vision models to decompose and extract structure from
raw documents and transforms them into DocSets. We developed
our own model based on the deformable DETR architecture [36]
and trained on DocLayNet [26].

At the core of Aryn is Sycamore, a document processing engine
that is built on DocSets. DocSets are reliable distributed collections,
similar to Spark [35] DataFrames, but the elements are hierarchical
documents represented with semantic trees and additional metadata.
Sycamore includes transformations on these documents for both
ETL purposes, e.g., flatten and embed, as well for analytics, e.g.,
filter, summarize, and extract. We use LLMs to power many of
these transformations, with lineage to help track and debug issues
when they arise. Sycamore can read data from a data lake where
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Figure 3: The DocParse Pipeline.

unstructured data is kept, and can index processed data in a variety
of databases, including keyword and vector stores, for use during
query processing.

Our query service, Luna, includes the planner that translates
natural language questions into semantic query plans, which are
compiled to Sycamore scripts for execution. We use LLMs for gener-
ating query plans that users can inspect and validate. This provides
explainability for answers and also allows for debugging and quick
iteration. We also use LLMs for implementing semantic query op-
erators like filtering, summarization, comparison, and information
extraction.

The following sections describe each component in more detail.

4 DOCPARSE

One of the lessons we learned early on while building the Aryn
system is that we have to treat data preparation as a key part of
any unstructured analytics system rather than an add on. Parsing
complex documents is difficult, and it is not reasonable to expect
users to be able to convert their data into a text-based format. To
address this need, we built the DocParse service to parse documents
and extract information like text, tables, and images. DocParse
exposes a simple REST API that takes a document in a common
format (PDF, DOCX, PPT, etc) and returns a collection of labeled
chunks that correspond to entities in the source document. For
example, Figure 2 shows a visual representation of how DocParse
parses an NTSB document. It identifies headers, text, and tables, and
further breaks down the structure of the table down to individual
cells.

DocParse is a compound system composed of multiple stages,
as illustrated in Figure 3. We first split each document into pages
and convert each page to an image so that we can leverage vision
models in later stages of the pipeline. This approach, which is com-
monly used in document processing, allows us to support a variety
of formats in a consistent way and take advantage of semantic in-
formation in the rendered document that may be difficult to extract
from the underlying file format such as the relative size or position
of objects on the page.

The next step in the pipeline is segmentation, which uses an
object detection model to identify bounding boxes and label them
as one of 11 categories, including titles, images, paragraphs, and
tables. As we were developing DocParse, we found that many of
the existing open source object detection models performed poorly
on document segmentation, so we trained our own. We used the
Deformable DEtection TRansformer (DETR) architecture [36] and
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Service mAP | mAR
DocParse 0.640 | 0.747
Amazon Textract [1] 0.423 | 0.507
Unstructured (REST API with YoloX) [33] | 0.347 | 0.505
Azure Al Document Intelligence [21] 0.266 | 0.475

Table 1: Segmentation performance on the DocLayNet com-
petition benchmark [32]

trained it on DocLayNet [26], an open source, human-annotated
document layout segmentation dataset. We have made this model
available for use with a permissive Apache v2 license on Hugging
Face [3] and have continued to update the version used by DocParse
by collecting and labeling customer documents. We evaluate the
performance of this model in Section 4.1.

The segmentation model outputs labeled bounding boxes, but
it doesn’t have any information about the text in the document.
The next stage in the pipeline is to extract this text. Depending on
the document format, this is done by reading text directly from
the underlying file format with a tool like PDF Miner? or with an
OCR tool like EasyOCR? or PaddleOCR*. Once we have have the
text and the labeled bounding boxes, we can perform additional
type-specific processing. For instance, for tables, we use a Table
Transformer-based model [30] to identify the individual cells, while
for images we can use a multi-modal LLM to compute a textual
summary.

As part of post-processing, DocParse combines the output from
each page into a final result, either in JSON or a higher-level format
like Markdown. Users can leverage Sycamore to import and manip-
ulate the JSON directly and perform more complex data processing
transformations.

4.1 Evaluation

In order to evaluate the performance of our segmentation model,
we used the DocLayNet competition benchmark [5]. This bench-
mark was developed by the authors of the DocLayNet dataset, it
includes documents drawn from a variety of domains, including
those not directly represented in the training dataset. The evalu-
ation is done using the standard COCO framework [16], which
measures mean average precision (mAP) and mean average recall
(mAR) across the 11 DocLayNet object classes. Table 1 shows the a
comparison of DocParse against several other document processing
services. In order to make the comparison as fair as possible, we
standardized the set of labels across all four services, and removed
results containing labels that were not present in one or more of the
services. More information on our methodology can be found in
the corresponding blog post [32]. Our results show that DocParse
is between 1.5 and 2.4 times more accurate than competing services
in terms of mAP, and between 1.5 and 1.6 times more accurate in
terms of mAR. These results validate our approach and suggest that
DocParse can serve as the first step towards ingesting documents
into an unstructured analytics system.

Zhttps://pypi.org/project/pdfminer/
3https://github.com/Jaided Al/EasyOCR
“https://github.com/PaddlePaddle/PaddleOCR
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5 SYCAMORE

Sycamore is the open-source document processing engine at the
center of the Aryn system [4]. We built Sycamore to support both
data preparation and analytics over complex document sets. One
of the primary motivations for Sycamore was the observation that
the line between ETL and analytics gets blurred when dealing
with unstructured data. In particular, we need the flexibility to
run certain document processing operations either at ETL time or
at query time. For example, the cost of an expensive LLM-based
processing step can be amortized over many queries by running it
once during ETL, but because the space of potential queries is very
large, not all operations can be performed in advance.
To accommodate these challenges, we built Sycamore as a dataflow

system inspired by Apache Spark [35], with extensions to integrate
with LLMs and support unstructured documents.

5.1 Data Model

Documents in Sycamore are hierarchical and multi-modal. A long
document may have chapters that are broken into sections, which
in turn contain individual chunks of text, or entities like tables and
images. The latter data types are particularly important for many
analytics queries and need special treatment. More precisely, a docu-
ment in Sycamore is a tree, where each node contains some content,
which may be text or binary, an ordered list of child nodes, and a set
of JSON-like key-value properties. We refer to leaf-level nodes in
the tree as elements. Each element corresponds to a concrete chunk
of the document and is identified as one of 11 types, such as a text,
image, or table. Each element may have special reserved proper-
ties based on its type. For example, a TableElement has properties
containing rows and columns, while an ImageElement has infor-
mation about format and resolution. DocSets are flexible enough to
represent documents at different stages of processing. For example,
when first reading a PDF, it may be represented as a single-node
document with the raw PDF binary as the content. After parsing,
each section is an internal node and tables and text are identified
as leaf-level elements.

5.2 Programming Model and Operators

Programmers interact with Sycamore in Python using a Spark-like
model of functional transformations on DocSets. Table 2 shows sev-
eral of Sycamore’s operators. We classify these operators as either
structured or semantic. Structured operators correspond to standard
dataflow-style operations. These include functional operators like
map and filter that take in arbitrary Python functions, as well
as transformations like partition and explode that modify the
structure of documents by creating or unnesting elements, respec-
tively. The reduceByKey operation makes it possible to support
map-reduce style operations and implement aggregation by docu-
ment properties. These transforms accommodate the fact that some
documents may be missing certain fields. Sycamore does not yet
support full joins.

Semantic operators leverage LLMs to perform transformations
based on the content or meaning of documents. These operators
are often driven by natural language prompts and are typically
used to enrich document metadata. Many of the semantic opera-
tors, like 11mFilter, can be implemented in terms of the structured
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queryDatabase Scans documents from an index based on key-
word search over the element content or filters
over the properties.
map, filter, flatMap | Transforms documents using standard func-
tional operators.
partition Parses a document using DocParse.
explode Unnests each element and makes it a top-level
document.
reduceByKey Standard reduce operation that can be used
for a variety of grouping and aggregations on
properties on the documents.
write Writes a DocSet to a database.
(a) Structured operators in Sycamore
queryVectorDatabase | Performs semantic search over a collection of
indexed documents, returning a DocSet with
the matches.
1lmFilter Uses an LLM prompt to drop or retain docu-
ments in a DocSet.
llmExtract Extracts one or more fields from each doc-
ument using an LLM, saving the results as
document properties.
11mReduceByKey Similar to reduceByKey, but uses an LLM to
combine multiple documents.
embed Computes embeddings for each document.

(b) Semantic operators in Sycamore

Table 2: Example Sycamore Operators

operators. We still prefer to separate them out because they can
behave very differently in practice, as LLMs are inherently non-
deterministic and users often want to manually inspect the results
of semantic operations. Sycamore supports a variety of LLMs, in-
cluding those from OpenAl and Anthropic, and open source models
like Llama.

The code® in Figure 4 is an example of processing NTSB inci-
dent report documents using Sycamore. The code partitions docu-
ments using DocParse, described in Section 4. It then executes the
11lmExtract transform, which takes a JSON schema and attempts
to extract those fields from each document using an LLM. As shown
in in Figure 5, this approach correctly extracts the state abbreviation
and other fields from the document. Next, we use explode to break
each document into a collection of document chunks, and then we
generate an embedding vector for each chunk. At this point the
DocSet is ready to be loaded into a database like OpenSearch for
later querying (using write).

Finally, queryDatabase and queryVectorDatabase support read-
ing a previously loaded DocSets from a data store. The queryDatabase
operator is analogous to a standard database scan operator, and sup-
ports filters on the metadata as well as keyword search (depending
on the capabilities of the data store). The queryVectorDatabase
operator, in addition to those, also supports semantic search (i.e.,
vector similarity search) over the chunks. While indexing is done
on chunks, Sycamore reassembles these chunks into documents
before passing them to downstream operators.

SWe have elided a few configuration parameters to enhance readability.
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schema = {
"us_state": "string",
"probable_cause": "string",
"weather_related": "bool"
}

ds = context.read.binary("/path/to/ntsb_data")
.partition(DocParse())
.1lmExtract(
OpenAIPropertyExtractor("gpt-40", schema=schema))
.explode()
.embed (OpenAIEmbedder ("text-embedding-3-small"))

Figure 4: Sample Sycamore script.

{
"us_state_abbrev":"AK",
"probable_cause": "The pilot's failure to remove
all water from the fuel tank, which resulted in fuel
contamination and a subsequent partial loss of engine power.",
"weather_related': True

Figure 5: Output of the 11mExtract transform.

5.3 Execution

Sycamore adopts a Spark-like execution model where operations are
pipelined and executed only when materialization is required. To as-
sist with debugging and avoid redundant execution, Sycamore also
supports a flexible materialize operation that can save the output
of intermediate transformations to memory, disk, or cloud storage.
Sycamore is built on top of the Ray compute framework [22], which
provides primitives for running distributed Python-based dataflow
workloads. We chose Ray because it is based on Python, which has
become the language of choice for machine learning applications,
and because it is well-integrated with existing ML libraries.

6 LUNA

A hallmark of relational databases is declarative query processing,
which hides the low-level details of how queries are executed and
makes it easier for application developers to adapt to changing
workloads and scale. LLMs make it possible to leverage declarative
query processing for natural language queries over complex, un-
structured data. We call this LLM-powered unstructured analytics,
or Luna for short.

More specifically, Luna converts a natural language query into a
query plan that runs over DocSets and returns either raw tabular
results or natural language answers. Query plans are executed using
Sycamore’s DocSet operators. To aid explainability, Luna exposes
the logical query plan, data lineage, and execution history, and
allows users to modify any part of the plan to better align with
their intention. The remainder of this section describes the system
in detail.
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6.1 Luna Architecture

Luna consists of a number of pieces that work together to pro-
vide an end-to-end natural-language query processing system over
complex, unstructured data.

Data Inputs and Schema. Luna shares the Sycamore data model
and executes queries against one or more DocSets that have been
indexed in a database. During query planning, we provide the
planner with the schema of each DocSet, which consists of the
properties contained in the documents, along with their data types
and sample values, along with a special “text-representation” field
representing the entire contents of each Document. The schema of
DocSets can evolve over time, based on new semantic relationships
discovered in the data, potentially driven by the query workload.

While Sycamore represents documents hierarchically with el-
ements corresponding to document chunks, we found it more ef-
fective to hide this from the planner and always provide a schema
for complete documents. The Sycamore engine handles splitting
documents into chunks that fit in to the context window of the LLM
used for embedding and reconstructing the full document during
queries.

In our implementation, we primarily use OpenSearch for storing
and querying DocSets, though other data management systems
can be used as long as they support both “keyword” and “seman-
tic search” (i.e., vector similarity queries) and basic filtering by
properties.

Logical Query Operators. Luna uses an LLM for interpreting a
natural language user query. We initially provided the LLM the com-
plete list of physical operators as part of the prompt. However, in our
experiments with several real-world datasets and query workloads,
we found that this approach does not work well for complex and
exploratory analysis queries like: “Analyze maintenance-related in-
cidents by grouping those by aircraft type and maintenance interval
to find patterns of recurring issues.” In particular, we found it diffi-
cult to get the LLM to use grouping operations like reduceByKey
effectively and the plans generated would often run into context
window size limitations.

Instead, we decided to differentiate between logical and physical
operators with respect to query planning and execution. Luna pro-
vides a simpler set of high-level logical operators to the LLM for
query planning purposes, and rewrites the resulting logical plan
into physical operators before execution. This also makes it easier
for the user to understand the plan and debug the execution.

Many simple logical operators map one-to-one to physical Sycamore

operators, including single-pass per-document operations like map,
filter, and 11lmExtract, but for operations that span multiple
documents, we have found it often works better to have more spe-
cific operators rather than low-level primitives. For example, the
following logical operators are exposed to the Luna planner:

e groupByAggregate: Performs a database style group-by and
aggregation.

e 11mCluster: Clusters documents using k-means based on
semantic similarity of one or more fields.

e l1lmGenerate: Summarizes one or more documents based
on a prompt. This is analogous to the “G” in “RAG” and is
often used at the end of a plan.

Anderson et al.

Each of these operators can be implemented in terms of the exist-
ing Sycamore physical operators. For instance, groupByAggregate
and 11mCluster can be implemented with a combination of map
and reduce operations, but we see better results from the planner
when we keep them as separate operators.

Query Planning. Luna uses an LLM to interpret a natural language
query and decompose it to a DAG of logical query operators. After
significant experimentation, we found that including the following
information in the prompt helps provide the LLM with the right
context:

o The schema for the input DocSet. For each schema field, we
include a short description as well as a few example values
drawn from the underlying data.

o A list of available logical operators and their syntax.

o A list of example queries and their associated query plans.

We instruct the LLM to generate the plan in JSON format, which we
validate against a schema to ensure that it conforms to the expected
syntax. In addition to confirming that the query plan is syntactically
correct, we also check that it is semantically valid. For example, if a
QueryDatabase operation performs field-based filtering, we check
that the fields used in the filter are valid for the given DocSet.

Plan Rewriting and Optimization. Despite significant prompt
engineering, the LLM may still produce a suboptimal or, in some
cases, an incorrect or infeasible query plan. We use a combination
of plan rewriting and rule-based optimization to address these
issues. For example, if the plan has multiple 11mExtract operators
in sequence, these can combined into a single operator.

Execution. After plan rewriting and optimization, the query plan
is compiled into Sycamore code in Python. Execution on large
datasets benefits from distributed processing, and using Sycamore’s
distributed execution mode allows us to scale out workloads with
minimal overhead. The compiled query execution code in Sycamore
is easy for a technically savvy user to understand and modify (in
the Ul itself).

Traceability and debugging. The ambiguous nature of some
queries can result in Luna misinterpreting the user’s intention.
It is critical to allow the user to inspect the query execution trace
and provide feedback to correct itself. With a combination of log-
ging and exposing APIs that allow the user to modify any stage of
query execution, users have full control over how their query is
answered.

6.2 User Interface and Verifiability

Luna’s user interface, shown in Figure 6 is designed to make it easy
for users to verify the results from the system. Luna achieves this
by: (a) exposing the query plan, (b) allowing the user to inspect
intermediate results, and (c) allowing the user to ask follow-up
questions to guide the system.

Luna exposes the plan generated from a user query as a simple
JSON object. This allows a user to understand the exact operations
that were performed to answer a query, how the dataset was trans-
formed during each operation, and modify any part of the plan to
better align with their intention. Given the query “Get the latitude
and longitude of all incidents in 2023 involving Cessna aircraft,” we
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{'must': [{'range': {'properties.entity.dateTime': {'gte':
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'strict_date_optional_time'}}}, {'match':
{'properties.entity.aircraft': 'Cessna'}}1}})"
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"LimExtractEntity (node_type='LlmExtractEntity', node_id=1,
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Figure 6: The Luna user interface shows the query result
visually, allows the use to inspect the generated query plan,
and lets them drill down to individual documents if needed
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Field Example value
accidentNumber CEN23FA095

aircraft Piper PA-38-112
aircraftDamage Destroyed
conditionOfLight Dusk

conditions Visual (VMC)

dateAndTime June 28, 2024 19:02:00
departureAirport Winchester, Virginia (OKV)
destinationAirport Yelm; Washington
flightConductedUnder | Part 137: Agricultural
injuries 3 Serious

location Gilbertsville, Kentucky
lowestCeiling Broken / 5500 ft AGL
lowestCloudCondition | Scattered /12000 ft AGL
operator Anderson Aviation LLC
registration N220SW

temperature 15.8C

visibility 7 miles

windDirection 190°

windSpeed 19 knots gusting to 22 knots

Table 3: Schema extracted from NTSB incident reports.

can see the resulting plan as a queryDatabase operation followed
by a 11mExtract operation. The Luna UI also shows the user the
Sycamore code that was generated for the query, which they can
edit and re-run.

While inspecting the query plan is often enough to convince
oneself that the data generated by the query is likely to be correct,
further validation is possible by inspecting the data flowing out of
each of the operators. The Luna UI allows the user to explore the
raw data at each stage of the query plan, drilling down to individual
records and linking back to the original source documents.

Finally, we find that supporting an iterative, exploratory mode of
interaction with the system is essential. Users can test hypotheses
and explore different aspects of the data by asking follow-up ques-
tions, such as “what about incidents without substantial damage”
or “show only results in California.” The conversational history
with the system allows a user to refer to previous queries or results
implicitly, making this interaction much more natural, much like
asking questions of a human analyst.

7 EVALUATION

We present a preliminary evaluation of Luna’s ability to answer
complex analytical questions over a dataset of incident reports from
the National Transportation Safety Board, which is the US-based
agency responsible for investigating civil transportation accidents.
Our test dataset consists of 100 PDF reports pulled from the NTSB
CAROL database® covering aviation incidents between June and
September 2024. Each file is between 4 and 7 pages of text, with
sections covering a summary of the incident, probable cause and
findings, factual information, and administrative information. In-
cident reports have multiple tables covering aspects such as the
pilot’s background, aircraft and operator details, meteorological in-
formation, wreckage, and injuries. Many of the documents contain
photographs of the accident site or maps of the flight trajectory.

®https://carol.ntsb.gov/


https://carol.ntsb.gov/
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Luna RAG
Correct 20 (67%) 2(6.7%)
Incorrect | 10 (33%) 20 (67%)
Refusal 0 (0%) 8(26.7%)
Total 30 30

Table 4: Luna vs. RAG evaluation results on NTSB document
questions.

We processed the NTSB reports using a Sycamore pipeline. The
pipeline starts by calling DocParse to parse each document as de-
scribed in Section 4, and then uses the 11mExtract transform to
extract key data from each document. We load the resulting schema,
shown in Table 3, into an OpenSearch index. We also chunk and
embed the text content of the incident reports, and the resulting
vectors are also stored in OpenSearch for use with vector search
operations. Throughout this evaluation we used OpenAI’s gpt-4o0
model for our LLM, all-MiniLM-L6-v2 for the embeddings, and
OpenSearch 2.17.

7.1 Benchmark questions

There does not exist a standard benchmark for document analytics
against this type of dataset. Through manual inspection, we derived
a set of 30 questions that represent a broad range of query types
and varying degrees of difficulty to answer. Some examples of the
benchmark questions include:

e How many incidents were there by state?

e What fraction of incidents that resulted in substantial dam-
age were due to engine problems?

e In incidents involving Piper aircraft, what was the most
commonly damaged part of the aircraft?

e Which incidents occurred in July involving birds?

A few of the benchmark questions can be answered more or less
directly by querying the extracted metadata shown in Table 3. How-
ever, in most cases, the benchmark questions refer to information
not explicitly captured in the schema, such as whether an incident
involved birds or engine problems. For these cases, Luna needs to
use a combination of metadata lookup and LLM-based extraction
or filtering based on the documents’ textual content.

Many of our benchmark questions would be difficult, or impossi-
ble, for a RAG-based system to answer, given that the information
required to answer the question is spread across multiple portions
of each document, and a vector search would not be expected to
return meaningful chunks of context for downstream analysis by
the LLM.

7.2 Results

We ran Luna against each of our 30 benchmark questions and
compared the result to ground truth answers determined through
manual inspection. As a comparison point, we also used RAG to
answer each question, using a standard RAG approach that first
converts the question into a vector search against the embedded set
of text chunks, retrieves the k nearest documents for each question,
and provides those chunks as context to the LLM to answer the
original question. For this test we set k = 100. The results are shown
in Table 4.

Anderson et al.

Luna answers 20 out of the 30 questions correctly, and 10 incor-
rectly. The incorrect answers fall into several categories:

Counting errors (6 cases). In several cases, there are off-by-
one errors due to incidents being counted twice. For example,
for the question “How many incidents were there, broken
down by number of engines?”, there is a single incident in-
volving two aircraft, each with 1 engine. These are counted
as two separate “incidents”. Fixing this would require a dedu-
plication step in the query plan which can be achieved with
better few-shot examples for the planner.

Filter errors (3 cases). The LLMFilter operation is occasion-
ally too generous in its interpretation of whether a given
document should pass the filter test. As an example, in the
question “How many incidents were due to engine prob-
lems?” the LLM filter operation screens for “Does the docu-
ment indicate engine problems?”. Because portions of most
NTSB reports mention engines in various contexts, the filter
tends to pass through documents where an engine problem
was not indicated. Better prompting for the filter conditions
would help here.

Query interpretation (1 case). For the question “What was
the breakdown of incident types by aircraft manufacturer?”,
the LLM interprets “aircraft manufacturer” to mean whether
the aircraft was military, commercial, a helicopter, or some
other type, rather than the name of the manufacturer (which
is indeed present in the dataset). This would be fixable with
some additional few-shotting, but points more broadly to
the challenge of teaching the LLM about the semantic inter-
pretation of the schema.

As we expected to see, RAG does poorly on most of these ques-
tions. The two cases in which RAG gets the correct answer are
“How many incidents were there in Hawaii?” (for which the correct
answer is zero), and “Which incidents occurred in July involving
birds?” (two incidents). Both of these are answerable using the RAG
approach when the number of records retrieved from the vector
search is small enough to fix in the LLM’s context window. RAG
does not yield the correct answer in any case where the number
of matching incidents exceeds a modest threshold, such as “How
many incidents involved substantial damage?” (correct answer: 94,
RAG answer: 10).

A substantial number of RAG queries resulted in a refusal of the
LLM to answer the question at all. For example, on the question
“How many incidents were due to engine problems?”, the LLM re-
sponds with “The NTSB does not assign fault or blame for accidents
or incidents, including those related to engine problems.” This is
caused by context poisoning during the RAG process. Each of the
NTSB reports contains a boilerplate disclaimer that states,

“The NTSB does not assign fault or blame for an acci-
dent or incident; rather, as specified by NTSB regula-
tion, "accident/incident investigations are fact-finding
proceedings with no formal issues and no adverse
parties ... and are not conducted for the purpose of de-
termining the rights or liabilities of any person’ (Title
49 Code of Federal Regulations section 831.4)”

Whenever these text chunks are included in the vector search results
fed as context to the LLM, the final response is effectively poisoned
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by the disclaimer. While this could be addressed though a range of
prompting and santization techniques, we chose to highlight this
as an interesting failure mode of the conventional RAG approach.

8 RELATED WORK

Machine learning has revolutionized many aspects of data man-
agement over the last decade. First, there is a long line of work
on natural language to SQL [12, 27, 28]. While the early work fo-
cused on building specialized models for this purpose, LLM-based
approaches have proven superior in recent years’. Several recent
works have focused on generating queries that incorporate LLM
calls [18, 20, 34]. Our Luna framework is differentiated by a broader
set of LLM-based operations, a focus on hierarchical documents,
and our emphasis on interactive interfaces.

There is also much work on using LLMs for specific ETL tasks
such as entity resolution, information extraction, named entity
recognition, and data cleaning [15, 23, 31]. In addition, there’s also
work in detecting and extracting tables using modern transformer
models [25, 30], OCR [9, 14], and segmentation and labeling [5, 26].
To date, ours is the only work that combines the best of these into
a unified cloud service and is deeply integrated with a declarative
document processing framework for ETL like Sycamore.

DocParse is based on a long line of work in document segmenta-
tion. Current approaches commonly use object detection models
such as DETR [7]. DocParse follows this approach and leverages
Deformable DETR [36]. An alternate line of work has led to multi-
modal models such as Donut [11] and LayoutLMV3 [8] that seek
to directly solve document understanding tasks like visual ques-
tion answering (VQA) without the need for explicit segmentation.
Sycamore can eventually incorporate these models, but we con-
tinue to find segmentation valuable as we can index the segments
to reduce work at query time.

There is less work on building end-to-end systems that encom-
pass the entire spectrum of tasks from document parsing to ETL to
querying for unstructured document analytics. Nonetheless, several
similar efforts have started over the last year including ZenDB [17],
LOTUS [24], EVAPORATE [2], CHORUS [10], and Palimpzest [18].
TAG [6] is similar in spirit to Luna, but translates to SQL and
does not include LLM-based operators post database query. Most
recently, DocETL [29] proposes to use agent-based rewrites to au-
tomatically optimize document processing pipelines for improved
accuracy. In contrast to these works, while we have incorporated
similar pipelining and rewriting mechanisms to start, we do not
believe it is possible to fully automate and optimize the entire
pipeline in practice. As a result, we have designed Aryn to facilitate
a human-in-the-loop paradigm.

9 CONCLUSIONS AND FUTURE WORK

We are building Aryn to make unstructured data as easy to query
as structured data by leveraging the immense potential of LLMs
to process multi-modal datasets. We take a database-inspired ap-
proach of decomposing analytics queries into semantic query plans
which not only improves answer accuracy but also provides ex-
plainability and an avenue for intervention and iteration. At the
same time, given the limitations of current models, we are building

7See the leaderboard at https://yale-lily.github.io/spider.
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Aryn to be a human-in-the-loop system; as the LLMs improve, the
need for human interventions will diminish, but it is unlikely to
completely vanish. Our experience across a variety of application
domains supports that our overall design as well as Aryn’s indi-
vidual components are promising. Nonetheless, many challenges
still remain. We need to continue to improve accuracy and make
it easier to adapt Aryn to new use cases. We need ways to correct
and evolve the system and automatically learn from users as they
exercise the system. We need to extend Aryn to support joins and
allow queries to incorporate external sources like data warehouses.
Finally, we’ve just started the journey on improving performance,
cost, and scale.
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