Resource-Adaptive Query Execution with Paged Memory

Management
Riki Otaki Jun Hyuk Chang Charles Benello
University of Chicago University of Chicago University of Chicago
rotaki@uchicago.edu junhyukc@uchicago.edu cmbenello@uchicago.edu
Aaron J. Elmore Goetz Graefe
University of Chicago Google
aelmore@cs.uchicago.edu goetzg@google.com

ABSTRACT

Existing database systems typically employ demand driven re-
source allocation with static limits on the amount of resources
allocated for query execution. However, in the cloud com-
puting paradigm, where many different database workloads
share the same physical resources, demand-driven approaches
can lead to resource thrashing, while static limits can lead
to under-utilization of resources. Under such circumstances,
adaptively reallocating resources to operators in a query plan
can improve resource utilization, performance, and reduce
the operational costs. This paper explores the challenges of
adaptive resource management, including estimating resource
requirements of queries and dynamically redistributing re-
sources to operators. We propose the use of the buffer pool
pages for query execution to enable memory reallocation and
query context switching seamlessly. Additionally, we propose
an optimization technique to reduce the overhead of accessing
the shared buffer pool memory.

1 INTRODUCTION

Cloud-based systems offer several advantages over on-premise
systems, including cost-effectiveness, scalability, and elasticity.
According to a recent market study, enterprise spending on
Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS) is projected to triple by 2027 compared to 2022 lev-
els [3]. This significant increase is expected to drive greater
demand for Database as a Service (DBaaS). As more database
systems migrate to cloud-based platforms, efficiently execut-
ing diverse workloads on shared infrastructure has become a
paramount challenge for cloud providers. Resource manage-
ment strategies directly impact costs for both providers and
tenants, making it a focal point of research in academia and
industry alike [7, 8, 13, 14, 16, 17, 21, 39, 44, 45, 58]. From the
cloud provider’s perspective, resource management in cloud-
based database systems is crucial for two main reasons.

First, the consolidation of multiple databases on shared in-
frastructure leads to a diversity of workloads within a single

This paper is published under the Creative Commons Attribution 4.0 Inter-
national (CC-BY 4.0) license. Authors reserve their rights to disseminate the
work on their personal and corporate Web sites with the appropriate attribution,
provided that you attribute the original work to the authors and CIDR 2025. 15th
Annual Conference on Innovative Data Systems Research (CIDR ’25). January
19-22, Amsterdam, The Netherlands

machine that is far greater than in traditional on-premise sys-
tems. These workloads have varying resource requirements in
terms of time and space and are governed by different Service
Level Agreements (SLAs). Relying solely on demand-driven
resource allocation or static resource limits can be suboptimal
for achieving high resource utilization and minimizing SLA
violations across multiple tenants [44]. For instance, without
dynamic or adaptive resource reallocation, a long-running
query with a less stringent SLA might monopolize resources,
causing a short-running query with a stricter SLA to wait
unnecessarily. Such inefficiencies must be addressed to remain
competitive, as providers offering better performance at lower
costs will have a significant advantage.

Second, the rise of serverless computing [11, 51] has in-
tensified the need for efficient resource management. The
pay-as-you-go model of serverless computing is gaining popu-
larity among applications with bursty or unpredictable work-
loads, as it allows them to pay only for the resources they
actually use. This contrasts with serverful systems, where
resources are reserved for set periods—typically calibrated
for peak workloads—and remain underutilized much of the
time [43, 51]. Consequently, resource requirements for cloud
workloads have become more volatile and fine-grained, mak-
ing agility in adapting to changing workloads and resource
demands crucial.

To address these challenges, cloud providers need mech-
anisms to accurately estimate the resource requirements of
workloads and swiftly meet these demands without adversely
impacting performance. However, several challenges persist
in achieving this goal.

First, accurate resource estimation is difficult. Predicting
the resources a query will need is difficult because cardinal-
ity estimation is inherently complex [37], and determining
the amount of resources to guarantee a tenant is complicated
by the fact that resource allocation is tied to the user’s will-
ingness to pay and resource pricing can fluctuate based on
demand [1, 40, 58]. Machine learning models trained on histor-
ical data can aid in predicting resource requirements. However,
these models are not foolproof, as they often assume recur-
ring patterns in workloads. In reality, workloads can be ad-
hoc, bursty, and subject to change over time [47]. While large
cloud providers have abundant historical data to train mod-
els [43, 56], relying exclusively on heavily trained ML models

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

may not be the most efficient or cost-effective approach. There-
fore, developing more adaptable and economical methods for
modeling resource requirements is essential.

Second, agility in resource re-allocations is difficult to achieve
as resources and workloads are not easily transferrable. When
moving workloads between machines, migrations often suffer
from states clean-ups and cold restarts [17, 21]. Memory frag-
mentation further complicates this process by making it chal-
lenging to move memory states across machines. In the case
of suspending the current workload to run another, operations
like query suspend and resume typically require re-executing
the query or serializing a large amount of intermediate states
to disk, leading to high latency overheads [12, 40, 41]. For real-
locating resources from one workload to another, algorithms
must continuously poll for resource availability and reconsider
resource allocation decisions once they are made [15, 19, 54].
Determining how to resolve conflicting requests for resources
among multiple tenants is also challenging, adding complexity
to resource management.

Moreover, while cloud systems provide scalability by allow-
ing the addition of more resources, the underlying database al-
gorithms may introduce inherent bottlenecks—simply adding
resources does not guarantee that the database will scale effec-
tively. Shared resources such as locks, latches, and singleton
objects like the buffer pool can become points of contention,
limiting performance as concurrency increases [28, 30, 38].
High levels of concurrency and workload diversity exacer-
bate these issues, leading to inefficiencies that prevent the
system from fully utilizing the available resources. Therefore,
cloud database systems must employ scalable algorithms that
minimize these bottlenecks to fully exploit their resources.

To address these challenges, we present a system design that
effectively quantifies the benefits of resource allocation and
dynamically reallocates resources among tenants through a
cost-based approach, all without compromising scalability and
performance. We propose utilizing buffer pool pages for both
caching disk state and intermediate state generated during
query execution. This allows for greater flexibility in dynamic
resource adjustments such as resizing working memory and
context-switching among queries.

In this paper, we focus on memory resources given it is a
critical factor in database systems that affects other resource
usages like CPU and I/O bandwidth. For instance, the amount
of memory allocated to each query or operator determines
the level of inter- or intra-query parallelism. Additionally, the
availability of memory buffers influences data prefetching and
caching, thereby affecting I/O bandwidth utilization.

This paper is organized as follows. First, it introduces query
execution with buffer pool page memory, which enables mem-
ory adjustments and lightweight context-switching among
queries. Then, it presents Logical ID with Physical Address
Hinting (LIPAH), an optimization technique necessary for re-
ducing contention in the shared buffer pool. Lastly, we show
the preliminary evaluation of the proposed system design and
optimization technique using the TPC-H benchmark [2].

Otaki et al.
Query
Pipeline 2 Pipeline 1
Result || Stateful 4] Result [Stateful]] Access
Buffer Operation 2 Buffer Operation 1 Method
i O i o i i O
Frame 1 Era'l{;cz “\V,"l N < Y
Buffer Pool

Figure 1: Buffer Pool Based Query Execution.

2 PAGED MEMORY FOR QUERIES

Traditional Database Management Systems (DBMS) typically
segregate memory allocation for caching persistent table data
from storing temporary intermediate computation results. For
instance, in PostgreSQL, persistent data caches are stored in
the shared buffer pool, while the working memory for query
operators are allocated independently [5]. This segregation
not only limits the utilization of memory resources [32, 33] but
also the flexibility of memory allocation adjustments during
query execution.

Consider a scenario where it is necessary to reduce the mem-
ory allocated for a query due to other high-priority queries.
With the traditional approach, the operator’s intermediate re-
sults are often allocated on the heap memory using memory
allocation libraries such as malloc. However, these allocations
are not guaranteed to be contiguous and may be interleaved
with other allocations. Consequently, spilling these states to
disk incurs overhead due to the need for serialization of data
and abrupt I/O operations to the storage system [40].

We propose that for flexible memory allocation, both file
caching and query operator memory should be managed us-
ing pages within the buffer pool. Allocating memory in buffer
pool pages allows each memory consumer to resize memory
allocations by simply pin and unpin pages, avoiding the over-
head of serialization and deserialization and enabling efficient
exchange of memory between memory consumers. Moreover,
the buffer pool can evict pages to disk lazily when under mem-
ory pressure, so that it can minimize the overhead of spilling
intermediate states to disk.

For instance, suppose a query’s working memory is allo-
cated as pages in the buffer pool. During execution, the query
can pin the pages in the buffer pool to prevent eviction to disk
so they can be used for intermediate results. When the query
needs to be suspended due to higher priority queries, it can
release all of the pins, allowing the buffer pool to utilize the
pages for other queries. When the query is resumed, it can

Resource-Adaptive Query Execution with Paged Memory Management

request the pages from the buffer pool and continue execu-
tion. This approach avoids workload spikes on the storage
system and provides more predictable performance during
query preemption.

To our knowledge, DuckDB [50] is one of the first systems
to employ buffer pool pages for query execution [31, 32], focus-
ing on gracefully handling the transition between in-memory
and disk-based execution in locally running systems. How-
ever, DuckDB is built as an embeddable library optimized
for local environments, whereas our system assumes a data-
base server that handles requests from many clients. In such
multi-client, multi-tenant environments, memory resources
are shared among multiple queries and clients, necessitating
different design considerations for resource management. To
address these challenges, we propose the use of cost-aware
memory allocation, adaptive memory resizing, and scalable
buffer pool management specifically tailored for cloud-based
database systems, as described in the following sections.

The query model of our system, as illustrated in Figure 1,
showcases how the buffer pool is used for both file caches
and intermediate query results. Our buffer pool implements a
standard model with fixed-size pages and a centralized page-to-
frame mapping table to track and locate pages. When the buffer
pool is full, it samples a fixed number of frames and evicts the
one with the lowest score based on a page replacement policy.
Each frame has a read-write latch to prevent concurrent access
and pin pages in memory, ensuring they are not evicted while
in use.

The query execution engine breaks a query plan into a
graph of pipelines, each consisting of a sequence of operators
ending with a stateful operator [36, 55]. Operators within a
pipeline can stream data, but the stateful operator must read
all input data before outputting results. The first pipeline,
illustrated in Figure 1, involves a scan operator that reads data
by latching frames in the buffer pool. The stateful operator,
such as a sort operator, requires scratch space and will allocate
frames from the buffer pool as needed. After executing the
stateful operator, the results are written to the result buffer.
Once the first pipeline completes, latches are released, and
dependent pipelines are notified. Ready pipelines are queued
and executed sequentially until all are processed, and the final
result buffer is returned to the caller.

There are several overheads associated with paged memory
allocation for query execution.
Serialization/Deserialization Overhead: With paged mem-
ory allocation, the query operator must maintain intermediate
states in a page-oriented data structure. For example, a hash-
aggregate operator stores aggregated values in a paged hash
table instead of a non-paged one. When processing a new
tuple, the operator deserializes the bytes from the page into
a computable tuple, updates the aggregate value, and then
serializes it back to the page. This overhead can be avoided by
using zero-copy techniques to access the record directly from
the page but this requires careful management of the memory
layout especially when the record contains variable-length
fields.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Data Access Overhead: Accessing an element in a paged
memory structure incurs more overhead than in non-paged
memory, where elements are accessed directly via pointers. In
paged structures, one must first access the page in the buffer
pool and then the element within the page. This involves
accessing the centralized page-to-frame mapping table, often
causing overhead due to contention. Additionally, accessing
elements in paged memory (e.g., slotted pages) requires finding
the element’s offset in the slot array and then accessing the
element, which can lead to cache misses and extra memory
accesses.
Page Organization Overhead: In order to maintain a high
fill factor of pages or to maintain a constraint of the paged
data structure, pages may need to be compacted, merged, or
split occasionally. These operations can be costly due to the
need to move data between pages and update metadata. Find-
ing a space for a new element in a page may trigger a page
organization operation, which can lead to additional overhead.
Techniques have been devised to mitigate these overheads
and improve the efficiency of using paged memory allocation
in disk-based DBMSs. Poor man’s normalized keys have been
proposed to reduce the key access overhead when running
binary searches on sorted pages in a B-tree index [27]. Adding
hints in the page header can further reduce the latency by
limiting the range of binary searches [6]. DuckDB separates
rows into fixed size components and variable size components
and place them in separate pages to accelerate the access of
fixed size rows [32]. These techniques can be adapted to our
system to reduce the overhead of paged memory allocation.
We are actively exploring more techniques to mitigate these
overheads and improve the efficiency of paged memory allo-
cation for query execution. Our goal is to provide flexibility in
memory allocation by consolidating and managing memory
at the granularity of pages, while achieving performance com-
petitive with non-paged memory allocation. This approach
will enable more efficient resource management, as memory
can be easily transferred between different consumers—such
as query operators and file caches.

2.1 Cost-Aware Memory Allocation

The core question of the buffer pool based query execution
is how to decide the number of pages allocated for a stateful
operator in a pipeline. A stateful operation, such as sorting,
aggregation, and hash table creation, requires a certain amount
of scratch space to run the algorithm. The amount of scratch
space does not change the correctness of the algorithm but
affects the performance of the algorithms.

We first describe a motivating example to illustrate the
problem. Suppose that the buffer pool has 1000 frames, con-
stantly issuing 100 IOPS to the disk. Then the sort operator
requests the buffer pool for some amount of frames for work-
ing memory. Consider the following two cases. In the first
case, the buffer pool gives 300 frames to the sort operator, and
the sort can run the algorithm with one pass of the input data.
In the second case, the buffer pool gives 50 frames to the sort

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Cost-Performance

Performance-Memo: Cost-Memo:
(SLA) Y Ty
N A
Penalty Latency, #1/0 Penalty
S
~
>
N - N
, .
1 .
Penalt 1 Memory Allocation 1
o {i=
! Penalty : T
Latency, #1/0 Memory Allocation

Figure 2: Deriving Cost-Memory Graph from the SLA
and Performance-Memory Model.

operator, and the sort generates multiple runs that have to be
merged in the subsequent steps.

From the operator’s perspective, the first case is more de-
sirable than the second case because of the lower latency.
However, the buffer pool may suffer from higher IOPS in the
first case due to having less free frames to cache pages for
other queries. In the second case, the sort operator may suffer
from higher latency due to the merge phase, but the buffer
pool may not suffer from increased IOPS.

Our goal is to quantify the benefit of memory to each mem-
ory consumer and decide which memory consumer should be
granted memory or should release memory. This requires an
economic analysis of the value of memory to each memory
consumer such as query operators and file caches. By incor-
porating microeconomic principles into memory allocation,
we can guide memory allocation decisions based on the cost
function of each memory consumer.

Introducing microeconomic principles into memory allo-

cation decisions involves two steps. First, we need to model
the relationship between memory and cost for each workload,
effectively quantifying how additional memory impacts the
cost of the workload. Second, we need to design a mechanism
to allocate and release memory based on this cost function,
ensuring that memory resources are distributed in a way that
maximizes their overall value.
Modeling Cost-Memory Relationship: To model the rela-
tionship between memory and cost, we need to define cost
in the context of our system. Here, we suppose that the cost
of a workload can be quantified by the monetary penalty of
violating the SLA. The SLA can be defined in terms of query
performance metrics, such as query latency or the number of
I/O operations. Although many commercial systems provide
SLAs based on resource availability rather than query per-
formance [43], we believe that customers will benefit greatly
from performance-based SLAs, as they directly affect user ex-
perience. An example of a performance-based SLA is provided
by Azure Cosmos DB, a key-value store that guarantees an
SLA of less than 10ms for the 99th percentile of point read and
write operations [10].

Otaki et al.

Memory Consumer 1 Memory Consumer 2

Penalty

! 5 >
Memory Allocation
(a) Exchange-based memory allocation. Memory is ex-
changed between two consumers if it benefits both con-
sumers or reduces the global cost.

Supplier / Broker

Buy $$
Sell 88/ LV
Penalty i_'
|

Memory Allocatlon

(b) Price-based memory allocation. Prices of memory
units are set by the supplier or broker based on the de-
mand and supply. Memory consumers buy and sell mem-
ory based on their budget and needs.

Figure 3: Economic models for memory allocation.

To derive the cost-memory relationship from the SLA, the
effect of memory size on performance must be known. This
can be computed using theoretical models or obtained via
empirical measurements [14]. For instance, the number of I/O
operations required for a naive external sort algorithm with
M memory blocks can be analytically computed as

br (2 108ty -1 (br/3D)] +1)

where b, is the total number of blocks containing records of
relation r and b, are read and written at a time [52]. As memory
allocation M increases, the logarithmic term decreases because
the base of the logarithm increases (| M /by | — 1 increases).
This results in fewer merge passes needed to sort the data,
thereby reducing the number of I/O operations. Using the
performance-memory model, we can derive the cost-memory
graph (see Figure 2), which represents the penalty incurred by
the workload as memory size changes. The structure of this
graph can vary depending on the SLA and the performance-
memory model; for example, if the SLA is defined as a step
function, the cost-memory graph might also exhibit a step
function structure. This insight can guide memory allocation
decisions, as certain memory size ranges may be superfluous
for the workload.

Resource-Adaptive Query Execution with Paged Memory Management

Microeconomic Mechanisms for Memory Allocation:
There are two major approaches to incorporating microe-
conomic mechanisms into memory allocation decisions: ex-
change based models and pricing based models [22]. Figure 3
illustrates using these models to reallocate memory between
two memory consumers using the cost-memory graph derived
in the previous step.

In exchange based models, each memory consumer is en-
dowed with some initial memory allocation and can selfishly
or cooperatively exchange resources to optimize their own
cost or the system’s global cost. In the selfish approach, mem-
ory consumers will only exchange memory if it does not harm
their own cost. This behavior typically leads to Pareto-optimal
solutions, where no consumer can benefit from exchanging
memory without making another consumer worse off. In the
cooperative approach, memory consumers negotiate and ex-
change resources if the system’s global penalty can be reduced.
For example, if one consumer’s marginal cost of memory-
that is, the additional penalty incurred per unit of memory
shortage—-is higher than another’s, it is is beneficial for the sys-
tem to reallocate memory from the consumer with the lower
marginal cost to the one with the higher marginal cost. This
reallocation reduces the overall penalty, thus optimizing the
system’s performance.

In pricing-based models, memory units are allocated based
on assigned prices. Each memory consumer is charged for the
resources they consume, with prices reflecting the scarcity
and demand for those resources. Memory consumers make de-
cisions to optimize their cost while considering these resource
prices. This approach can lead to efficient resource allocation
by providing incentives for consumers to use resources ju-
diciously. However, distributing budgets and setting prices
can often be challenging due to the variability of the resource
capacity and workload demands.

Auction-based mechanisms can help mitigate these chal-
lenges and has been explored in the context of distributing
resources between hash join operators [18], choosing execu-
tion sites for distributed query processing [53], and reallocat-
ing memory between databases in multi-tenant systems [7].
In these mechanisms, memory consumers bid for resources
based on their cost functions and budgets. The system then
allocates memory based on the bids, ensuring that more mem-
ory is allocated to consumers who value it more. Often, these
auctions require a centralized supplier or broker to manage
the bidding process, which can introduce additional overhead
due to communication and coordination costs. This overhead
must be carefully managed to ensure that the benefits of the
auction mechanism outweigh it.

Several research questions remain open in this area. First,
designing efficient communication protocols between memory
consumers and suppliers is crucial. Frequent communication
leads to agile resource allocation, but it can also introduce
overhead due to message passing and synchronization. Sec-
ond, determining rational pricing mechanisms for suppliers is
essential in pricing-based models. Prices must be set to attract
memory consumers while ensuring that the system remains

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

profitable in terms of resource utilization and cost. Finally,
establishing protocols for price guarantees to memory con-
sumers is critical. Delays in price information or surges in
demand can lead to price fluctuations, causing memory con-
sumers to make suboptimal decisions. These challenges are
ongoing research questions that are critical to our efforts.

2.2 Adaptive Memory Resizing

A key challenge in buffer pool-based query execution is resiz-
ing memory allocations for file caches and query operators
in response to changing workloads. Resizing memory cached
for files is straightforward. The buffer pool manager can evict
file cache pages to disk when memory consumption exceeds
some threshold. Resizing memory used for operators’ working
memory is more challenging.

Similar to file caches, the buffer pool manager can evict
pages of the operators’ working memory in the background
without informing the operator itself. However, an operator’s
working memory will likely be accessed frequently during
execution. For example, a sort operator’s sort buffer will be
accessed when the data is first loaded, when the data is read
to sort, and when the data is read to return the sorted result.
Evicting these pages to disk in the middle of the sort opera-
tion without informing the sort operator would be inefficient
because the operator would have to read the pages from disk
again to continue the sort operation.

Two approaches can be considered to address this issue.

Memory-Aware Operator Algorithms: The first approach
is to make each memory consumer aware of which pages are in
the buffer pool. This can be achieved by pinning the pages so
the buffer pool cannot evict them. After the memory allocation
strategy is decided based on the cost-memory relationship,
each memory consumer can decide whether to request more
memory or release some of the pinned working memory. This
can be done without terminating the operator’s execution if
we adopt memory-adaptive algorithms [18, 49] that can resize
memory allocation during execution.
Memory-Oblivious Operator Algorithms: The second ap-
proach is to optimize algorithms for RAM-oblivious environ-
ments. Just as cache-oblivious algorithms [23] optimize cache
use without relying on the cache size, operator algorithms can
be designed to be elastic to the available memory size. In this
way, even if the pages of the working memory are evicted to
disk during execution, the operator can continue executing
without significant performance degradation.

We are investigating both algorithms to identify the most
effective methods for dynamically resizing memory alloca-
tions for query operators in response to changing workloads.
By integrating these approaches into the query execution run-
time, the system can adjust memory allocations and perform
context-switching as needed, ensuring efficient and effective
utilization of memory resources. Successful implementation of
these methods requires careful consideration of several critical
factors: prioritizing which pages to evict, determining the opti-
mal frequency of memory resizing, and ensuring that memory

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

63bits 1bit 32bits 32bits

Swiz¢zled [Pointer 0] Page ID | Frame ID

Unswizzled Page ID 1 Logical ~Physical

Pointer Swizzling LIPAH

Figure 4: Comparison of Pointer Swizzling and LIPAH.

consumers can adapt to changing memory allocations without
significant performance degradation.

3 LIPAH

Our system shares the buffer pool among multiple query op-
erators and file caches. The buffer pool manager tracks pages
in the buffer pool. However, the centralized page-to-frame
mapping table can become a point of contention during con-
current accesses by multiple query operators and file caches.
To reduce the contention and overhead, we propose a tech-
nique called Logical ID with Physical Address Hinting (LIPAH).
This technique is inspired by the works of pointer swizzling
[24, 28, 38, 48], but is more robust to arbitrary data structures
and easier to implement.

Figure 4 shows the structure of LIPAH. The key idea of
LIPAH is to use a fat-pointer, which is a pair of page ID and
the frame ID as a reference to the page in the buffer pool.
Here, page ID is a logical ID unique to the page and frame
ID is the physical address of the page in the buffer pool. The
page is accessed using frame ID first without consulting the
centralized page-to-frame mapping table. If the frame does not
contain the page with the page ID, the buffer pool manager
will consult the mapping table to find the frame.

This is similar to the existing pointer swizzling techniques.
Existing pointer swizzling techniques required swizzling the
logical ID of the page to the physical address when the page
is loaded and un-swizzling the physical address to the logical
ID when the page is offloaded to a secondary storage. There
are two limitations to this approach.

First, un-swizzling all the physical references to the page
is necessary when the page is offloaded to a secondary stor-
age. This is a costly operation if there are many references
to the page, as the buffer pool manager must traverse all the
references to the page to un-swizzle the physical addresses.

Second, the page subject to eviction must not contain any
swizzled references. Otherwise, when the page is loaded back
to the buffer pool, the swizzled references might point to in-
valid physical addresses. This necessitates a dense connection
between the buffer pool manager and the access method algo-
rithms to ensure the buffer pool can find an evictable page.

Existing works have addressed these limitations by em-
ploying B-tree structures that limit each page to at most one
incoming edge [28, 38]. By evicting child pages before their
parent pages, they ensure that no swizzled pointers are written
to disk. Write-optimized B-trees [25, 26] are examples of such
B-tree structures. This design keeps the number of incoming
edges to a page minimal, allowing page migrations, splits, and

Otaki et al.

merges to be performed with minimal overhead. However,
these structures do not support sibling page references, which
are important for scan operations. Consequently, to support
arbitrary data structures, a more flexible approach is required.

In LIPAH, a reference to a page is a pair of the logical ID and
the physical address of the page. This solves the two limitations
of the existing techniques because it allows page references
to have an invalid physical address. If the physical address is
invalid, the buffer pool manager can still use the logical ID to
find the object in the buffer pool.

In LIPAH, accessing an object in the buffer pool entails the
following steps. First, the buffer pool manager looks up the
frame specified by the physical address. It then checks if the
logical ID of the page in the frame matches the logical ID in
the pair. If so, the buffer pool manager returns the page in
the frame. We call this a fast-path access. This is the same as
the existing pointer swizzling techniques, where the physical
address is used to find the page in the buffer pool. If the logical
ID does not match and fast-path access fails, the buffer pool
manager will consult the translation table to find the frame
that contains the page with the logical ID. After finding the
frame (hit) or loading the page from the secondary storage
(miss), the access method can update the physical address in
the pair to the new address of the page. We call this a slow-
path access. In this way, the physical address is only used as a
hint to find the page in the buffer pool, and there is always a
fallback mechanism to find the page using the logical ID.

Implementation-wise, the logical ID is a page ID and the
physical address is a frame ID. Both of them are 4-byte un-
signed integers. Initially, the frame ID is set to a maximum
value. The buffer pool will ignore the fast-path access if the
requested frame ID is larger than the number of frames it has
and will use the logical ID to find the page in the buffer pool.
After a slow-path access, the access method typically updates
the page’s physical address in the parent page used to find
the page. This is opportunistically done by trying to acquire
a write-latch on the parent page and updating the physical
address if the latch is available.

Using LIPAH, the buffer pool manager can express graph
data structures with circular references. The existing work
on pointer swizzling had difficulty in expressing graph data
structures because pages that are subject to eviction must
have zero swizzled references [34, 35, 38]. If two pages in
a graph have a swizzled reference to each other, the buffer
pool manager can not evict either of the pages. In LIPAH, the
buffer pool manager’s eviction policy is not affected by the
data structure expressed on the buffer pool. The buffer pool
manager can evict any page in the buffer pool as long as the
page is not being accessed by the access method, which can
be known by the status of the frame latch. LIPAH can also be
utilized in representations where graphs are stored as sets of
edges instead of vertices with pointers, avoiding the overhead
of swizzling and un-swizzling pointers.

Another work that addresses the problem of pointer swiz-
zling is vmcache [35]. The primary difference between vm-
cache and LIPAH lies in their approach to indirection: vimcache

Resource-Adaptive Query Execution with Paged Memory Management

aims to eliminate the indirection of page-to-frame mapping
altogether, effectively removing this layer to improve perfor-
mance. In contrast, LIPAH retains the indirection layer but
utilizes hints to bypass it. Moreover, while vmcache is specific
to the buffer pool, LIPAH’s flexibility allows it to be applied
in other areas. For example, LIPAH can be used in secondary
indexes to enhance performance.

By integrating LIPAH into secondary indexes that maintain
references to the primary index, the index can store not only
the primary key as the logical ID but also the physical address
of the record as a hint. This reduces the overhead of traversing
the primary index for each lookup. Oracle Database employs
a similar technique to accelerate lookups in the secondary
index by storing the physical address of the record within it
[29]. By applying LIPAH’s hint-based approach, we can further
optimize secondary index performance. We plan to explore
more applications of LIPAH in future work.

One limitation of LIPAH is the memory overhead intro-
duced by the use of fat-pointers. In our implementation, each
fat-pointer occupies 8 bytes—4 bytes more than a page ID
alone— due to the inclusion of an additional frame ID. How-
ever, these fat-pointers are stored only in the internal nodes of
the access method’s data structures. In B+-tree organized files,
internal nodes store keys and pointers to child nodes, while
leaf nodes store the keys and actual values. Since the number
of internal nodes is typically #fan-out times smaller than the
number of leaf nodes, overhead introduced by fat-pointers is
small relative to the total memory consumption of the system.
Moreover, we believe that the benefits of LIPAH in reducing
contention in the buffer pool manager outweigh this modest
overhead.

4 PRELIMINARY EVALUATION

All the experiments were run on a system configured with
dual-socket Intel® Xeon® Silver 4116 CPUs. Each socket hosts
12 physical cores operating at a clock speed of 2.10 GHz, with
hyper-threading enabled, allowing for 2 threads per core, with
192 GB of RAM. Pages are sized at 256 KB.

The database system used in our experiments is imple-
mented in Rust. It currently employs a row-based storage
model, which is not optimized for executing OLAP queries,
and lacks a cost-based query optimizer. As a result, its perfor-
mance is not comparable to that of a mature database system.
However, our experiments are designed to demonstrate the
relative performance differences when enabling certain fea-
tures within the same system, rather than comparing it to
other database systems. This approach provides insight into
the potential performance differences that could be achieved
if these features were applied to a mature database system.

We first compared the performance of TPC-H queries with
and without page based memory management. In a non-paged
system, all the data (persistent and intermediate) is stored
using Rust’s native container types (i.e., Vec and HashMap). We
implemented the equivalent data structures using the buffer
pool in the paged system and used them to store all the data in

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

I Non-Paged Paged
0
@ 390/ -
E 300
=
< 2001
: |
=
3 100 i i
[}
5 o . | LLI - LI LLLLLLLI
123456 7 8 910111213141516171819202122
Query ID
(a) Query Latency.
2.0 B

"I'i'|'|il'ih’|’il’i'lﬁ'|il'lli"

Relative Time
=
o

123456 7 8 910111213141516171819202122
Query ID

(b) Relative Query Latency (Paged / Non-Paged).

Figure 5: TPC-H (SF1) Query Latencies Comparing Paged
and Non-Paged Allocations.

the system. These data structures fully utilize LIPAH to access
the pages in the buffer pool. Hence, the page access will be a
fast-path access except for the first access to the page if the
query is run fully in memory. The query plans and the set of
pipelines are the same in both systems.

We assessed the performance of TPC-H queries with a scale
factor of 1. The buffer pool was configured with 600 thousand
frames, corresponding to approximately 150 GB of memory.
We chose a scale factor of 1 to ensure that all data, including
the intermediate states of queries, could fit within the buffer
pool. Prior to running the actual queries, we executed the
same query once as a warm-up to guarantee that the data
was fully loaded into the buffer pool. The query was executed
with 1 thread and the maximum working memory of blocking
operators was set to 600 pages. We measured the latency of
each query three times and calculated the average latency.

Figure 5a shows the latency of TPC-H queries with and
without page-based memory management. Figure 5b shows
the relative latency of paged system to non-paged system. Out
of 22 queries, 7 queries were more than 1.5 times slower in
in paged system than non-paged system. We identified that
those queries with identical performance require evaluating
complex expressions. For example, queries 2, 9, 13, 14, 16, and
20 contain LIKE expressions that require evaluating regular
expressions. This dominated the execution time, making the
overhead of the paged system negligible. For queries with
shorter execution time such as query 11 or 22, they are more
sensitive to the overhead of the paged system. In the paged
system, we have not fully optimized the execution cost beyond
using LIPAH. We believe that with further optimization, such
as using more efficient data layout, enabling computation over
serialized data, and reducing slot access overhead by allocating
slot metadata and data in a contiguous memory region, we

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

—— Without LIPAH With LIPAH

35
_.30
=25
£ 20
15

& 10

0 5 10 15 20 25 30 35 40
Thread Count

(a) Insertion Latency.

—~ 30
)

08)25
i 20
%15

$ 10

0 5 10 15 20 25 30 35 40
Thread Count

(b) Lookup Latency.

Figure 6: Latencies of Insertion and Lookup Operations
in Hash Index with and without LIPAH.

can reduce the overhead of the paged system and improve its
performance.

Next, we assessed the performance of LIPAH by integrating
it into a hash index on the buffer pool, comparing it to a
standard hash index without LIPAH. Both indexes used paged
memory management. The hash index employed a chaining
mechanism for collision handling. Inserting a key-value pair
involved hashing the key to locate the appropriate bucket, and
if full, linking a new page to it. For lookups, we hashed the
key to access the bucket and traversed the linked-list to find
the pair. We measured the latency for these operations using
keys of 100 bytes and values between 50 and 100 bytes. We
processed 10 million unique key-value pairs, inserting them
and conducting lookups in a random sequence. The entire
dataset was contained within the buffer pool, eliminating disk
I/O during the experiment. We ran the experiment three times
and calculated the average latency.

Figure 6 illustrates the latency associated with inserting
and retrieving a key-value pair in a hash index, comparing
operations with and without the LIPAH. The data shows that
LIPAH significantly enhances the speed of both insertion and
lookup tasks compared to a conventional hash index. This
efficiency gain arises because LIPAH enables direct access
to frames within the buffer pool, bypassing the centralized
mapping table typically required. During the experiment, we
configured the hash index with 1,024 buckets and noted that
after inserting 10 million key-value pairs, approximately 7,500
pages were utilized. Consequently, the average chain length
was approximately 7.3, implying that each key lookup accessed
on average 3.65 pages. Hence, LIPAH resulted in 3.65 fewer

Otaki et al.

accesses of the page-to-frame mapping table per key lookup,
significantly enhancing performance.

The normal hash index exhibits significant performance
degradation with an increasing number of threads during in-
sertion processes, as insert operation necessitates exclusive
latching of the page-to-frame mapping when creating a new
page into the buffer pool, blocking other threads. This latching
leads to poor scalability in performance as thread count rises.
In contrast, LIPAH scales effectively with increasing the thread
count. This scalability is attributed to the design where page-
to-frame mapping is not required for traversing the pages in
the bucket.

For lookup operations, although more efficient than inser-
tions, the normal hash index does not scale effectively with
increasing threads. The operation secures a shared-latch on the
page-to-frame mapping to ensure stability during page identifi-
cation, allowing concurrent access. However, this shared-latch
still dirties the cache and generates contention, degrading per-
formance as thread numbers grow. LIPAH, devoid of latching
the page-to-frame mapping, does not suffer from performance
degradation, maintaining its efficiency across varying thread
counts.

5 RELATED WORK

Given the scope of related work on adaptive query processing
and multi-tenancy for database systems, we point the inter-
ested reader to foundational surveys on these topics [20, 43].
In this section we limit our discussion to dynamic memory
management and adaptive memory allocation.

Dynamic Memory Management: In the 2000s, commer-
cial database systems began incorporating advanced dynamic
memory management techniques to adaptively respond to
changing system demands, enhancing performance and re-
ducing the need for manual tuning. For instance, Oracle’s
Automatic Memory Management (AMM) dynamically adjusts
memory allocations based on real-time workload analysis [15].
Similarly, IBM DB2 introduced the Self-Tuning Memory Man-
ager (STMM) [54], and Microsoft’s SQL Server implemented
resource monitoring systems [46] and memory broker systems
[4] to optimize memory usage. While these adaptive mech-
anisms are effective, they often rely on complex algorithms
that increase system complexity and computational overhead.
Our approach simplifies memory management by leveraging
paged memory, reducing overhead and streamlining spill han-
dling. This offers a more straightforward and efficient solution
that complements existing techniques with less complexity.
Quantifying the Importance of Memory: Several prior
works have proposed quantifying the importance of memory
to facilitate resource reallocations. Davison and Graefe pro-
posed a resource broker system that allows query operators
to exchange the resources between queries running in parallel
[19]. Their implementation was based on Return On Consump-
tion (ROC) model [57], which measures the effectiveness of
additional memory consumption on response times improve-
ment. Curino et al. proposed a technique to identify the active

Resource-Adaptive Query Execution with Paged Memory Management

working set size, to build models for expected I/O given a
memory allocation for consolidation [13]. Tang et al. [55] and
Nagel et al. [42] developed mechanisms to identify query state
to cache for effective reuse in queries. Brown et al. [9] and
SQLVM [44, 45] defined the importance of a memory page
based on the buffer pool hit rate. Arora et al. proposed a re-
source broker system that can balance the amount of resources
allocated to each database system in a multi-tenant environ-
ment [7]. Their system uses Value of Memory (VOM) as the
currency system, which is a multiple of System Time Saved
(STS) and number of accesses to the memory per unit time.
Collectively, these prior works demonstrate that currency sys-
tems can effectively quantify the importance of memory for
resource reallocations. Building upon this foundation, we ex-
tend these concepts by employing memory pages as the funda-
mental unit of allocation. This design simplifies the exchange
of resources between queries and file caches, reducing the
overhead associated with resizing memory allocations.

6 CONCLUSION

Adaptively reallocating resources is a vital aspect of cloud
database systems due to the inherent fluctuations in workload
and resource availability compared to on-premise systems.
This paper proposes query execution with paged memory that
incorporates dynamic resource adjustment and lightweight
context switching. This framework allows cloud providers
to allocate resources more effectively to critical workloads
based on a cost metric, enhancing overall system performance.
Additionally, the proposed LIPAH optimization technique sig-
nificantly accelerates page access within the buffer pool. We
believe this framework will be the foundation for resource-
efficient and adaptive cloud database systems.

ACKNOWLEDGMENTS

This work was in part supported by NSF Award IIS-2048088
and a Google Data Analytics and Insights (DANI) Award. The
authors would also like to thank the anonymous reviewers for
their valuable feedback.

REFERENCES

[1] [n.d.]. Spot Instances - Amazon Elastic Compute Cloud.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-
instances.html.

[2] 1999. TPC-H Homepage. https://www.tpc.org/tpch/.

] 2023. Magic Quadrant for Cloud Database Management Systems.
https://www.gartner.com/interactive/mq/5041631.

[4] 2023. Sys.Dm_os_memory_brokers (Transact-SQL) - SQL Server.

https://learn.microsoft.com/en-us/sql/relational-databases/system-

dynamic-management-views/sys-dm-os-memory-brokers-transact-
sql?view=sql-server-ver16.

The PostgreSQL Global Development Group . 2024. 19.4. Re-

source Consumption. https://www.postgresql.org/docs/17/runtime-config-

resource.html.

Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evo-

lution of LeanStore. In BTW, Vol. P-331. 259-281.

Pankaj Arora, Surajit Chaudhuri, Sudipto Das, Junfeng Dong, Cyril George,

Ajay Kalhan, Arnd Christian Konig, Willis Lang, Changsong Li, Feng Li,

Jiaqi Liu, Lukas M. Maas, Akshay Mata, Ishai Menache, Justin Moeller,

Vivek Narasayya, Matthaios Olma, Morgan Oslake, Elnaz Rezai, Yi Shan,

Manoj Syamala, Shize Xu, and Vasileios Zois. 2023. Flexible Resource

a1
[

S
e AN

(10]

[11

[12

(13]

[14]

[15

=
&

(17

[18

[19

[20

[21

~
5,

~
&

[30

[31

[32

[33

[34

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Allocation for Relational Database-as-a-Service. Proc. VLDB Endow. 16, 13
(Sept. 2023), 4202-4215.

Bradley Barnhart, Marc Brooker, Daniil Chinenkov, Tony Hooper, Jihoun
Im, Prakash Chandra Jha, Tim Kraska, Ashok Kurakula, Alexey Kuznetsov,
Grant McAlister, Arjun Muthukrishnan, Aravinthan Narayanan, Douglas
Terry, Bhuvan Urgaonkar, and Jiaming Yan. 2024. Resource Management
in Aurora Serverless. In VLDB.

Kurt P. Brown, Michael J. Carey, and Miron Livny. 1993. Managing Memory
to Meet Multiclass Workload Response Time Goals. In VLDB. 328-341.
Mark Brown. 2024. Consistency Level Choices - Azure Cosmos DB.
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels.
Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slomin-
ski. 2019. The Rise of Serverless Computing. Communications of The Acm
62, 12 (Nov. 2019), 44-54.

Badrish Chandramouli, Christopher N. Bond, Shivnath Babu, and Jun Yang.
2007. Query Suspend and Resume. In SIGMOD. 557-568.

Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakrishnan.
2011. Workload-Aware Database Monitoring and Consolidation. In SIG-
MOD. 313-324.

Carlo Curino, Eugene Wu, Evan P C Jones, Sam Madden, Raluca Ada
Popa, Hari Balakrishnan, Nirmesh Malviya, and Nickolai Zeldovich. 2011.
Relational Cloud: A Database-as-a-Service for the Cloud. In CIDR.

Benoit Dageville and Mohamed Zait. 2002. SQL Memory Management in
Oracle9i. In VLDB. 962-973.

Sudipto Das, Vivek Narasayya, Feng Li, and Manoj Syamala. 2013. CPU
Sharing Techniques for Performance Isolation in Multi-Tenant Relational
Database-as-a-Service. Proc. VLDB Endow. (Sept. 2013), 12.

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
2010. Live Database Migration for Elasticity in a Multitenant Database for
Cloud Platforms. UCSB Computer Science Technical Report 9 (2010).
Diane L. Davison and Goetz Graefe. 1994. Memory-Contention Responsive
Hash Joins. In VLDB. 379-390.

Diane L. Davison and Goetz Graefe. 1995. Dynamic Resource Brokering
for Multi-User Query Execution. In SIGMOD. 281-292.

Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive
Query Processing. Found. Trends Databases 1, 1 (2007), 1-140.

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
2011. Zephyr: Live Migration in Shared Nothing Databases for Elastic
Cloud Platforms. In SIGMOD. 301-312.

Donald F. Ferguson, Christos Nikolaou, Jakka Sairamesh, and Yechiam
Yemini. 1996. Economic Models for Allocating Resources in Computer
Systems. In Market-Based Control: A Paradigm for Distributed Resource
Allocation. 156-183.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachan-
dran. 2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms
8, 1, Article 4 (Jan. 2012).

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Data-
base Systems: The Complete Book (2 ed.).

Goetz Graefe. 2004. Write-Optimized b-Trees. In VLDB. 672-683.

Goetz Graefe, Hideaki Kimura, and Harumi Kuno. 2012. Foster B-Trees.
ACM Transactions on Database Systems 37, 3, Article 17 (Sept. 2012).
Goetz Graefe and Per-Ake Larson. 2001. B-Tree Indexes and CPU Caches.
In ICDE. 349-358.

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek,
Mark Lillibridge, and Alistair Veitch. 2014. In-Memory Performance for
Big Data. Proc. VLDB Endow. 8, 1 (Sept. 2014), 37-48.

Janis Greenberg, Sundeep Abraham, Shashaanka Agrawal, Geeta
Arora, Eric Belden, Chandrasekharan Iyer, Geoff Lee, Anand
Manikutty, Valarie Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz,
Qin Yu, and Sylaja Kannan. 2024. Design Considerations
for REFs. https://docs.oracle.com/en/database/oracle/oracle-
database/23/adobj/design-considerations-for-REFs.html#GUID-
79DD95A2-3080-47BC-95FB-7FD42D1E1BBF.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. 2008. OLTP through the Looking Glass, and What We Found There.
In SIGMOD. 981-992.

Laurens Kuiper. 2024. No Memory? No Problem. External Aggregation in
DuckDB. https://duckdb.org/2024/03/29/external-aggregation.html.
Laurens Kuiper, Peter Boncz, and Hannes Muhleisen. 2024. Robust External
Hash Aggregation in the Solid State Age. In ICDE.

Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and Kai-
Uwe Sattler. 2023. Cooperative Memory Management for Table and Tem-
porary Data. In SiMoD. Article 2.

Viktor Leis. 2024. LeanStore: A High-Performance Storage Engine for
NVMe SSDs. In VLDB.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

[35] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. Proc. ACM
Manag. Data 1, 1, Article 7 (May 2023).

[36] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014.
Morsel-Driven Parallelism: A NUMA-aware Query Evaluation Framework
for the Many-Core Age. In SIGMOD. 743-754.

[37] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kem-
per, and Thomas Neumann. 2015. How Good Are Query Optimizers,
Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204-215.

[38] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.

2018. LeanStore: In-memory Data Management beyond Main Memory. In

ICDE. 185-196.

Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal

Query Processing in the Cloud. Proc. VLDB Endow. 14, 9 (May 2021),

1606-1612.

[40] Rui Liu, Jun Hyuk Chang, Riki Otaki, Zhe Heng Eng, Aaron J. Elmore,
Michael J. Franklin, and Sanjay Krishnan. 2024. Towards Resource-adaptive
Query Execution in Cloud Native Databases. In CIDR.

[41] Rui Liu, Aaron J. Elmore, Michael J. Franklin, and Sanjay Krishnan. 2024.

Riveter: Adaptive Query Suspension and Resumption Framework for Cloud

Native Databases. In ICDE. 3975-3988.

Fabian Nagel, Peter Boncz, and Stratis D. Viglas. 2013. Recycling in

Pipelined Query Evaluation. In ICDE. 338-349.

[43] Vivek Narasayya and Surajit Chaudhuri. 2021. Cloud Data Services: Work-
loads, Architectures and Multi-Tenancy. Found. Trends Databases 10, 1
(May 2021), 1-107.

[44] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and
Surajit Chaudhuri. 2013. SQLVM: Performance Isolation in Multi-Tenant
Relational Database-as-a-Service. In CIDR.

[45] Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala,
and Surajit Chaudhuri. 2015. Sharing Buffer Pool Memory in Multi-Tenant
Relational Database-as-a-Service. Proc. VLDB Endow. 8, 7 (Feb. 2015), 726—
737.

[46] D.Narayanan, E. Thereska, and A. Ailamaki. 2005. Continuous Resource
Monitoring for Self-Predicting DBMS. In MASCOTS. 239-248.

[39

[42

Otaki et al.

[47] Vikram Nathan, Vikramank Singh, Zhengchun Liu, Mohammad Rahman,

Andreas Kipf, Dominik Horn, Davide Pagano, Gaurav Saxena, Balakrish-
nan (Murali) Narayanaswamy, and Tim Kraska. 2024. Intelligent Scaling
in Amazon Redshift. In SIGMOD/PODS.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with in-Memory Performance. In CIDR.

HweeHwa Pang, Michael J. Carey, and Miron Livny. 1993. Memory-
Adaptive External Sorting. In VLDB. 618-629.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable
Analytical Database. In SIGMOD. 1981-1984.

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Car-
reira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion
Stoica, and David A. Patterson. 2021. What Serverless Computing Is and
Should Become: The next Phase of Cloud Computing. Communications of
The Acm 64, 5 (April 2021), 76-84.

A. Silberschatz, HF. Korth, and S. Sudarshan. 2020. Database System
Concepts.

M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and
C. Staelin. 1994. An Economic Paradigm for Query Processing and Data
Migration in Mariposa. In PDIS. 58-67.

Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao,
and M. Surendra. 2006. Adaptive Self-Tuning Memory in DB2. In VLDB.
1081-1092.

Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J.
Franklin. 2019. Intermittent Query Processing. Proc. VLDB Endow. 12, 11
(July 2019), 1427-1441.

Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram
Nathan, Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan
Narayanaswamy, and Tim Kraska. 2024. Stage: Query Execution Time
Prediction in Amazon Redshift. In SIGMOD. 280-294.

Philip S. Yu and Douglas W. Cornell. 1993. Buffer Management Based
on Return on Consumption in a Multi-Query Environment. Proc. VLDB
Endow. 2, 1 (Jan. 1993), 1-37.

Huanchen Zhang, Yihao Liu, and Jiaqi Yan. 2024. Cost-Intelligent Data
Analytics in the Cloud. In CIDR.

	Abstract
	1 Introduction
	2 Paged Memory for Queries
	2.1 Cost-Aware Memory Allocation
	2.2 Adaptive Memory Resizing

	3 LIPAH
	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

