
Efficient ApproximateQuery Processing with Block Sampling
Yuxuan Zhu

yxx404@illinois.edu

University of Illinois Urbana-Champaign

Daniel Kang

ddkang@illinois.edu

University of Illinois Urbana-Champaign

ABSTRACT
Approximate query processing (AQP) has been widely studied to

accelerate online analytical query processing while maintaining

high accuracy. Many existing methods focus on reducing data pro-

cessing costs through record-level sampling techniques. However,

since data systems typically access data in pages, these methods

can cause data loading costs as high as exact queries, often becom-

ing the bottleneck of query processing. In this work, we present

B-AQP, an AQP framework based on block sampling, significantly

reducing data loading costs while guaranteeing a priori errors. Our

preliminary evaluation across various data systems and workloads

demonstrates that B-AQP accelerates query execution by up to

185× compared to uniform sampling and four orders of magnitude

compared to exact queries, all with guaranteed errors.

1 INTRODUCTION
Loading data from storage mediums to memory is often necessary

but can be expensive for many analytical queries, especially when

dealing with data larger than memory or cold data [5, 15]. Quanti-

tatively, data loading of the TPC-H benchmark accounts for 84%

of query processing time in DuckDB.
1
Even for computationally

demanding tasks, such as machine learning analytics, data loading

can remain the most time-consuming part when data are stored in

remote storage with limited bandwidth [15, 22]. This is particularly

true when accelerators (e.g., NVIDIA H100) are available. Our eval-

uation shows that accessing Parquet-based textual datasets from

Amazon S3 takes 64% of the query time.
2

Online approximate query processing (AQP) aims to speed up

query processing and reduce computational costs by minimizing

the amount of data that needs to be processed. However, current

online AQP methods fail to achieve efficient data loading in their

sampling algorithms. These algorithms typically operate at the

level of individual data records to minimize sample size [13, 14, 20].

In contrast, modern data systems access data in pages to reduce

the overhead of I/O operations. Consequently, sampling a single

random record can require accessing an entire data page, which

is inefficient and time-consuming for online query processing. We

show an example in Figure 1, where uniform sampling needs to

access most of the data pages to achieve a 5% error.

By better matching the data access patterns of storage systems,

directly sampling data pages (i.e., block sampling) can significantly

1
We used a scale factor of 5,000, two 32-core AMD 7543 CPUs, and 256 GB RAM.

2
We uniformly sampled 1% of 1 TB data and executed queries on 8 H100 GPUs, a BCM

5720 Gigabit NIC with a finetuned roBERTa model [4].

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2025. 15th Annual Conference

on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The

Netherlands

Uniform Sample Block Sample Accessed
data page
Skipped
data page
Sampled
data record

Figure 1: Accessed data pages when using uniform sampling
or block sampling to approximately answer an AVG query over
a Parquet file. Targeting the same 5% error, block sampling
reduces data loading by 5×.

save data loading costs (Figure 1). However, prior algorithms that

leverage block sampling do not provide a priori error guarantees,

resulting in limited adoptions in the real-world [6, 7, 9, 11, 19].

In this work, we propose a novel online AQP framework: B-AQP,

which achieves significant cost reductions using block sampling

and ensures a priori error bounds for approximate results. B-AQP

improves data loading efficiency for both structured and unstruc-

tured data, without requiring modifications to existing data systems

or extra maintenance.

Accurate error estimation is the primary challenge when in-

tegrating block sampling into query processing. Block sampling

introduces dependencies among data records within the same block,

creating statistical challenges in estimating the error of the approx-

imate query. To illustrate, consider the following ML query that

counts the number of sentiment-positive reviews:

SELECT COUNT (*) FROM reviews WHERE sentiment = ' positive '

If we target a 5% error and directly apply the Central Limit Theorem

(CLT) for uniform samples on the block samplingwith a block size of

100, we would obtain an average error of 8.5% and a 95th percentile

error of 20% over 1000 runs.

To address this challenge and achieve a priori error guarantees,

we design a novel statistical engine based on block-oriented estima-

tors and pilot sampling. Specifically, we estimate aggregates of data

records using independent and identically distributed block-level

statistics. In this way, we can obtain valid confidence intervals via

CLT. To achieve a priori error guarantees, we apply pilot sampling

to analyze the required sample size for the given error specification,

ensuring the final estimation error remains below the target error.

Finally, we theoretically analyze that B-AQP can achieve significant

cost reductions compared to uniform sampling when the page size

is large or data pages are representative of the entire dataset.

We implement B-AQP as middleware for both on-premise and

cloud data systems. Our preliminary evaluations across structured

and unstructured data show that B-AQP accelerates query execu-

tion by up to four orders of magnitude (1.5-12,412×) compared to

exact queries and up to 185× compared to uniform sampling, while

consistently guaranteeing a priori errors.



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Yuxuan Zhu and Daniel Kang

Job Specifications

Query Error targets

ML model

Local / Cloud Data System

Metadata

Page
access

Storage:
tabular,

text,
video,

...

B-AQP runtime
Parser Rewriter

Statistical engine w/
block sampling

Execution engine
Approximate results with

error guarantees Local / Cloud Compute

Figure 2: B-AQP architecture. Blue components are for ML
analytics over unstructured data.

2 OVERVIEW
2.1 System Architecture
Figure 2 shows the architecture of B-AQP, consisting of a middle-

ware B-AQP runtime and multiple interfaces for users, data systems,

and computing resources.

User Interface. B-AQP requires users to specify two inputs: (1) an

aggregation query described in SQL and (2) a target error of the

result, along with a target probability indicating the probability of

meeting the target error. For ML analytics over unstructured data,

B-AQP requires users to specify the ML models or APIs used in the

query. B-AQP returns approximate results that are guaranteed to

satisfy the error specification.

Data Interface. B-AQP requires access to the minimum indivisible

storage unit (e.g., a data page). In analytical database management

systems, such as DuckDB, this can be done via the TABLESAMPLE
SYSTEM clause. In cloud data systems, such as Amazon S3, we can

read pages by requesting specific byte ranges, given the metadata.

B-AQP runtime. B-AQP executes a runtime that processes in-

coming jobs and communicates with users and other systems. We

describe the basic components that ensure the functionality of B-

AQP, while customized block sampling algorithms can be further

developed to better fit specific workloads. B-AQP is composed of

a rewriter that rewrites queries with page-level data interfaces, a

statistical engine that samples data and analyzes errors, and an ex-

ecution engine that processes the sampled data. We describe the

interactions between these components in the next section.

2.2 Algorithm Overview
In B-AQP, we apply block sampling to reduce data loading costs and

design a two-stage sampling algorithm to achieve error guarantees.

In the first stage, B-AQP rewrites the input query into a pilot query

that computes statistics and determines the sample size for the

error specification. In the second stage, B-AQP rewrites the input

query into a final query that computes the approximate answer.

For both stages, B-AQP materializes the sampled blocks using data

page access APIs and computes rewritten queries using data process

APIs. Algorithm 1 illustrates the procedures.

2.3 Use Cases
We highlight two cases where B-AQP can be applied: online analyt-

ical processing [1] and cloud-native ML analytics [2].

Online Analytical Processing. Although computing aggregation

over structured data is fast on modern hardware, loading data and

Algorithm 1: Core Procedure of B-AQP Runtime.

Input : input query 𝑄𝑖 , target error 𝑒 , target probability 𝑝 ,
number of data pages 𝑁 , data page access API

MaterializePage, data process API Compute

Output :An approximate result 𝑅

1 𝑅𝑝 ←QueryProcess(𝑄𝑖 , 100, PilotRewrite)
2 𝑛 ← DetermineSampleSize(𝑄𝑖 , 𝑅𝑝 )
3 𝑅𝑓 ←QueryProcess(𝑄𝑖 , 𝑛, FinalRewrite)
4 return 𝑅𝑓
5 FunctionQueryProcess(𝑄𝑖 , 𝑛, RewriteFn):
6 𝑆 ← BlockSample(𝑁,𝑛)
7 𝑆 ← MaterializePage(𝑆)
8 𝑄 ← RewriterFn(𝑄𝑖 , 𝑆)
9 𝑅 ← Compute(𝑄, 𝑆)

10 return 𝑅

joining large tables can be time-consuming. In this case, we can

leverage B-AQP to answer the query approximately and achieve

real-time responses.

Cloud-Native ML Analytics.While we can execute ML models

with high throughput using hardware accelerators (e.g., H100x8),

the throughput of cloud storage can be smaller due to limited band-

width, blocking the query execution. We can use B-AQP to acceler-

ate data loading.

3 B-AQP STATISTICAL ENGINE
In this section, we briefly introduce the statistical techniques based

on block sampling that guarantee user-specified error targets (§3.1

and §3.2) and theoretically analyze the performance benefit (§3.3).

3.1 Block-Oriented Estimation
Block sampling introduces dependence among data records within

the same page. The analytical confidence interval based on CLT

assumes independently distributed data, which is not true for block

sampling. We analyze the influence of such data dependence and

propose block-oriented estimation to address it.

Failure of the naive approach. Consider a simple query that

computes an AVG over a dataset with 𝑁 pages, where each page

𝑃𝑖 has 𝐾 records: {𝑋𝑖,1, . . . , 𝑋𝑖,𝐾 }. Suppose we obtain a random

sample of 𝑛 pages. The estimated AVG aggregate is computed as

𝜇 = 1

𝑛𝐾

∑𝑛
𝑖=1

∑𝐾
𝑗=1 𝑋𝑖,𝑘 . We can obtain the a 95% confidence inter-

val:

[
𝜇 − 𝑧0.975 ·

√︁
𝑉𝑎𝑟 [𝜇], 𝜇 + 𝑧0.975 ·

√︁
𝑉𝑎𝑟 [𝜇]

]
, where 𝑧0.975 is

the 97.5th percentile of the normal distribution. Due to the data de-

pendence, we need to consider covariance terms in 𝑉𝑎𝑟 [𝜇]. That is
𝑉𝑎𝑟 [𝜇] = 1

𝑛 ·𝐾𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ] +
∑𝑛
𝑖=1

∑
𝑗1≠𝑗2 𝐶𝑜𝑣 [𝑋𝑖, 𝑗1 , 𝑋𝑖, 𝑗2 ]. The covari-

ance can be arbitrarily large, leading to invalid confidence intervals

if we naively use the variance of sampled records for 𝑉𝑎𝑟 [𝜇].
Our Solution. We mitigate data dependence by computing the

estimation at the level of data pages. Suppose 𝑆𝑖 indicates the sum

of page 𝑖 , which is identically and independently distributed. The

AVG aggregate can be equivalently estimated as 𝜇 = 1

𝑛

∑𝑛
𝑖=1

𝑆𝑖
𝐾
,

while the sampling variance is not only an unbiased estimator of



Efficient ApproximateQuery Processing with Block Sampling CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

𝑉𝑎𝑟 [𝜇] but also has an exponentially decaying tail if 𝑆𝑖 is bounded

[10]. When the page size 𝐾𝑖 varies, the block-oriented estimator

can be expressed as
𝑁
𝑛

∑𝑛
𝑖=1 𝑆𝑖 for SUM,

𝑁
𝑛

∑𝑛
𝑖=1 𝐾𝑖 for COUNT, and

as the ratio between SUM and COUNT for AVG.

Complex Queries. Real-world queries are often more complex

than simply computing aggregates over datasets. They may incor-

porate various relational operations such as selection and join. To

address those complex operations, we can analyze the query with

block sampling applied to the last derived table while pushing down

the sampling procedure to the data loading phase during query exe-

cution. Similar to the proof of rejection sampling, we can prove that

pushing down block sampling through projection, selection, and

grouping does not affect the statistical distribution of aggregates.

For the join operation, we can prove the validity of the pushdown

if block sampling is executed on one of the join tables.

3.2 Pilot Sampling
Given a statistically valid way to compute confidence intervals

for queries with block sampling, it remains challenging to output

approximate results that meet the error specifications of users. To

address this, we use pilot sampling, which issues a small sampling

query to gather block-level statistics and calculate the sufficient

sample size or sample rate.

Specifically, we find that the width of the confidence interval,

which guarantees the target error, is a function of sample size. For

example, the confidence interval width for SUM is calculated as

2 · 𝑧0.975 · 𝑁 ·
√︁
𝑉𝑎𝑟 [𝑆]/

√
𝑛 where 𝑁 is the total number of pages

and 𝑆 is the sum of a page. To ensure a specific confidence interval

width, we use pilot sampling to estimate an upper bound for𝑉𝑎𝑟 [𝑆]
and compute the required sample size 𝑛. Similar procedures of pilot

sampling can be generalized to other linear aggregates.

3.3 Theoretical Analysis
Although we can achieve a priori error guarantees for block sam-

pling, it may require processing more data than uniform sampling

for the same error targets. However, we argue that this is not a

major concern for the overall cost. We theoretically analyze the

benefit of using block sampling over uniform sampling.

Theorem 3.1. Suppose a dataset {𝑋𝑖, 𝑗 |𝑖 = 1, . . . , 𝑁 ; 𝑗 = 1, . . . , 𝐾}
consists of 𝑁 pages, each containing 𝐾 records. Let 𝑐1 and 𝑐2 represent

the cost of accessing and processing a page, respectively. Given a target

error 𝑒 , we can obtain the following lower bound for the cost ratio.

𝐶𝑜𝑠𝑡 (𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚)
𝐶𝑜𝑠𝑡 (𝑏𝑙𝑜𝑐𝑘) ≥

𝑁

𝑛

(
1 −

(
1 − 𝑚

𝑁𝐾

)𝐾 ) 𝑐1

𝑐1 + 𝐾𝑐2

+
(
1 −

E[𝑉𝑎𝑟 [𝑋𝑖, 𝑗 |𝑖]]
𝑉𝑎𝑟 [𝑋 ]

)−1
𝑐2

𝑐1 + 𝐾𝑐2
(1)

where 𝑛 and𝑚 is the required sample size to achieve target error 𝑒

using block sampling and uniform sampling, respectively.

Proof. Given the layout of the dataset, we estimate the expected

number of page accesses in uniform sampling, where𝑍𝑖 is a random

variable indicating whether 𝑃𝑖 is accessed

E

[
𝑁∑︁
𝑖=1

𝑍𝑖

]
= 𝑁 ·(1−P [𝑃1 is not accessed]) ≥ 𝑁 ·

(
1 −

(
1 − 𝑚

𝑁𝐾

)𝐾 )

Given the requirement of achieving the same error rate, we have

𝑚

𝑛
=

𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ]
𝑉𝑎𝑟 [E[𝑋𝑖, 𝑗 ] |𝑖]

=
𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ]

𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ] − E[𝑉𝑎𝑟 [𝑋𝑖, 𝑗 |𝑖]]
Finally, we can calculate the cost ratio as

𝐶𝑜𝑠𝑡 (𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚)
𝐶𝑜𝑠𝑡 (𝑏𝑙𝑜𝑐𝑘) =

E
[∑𝑁

𝑖=1 𝑍𝑖
]
· 𝑐1 +𝑚 · 𝑐2

𝑛 · 𝑐1 + 𝑛 · 𝐾 · 𝑐2
Applying the estimation of E

[∑𝑁
𝑖=1 𝑍𝑖

]
, we obtain the final result.

□

Based on Theorem 3.1, we find two scenarios where block sam-

pling can save costs compared to uniform sampling. First, when the

page size is large and the data access is significantly more expensive

than data processing, both 1− (1 −𝑚/𝑁𝐾)𝐾 and 𝑐1/(𝑐1 +𝐾𝑐2) are
close to 1. In this case, the cost ratio is at the order of 𝑂 (𝑁 /𝑛),
indicating a significant saving by block sampling. Second, when

the variance of each page is close to the variance of the dataset,

E[𝑉𝑎𝑟 [𝑋𝑖, 𝑗 |𝑖]]/𝑉𝑎𝑟 [𝑋𝑖, 𝑗 ] is close to 1. Hence, the second term of

the ratio can be large, indicating cost savings by block sampling.

4 PRELIMINARY EVALUATION
We developed a prototype of B-AQP based on an analytical database

management system: DuckDB, and a cloud data system: Amazon

S3. We focus on demonstrating three benefits of B-AQP: error guar-

antees, query accelerations, and error reductions.

Settings.We consider workloads with structured and unstructured

data. For structured data, we evaluated B-AQP on the widely used

5,000-scale TPC-H workload. We executed query 12, which involves

complex selection, grouping, and a two-way join. We conduct ex-

periments on CloudLab r6525 nodes, each equipped with 256 GB

RAM, 1.6 TB NVMe SSD, and two 32-core AMD 7543 CPUs.

For unstructured data, we evaluated B-AQP on twitter [8] and

amazon [12] datasets. We scaled both datasets to 1 TB and executed

simple aggregation queries with predicates on the output of ML

models, simulating real-world tasks, such as sentiment analysis [4]

and entity resolution [21]. We conduct experiments with 8 H100

GPUs, 200 GB RAM, a 48-core CPU, and a Gigabit NIC.

B-AQP Guarantees Errors. To evaluate whether B-AQP achieves

a priori error guarantees, we executed B-AQP on all workloads

with a 95% confidence level and different target errors. For each

target error, we repeated experiments 100 times and report the 95th

percentile errors. Figure 4 presents the achieved errors of B-AQP.

As shown, the 95th percentile errors of B-AQP are consistently

lower than the target errors, as indicated by red dashed lines. This

demonstrates that B-AQP achieves error guarantees for both struc-

tured and unstructured data. We notice that the achieved error of

B-AQP can be significantly lower than the target errors by up to

134%, indicating that the sample size estimation of B-AQP may not

be optimal for specific workloads. We call for future work to better

minimize the sample size for in B-AQP.

B-AQP Accelerates Query Processing. To evaluate the speedups

that B-AQP can achieve, we compare B-AQP to exact queries and

uniform sampling. We executed each method on all workloads

across 1-10% target errors. For each target error, we repeated ex-

periments 100 times and report the average query time in Figure



CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Yuxuan Zhu and Daniel Kang

101 102 103 104 105

Query time (s)

0

20

40

Ac
hi

ev
ed

 e
rro

r (
%

)

Uniform
B-AQP

(a) twitter COUNT.

102 103 104 105

Query time (s)

0

100

200

Ac
hi

ev
ed

 e
rro

r (
%

)

Uniform
B-AQP

(b) twitter AVG.

101 102 103 104 105

Query time (s)

0

20

40

60

Ac
hi

ev
ed

 e
rro

r (
%

)

Uniform
B-AQP

(c) amazon COUNT.

Figure 3: B-AQP reduces errors by up to 41%, compared to uniform sampling. Error bars present the 5th and 95th quantiles.

1.0 2.5 5.0 7.5 10.0
Target error (%)

1.0
2.5

5.0

7.5

10.0

Ac
hi

ev
ed

 e
rro

r (
%

) Block 95th percentile
Achieved=Target

(a) TPC-H Q12.

1.0 2.5 5.0 7.5 10.0
Target error (%)

1.0
2.5

5.0

7.5

10.0

Ac
hi

ev
ed

 e
rro

r (
%

) B-AQP 95th percentile
Achieved=Target

(b) twitter COUNT.

1.0 2.5 5.0 7.5 10.0
Target error (%)

1.0
2.5

5.0

7.5

10.0

Ac
hi

ev
ed

 e
rro

r (
%

) B-AQP 95th percentile
Achieved=Target

(c) twitter AVG.

1.0 2.5 5.0 7.5 10.0
Target error (%)

1.0
2.5

5.0

7.5

10.0

Ac
hi

ev
ed

 e
rro

r (
%

) B-AQP 95th percentile
Achieved=Target

(d) amazon COUNT.

Figure 4: B-AQP achieves targeted errors for all workloads.

5. As shown, B-AQP achieves similar or faster query processing

compared to uniform sampling, with 0.98-185× speedups. Com-

pared to exact queries, B-AQP consistently achieves faster query

processing, with speedups of up to 2, 821× at 1% error and 12, 412×
at 10% error. A case study on twitter AVG with a 5% error reveals

that for uniform sampling, data loading and processing on GPUs

take 98% and 2% of query time, partly because the throughput of

small language models (e.g., Bert) on H100x8 can be as high as

71K samples/s [18]. B-AQP achieves improvements by significantly

reducing data loading time while keeping processing time similar.

B-AQP Achieves Smaller Errors. To evaluate the error perfor-

mance of B-AQP given time budgets, we executed B-AQP and uni-

form sampling on all workloads across five different time budgets.

For each time budget, we repeated experiments 100 times and re-

port the median, 5th percentile, and 95th percentile achieved errors

in Figure 3. We only show the error performance on unstructured

data, as uniform sampling over structured data did not complete

processing in the given time budget. As shown, B-AQP consistently

achieves smaller errors compared to uniform sampling, with an

improvement of up to 41.3%. B-AQP can achieve an error less than

5% within 500 seconds, significantly reducing latency.

5 RELATEDWORK

OnlineAQP.Generating samples at query time, online AQP aims to

accelerate query processing without prior knowledge of workloads

1.0 2.5 5.0 7.5 10.0
Target error (%)

101

102

Qu
er

y 
tim

e 
(s

)

(a) TPC-H Q12.

1.0 2.5 5.0 7.5 10.0
Target error (%)

103

105

Qu
er

y 
tim

e 
(s

) Exact
B-AQP
Uniform

(b) twitter COUNT.

1.0 2.5 5.0 7.5 10.0
Target error (%)

103

104

105

106

Qu
er

y 
tim

e 
(s

)

(c) twitter AVG.

1.0 2.5 5.0 7.5 10.0
Target error (%)

103

105

Qu
er

y 
tim

e 
(s

)

(d) amazon COUNT.

Figure 5: B-AQP accelerates uniform sampling by up to 185×
and exact queries by up to 12,412×. Query time is in log scale.

[13, 14, 16, 20]. Different from offline AQP methods that maintain

offline samples tailored for specific workloads [3, 17], online AQP

eliminates the need for maintenance and assumptions onworkloads.

Previous work has developed various sampling algorithms [13, 14,

16, 20] to analyze estimation errors or minimize sample size. Unlike

block sampling, they operate at the record level, which is inefficient

in data systems that use pages as the access unit.

Block Sampling. Block-level sampling has long been recognized

as a more efficient scheme than record-level sampling for query

processing [6, 7, 9, 11, 19]. Prior work has investigated the COUNT
estimator [11] and variance estimator [6] with block sampling.

Researchers have developed various techniques to improve the error

performance of block sampling [9, 19]. However, these methods do

not allow users to specify error requirements.

6 CONCLUSION
In this work, we propose B-AQP, a novel AQP framework based

on block sampling, which significantly improves data loading effi-

ciency and provides a priori error guarantees. We develop a novel

statistical engine to achieve those targets while outlining challenges

and opportunities for future improvements. Our evaluation across

various workloads and data systems reveals that B-AQP achieves

error guarantees consistently and accelerates queries by up to four

orders of magnitude compared to exact queries and up to 185×
compared to uniform sampling.



Efficient ApproximateQuery Processing with Block Sampling CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

REFERENCES
[1] Databricks Accelerators 1. [n. d.]. Real-Time Point-of-Sale Analytics. https://www.

databricks.com/solutions/accelerators/real-time-point-of-sale-analytics Ac-

cessed: 2024-07-10.

[2] Databricks Accelerators 2. [n. d.]. Automating Product Review Summarization

With LLMs. https://www.databricks.com/solutions/accelerators/automating-

product-review-summarization-with-large-language-models Accessed: 2024-07-

10.

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response

times on very large data. In EuroSys.

[4] Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo

Neves. 2020. TweetEval: Unified Benchmark and Comparative Evaluation for

Tweet Classification. In EMNLP Findings.

[5] CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, chal-

lenges, techniques and technologies: A survey on Big Data. Information sciences

275 (2014), 314–347.

[6] Xingguang Chen, Fangyuan Zhang, and Sibo Wang. 2022. Efficient Approximate

Algorithms for Empirical Variance with Hashed Block Sampling. In SIGKDD.

[7] Xiang Ci and XiaofengMeng. 2015. An efficient block sampling strategy for online

aggregation in the cloud. InWeb-Age Information Management: 16th International

Conference. Springer.

[8] Jonathan Falvey. 2023. ChatGPT Tweets. https://huggingface.co/datasets/

deberain/ChatGPT-Tweets

[9] Peter J Haas and Christian König. 2004. A bi-level bernoulli scheme for database

sampling. In SIGMOD.

[10] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. The collected works of Wassily Hoeffding (1994), 409–426.

[11] Wen-Chi Hou and Gultekin Ozsoyoglu. 1991. Statistical estimators for aggregate

relational algebra queries. ACM Transactions on Database Systems (TODS) (1991).

[12] Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley.

2024. Bridging Language and Items for Retrieval and Recommendation.

arXiv:2403.03952 (2024).

[13] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert

Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily approximating

complex adhoc queries in bigdata clusters. In SIGMOD.

[14] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei

Zaharia. 2021. Accelerating approximate aggregation queries with expensive

predicates. PVLDB (2021).

[15] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive

data analytics on cold data using serverless cloud infrastructure. In SIGMOD.

[16] Supriya Nirkhiwale, Alin Dobra, and Christopher Jermaine. 2013. A sampling

algebra for aggregate estimation. PVLDB (2013).

[17] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-

dictdb: Universalizing approximate query processing. In SIGMOD.

[18] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark

Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020

ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

IEEE, 446–459.

[19] Kexin Rong, Yao Lu, Peter Bailis, Srikanth Kandula, and Philip Levis. 2020. Ap-

proximate partition selection for big-data workloads using summary statistics.

PVLDB (2020).

[20] Matthew Russo, Tatsunori Hashimoto, Daniel Kang, Yi Sun, and Matei Zaharia.

2023. Accelerating Aggregation Queries on Unstructured Streams of Data. PVLDB

(2023).

[21] Spacy. 2024. EntityRecognizer. https://spacy.io/api/entityrecognizer Accessed:

2024-07-10.

[22] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-

afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-

ating a DBMS using S3 computation. In ICDE.

https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/accelerators/automating-product-review-summarization-with-large-language-models
https://www.databricks.com/solutions/accelerators/automating-product-review-summarization-with-large-language-models
https://huggingface.co/datasets/ deberain/ChatGPT-Tweets
https://huggingface.co/datasets/ deberain/ChatGPT-Tweets
https://spacy.io/api/entityrecognizer

	Abstract
	1 Introduction
	2 Overview
	2.1 System Architecture
	2.2 Algorithm Overview
	2.3 Use Cases

	3 B-AQP Statistical Engine
	3.1 Block-Oriented Estimation
	3.2 Pilot Sampling
	3.3 Theoretical Analysis

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	References

