
Linear Elastic Caching via Ski Rental
Ravi Kumar

Google

ravi.k53@gmail.com

Todd Lipcon

Google

tlipcon@google.com

Manish Purohit

Google

mpurohit@google.com

Tamas Sarlos

Google

stamas@google.com

ABSTRACT
In this work we study the Linear Elastic Caching problem, where

the goal is to minimize the total cost of a cache inclusive of not

just its misses, but also its memory footprint integrated over time.

We demonstrate a theoretical connection to the classic ski rental

problem and propose a practical algorithm that combines online

caching algorithms with ski rental policies. We also introduce a

lightweight machine learning-based algorithm for ski rental that

is optimized for production workloads and is easy to integrate

within existing database systems. Evaluations on both production

workloads in Google Spanner and publicly available traces show

that the proposed elastic caching approach can significantly reduce

the total cache cost compared to traditional fixed-size cache policies.

1 INTRODUCTION
In-memory caching is a cornerstone technique for achieving high

performance in database management systems and cloud services.

By storing frequently accessed data in main memory, caching re-

duces costly disk I/O operations and improves latency. However,

memory is expensive—for example, Amazon ElastiCache Serverless

charges $3 per day for just 1GiB
1
. Given the high cost, provisioning

these caches presents a fundamental challenge: substantial human

effort might be needed to determine an optimal cache capacity,

and statically allocating memory to meet peak demand can lead to

significant resource underutilization for bursty workloads.

Traditional caching systems typically assume fixed memory re-

sources and focus on eviction policies to minimize misses. However,

cloud environments offer new opportunities for cost optimization.

For example, ElastiCache charges only for the average size of the
maintained cache. Thus, one could minimize this cost by dynam-

ically increasing or decreasing the cache capacity over time in

response to the workload.

In this paper, we formulate the linear elastic caching problem

of designing a policy that minimizes the total cost incurred by the

cache: both the direct storage cost of maintaining the cache in RAM,

and the direct and indirect costs associated with cache misses.

1
https://aws.amazon.com/elasticache/pricing/ (as of November, 2024)

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2025. 15th Annual Conference

on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The

Netherlands

Our work draws an interesting connection between linear elastic

caching and the classic ski rental problem. We propose a practi-

cal algorithm that integrates online caching algorithms with ski

rental policies, determining a time-to-live (TTL) for each cached

page based on its access patterns and associated costs. Theoretical

analysis shows that separately optimizing the cache eviction policy

and the ski rental policy suffices to minimize the total cost.

This work was directly motivated by a desire to reduce cache

costs in Spanner [9], a large globally distributed database system

at Google. Since data access patterns encountered in production

are far from adversarial, we opt for a lightweight machine learn-

ing approach for designing an appropriate ski rental policy. We

show that incorporating such a learned ski rental algorithm with

Spanner’s existing cache eviction policy helps to minimize the total

cost of cache ownership by over 5%. We also evaluate our approach

through extensive experiments on publicly available traces. Results

show that linear elastic caching significantly reduces the total cost

incurred by the cache compared to fixed-size cache policies.

2 PROBLEM FORMULATION
We refer to entries in the cache as “pages” for simplicity. Unlike

traditional caching problems where the cache size is fixed and the

goal is to design an eviction policy to minimize cache misses, here

we consider the setting where the cache size is variable and the

goal is to strike a balance between the cost of cache misses and the

cost of maintaining the cache (in RAM bytes × seconds) over time.

For a page 𝑝 , let 𝑟 (𝑝) denote the per-unit time cost of holding
the page in cache, and 𝐵(𝑝) denote the cost of incurring a cache
miss for the page2. Typically, 𝑟 (𝑝) is proportional to the size of the

page and scales with RAM prices, while 𝐵(𝑝) captures the cost of
the latency and/or I/O incurred due to the cache miss; however,

these quantities can be arbitrary functions of the page contents or

metadata. Let sz(𝑝) denote the size (in bytes) of page 𝑝 .

For a fixed universe 𝑈 of pages and a cache with maximum

capacity 𝑘 , an algorithm receives a sequence 𝜎 of page requests

online and must decide how long to hold each page in cache with

the goal of minimizing the total cost, i.e., the sum of the total cost

of all cache misses and the total RAM cost. Formally, if 𝐴𝑡 is the

set of pages in cache at time 𝑡 by some algorithm A for request

sequence 𝜎 , then the total cache maintenance cost is defined as

MemCost(A, 𝜎) = ∑
𝑡

∑
𝑝∈𝐴𝑡

𝑟 (𝑝) and the total cost due to cache

evictions is defined as EvictCost(A, 𝜎) = ∑
𝑡

∑
𝑝∈𝐴𝑡−1∖𝐴𝑡

𝐵(𝑝)3.

2
We use symbols 𝑟 and 𝐵 as they correspond to the cost for renting and buying in Ski

Rental respectively.

3
As is standard in caching literature, we charge for cache evictions rather than cache

misses. The two quantities only differ by a constant since any page 𝑝 that is brought

https://orcid.org/0000-0002-8650-2022
https://aws.amazon.com/elasticache/pricing/

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Ravi Kumar, Todd Lipcon, Manish Purohit, and Tamas Sarlos

The total cost of ownership incurred by the algorithm is defined as:

TCO(A, 𝜎) = MemCost(A, 𝜎) + EvictCost(A, 𝜎) .

The goal of the linear elastic caching problem is to design an online

algorithm A that minimizes TCO(A, 𝜎) subject to the constraint

that the total size of pages in the cache at any time 𝑡 is at most 𝑘 ,

i.e.,

∑
𝑝∈𝐴𝑡

sz(𝑝) ≤ 𝑘 .

As is standard in the analysis of online algorithms, we adopt the

lens of competitive analysis, which provides a bound on the worst-

case performance of the online algorithm. Formally, for any instance

I of a minimization problem, if cost(A,I) is the cost incurred by

some online algorithm A and OPT(I) is the cost incurred by an

optimal offline algorithm, then the competitive ratio ofA is defined

to be:

competitive-ratio(A) = max

I
cost(A,I)
OPT(I) .

If the competitive ratio of A equals 𝑐 , we often use the shorthand

that A is 𝑐-competitive.

Specifically, for the linear elastic caching problem, for any re-

quest sequence 𝜎 , let OPT(𝜎) denote the total cost incurred by the

optimal offline algorithm that is aware of the entire sequence ahead

of time. Then the competitive ratio of an algorithmA is defined as:

competitive-ratio(A) = max

𝜎

TCO(A, 𝜎)
OPT(𝜎) .

3 RELATEDWORK
The problem of dynamically changing the cache size in response to

the workload has been well-studied in the algorithms research com-

munity. Gupta et al. [14] propose the general elastic caching problem
where the cache maintenance cost can be a general function of the

set of pages stored in the cache. In their setting, 𝑓 : 2
𝑈 → R+ is

an arbitrary non-negative set function and the cache maintenance

cost incurred by an algorithm is

∑
𝑡 𝑓 (𝐴𝑡) where 𝐴𝑡 is the set of

pages held in cache at time 𝑡 . They design an 𝑂 (log𝑛)-competitive

randomized online algorithm when the maintenance cost depends

only on the cache size (rather than the identities of the pages in

cache) and an 𝑛-competitive deterministic algorithm for arbitrary

monotone functions where 𝑛 = |𝑈 |. We note that the linear elas-

tic caching problem studied in our paper is a special case where

𝑓 (𝐴𝑡) =
∑
𝑝∈𝐴𝑡

𝑟 (𝑝) if the total size of pages in 𝐴𝑡 is at most 𝑘 and

𝑓 (𝐴𝑡) = ∞ otherwise.

Dynamically adjusting the cache size has also been studied in

the systems and database communities [5, 6, 15, 19, 25]. The broad

goal there is to explore elastic resource management, when cache

and cache maintenance costs become a factor; they observe that

dynamic cache instantiation can provide substantial cost reductions.

Perhaps the most directly relevant paper is by Carra et al. [6],

where they consider horizontal scaling of the in-memory cache

by dynamically adding/removing cache instances. They assume

that page requests follow a Poisson arrival process and aim to

dynamically optimize for the best single TTL that can be applied

for all pages. The algorithm maintains a virtual TTL cache [13] and

at the end of each epoch sets the number of cache instances based

on the size of the virtual cache.

into the cache must also get evicted, except for the pages in the cache at the end of the

input instance.

Optimizing storage costs by exploiting tiered storage options

in the cloud has also been an active area of study [12, 20–23, 26].

When there are multiple storage tiers with differing storage and

access costs, these papers observe that (generalizations of) the ski

rental problem can be applied in this setting. Puttaswamy et al. [26]

propose a frugal cloud file system by automatically transferring

data between hot and cold storage tiers and rederive the optimal

deterministic and randomized ski rental algorithms. However, these

papers do not provide theoretical guarantees that when the hot

storage has limited size, the ski rental policies do not adversely

interact with the cache eviction policy. In contrast, we provide

a theoretical justification for incorporating ski rental algorithms

side-by-side with existing cache eviction policies and show that

optimizing for both separately does indeed suffice to minimize the

total cost of ownership.

4 CONNECTIONS WITH SKI RENTAL
Our problem description was formulated suggestively to indicate

the similarity with the classical ski rental [2] problem. Recall that

in the ski rental problem, a skier wishes to ski for some unknown

number 𝑑 of days and they can either rent a pair of skis at a cost of
𝑟 per day or buy them at a higher cost of 𝐵 and ski for free from

then on. Clearly, if 𝑑 ≥ 𝐵
𝑟 , an optimal solution is to buy the skis

on the first day and incur a total cost of 𝐵; on the other hand, if

𝑑 < 𝐵
𝑟 , the optimal solution is to only rent skis and pay a total cost

of 𝑑 · 𝑟 < 𝐵. However, 𝑑 is unknown to an online algorithm and

each day when the skier wants to ski, the algorithm needs to decide

whether to rent skis for the day or buy (and ski without cost for

any future days).

The ski rental problem is one of the prototypical examples of

decision making under uncertainty and has been well studied in the

classical competitive analysis framework. The goal of competitive

analysis is to study theworst-case performance of online algorithms.

In particular, consider the breakeven algorithm that rents skis for

the first ⌊ 𝐵𝑟 ⌋ days and then buys on the next day (if any). It can

be readily observed via a simple case analysis that the total cost

incurred by the breakeven algorithm is never more than twice the

cost incurred by the optimal offline solution. Indeed, if 𝑑 ≤ ⌊ 𝐵𝑟 ⌋,
then the breakeven algorithm simply rents the skis for all 𝑑 days

and incurs the same cost as the optimal solution; on the other

hand, if 𝑑 > ⌊ 𝐵𝑟 ⌋, then the breakeven algorithm incurs a total cost

of ⌊ 𝐵𝑟 ⌋ · 𝑟 + 𝐵 ≤ 2𝐵 while the optimal solution buys on the first

day and pays 𝐵. The breakeven algorithm is thus 2-competitive

and this is best possible for deterministic algorithms. However,

randomization helps and Karlin et al. [17] design a randomized

algorithm that obtains a competitive ratio of 𝑒/(𝑒 − 1) ≈ 1.58. It

is well known that any deterministic algorithm for ski rental is

characterized by how long the algorithm rents skis before finally

buying them, while any randomized algorithm is characterized by

a distribution over such buy times.

Now, focusing back on the linear elastic caching problem, con-

sider a single request to page 𝑝 at some time 𝑡1. Suppose the next

request to 𝑝 is at some time 𝑡2 > 𝑡1. Then considering this page in

isolation, there are two alternatives available: (i) either, we hold the

page in cache and incur a cache maintenance cost of 𝑟 (𝑝) per unit
time, or we (ii) evict the page 𝑝 and incur an eviction cost of 𝐵(𝑝).

Linear Elastic Caching via Ski Rental CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Since the total length of this time interval (𝑡2 − 𝑡1) is unknown
when the page arrives (at time 𝑡1), the problem faced by the caching

algorithm is exactly the ski rental problem with holding the page

in cache corresponding to renting and eviction corresponding to

buying. We emphasize that this is simply an informal connection

between the two problems and not a formal reduction—in linear

elastic caching, we cannot treat each page in isolation as the total

size of pages in cache at any time cannot exceed the maximum

cache capacity 𝑘 .

5 MAIN RESULTS
Since each page request in isolation leads to an instance of the ski

rental problem, a natural strategy for linear elastic caching is to

invoke an algorithm for the ski rental problem for each page request.

Suppose for a particular page 𝑝 that is requested at time 𝑡 , and a ski

rental algorithm responds with a buy time of 𝑏. Then one can set a

TTL (time-to-live) of 𝑡 + 𝑏 when admitting or accessing page 𝑝 in

the cache. Thus renting for 𝑏 time units followed by buying exactly

corresponds to evicting the page from cache when its TTL expires.

However, since such a strategy treats each page request inde-

pendently, it may violate the maximum cache capacity 𝑘 . A linear

elastic caching algorithm needs to simultaneously solve these per-

request ski rental instances while also maintaining that the cache

size is always at most the capacity 𝑘 .

First, we show that one can combine an arbitrary online algo-

rithm for regular caching (with a fixed size cache and a goal of

minimizing the total miss cost) with an arbitrary ski rental algo-

rithm, in a black box manner. The result relies on a reduction of

linear elastic caching to the read-write caching problem [10] that we

define next. In an instance of read-write caching, each page request

is either a read request or a write request. On a read request to a

page 𝑝 , if 𝑝 is not in the cache then the algorithm incurs amiss cost.
On the other hand, on a write request to a page 𝑝 , the algorithm

incurs a write cost if 𝑝 is in the cache. The goal is to design an

algorithm that minimizes the sum of miss costs and write costs.

Theorem 5.1. Given an 𝛼-competitive online algorithm for caching
and a 2-competitive deterministic algorithm for ski rental, there is an
(𝛼 + 5)-competitive algorithm for linear elastic caching.

Proof. We can reduce an instance of linear elastic caching to

an instance of read-write caching as follows. Let 𝜎 be a sequence

of page requests for the linear elastic caching instance. We create a

new sequence 𝜎′ of read-write page requests as follows: for each
page 𝑝 that arrives at time 𝑡 in 𝜎 , add a read request for page 𝑝 at

time 𝑡 in 𝜎′. In addition, for each discrete time step, add a write

request to every page in the universe. Each page 𝑝 has a write cost

of 𝑟 (𝑝) and a read cost of 𝐵(𝑝). It can be observed that for any

caching algorithm A, the read-write cost on sequence 𝜎′ equals
the TCO(A, 𝜎). The proof now follows from [10, Theorem 3]. □

While Theorem 5.1 yields almost best-possible theoretical guar-

antees for linear elastic caching, the proposed algorithm is not

ideal to deploy in a production environment since it necessitates

maintaining additional bookkeeping. The cache eviction algorithm

A works under the assumption that the cache always has size 𝑘

and maintains a ghost cache with a superset of pages that are ac-

tually held in cache. In our next result, we show that when using

practical cache eviction policies such as Least Recently Used (LRU),

simply adding pages to the cache with a TTL that is determined

by a ski rental algorithm suffices. We give a formal description

in Algorithm 1. Informally, whenever a page request arrives, the

ski rental algorithm determines a TTL for the page. The page gets

evicted from the cache at its TTL unless it is requested again by

that time (the TTL will then be recomputed). If at any point, the

requested page is not in the cache and the cache is full, then the

cache eviction algorithm determines which page(s) to evict.

Input: Eviction Policy A, Ski Rental Algorithm B
𝐶 ← ∅;
for time 𝑡 = 1, 2, . . . , do

/* Evict any pages whose TTLs have expired */

for page 𝑝 ∈ 𝐶 do
if ttl(𝑝) < 𝑡 then

Evict 𝑝 from 𝐶;

end
end
/* Process page requested at time 𝑡 if any */

if page 𝑝𝑡 is requested at time 𝑡 then
Send 𝑝𝑡 to A;

buytime← B(𝑝𝑡);
ttl(𝑝𝑡) ← 𝑡 + buytime;

end
end
Algorithm 1: Linear Elastic Caching algorithm (A + B).

We first introduce some notation to simplify the following discus-

sion. Any page request sequence 𝜎 gives rise to many independent

instances of the ski rental problem (one per page request). Let

SkiCost(B, 𝑝, 𝑡) be the cost incurred by the ski rental algorithm B
on the instance corresponding to a request to page 𝑝 at time 𝑡 and

let SkiCost(B, 𝜎) = ∑
𝑡 SkiCost(B, 𝑝𝑡 , 𝑡) be the total cost incurred

by Algorithm B on all the induced instances.

Theorem 5.2. When the cache eviction algorithm A is LRU, then
for any request sequence 𝜎 , Algorithm 1 satisfies

TCO(A + B, 𝜎) ≤ EvictCost(A, 𝜎) + SkiCost(B, 𝜎) .

Proof. Let TCO(A + B, 𝑝𝑡 , 𝑡) be the total cost incurred by the

algorithm on page 𝑝𝑡 requested at time 𝑡 . So by definition we

have TCO(A +B, 𝜎) = ∑
𝑡 TCO(A +B, 𝑝𝑡 , 𝑡). Let buytime(𝑝𝑡 , 𝑡) =

B(𝑝𝑡 , 𝑡) be the time duration for which algorithm B recommends

holding 𝑝𝑡 in cache. Let time-in-cache tic(𝑝𝑡 , 𝑡) denote the number

of time units that page 𝑝𝑡 was actually held in the cache and let

𝑑𝑡 be the number of time units until the next request of page 𝑝𝑡
in 𝜎 . Note that we have tic(𝑝𝑡 , 𝑡) ≤ buytime(𝑝𝑡 , 𝑡) since 𝑝𝑡 may be

evicted earlier by Algorithm A, and also tic(𝑝𝑡 , 𝑡) ≤ 𝑑𝑡 . Finally let

I[𝑝𝑡 evicted] be an indicator variable that is 1 iff page 𝑝𝑡 is evicted.

Then we have:

TCO(A + B, 𝑝𝑡 , 𝑡) = tic(𝑝𝑡 , 𝑡) · 𝑟 (𝑝𝑡) + I[𝑝𝑡 evicted] · 𝐵(𝑝𝑡).
We now consider three cases depending on whether 𝑝𝑡 was

evicted by the algorithm A + B.
Case 1: 𝑝𝑡 was not evicted.Thenwe have buytime(𝑝𝑡 , 𝑡) ≥ tic(𝑝𝑡 , 𝑡) =

𝑑𝑡 and hence: TCO(A + B, 𝑝𝑡 , 𝑡) = 𝑑𝑡 · 𝑟 (𝑝) = SkiCost(B, 𝑝𝑡 , 𝑡).

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Ravi Kumar, Todd Lipcon, Manish Purohit, and Tamas Sarlos

Case 2: 𝑝𝑡 was evicted because its TTL expired. Then we have 𝑑𝑡 ≥
buytime(𝑝𝑡 , 𝑡) = tic(𝑝𝑡 , 𝑡). Hence, we have TCO(A + B, 𝑝𝑡 , 𝑡) =
𝐵(𝑝𝑡) + buytime(𝑝𝑡 , 𝑡) · 𝑟 (𝑝𝑡) = SkiCost(B, 𝑝𝑡 , 𝑡).

Case 3: 𝑝𝑡 was evicted by Algorithm A. Once again, we have

tic(𝑝𝑡 , 𝑡) ≤ buytime(𝑝𝑡 , 𝑡) and hence SkiCost(B, 𝑝𝑡 , 𝑡) ≥ tic(𝑝𝑡 , 𝑡) ·
𝑟 (𝑝𝑡). Using this, TCO(A + B, 𝑝𝑡 , 𝑡) = 𝐵(𝑝𝑡) + tic(𝑝𝑡 , 𝑡) · 𝑟 (𝑝𝑡) ≤
𝐵(𝑝𝑡) + SkiCost(B, 𝑝𝑡 , 𝑡).

Combining all three cases above and summing over all page

requests, we have:

TCO(A + B, 𝜎) ≤ SkiCost(B, 𝜎)

+
∑︁
𝑡

𝐵(𝑝𝑡) · I[𝑝𝑡 evicted by Algorithm A] .

We note that the second term on the RHS is the total eviction cost

of all pages evicted by Algorithm A when invoked as part of Algo-

rithm 1. This may not be equal to the cost that would be incurred

if we ran Algorithm A on the request sequence 𝜎 directly, i.e.,

EvictCost(A, 𝜎) ≠ ∑
𝑡 𝐵(𝑝𝑡) · I[𝑝𝑡 evicted by Algorithm A] . However,

the following lemma argues that whenA = LRU, the total eviction

cost incurred via this procedure does not exceed that of running

LRU directly on 𝜎 . The theorem thus follows. □

Lemma 5.3. Let A = LRU. Then for any request sequence 𝜎 ,∑︁
𝑡

𝐵(𝑝𝑡) · I[𝑝𝑡 evicted by Algorithm A] ≤ EvictCost(A, 𝜎) .

Proof Sketch. For simplicity consider a single page 𝑝 that gets

evicted from the cache because its TTL expires. Let 𝑆 be the cache

state maintained by LRU before 𝑝 is evicted and let 𝑆 ′ be the state
after the eviction. We show that for any future request sequence 𝜎 ,

the number of evictions incurred by LRU starting from state 𝑆 ′ is
at most that incurred by LRU starting from state 𝑆 . Let 𝑆𝑡 and 𝑆

′
𝑡

denote the states after processing 𝑡 requests from 𝜎 . We observe

that for any 𝑡 , the only page (if any) in 𝑆𝑡 ∖ 𝑆 ′𝑡 is 𝑝 . Further, after
page 𝑝 is requested or after 𝑝 gets evicted from 𝑆𝑡 , we must have

𝑆𝑡 = 𝑆 ′𝑡 and hence the two instances incur the same number of

evictions from that point onwards. □

We note that Lemma 5.3 and Theorem 5.2 are likely to hold

(at least approximately) for many realistic cache eviction policies

beyond LRU. The formal proof continues to hold for any eviction

policy that maintains pages in a priority queue and the priority of a

page only depends on the intrinsic characteristics of the page and its

arrival time; in particular, the priority is only (re)-computed when

it is requested and is independent of the past requests processed by

the algorithm.

Offline Setting. Finally, we also consider the offline version of

linear elastic caching where the algorithm is aware of the entire

page request sequence a priori. We note that when pages have

different sizes, even the special case when the cache maintenance

cost is zero is known as the generalized caching problem and is

known to be NP-complete [16]. When pages have unit sizes but

different eviction costs (and zero cache maintenance costs), then

the problem is known as weighted paging and admits a polynomial

time offline algorithm via a reduction to minimum cost flow [8].

For offline linear elastic caching, we again show a reduction sim-

ilar to Algorithm 1 and show that given two black box algorithms—

one for the offline ski rental problem, and another for the offline

caching problem (either weighted paging or generalized caching)—

one can implement an offline elastic caching algorithm. At a high

level, in the reduction, we subtract the eviction cost of any page by

the cost incurred by the ski rental algorithm for that page request.

Theorem 5.4. Let A∗ be an offline optimal algorithm for weighted
paging (or generalized caching if pages have non-uniform sizes) and
let B∗ be an offline optimal ski rental algorithm. We define a modified
eviction cost 𝑤 (𝑝𝑡) = 𝐵(𝑝𝑡) − SkiCost(B∗, 𝑝𝑡). For any caching
algorithmA, letA@B∗ be an elastic caching algorithm that runsA
with the modified eviction costs above. Then A∗@B∗ is an optimal
offline algorithm for linear elastic caching.

Proof Sketch. We note that an optimal offline algorithm for

(linear elastic) caching either evicts a page immediately after it is

requested or holds it in cache until its next request. The theorem

follows by arguing that for any page request 𝑝𝑡 , the TCO incurred

by A@B exactly equals EvictCost incurred by A and the SkiCost

incurred by B for that page request. If a page 𝑝𝑡 is evicted, then

the incurred TCO is 𝐵(𝑝𝑡) = 𝑤 (𝑝𝑡) + SkiCost(B∗, 𝑝𝑡) as desired.
On the other hand, if the page is not evicted, then the TCO exactly

equals the ski cost incurred by B∗. □

6 DESIGN AND IMPLEMENTATION
We propose implementing linear elastic caching via a TTL cache.

Whenever a page is inserted into the cache, it gets assigned a TTL. If

no further requests are made to the page, then the page gets evicted

at the assigned TTL. If the page does get requested, then the TTL is

recomputed. Such a TTL cache is well suited for implementing ski

rental based policies since the TTL for a page directly corresponds

to the time at which the ski rental algorithm decides to “buy”.

The theoretical results above demonstrate that incorporating

such TTLs in addition to a classical eviction policy does not deterio-

rate the performance of the original eviction policy. In addition, the

total cost of the resulting elastic caching algorithm is at most the

sum of costs experienced by the underlying cache eviction policy

and the multiple independent ski rental instances constructed. Con-

sequently, in order to minimize the elastic caching cost it suffices

to optimize the ski rental algorithms independently of the cache

eviction policy.

7 EVALUATION
7.1 Spanner Case Study
Spanner [9] is a scalable, globally distributed database system

at Google. Like most databases, Spanner issues all storage reads

through an in-memory page cache. Because Spanner employs a

form of log-structured merge trees [3] for its storage layer, the data

behind the cache is immutable and cache entries may be safely

evicted at any time. This cache represents approximately 45% of

Spanner’s production memory footprint, which itself represents a

substantial fraction of Google’s overall fleet memory.

Spanner servers are deployed on Borg [27], Google’s cluster man-

agement system. Although servers are deployed within containers

with a specified memory limit, Borg overcommits memory at the

Linear Elastic Caching via Ski Rental CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

machine level [4], providing for substantial operational efficiencies

within Google’s fleet when we are able to reduce usage within

our containers. To that end, we have integrated the linear elastic

caching algorithm into Spanner, and found that it can substantially

reduce Spanner’s total cost of ownership (TCO).

7.1.1 Integration. In order to ensure scalability of Spanner’s cache,

it supports lock-free read accesses, and only enforces mutual ex-

clusion between concurrent mutations (evictions and insertions).

It is implemented using a strategy similar to BP-Wrapper [11], in

which cache hits are buffered in a lock-free multi-producer single-

consumer queue, and the eviction policy later processes batches of

accesses while holding an exclusive latch.

This made it quite simple to integrate linear elastic caching into

Spanner’s cache: cache entries are inserted into a heap keyed by the

eviction time computed by the ski rental oracle. When an entry is

accessed, the eviction time is recomputed and the entry’s position

in the heap is adjusted. A background thread periodically evicts any

entries that have passed their TTL. Because the TTL calculation

and heap maintenance is deferred off the critical path of cache

hits, we did not need to implement lock-free priority queues or be

concerned about introducing additional contention on the cache

implementation.

7.1.2 Learned Ski Rental Algorithm. In the classical adversarial

model of online algorithms, the optimal deterministic policy is

to buy at the breakeven time
𝐵
𝑟 . However, we observe that page

request patterns are far from adversarial, and we can exploit this

observation to learn prediction models. As observed by [18], any

(potentially machine-learned) algorithm for ski rental that buys

at times in some interval [𝜆 · 𝐵𝑟 ,
1

𝜆
· 𝐵𝑟] for any constant 𝜆 ≤ 1

maintains a bounded worst-case competitive ratio. So, we consider

algorithms that set 𝑡 = 𝜆 · 𝐵𝑟 where 𝜆 is a learned function of the

page attributes.

7.1.3 Decision Tree Training. Because the ski rental policy must

be consulted after every page access (billions of QPS), it is critical

that it is extremely inexpensive to evaluate. We also strongly prefer

interpretable models so that engineers and operators can easily

compare them against their intuition of the problem domain. Given

this, we use a shallow decision tree, which can be translated into

a small snippet of C++ code and included into Spanner’s cache

implementation.

In order to train the model, we utilize a cache trace collected

from a small sample of production servers. From this trace, we

sample a dataset of page requests, each associated with a number

of features including (i) page features (size, eviction cost, memory

cost), (ii) cache entry state (e.g., time since prior request, number

of cache hits), (iii) application features (e.g., Spanner operation cat-

egory and priority). The label for each example instance is the

(potentially-infinite) interval until the next request to the page.

Categorical features are mapped into real numbers by substituting

target means [24].

Unfortunately, we cannot use a standard off-the-shelf decision

tree algorithm (e.g., for squared-loss regression) since we seek to

directly minimize the ski rental cost, which is discontinuous and

non-monotonic. Instead, we use a greedy algorithm to train the

decision tree to directly minimize the total ski rental loss over the

training set.

Given a set 𝑆 of ski rental instances, let SkiCost𝑆 (𝜆) be the total
cost over all instances in 𝑆 when using a given constant value of

𝜆. Let 𝜆∗ = argmin𝜆 SkiCost𝑆 (𝜆) be the minimizer and OPT(𝑆) =
SkiCost𝑆 (𝜆∗) be the optimal cost. We note that SkiCost𝑆 (·) is piece-
wise linear and hence 𝜆∗ can be found by enumerating over the

𝑂 (|𝑆 |) pieces. In practice, we approximately find 𝜆∗ by sweeping

over a fixed set of candidates in the interval [0, 2].

Each node of the tree corresponds to a set 𝑆 of training instances.

We iterate over all features and all split points to generate a number

of candidate partitionings of 𝑆 . For each partition, say 𝑆1 and 𝑆2,

we compute OPT(𝑆1) and OPT(𝑆2) and then choose the feature

and threshold that minimizes the sum. We then recursively apply

the same decision tree algorithm within each partition. In practice,

we have found that there are minimal improvements past a depth

of two or three, while interpretability suffers, so our production

implementation only uses a depth of two, discovering optimal splits

on the time in cache and Spanner-specific IsBackgroundOperation
features.

7.1.4 Experimental Results. We deployed our learned ski rental

policy on a significant fraction of Spanner production servers over

several months. Compared to a control group that used a fixed size

cache, the elastic caching policy reduces cache usage by 15.5% while

only increasing the total cachemisses by a relative 5.5%. Because the

policy is cost-aware, the increase in cache misses is concentrated on

entries with a relatively lower refault cost, and so I/O costs increase

by only 0.5%. The TCO, inclusive of the cache RAM, the computa-

tion spent to maintain the policy, and the storage I/O beneath, is

reduced by approximately 5%. This amounts to a substantial savings

considering Spanner’s exabyte-scale footprint. Given the positive

results in the experimental rollout, we subsequently enabled ski

rental eviction in all production Spanner databases at Google.

7.2 Public Traces
Traces and Cache Simulator. We evaluate our ski rental based

eviction policies on a number of publicly available cache traces. We

utilize a subset of traces collected by [28] fromfive datasets (Tencent,

Alibaba, MSR, Cloudphysics, FIU) containing 10 traces each. We

implemented our ski rental based algorithms in libCacheSim [1].

LibCacheSim is designed for high-throughput cache simulations

and allows for efficient multi-threaded parallel simulations.

Algorithms. We implement two classical online algorithms for

solving the ski rental instances: (i) Breakeven is the 2-competitive

deterministic algorithm that sets the TTL of a page 𝑝 to be
𝐵 (𝑝)
𝑟 (𝑝) ,

(ii) Randomized is the randomized 𝑒/(𝑒 − 1) ≈ 1.582-competitive al-

gorithm [17]. Since there are no application-level features available,

we do not implement decision trees as the machine learned oracle.

Instead, we consider the following very simple learning policy. We

split each trace in half and use the first half for training. For each

individual page in the training trace, we compute best TTL for the

page that minimizes the cost over the training trace. We warm up

all caches with one day’s worth of requests from the second half of

the trace and use the rest for testing and measurements. During the

test trace, if we encounter a page that was seen during training, we

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Ravi Kumar, Todd Lipcon, Manish Purohit, and Tamas Sarlos

set the TTL to be precomputed best TTL for that page. Otherwise,

we set the TTL using either the breakeven or randomized policies.

Since different pages occupy different sizes in the cache, we

mainly utilize the Greedy Dual Size Frequency (GDSF) [7] algorithm

as the cache eviction policy. We note that we replicated the results

using the new S3FIFO [28] eviction policy and the results remain

qualitatively unchanged. In all subsequent results, algorithms la-

beled as “Breakeven” implement Algorithm 1 using Breakeven as

the Ski Rental algorithm and GDSF as the eviction policy, and simi-

larly for the three other elastic caching algorithms. The algorithm

labeled “GDSF” is the baseline that uses a fixed cache size and has

no ski rental component.

Costs. Wenote that the cost of a cache eviction relative to the cost

of RAM-seconds is an important factor that determines the efficacy

of linear elastic caching algorithms. Internal analysis using Spanner

suggests a ratio of ≈ 10
9
. This ratio ranges from ≈ 2 · 107 (custom

VM RAM vs SSD IOPS on GCP) to ≈ 5 · 1010 (Amazon S3 Express

vs Standard, or Azure Premium vs Hot blob stores) in public clouds.

Unless otherwise specified, we present all experimental results

using a ratio of 10
9
; see Figure 4 for sensitivity analysis.

0
20

0
40

0
60

0
80

0

Cache Capacity (MiB)

0.2

0.4

0.6

0.8

1.0

1.2

TC
O

(u
ni

ts
 h

id
de

n)

1e10

GDSF
Breakeven
Randomized
Learned + Breakeven
Learned + Randomized

Figure 1: Variation of total cost with cache capacity.

7.2.1 Experimental Results. Figure 1 shows the TCO for a Tencent

Block trace for different cache capacities. We note that the 𝑥-axis

denotes the maximum cache capacity allocated rather than the

actual size of the cache. Specifically, for the ski rental based policies,

the actual cache used is much smaller (which contributes to the

lower TCO). For small cache capacities, the cost of cache misses

dominates but for larger caches, Figure 1 shows that the ski rental

based algorithms significantly reduce the total cost.

To get an aggregate view of TCO improvement across the dif-

ferent traces, Figure 2 shows the mean percentage reduction in

total cost over the different individual traces for each dataset. To

compute the TCO improvement for a specific trace, we first run

the algorithms with different cache capacities (as in Figure 1) and

compare the best TCO obtained by GDSF with that obtained by

the ski rental based policies. The figure demonstrates that the ski

rental policies and especially the two learning-based policies give

significant gains over using fixed cache size policies.

Effect on Miss Rate. We have assumed for the purposes of com-

puting TCO that the cost of cache misses (or evictions) can be

-20% -15% -10% -5% 0% 5% 10% 15% 20%
Mean Percentage TCO Reduction

alibabaBlock

cloudphysics

fiu

msr

tencentBlock

Da
ta

se
ts

Breakeven
Randomized
Learned+Breakeven
Learned+Randomized

Figure 2: Mean TCO reduction per dataset (positive is better).

precisely quantified. However, a large increase in cache misses can

have a significant impact on user perceived latency. Figure 3 shows

a plot of the cache miss rate of GDSF for different cache sizes for

the Tencent Block trace. The markers for the ski rental policies

correspond to the average cache size and miss rate obtained by the

corresponding algorithms when using the largest cache capacity.

The figure demonstrates that the ski rental based policies incur

a significantly lower miss rate for a particular average cache size

than the corresponding fixed cache size policy.

0
20

0
40

0
60

0
80

0

Cache Size (MiB)

0.0

0.1

0.2

0.3

0.4

M
iss

 ra
te

GDSF
Breakeven
Randomized
Learned + Breakeven
Learned + Randomized

Figure 3: Variation of miss rate with cache size.

Sensitivity to the Cost Ratio. A dominant factor underlying the

efficacy of elastic caching policies is the ratio of the cost of a cache

eviction to the cost of RAM (per byte-second). Figure 4 shows a

plot of TCO improvement for a wide range of different cost ratios

for the Tencent Block trace. As the cost of evictions increases, the

relative cost of maintaining the cache in RAM decreases and the

gains due to elastic caching reduce.

8 CONCLUSIONS
We introduced and studied the linear elastic caching problem, mo-

tivated by reducing both the cache miss cost and the cache main-

tenance cost. Through an interesting connection to the ski rental

problem, we developed simple and practical algorithms for linear

elastic caching. These algorithms reduce the total cost of ownership

on publicly available cache traces. We also propose a lightweight

Linear Elastic Caching via Ski Rental CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

107 108 109 1010 1011

Cost Ratio
-10%

0%

10%

20%

30%

40%

50%

TC
O

Re
du

ct
io

n

Breakeven
Randomized
Learned + Breakeven
Learned + Randomized

Figure 4: TCO reduction vs Cost Ratio

machine learning approach to design simple ski rental algorithms

that are tailored to production workloads. They have also been

deployed at scale in Spanner at Google.

Potential future work includes strengthening Theorem 5.2 for

other eviction policies beyond LRU. Such a result would also provide

a strong justification for incorporating learned ski rental policies

along with machine learned caching algorithms.

REFERENCES
[1] libCacheSim: A high performance cache simulator. https://github.com/1a1a11a/

libCacheSim. Accessed: 08-01-2024.

[2] Ski rental problem. https://en.wikipedia.org/wiki/Ski_rental_problem.

[3] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam Dickinson,

Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,

et al. Spanner: Becoming a SQL system. In SIGMOD, pages 331–343, 2017.
[4] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak, and Rohit

Jnagal. Take it to the limit: peak prediction-driven resource overcommitment in

datacenters. In EuroSys, pages 556–573, 2021.
[5] N. Carlsson and D. Eager. Optimized dynamic cache instantiation and accurate

LRU approximations under time-varying request volume. IEEE ToCC, 11(1), 2023.
[6] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. Elastic provisioning of

cloud caches: A cost-aware TTL approach. IEEE/ACM ToN, 28(3):1283–1296, 2020.
[7] Ludmila Cherkasova. Improving WWW proxies performance with greedy-dual-

size-frequency caching policy. Hewlett-Packard Laboratories Palo Alto, CA, 1998.

[8] Marek Chrobak, H Karloff, Tom Payne, and Sundar Vishwanathan. New results

on server problems. SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.
[9] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, et al. Spanner: Google’s globally distributed database. ACM
TOCS, 31(3):1–22, 2013.

[10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Caching with dual costs. In

WWW, pages 643–652, 2017.

[11] Xiaoning Ding, Song Jiang, and Xiaodong Zhang. Bp-wrapper: A system frame-

work making any replacement algorithms (almost) lock contention free. In ICDE,
pages 369–380, 2009.

[12] Abdelkarim Erradi and Yaser Mansouri. Online cost optimization algorithms for

tiered cloud storage services. Journal of Systems and Software, 160:110457, 2020.
[13] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don Towsley.

Performance evaluation of hierarchical TTL-based cache networks. Comput.
Netw., 65:212–231, 2014.

[14] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-

grahi. Elastic caching. In SODA, pages 143–156, 2019.
[15] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. Elmem: Towards

an elastic Memcached system. In ICDCS, pages 278–289, 2018.
[16] Sandy Irani. Page replacement with multi-size pages and applications to web

caching. Algorithmica, 33(3), 2002.
[17] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Compet-

itive randomized algorithms for nonuniform problems. Algorithmica, 1994.
[18] Ravi Kumar, Manish Purohit, and Zoya Svitkina. Improving online algorithms

via ML predictions. In NeurIPS, pages 9684–9693, 2018.
[19] Jeongho Kwak, Georgios Paschos, and George Iosifidis. Elastic femtocaching:

Scale, cache, and route. IEEE Trans. Wireless Comm., 20(7):4174–4189, 2021.
[20] Mingyu Liu, Li Pan, and Shijun Liu. To transfer or not: An online cost optimization

algorithm for using two-tier storage-as-a-service clouds. IEEE Access, 7, 2019.

[21] Mingyu Liu, Li Pan, and Shijun Liu. Keep hot or go cold: A randomized online

migration algorithm for cost optimization in STaaS clouds. IEEE Trans. Netw.
Service Mgmt., 18(4):4563–4575, 2021.

[22] Mingyu Liu, Li Pan, and Shijun Liu. Cost optimization for cloud storage from

user perspectives: Recent advances, taxonomy, and survey. ACM Computing
Surveys, 55(13):1–37, 2023.

[23] Yaser Mansouri and Abdelkarim Erradi. Cost optimization algorithms for hot

and cool tiers cloud storage services. In CLOUD, pages 622–629, 2018.
[24] Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical

attributes in classification and prediction problems. SIGKDD Explorations, 2001.
[25] Thanasis Priovolos, Stathis Maroulis, and Vana Kalogeraki. Escape: Elastic

caching for big data systems. In SRDS, pages 93–9309, 2019.
[26] Krishna PN Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. Frugal

storage for cloud file systems. In EuroSys, pages 71–84, 2012.
[27] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. Large-scale cluster management at Google with Borg. In

EuroSys, pages 1–17, 2015.
[28] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak. FIFO

queues are all you need for cache eviction. In SOSP, pages 130–149, 2023.

A DEFERRED PROOFS
Lemma 5.3. Let A = LRU. Then for any request sequence 𝜎 ,∑︁

𝑡

𝐵(𝑝𝑡) · I[𝑝𝑡 evicted by Algorithm A] ≤ EvictCost(A, 𝜎) .

Proof. For simplicity, we assume that all pages have unit size;

the proof extends seamlessly even for general page sizes. We recall

that LRU maintains the pages held in cache in a priority queue with

the most recently requested page at the head of the queue and the

least recently requested page at the tail. Upon a cache miss, the

newly requested page enters the queue at the head and the least

recently used page at the tail gets evicted from the queue (and the

cache). On a cache hit, the requested page moves from its initial

position in the queue to the head. At any point during execution of

the algorithm, we call this queue as the “state” of the algorithm.

The lemma states that additional evictions caused due to TTL

eviction in Algorithm 1 do not increase the total cost of evictions

incurred by the cache eviction policy A. To prove this, consider

a single page 𝑝 that gets evicted from the cache because its TTL

expires; the proof then follows by successively arguing about each

page evicted due to TTL expiry. Let 𝑆 be the cache state maintained

(as a priority queue) by LRU before 𝑝 is evicted and let 𝑆 ′ be the
state after the eviction. For any state 𝑇 and request sequence 𝜎 ,

let LRUCost(𝑇, 𝜎) be the number of evictions incurred by LRU on

request sequence 𝜎 when starting from state𝑇 . Our goal is to show

that LRUCost(𝑆 ′, 𝜎) ≤ LRUCost(𝑆, 𝜎) for any request sequence 𝜎 .

Consider running two parallel instances of LRU on request se-

quence 𝜎 starting from states 𝑆 and 𝑆 ′; we call these algorithmsALG
and ALG′ respectively. We abuse notation slightly and use 𝑆𝑡 (and

𝑆 ′𝑡) to denote the states after 𝑡 pages from 𝜎 are processed. Further,

let set(𝑆) denote the set of pages maintained in the cache in state

𝑆 , i.e., sans priority, (and similarly for 𝑆 ′). We now claim that the

following invariant is maintained. See Figure 5 for an illustration.

Invariant A.1. If 𝑆𝑡 ≠ 𝑆 ′𝑡 then we must have set(𝑆𝑡)∖set(𝑆 ′𝑡) = {𝑝}
and further either

(1) set(𝑆 ′𝑡) ⊂ set(𝑆𝑡), or
(2) set(𝑆 ′𝑡) ∖ set(𝑆𝑡) = {tail(𝑆 ′𝑡)}, where tail(𝑆) denotes the least

recently used page in 𝑆 .

We first observe that this invariant is sufficient to show that

LRUCost(𝑆 ′, 𝜎) ≤ LRUCost(𝑆, 𝜎). Clearly, once 𝑆𝑡 = 𝑆 ′𝑡 , then from

https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim
https://en.wikipedia.org/wiki/Ski_rental_problem

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Ravi Kumar, Todd Lipcon, Manish Purohit, and Tamas Sarlos

pSt
S′
t

decreasing priority

tail(S′
t)

tail(St)

pSt S′
t

decreasing priority

tail(St)

tail(S′
t)

or

Figure 5: Illustration of Invariant A.1. The pages in the cache
(apart from page 𝑝 ∈ 𝑆𝑡) are arranged in priority order from
left (highest priority) to right (lowest priority).

that point onward both algorithms perform identical actions and

incur the same cost. So suppose not and consider a request to some

page 𝑥 ∉ 𝑆 ′𝑡 and 𝑥 ≠ 𝑝 and suppose that ALG evicts page 𝑦. Then by

the invariant that set(𝑆𝑡+1) ∖ set(𝑆 ′
𝑡+1) = {𝑝}, we must have page

𝑦 has already been evicted by ALG′. On the other hand, if 𝑥 = 𝑝 ,

then we must have 𝑝 ∈ 𝑆 ′
𝑡+1 and hence by the invariant 𝑆𝑡+1 = 𝑆 ′

𝑡+1.
Thus, the claim follows.

Finally, we prove the invariant by induction. For the base case, by

definition, we have set(𝑆0)∖set(𝑆 ′
0
) = {𝑝} and set(𝑆 ′

0
) ⊂ set(𝑆0) as

desired. Let 𝑥 be the (𝑡 + 1)th page. Since 𝑆𝑡 = 𝑆 ′𝑡 =⇒ 𝑆𝑡+1 = 𝑆 ′
𝑡+1,

here we assume that 𝑆𝑡 ≠ 𝑆 ′𝑡 . We now have a few cases.

Case 1: 𝑥 ∈ set(𝑆 ′𝑡) ∩ set(𝑆𝑡). Since neither algorithm incurs a

cache miss, we have set(𝑆 ′
𝑡+1) = set(𝑆 ′𝑡) and set(𝑆𝑡+1) = set(𝑆𝑡)

and the invariant is maintained.

Case 2: 𝑥 ∉ 𝑆 ′𝑡 and 𝑥 ≠ 𝑝 . In this case, ALG incurs a cache

miss and evicts tail(𝑆𝑡) so that set(𝑆𝑡+1) = set(𝑆𝑡) ∪ {𝑥} ∖ tail(𝑆𝑡).
Depending on whether or not 𝑆 ′𝑡 has an additional page, we have

two slightly different subcases. The following figure illustrates the

states after processing of page 𝑥 in both subcases.

p

St+1

S′
t+1

decreasing priority tail(S′
t)

tail(St)

p
St+1

S′
t+1

decreasing priority

tail(St)

tail(S′
t)

or

x x

Figure 6: Illustration of how Invariant A.1 is maintained
when a page 𝑥 ∉ 𝑆 ′𝑡 and 𝑥 ≠ 𝑝 is requested.

In the first subcase suppose that set(𝑆 ′𝑡) ∖ set(𝑆𝑡) = {tail(𝑆 ′𝑡)}.
Then ALG′ needs to evict tail(𝑆 ′𝑡) and fetch 𝑥 so that set(𝑆 ′

𝑡+1) =
set(𝑆 ′𝑡)∪{𝑥}∖tail(𝑆 ′𝑡). Also since pagesmaintain their priority order,

we now have tail(𝑆 ′
𝑡+1) = tail(𝑆𝑡) and thusmaintain that set(𝑆 ′

𝑡+1)∖
set(𝑆𝑡+1) = {tail(𝑆 ′𝑡+1)} as desired. This subcase is illustrated in left

side of Figure 6.

For the second subcase, suppose that set(𝑆 ′𝑡) ⊂ set(𝑆𝑡), then
|set(𝑆 ′𝑡) | < 𝑘 and ALG′ does not evict any page and set(𝑆 ′

𝑡+1) =
set(𝑆 ′𝑡) ∪ {𝑥}. So we maintain that set(𝑆𝑡+1) ∖ set(𝑆 ′

𝑡+1) = {𝑝} and
also have set(𝑆 ′

𝑡+1) ∖ set(𝑆𝑡+1) = tail(𝑆𝑡) = tail(𝑆 ′𝑡), where the last
equality holds since the priority ordering of pages depends solely

on their arrival order. This subcase is illustrated in right side of

Figure 6.

Case 3: 𝑥 = 𝑝 . Since 𝑝 ∈ set(𝑆𝑡), ALG does not incur a cache

miss and we have set(𝑆𝑡+1) = set(𝑆𝑡). On the other hand, ALG′

does incur a cache miss. Suppose we have set(𝑆 ′𝑡) ⊂ set(𝑆𝑡), then
|set(𝑆 ′𝑡) | < 𝑘 and ALG′ does not evict any page and set(𝑆 ′

𝑡+1) =

set(𝑆 ′𝑡) ∪ {𝑝} = set(𝑆𝑡+1). On the other hand if set(𝑆 ′𝑡) ∖ set(𝑆𝑡) =
{tail(𝑆 ′𝑡)}, thenALG′ evicts page tail(𝑆 ′𝑡). Thenwe have set(𝑆 ′𝑡+1) =
set(𝑆 ′𝑡) ∪ {𝑝} ∖ {tail(𝑆 ′𝑡)} = set(𝑆𝑡+1). Since the priority ordering

of pages depends solely on their arrival order, set(𝑆 ′
𝑡+1) = 𝑠𝑒𝑡 (𝑆𝑡+1)

implies that 𝑆 ′
𝑡+1 = 𝑆𝑡+1 as desired. □

Theorem 5.4. Let A∗ be an offline optimal algorithm for weighted
paging (or generalized caching if pages have non-uniform sizes) and
let B∗ be an offline optimal ski rental algorithm. We define a modified
eviction cost 𝑤 (𝑝𝑡) = 𝐵(𝑝𝑡) − SkiCost(B∗, 𝑝𝑡). For any caching
algorithmA, letA@B∗ be an elastic caching algorithm that runsA
with the modified eviction costs above. Then A∗@B∗ is an optimal
offline algorithm for linear elastic caching.

Proof. We assume without loss of generality that A∗ is eager,
i.e., (i) it evicts any page 𝑝𝑡 immediately after time 𝑡 or does not

evict it until the page is requested again, and (ii) it immediately

evicts any page 𝑝 with eviction cost 0. Note that it is easy to ensure

that any offline optimal caching algorithm is eager.

We first note that for an optimal offline elastic caching algorithm

E∗, there exists an offline caching algorithm A such that E∗ =

A@B∗. Indeed, we can considerA to be the offline algorithm that

takes exactly the same decisions as E∗.
To complete the proof, it is now sufficient to show that for any

offline caching algorithm A, if EvictCost(A, 𝜎,𝑤) is the total evic-
tion cost incurred by A with the modified weights𝑤 , then:

TCO(A@B∗, 𝜎) = EvictCost(A, 𝜎,𝑤) + SkiCost(B∗, 𝜎).
Consider any page 𝑝𝑡 requested at time 𝑡 . SinceA is eager, either

𝑝𝑡 gets evicted immediately at the end of time 𝑡 or stays in cache

until it is requested again. Let 𝑑𝑡 be the number of time units until

the next request to page 𝑝𝑡 in 𝜎 . So we have two cases:

Case 1: 𝑝𝑡 is evicted.We have TCO(A@B∗, 𝑝𝑡 , 𝑡) = 𝐵(𝑝𝑡) = 𝑤 (𝑝𝑡)+
SkiCost(B∗, 𝑝𝑡 , 𝑡).
Case 2: 𝑝𝑡 is not evicted. Since 𝑝𝑡 gets evicted whenever𝑤 (𝑝𝑡) = 0,

we must have SkiCost(B∗, 𝑝𝑡 , 𝑡) = 𝑑𝑡 · 𝑟 (𝑡). Since 𝑝𝑡 is not evicted,
we have EvictCost(A, 𝑝𝑡 , 𝑡,𝑤) = 0, and TCO(A@B∗, 𝑝𝑡 , 𝑡) = 𝑑𝑡 ·
𝑟 (𝑡). The proof follows from summing over all page requests. □

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Connections with Ski Rental
	5 Main Results
	6 Design and Implementation
	7 Evaluation
	7.1 Spanner Case Study
	7.2 Public Traces

	8 Conclusions
	References
	A Deferred Proofs

