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ABSTRACT

Current data lakes are limited to basic put/get functions on unstruc-
tured data and analytical queries on structured data. They fall short in
handling complex queries that require multi-hop semantic retrieval
and linking, multi-step logical reasoning, and multi-stage semantic
analytics across unstructured, semi-structured, and structured data in
data lakes. The introduction of large language models (LLMs) has
significantly transformed the landscape of traditional data search and
analytics across different fields due to their semantic comprehension
and reasoning skills. Utilizing LLMs opens up new opportunities
to efficiently handle these complex queries for data search and ana-
lytics, spanning structured, semi-structured, and unstructured data
types in data lakes. However, LLMs struggle with complex queries
that require complex task decomposition, pipeline orchestration,
pipeline optimization, interactive execution, and self-reflection.

In this work, we propose AOP, the first systematic system for auto-
mated pipeline orchestration in LLMs for answering complex queries
on data lakes. AOP pre-defines standard semantic operators crucial
for building execution workflows, such as semantic retrieval, filter-
ing, aggregation, and validation. Then given an online query, AOP
extracts relevant operators and uses these operators to automatically
and interactively compose optimized pipelines with the assistance of
LLMs. This enables AOP to adaptively and accurately address diverse
and complex queries on data lakes. To further improve efficiency, we
introduce query optimization techniques, including prefetching and
parallel execution, to enhance overall efficiency without sacrificing
accuracy. Through extensive experiments on real-world datasets,
we demonstrate that AOP significantly improves the accuracy for
answering complex queries. For instance, on a challenging test set,
AOP increases answer accuracy by 45%.

1 INTRODUCTION

Existing data lakes primarily offer simple put/get operations for
unstructured data and support analytical queries for structured data.
However, they are not equipped to process complex queries that
demand advanced semantic retrieval and linkage, intricate logical
reasoning, and sophisticated semantic analytics across the spectrum
of unstructured, semi-structured, and structured data in data lakes.
The advent of large language models (LLMs) has dramatically
revolutionized traditional data search and analytics across various
domains [26, 32] due to their strong semantic understanding and
reasoning capabilities. By harnessing LLMs, we have opportunities
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Figure 1: Roadmap of data search and data analytics methods.

to effectively process semantic queries for data search and ana-
Iytics across structured, semi-structured and unstructured data, as
illustrated in Figure 1. Taken together, LLMs bring the potential to
explore and interrogate the vast, diverse heterogeneous data in data
lakes, which turns traditional static storage-oriented data lakes into
dynamic intelligent analytical data lakes, thereby unlocking the full
value of data lakes.

Complex Queries. However, LLMs often struggle with processing
complex queries that necessitate multi-hop semantic data retrieval
and linking, multi-step logical reasoning, and multi-stage semantic
data analytics across heterogeneous data formats, such as struc-
tured tables and unstructured documents in data lakes. For such
complex queries, directly asking LLMs or using some static human-
craft execution pipelines, e.g., retrieval-augmented generation (RAG)
methods, cannot get correct answers, because they demand capabili-
ties in understanding, reasoning, orchestrating complex processes,
and reflection to produce accurate answers.

We provide several examples to demonstrate the types of complex
queries that data lakes are currently unable to process as illustrated
in Figure 2. First, consider a natural language (NL) query that re-
quires multi-hop retrieval and linking across unstructured data and
structured data. Given a query: "Who are the members of the men’s
team table tennis champion team at the 2024 Olympic Games", the
winning team needs to be identified from news in text documents
while the player list should be obtained from structured tables. Sec-
ond, consider a query that necessitates multi-step reasoning: "What
is the average height of New York Knicks players that went to col-
lege at Villanova?". As illustrated in Figure 2, directly asking this
query to an LLM receives an answer of "I don’t know" due to the
absence of relevant information in the LLM knowledge. Even when
using the Retrieval-Augmented Generation (RAG) method to ob-
tain external knowledge, the query is still not answered correctly.
This is because accurately answering the query requires not only
precise retrieval of relevant information (i.e., identifying all the New
York Knicks players who went to college at Villanova), but also
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Figure 2: Complex query examples: (a) multi-hop data retrieval; (b) multi-step reasoning; (c) multi-stage semantic data analytics.

performing correct logical analytics (extracting the heights of the
players and summing up them to compute the average height). Third,
consider a query that involves multi-stage semantic analytics: "Are
there more tweets supporting or opposing the 2024 Nobel Prize in
Physics for artificial neural network research?". This requires first
identifying relevant tweets about the 2024 Nobel Prize in Physics via
scan, then accurately conducting semantic analytics to classify each
as supportive or opposing to count the number of tweets for each
category respectively, and lastly comparing the results to compute
the final answer. For such multi-stage data analytics, failure at any
stage can result in an incorrect or incomplete answer. This requires
multi-stage reasoning and reflection to get a correct answer.

In this paper, we explore the challenges of handling complex
queries posed in natural language within data lakes and aim to
develop an intelligent data lake ecosystem. We address complex
queries that, unlike traditional SQL queries with their rigid structure
and limitation to structured data, necessitate semantic operator exe-
cution (e.g., semantic filter for identifying all the New York Knicks
players who went to college at Villanova, and semantic aggregations
of their heights), semantic pipeline (plan) generation with multi-step
decomposition, physical operator implementation with multi-hop
retrieval across multiple stages, and interactive and parallel physical
pipeline execution from diverse data formats and sources.

Traditionally, such complex queries are addressed by manually
orchestrated execution pipelines involving LLMs, as demonstrated
in Figure 2. These pipelines break down the query into sub-tasks and
combine pre-programmed steps, retrieval steps, and prompt-based
subtasks to obtain accurate answers [1, 4]. However, manual pipeline
orchestration has notable limitations:

Human Costs (P1): Manual orchestration incurs significant human
costs, as an effective pipeline depends heavily on user expertise. In
addition, effective pipelines are typically complex, e.g., comprising
hundreds of steps [2], which further increases human cost since more
time and expertise are needed.

Static Pipeline (P2): Intermediate operations in LLM pipelines may
fail to obtain the expected outcomes. However, manually written
pipelines cannot dynamically make adjustments to these failures.

For example, if a retrieval step yields irrelevant results, subsequent
steps should be adjusted accordingly. Otherwise, the final answer
based on unrelated information is likely to be incorrect.

Limited Functionality (P 3): Human-designed pipelines are tailored
to specific queries and do not work for our complex queries, which
boast an almost limitless range of expression. As a result, many
queries are not covered by existing pipelines. For these queries, only
relatively basic pipelines can be used, resulting in low accuracy.
Central Problem. Therefore, the central problem we aim to ad-
dress is whether we can automate pipeline orchestration for pro-
cessing complex queries on data lakes. We aim to design a frame-
work that not only automates pipeline orchestration but also enables
dynamic, interactive execution with intermediate adjustment and
self-reflection based on real-time results.

Key Idea. In this work, we propose AOP, the first framework that au-
tomates the orchestration and optimization of execution pipelines for
complex queries over data lakes. The key idea is that human-crafted
pipelines are essentially well-constructed assemblies of standard
semantic operators. We can predefine these standard semantic oper-
ators, and offer programmed and LLM-driven implementations for
these operators. Then given an online complex query, we harness
LLMs to automatically identify the necessary semantic operators,
orchestrate semantic pipelines with multi-step logical reasoning, op-
timize the pipeline with multiple objectives, and iteratively execute
the pipeline with self-reflection.

Challenges. Automating pipeline orchestration and optimization
introduces some challenges.

Flexible Semantic Operator Definition and Extraction (C1). Iden-
tifying standard common semantic operators within LLM-driven
pipelines is fundamental but challenging. The operator set must be
flexible and adaptable to support diverse query scenarios.
Automatic Semantic Pipeline Orchestration (C2). Orchestrating a
pipeline automatically is challenging due to the numerous possible
compositions of operators. Optimizing these pipelines for efficiency
is also difficult since predicting the performance of each composition
before execution is hard given the diverse data sources and complex
reasoning paths.
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Figure 3: Architecture overview of AOP.

Streamlined Pipeline Execution with Self-assessment (C3). Achiev-
ing efficient end-to-end execution while preserving high accuracy
is challenging. High accuracy often requires composing complex,
multi-step pipelines that demand significant planning and execution
time with self-reflection and online adjustment.

Contributions. In summary, we make the following contributions:
(1) We propose AOP, the first framework for Automated Orchestration
and optimization of LLM Pipelines over data lakes, designed to
handle complex queries with high flexibility. AOP supports interac-
tive pipeline adjustments during execution, allows for addition/dele-
tion/update of custom operators, and handles heterogeneous data.
(2) We identify and implement key standard semantic operators
essential for building effective LLM pipelines and implement them
within AOP, supporting a wide range of query scenarios.

(3) We design an automatic pipeline orchestration method to generate
an effective pipeline for a given NL complex query.

(4) We propose pipeline optimization techniques, such as prefetching,
parallel execution, and cost-based pipeline selection, to enhance the
overall efficiency of AOP without sacrificing accuracy.

(5) We have implemented AOP and validated AOP on real-world
datasets, demonstrating that AOP can automatically generate accu-
rate pipelines for complex tasks in scenarios like unstructured data
analytics. For example, AOP achieves up to a 45% improvement in
answer accuracy on a challenging test set, compared with directly
asking LLMs with the query.

2 SYSTEM ARCHITECTURE

The AOP system is designed to address complex queries over struc-
tured, semi-structured, and unstructured data in data lakes, as shown
in Figure 3. AOP is equipped with predefined standard semantic
operators to support a wide range of functionalities on data lakes,
including semantic data discovery and linking, multi-hop retrieval-
augmented generation (RAG), multi-stage semantic data analytics,
and machine learning. Given an online natural language (NL) query,
AOP identifies the relevant semantic operators involved in the query,
orchestrates interactive and efficient pipelines of processing the
query, and executes the pipelines with self-reflection.

Query Interface. AOP initiates processing through a natural language
query interface, which allows users to input complex, unstructured
queries, supporting a broader range of queries with deeper semantic
analytics than structured query languages like SQL.

Operators. AOP identifies and implements a collection of standard
operators commonly used in data analytics, e.g., Scan, Filter,
GroupBy and Aggregate. Operators are divided into two categories
based on their implementations: pre-programmed operators and se-
mantic operators (executed by LLMs with prompts), each executing
a specific task. Together, the operators can form accurate execution
pipelines to address complex queries.

Optimizer. Based on the input natural language query, the optimizer
automatically generates an optimized execution pipeline.

Pipeline Generator. This component generates multiple chain-format
execution pipelines based on predefined operators and the input NL
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query. Leveraging the randomness in the output generation of LLMs,
multiple candidate pipelines with diverse reasoning paths can be
generated.

Pipeline Rewriter. The rewriter refines each chain-format execution
pipeline into a Directed Acyclic Graph (DAG) structure to enable
parallel execution of independent operators and enhance efficiency.
Pipeline Integrator. This component consolidates multiple execution
pipelines into a single one to integrate different reasoning paths to
obtain the final answer.

Cost-Based Pipeline Optimization. When choosing among multiple
potential pipelines, the optimizer picks the most cost-effective option
by estimating the computational cost for each operator. This cost
estimation process greatly differs from traditional database methods,
given the lack of pre-established attributes and predicates to guide
the pipeline assessment.

Pipeline Executor. The executor judiciously runs the selected opti-
mized pipeline to generate the final answer.

Operator Executor. Each operator is executed according to its de-
fined implementation, either programmed functions or LLM-based
implementations.

Parallel Execution. The operators can be executed in parallel where
possible, with techniques like prefetching used to further improve
efficiency.

Interactive Execution. During execution, AOP can dynamically ad-
just the pipeline based on intermediate results, allowing it to adjust
the pipeline to handle unexpected outcomes, such as retrieval fail-
ures, or unexpected intermediate results.

Context Management. To manage intermediate results efficiently
within LLM context length constraints, AOP employs a context man-
ager that uses the Summarize operator, condensing information to
support large-scale, multi-step processes, while also reducing the
LLM overhead.

Indexing. AOP computes embeddings for various data types and
builds vector indexes on them for efficient retrieval and scanning.
AOP also employs SQL and other access tools (e.g., dataframe) for
structured data in tables.

Reward Model. To effectively adjust the pipelines at runtime, we
design a reward model to provide a self-reflection for pipeline exe-
cution. The reasoning process of LLMs can be modeled as a Markov
Decision Process (MDP), where each operator functions as an action
that the LLM policy can select at each state to guide reasoning steps
toward the solution. Effective training LLM policies to have high log-
ical reasoning abilities relies on an accurate Process Reward Model
(PRM) [17, 22], which assigns rewards based on the relevance and
impact of each operator in its given state. In the AOP framework, the
sequence of chosen pipelines for each query, along with interme-
diate and final outcomes, is recorded to provide reward signals at
each step. These records serve as training data for the PRM, which
then fine-tunes the LLM to reinforce its native chain-of-thought
capabilities. As a result, AOP can gain improved effectiveness in an-
swering questions by iteratively refining the LLM’s reasoning ability
to generate and optimize efficient, accurate pipelines.

Data Storage. AOP manages diverse data formats in data lakes,
including structured data like tables and CSV files, semi-structured
data like JSON/XML files, and unstructured content like documents,
images, and videos.
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3 SEMANTIC OPERATORS

In this section, we first introduce the standard semantic operators
(Section 3.1), then discuss how to execute the operators (Section 3.2)
and finally present how to flexibly add other operators to the operator
set (Section 3.3).

3.1 Definition of Semantic Operators

We have elaborately designed 22 semantic operators to answer com-
plex queries, and other operators can be easily added into our system.
Similar to relational database operators, the operators can be catego-
rized into logical and physical levels.

Retrieve. The Retrieve operator enhances LLMs by fetching up-
to-date or specific information not contained within the model. It
searches external databases, documents, or knowledge bases on data
lakes to find relevant information based on a query. Retrieve has
various physical implementations, such as searching documents over
text embeddings or querying a knowledge graph.

In Figure 2, the Retrieve operator in the RAG pipeline fetches
documents related to the query to enhance response accuracy.

Scan. The Scan operator loads and enumerates all entries within a
data source for processing, often applying filtering or initial trans-
formations as it scans. Scan is crucial for efficiently handling large
data lakes, as it serves as the initial step to retrieve raw data before
any further processing. Physical implementations include both linear
scans over files and indexed scans that speed up the process when
an index is available. Different from Retrieve that only extracts
several pieces of data, Scan goes through a large data collection.

In a pipeline querying user profiles, the Scan operator is em-
ployed to load all records containing user data, allowing subse-
quent filtering of the query based on specified criteria.

Filter. The Filter operator removes information that does not meet
specified criteria from retrieved or generated data. It is similar to the
selection (o) operator in relational databases but can also operate on
unstructured text data through the assistance of LLMs.

Consider a query that wants to analyze the post-2020 information.
It is necessary to filter out the pre-2020 parts in the retrieved
results because they would mislead the LLM response.

OrderBy. The OrderBy operator sorts retrieved documents or infor-
mation based on given criteria, which is similar to Order By in SQL,
but with the additional capability of semantic ordering.

For the example query in Figure 2(c), the tweets can be sorted by
their sentiment degree. In this way, tweets with a clear sentiment
tendency can be determined directly, while ambiguous tweets
can also be further examined to obtain more accurate results.

Summarize. The Summarize operator condenses longer pieces of
text into shorter, more manageable summaries while retaining key
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Table 1: Summary of Semantic Operators

Operator Description

Retrieve

Fetch relevant data from external sources to answer a query, enhancing LLM responses with up-to-date or specific details.

Scan Load documents or tables and enumerate their elements.

Filter Remove non-relevant information based on specific criteria, similar to the selection operator in SQL.
OrderBy Order retrieved information based on criteria, similar to SQL’s ORDER BY operator.

Summarize Condense lengthy text into shorter summaries to optimize context consumption and readability.
Generate Produce coherent text based on input, often used to generate final responses.

Refine Adjust input text to enhance clarity or precision, beneficial for subsequent processing.

Classify Categorize or label entities, using either the LLM or external ML models for classification.
Translate Convert text between languages, implemented using the LLM or external tools.

Transform Transform data from one format into another, e.g., transform a structured table into text descriptions.
Evaluate Assess the quality or relevance of information based on criteria, often through log probabilities or binary outputs from the LLM.
Explain Provide explanations or justifications for decisions, enabling model reflection.

Integrate Combine information from multiple sources into a cohesive response.

Conceptualize | Identify key concepts in text, simplifying complex queries by pinpointing main ideas.

Extract Isolate specific information relevant to the query, similar to the projection operator in SQL.

Plan Automatically orchestrate a pipeline of operators for executing complex queries.

Link Identity and construct linking across data related to the query, e.g., obtaining relevant tables and documents in the data lake.

Set Set operations over sets of data, e.g., Union, Intersection, and Complementary.

Validate Verify the accuracy of generated information by searching with the answer itself within external sources.

GroupBy Organize data into subgroups based on specific attributes or conditions, allowing the computation of summary statistics for each group.
Compare Assess two input values based on a specified operand and return the value that satisfies the comparison criteria.

Aggregate Compute aggregation results, e.g., sum, average, max, from input data.

information. This reduces context consumption and makes the infor-
mation easier to process and understand.

When approaching the LLM context length limit, it is important
and necessary to summarize the previous content to continue the
pipeline execution.

Generate. The Generate operator produces coherent text based
on the input, such as retrieving relevant information via RAG and
generating the final response by LLMs. It also serves as a flexible
fallback when other operators cannot meet the requirements.

Pipelines in Figure 2 can use Generate to generate the final
reply.

Refine. The Refine operator improves or adjusts the input text to
better meet requirements or improve coherence. It can rewrite vague
or poorly structured queries to be more precise and less ambiguous,
benefiting subsequent operators.

Queries that contain text irrelevant to the question can be stripped
away with the Refine operator so that the subsequent pipeline
can focus on answering the question without being misled.

Classify. The Classify operator assigns categories or labels to the
input text or entities within it. It performs simple classification tasks
described by natural language. Its physical implementation can be
either the LLM itself or an external specialized trained ML model.

The example query in Figure 2(c) involves classifying the senti-
ment of the tweets.

Translate. The Translate operator converts text from one language
to another. Its physical implementations include both the LLM and
pre-programmed implementations.

Consider a query entered in English, but specified to output the
results in French. The results here need to be translated.

Evaluate. The Evaluate operator assesses the quality of different in-
puts based on specified criteria. Its physical implementations include
either leveraging the output of the LLM or utilizing log probabilities
inside the LLM for options True and False.

To evaluate whether the Retrieve results are relevant to the orig-
inal query, the retrieved paragraphs can be input to the Evaluate
operator for evaluation. The relevance can be judged by instruct-
ing the LLM with certain prompts. Optionally, the relevance can
also be judged by enforcing the LLM to output from True and
False, and comparing the probability of these two tokens.

Explain. The Explain operator provides explanations or reasoning
for a response or decision made by the model. It enables reflec-
tion [8], allowing the model to identify and correct uncertain results.

Consider a query where the LLM gets different answers through
different reasoning. In order to get a final answer, each reasoning
needs to explain why it gets the answer.
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Integrate. The Integrate operator receives information from multi-
ple sources, judges the correctness of them, and combines them into
a cohesive response.

In the above example for Explain, to get the final answer, these
candidate answers and their explanations need to be aggregated
using the Integrate operator.

Conceptualize. The Conceptualize operator extracts and identifies
key concepts described in the text, simplifying complex information
by pinpointing the main idea. Its physical implementations include
directly querying the LLM or retrieving from external knowledge.

Converting the concept in the query "Find the occupations of all
the wives of the presidents of the United States" into "first lady"
simplifies subsequent process of retrieving relevant information.

Extract. The Extract operator identifies and pulls out specific
pieces of information from data, isolating crucial details for an-
swering the query. It typically follows the Retrieve operator to
extract important information related to the query and is similar to
the Projection (;r) operator in SQL.

As shown in Figure 2(b), after retrieving "New York Knicks
players", player heights are extracted before averaging.

Plan. The Plan operator automatically orchestrates a pipeline com-
posed of the operators for the input query. Its detailed process is
introduced in Section 4.1.

Given a query, such as the one in Figure 2(a), the P1an operator
can be called to orchestrate the pipeline for execution.

Link. To process heterogeneous data collections, such as data lakes, it
is essential to identify and link data that contains relevant information
for the current query. The Link operator handles this by identifying
entire related data items (i.e., complete tables and text files) and their
relationships. For instance, schema linking [16, 20] is a common
technique used to align natural language queries with structured
table content in NL2SQL, but the Link operator also extends to
unstructured sources by linking relevant documents and identifying
cross-format relationships for integrated analytics.

As illustrated in Figure 2(a), accurately answering the example
query requires information from both an unstructured document
that details the winning team and a structured table that lists team
members. If these data items are not annotated, Link identifies
and connects them within the data lake, enabling a coherent
answer to the query.

Transform. The Transform operator supports transforming data
from one type into another, which is frequently used for analytics
over heterogeneous data.
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The example query in Figure 2(a) needs to transform the struc-
tured table results into text descriptions if it requires text output.

Set. The Set operator conducts set computations on data, e.g., Union,
Intersection, and Complementary. It enables the combination or
differentiation of data sets to meet specific query requirements.

For a query seeking combined data on people who are either
New York residents or have New York employment history, the
Set would union the two sets: New York residents and New York
employees.

Validate. The Validate operator checks the accuracy and reliabil-
ity of generated or retrieved information. Unlike Retrieve, which
searches using the query, Validate searches using the generated
answer, ensuring that the search item is within the same space as the
data (documents) being searched.

After obtaining the final answer through the retrieved relevant
information and logical reasoning, we can execute Validate,
and use the generated answer to search the external knowledge
supporting or opposing the answer.

GroupBy. The GroupBy operator partitions data into subgroups ac-
cording to specified attributes, such as grouping by age or location.
GroupBy allows further operators to compute summary statistics or
apply other transformations specific to each group, similar to the
GROUP BY operation in SQL.

In a sentiment analysis query that examines reviews of different
products, the GroupBy operator can cluster reviews by product
categories, enabling an aggregate analysis of sentiment trends
for each product.

Compare. The Compare operator evaluates two input values using a
specified operand (such as <, >, or =) and returns a boolean result
indicating whether the comparison criteria are met. It is commonly
used for evaluating conditional expressions, applying thresholds in
analytics, or determining the semantic relationship between inputs.

When comparing the count of two categories, Compare can per-
form numerical comparisons based on the condition. Besides, in
analyzing text content, it is common to compare different natural
language expressions to determine whether they are describing
the same thing.

Aggregate. The Aggregate operator computes summary statistics
such as Count, Sum Min, Max, Median, and Percentile over the
data. These statistics are useful for generating insights and analyzing
distributions within datasets.
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For the example query in Figure 2, the Aggregate operator takes
a list of heights as input and computes their average through
numerical computations.

3.2 Operator Execution

The execution of each operator depends on its physical implementa-
tion, which can be classified into two types: prompt-based (LLM-
based) and pre-programmed. Similar to relational databases, each
operator can have multiple physical implementations.
Prompt-based LLM Execution. Prompt-based operators involve
instructing the LLM to complete specific tasks via carefully designed
prompts. For basic operators such as Summarize and Extract, ex-
ecution consists of inputting the operator and its description as a
prompt, guiding the LLM to perform the operation and return the
result. We use the following prompt template: The next operator
is {Operator). This operator is to {Operator Description}. Please
execute it following the instructions and output the results. Some op-
erators, such as semantic Filter or GroupBy, require data retrieval
before instructing the LLM to execute the operation. For example,
the query shown in Figure 2(c) first retrieves tweet data from the data
lake and then applies a semantic filter to retain only tweets about
the 2024 Nobel Prize in Physics, guided by LLM-based filtering
instructions.

Pre-programmed Execution. Pre-programmed operators, which
do not involve LLMs, are executed directly using pre-defined pro-
grams. For instance, the Retrieve operator might perform a nearest
neighbor search on document embeddings or use BM25 for keyword
searches. Similarly, the Filter operator may apply programmed
rules—such as filtering by attribute values. In all cases, the selected
physical operator follows a specific execution workflow defined in
its pre-programmed implementation.

3.3 Support of Adding New Operators

In practical applications, the predefined operators introduced in
Section 3.1 may not encompass all use cases, highlighting the need
for incorporating custom operators. The addition of custom operators
into our framework is easy by its inherent flexibility. Specifically, the
pipeline orchestration of AOP only leverages the explanation of each
operator (Section 4.1). Therefore, adding a custom operator only
requires providing its explanation and implementation. For prompt-
based operators, minimal coding is needed, as it primarily involves
writing the operator description and prompt in natural language.

4 LLM PIPELINE ORCHESTRATION
FRAMEWORK

To answer an input query, AOP first takes the query and detailed
operator descriptions (e.g., descriptions in Table 1) as input and
selects the appropriate operators to automatically orchestrate an
initial pipeline (Section 4.1). It then executes the pipeline, making
interactive adjustments based on intermediate results (Section 4.2),
until the entire process is completed and the final result is obtained.
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4.1 Automated Pipeline Orchestration

If the LLM could optimally orchestrate the pipeline for the query on
its own, using the provided operators, we would achieve a pipeline
that is both highly accurate and efficient. However, this pipeline or-
chestration task exceeds the current reasoning capabilities of LLMs,
as the optimal orchestration requires complex, multi-step reasoning
or "chain of thought" processes [13], as well as the data informa-
tion in data lakes to orchestrate efficient pipelines. Although LLMs
can identify the necessary operators, they struggle with correctly
decomposing queries and orchestrating operators on its own due
to challenges in operator dependency recognition, ordering, and
physical operator selection.

To address these limitations, we decompose the complex orches-

tration task into three simpler steps that current LLMs are capable of:
(1) generating candidate chain pipelines; (2) rewriting the pipelines
into Directed Acyclic Graph (DAG) structures; (3) integrating the
DAG:s into a single comprehensive pipeline. Steps (1) and (2) are
achieved through tailored prompts given to the LLM, while step (3)
is accomplished using manually designed rules. Figure 4 provides a
concrete example of this process, which we will explain next.
Note: Although LLMs cannot directly output the optimal pipeline,
the above decomposed steps simplify the original complex pipeline
orchestration problem into easy, solvable sub-problems, which makes
LLMs possible to well conduct pipeline orchestration by solving
each step and offering reflection at every decision point.
Generate Initial Pipelines. First, we use the query and operator
explanations as input and instruct the LLM to generate candidate
pipelines with chain structures. For instance, the Chain Pipelines in
Figure 4 are the generated candidate pipelines. The generation step
uses the following prompt format: Query: { Query}. The operators
for planning the workflow are as follows:{Operator Explanations).
Please provide some effective and efficient pipelines consisting only
of the operators above for answering the query and explain each
pipeline.

In this step, multiple candidate pipelines are generated by calling
the LLM multiple times, leveraging the randomness in the LLM
generation process.

Rewrite Pipelines. Although the chain-structured pipelines gener-
ated in the previous step can answer the query, they are inefficient
due to their linear execution. To improve efficiency, we rewrite the
pipelines as DAGs, allowing parallel execution of operators where
possible. We propose to rewrite by the LLM using the following
prompt: Certain operators can be executed in parallel to enhance
efficiency. Please rewrite the pipeline as a directed acyclic graph
(DAG) to maximize parallel execution without compromising the
result quality.

Combine Pipelines. Different pipelines explore the answer to the
query in different ways. Since we cannot predict which way will
yield the most accurate results, we combine their results to improve
accuracy. Specifically, we add an Explain operator to the final step
of each DAG pipeline to output the result with an explanation. As
shown in Figure 4, these outputs are then fed into an Integrate
operator, which consolidates the results of multiple DAGs to produce
the final answer. This approach is inspired by the Best-of-N [31]
method that selects the best from N generations. The difference is
that the explanations here can help LLMs better integrate the answers
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Figure 4: Framework of AOP that answers queries accurately with automated pipeline orchestration and interactive pipeline execution.

with higher accuracy, since the LLM can judge the reasonableness
of each answer based on the explanation to filter out unreasonable
answers and focus on the answers more likely to be correct.

4.2 Interactive Pipeline Execution

Layer-wise Execution. After automated pipeline orchestration, AOP
executes the pipeline layer by layer from top to bottom following
its topological structure. This ensures that all operators with com-
pleted prerequisites are executed simultaneously, thus maximizing
parallelism and efficiency. For example, the first operators to execute
in Figure 4 are the Retrieve operators R; and R, that attempt to
obtain external knowledge from different perspectives to assist in
answering the query.
Pipeline Adjustment. Each time a layer of operators is executed,
intermediate results are evaluated to determine if adjustments to
the pipeline are necessary. For example, if a Retrieve operation
fails to obtain the desired information or if a Validate operation
identifies a problem, subsequent operations are halted. The pipeline
is then adjusted using the method described in Section 4.1, with
the gathered execution results used as inputs to the LLM to guide
the pipeline generation. For instance, as shown in Figure 4, R; fails
to obtain the target information while Ry succeeds. Based on these
results, AOP adjusts the pipeline by early stopping further execution
of the steps subsequent to R; and focusing on the pipeline of Ry.
This dynamic adjustment ensures that AOP explores the answer in
the correct direction, thus obtaining higher accuracy and efficiency.
Upon completing the entire pipeline, an accurate answer to the
query can be obtained based on the gathered information and reason-
ing. For example, in Figure 4, the correct answer, /.91 m, supported
by the retrieved information, can be generated.

5 QUERY OPTIMIZATION

To improve the efficiency of the orchestrated pipeline without com-
promising accuracy, AOP employs a cost-based model to select the
efficient execution pipeline prior to execution (Section 5.1). Besides,
during execution, AOP employs additional optimizations to further
improve efficiency (Section 5.2).

5.1 Cost-Based Optimization

Cost Model. AOP employs a cost model for the operators to improve
execution efficiency, especially for costly operations, such as Scan.
Costs for both pre-programmed and LLLM-based operators can be

modeled as functions based on their inherent computational com-
plexity and input size (cardinality). While the functional relationship
between cost and input cardinality is known, e.g., pre-programmed
operators have fixed complexity and LLM-based operator costs scale
approximately linearly with output size [5], specific parameters of
these functions require to be determined. In AOP, these parameters
are tuned using a sample workload.

Cardinality Estimation. Estimating cardinality is crucial for cost
modeling, especially for data lake analytics or unstructured data ana-
lytics, where intermediate results can vary significantly in size. Due
to the complexity of semantic-related operators and lack of schema
for unstructured data, traditional cardinality estimation methods in
relational databases such as histograms or learned data distribution-
based methods [34, 35] cannot be directly adopted. Instead, AOP
uses uniform sampling (e.g., 1% of the data), and executes the query
over the samples to approximate selectivity, thereby estimating the
cardinality of results with a relatively small time consumption.
Cost-based Pipeline Optimization. The AOP optimizer estimates
the computational cost for multiple candidate pipelines and predicts
intermediate data cardinality to select the most efficient option. Ad-
ditionally, this cost model enables AOP to reorder operators within
the pipeline to further improve efficiency without affecting result
accuracy.

5.2 Execution Optimization

Unlike relational databases, following a certain execution logic will
always produce a correct result. The complex data analytics involv-
ing semantics in AOP face execution failures, require different or
multiple computation devices for different operators and is con-
strained by the context length limit of LLMs. Except for cost-based
optimizations before execution, AOP employs additional optimiza-
tions during execution that include reducing delays from retrieval
failures (prefetching), exploiting parallelism to reduce latency (par-
allel execution), and handling LLM context constraints (context
management).

Prefetch. Retrieval failures, i.e., cases where the Retrieve steps do
not yield the desired results, can severely degrade efficiency due to
the delay caused by repetitive planning and retrieval. Since retrieval
failures are unpredictable, we propose a prefetching mechanism
to mitigate their impact by utilizing idle computational resources
to fetch potentially useful information for subsequent steps in the
background. Consider the example query in Figure 2, which has
several retrieval options:
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Figure 5: An example of execution with and without prefetch.

O;: Villanova NBA players

O: New York Knicks players

0O3: New York Knicks players that attended Villanova

Oy4: Average height of New York Knicks players that attended
Villanova

These queries vary in granularity; for instance, O4 directly targets
the desired answer, while others are broader and require further fil-
tering and computation. When manually orchestrating the pipeline,
one can leverage domain knowledge to select the most appropriate
queries and avoid ineffective ones. In contrast, automatically generat-
ing pipelines with LLMs involves trial and error. This often leads to
redundant planning and inevitable retrieval failures, consuming sig-
nificant time. To reduce time consumption, we propose prefetching
additional candidate queries after each retrieval process.

Specifically, when the Retrieve operator generates a retrieval
query, we let it simultaneously generate multiple candidate queries.
Once the primary query is processed and its result is returned, the
pipeline proceeds while additional retrieval queries are processed in
the background when computational resources permit. This proactive
retrieval ensures that if the initial result is unsatisfactory and the
pipeline is adjusted, pre-fetched results may be already available
without additional time consumption, thus minimizing delays.

Figure 5 illustrates this technique. After retrieving Oy, the system
synchronizes the prefetching of Oz and O while processing the re-
sult of Oy4. If the result of Oy is inadequate and the adjusted pipeline
requires retrieval results for O3 and O, the pre-fetched results can
be immediately utilized, thus reducing latency. Therefore, by em-
ploying prefetching, we significantly reduce the delay associated
with retrieval failures, thereby improving overall efficiency.
Parallel Execution. Pipelines can be complex and involve numerous
steps, often resulting in long execution latency. However, many parts
of the Directed Acyclic Graph (DAG) structure pipeline can be
executed in parallel, significantly reducing the overall execution
time. For example, in Figure 4, both the Retrieve operations and
their subsequent operations can be performed simultaneously due to
their independence. This parallel execution reduces the end-to-end
execution time, albeit at the cost of utilizing more computational
resources concurrently. Consequently, converting the original serial
chain structure pipeline into a DAG form (Section 4.1) is essential
for optimizing efficiency through parallelism.
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Context Management. The context length of an LLM is limited,
e.g., Llama 3 has a context limit of only 8,192 tokens. This makes it
impractical to record all pipeline steps within the context. To mitigate
this limitation, we propose a strategy that greedily maintains only the
context closely relevant to the current state through the Summarize
operator executed by another LLM agent, thereby minimizing con-
text consumption. In addition, we employ the Explain operator to
reduce the context length when integrating multiple pipeline com-
ponents. Figure 6 illustrates this approach with a concrete example.
The pipeline consists of two independent parts (yellow and green)
that explore the query answer without influencing the context of the
other. Upon completion, the Explain operator compresses the con-
text of each part, enabling the Integrate operator to combine the
results efficiently. Without this compression, integrating the results
would be infeasible due to exceeding the context limit.

6 EXTENSION TO INTELLIGENT DATA LAKE
ANALYTICS

This section presents extensions of the AOP framework to support
large-scale data analytics over heterogeneous data lakes. The unique
challenge of data lakes lies in their inherent heterogeneity, i.e.,
managing diverse data types at scale. We address key challenges
brought by this heterogeneity, including linking across different
data types, developing a unified cost model, enabling joint opti-
mization across hybrid execution strategies (e.g., SQL for structured
data and pipeline execution for unstructured data), and introducing
an efficient execution strategy tailored for heterogeneous data lake
environments.

6.1 Linking Heterogeneous Data

A primary challenge in data lake analytics is establishing links across
diverse data types, which is similar to schema/entity linking in
NL2SQL [16, 20]. This is because accurate query answering re-
quires both integration of heterogeneous information and alignment
of semantically equivalent expressions across diverse data types.

However, in data lakes, many data types lack structured schemas,
making direct linking infeasible. A straightforward solution is to
preprocess each data type and convert them into a common format.
For example, we can transform semi-structured and unstructured data
into the structured format by extracting structured information (e.g.,
entities) in preprocessing. However, this transformation inevitably
results in information loss, which degrades linking accuracy.

To solve this limitation, AOP leverages the observation that all
types of data have literal descriptions, albeit in different formats:
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structured data has defined schema with named attributes, semi-
structured data has flexible key paths, and unstructured data has
textual content. Based on this observation, we propose to convert
these literal descriptions into a unified form of semantic embedding,
and then link them by measuring the similarity between embed-
dings. This method can be combined with the previously introduced
structural data extraction technique to enhance accuracy, as they
are complementary. Furthermore, since linking often occurs in real
time during query execution, performance is crucial. To improve
efficiency, we leverage semantic embedding indexes [25] to speed
up the linking process.

6.2 Joint Optimization

Analytics in data lakes span unstructured, semi-structured, and struc-
tured data, each has distinct optimization strategies. Optimizing these
data types separately results in suboptimal performance; therefore, a
joint optimization strategy is essential.
Unified Cost Model. To support joint optimization, we introduce
a unified cost model across data types to estimate efficiencies for
candidate pipelines. The observation is that different data types
present distinct processing costs: structured data is I/O-heavy with
moderate CPU usage for filtering and joins, while unstructured data
requires CPU/GPU-intensive operations (e.g., embedding compu-
tation, attention computation). Semi-structured data, such as JSON
or XML, adds parsing and path-based extraction costs. We capture
these cost differences by defining resource-specific cost functions
(I/0, CPU/GPU) for each operator, parameterized by input size and
computational complexity. Before executing AOP, we fit these cost
functions using sample workloads for accurate cost estimation.
Moreover, intelligent data lake analytics may involve multiple op-
timization goals, such as minimizing latency, maximizing accuracy,
or minimizing LLM usage. The cost model can be adjusted to meet
each specified optimization criterion effectively, or a compound cost
model, i.e., a weighted average of different sources, can be used to
achieve a multi-objective optimization strategy.
Hybrid Optimization. With the unified cost model, we optimize
execution pipelines by setting a threshold for each resource and
reordering operators to maximize concurrency while not exceed-
ing resource limits. Beyond cost, we prioritize pipeline processing
between operators to reduce operator delay in materialization pro-
cessing, enabling downstream operators to start processing partial
outputs from preceding operators. Given the variability of semantic
operators, the pipeline processing feasibility of some operators is
challenging to determine. Therefore, after generating a pipeline, we
utilize LLMs to evaluate the feasibility of each semantic operator in
the pipeline, allowing AOP to output an optimized pipeline annotated
with pipeline processing feasibility for each operator.

6.3 Hybrid Execution

Data Transformation. Executing pipelines across structured, semi-
structured, and unstructured data involves integrating SQL, parsing
tools, and NLP models into a unified workflow, which requires fre-
quent transformations across data types. To improve the effectiveness
of these transformations, we introduce an optimized Transform op-
erator to convert data formats, e.g., transforming structured results
into text descriptions for NLP models.
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Pipeline Adjustment. Processing heterogeneous data types increases
the likelihood of execution failures, often due to misalignments
across data formats. For instance, processing structured data based
on unstructured intermediate results often requires NL2SQL trans-
formations, which need the alignment between natural language
expressions and structured table content. To improve the accuracy
of such cross-data-type operations, AOP employs a pre-alignment
step before the execution. For example, distinct values in structured
tables are matched to expressions in natural language queries, allow-
ing for adjustments prior to execution. In addition, AOP allows for
trials of alternative expressions to increase the pipeline robustness
against misalignment errors.

7 EXPERIMENTS

7.1 Experimental Settings

Dataset. We use the widely adopted CRAG dataset [37] for experi-
ments, which consists of real-world Question Answering (QA) tasks.
Each question is accompanied by five web pages that potentially
contain relevant information for retrieval. To better simulate real-
world scenarios, we aggregate all documents as external knowledge
for answering all queries. CRAG includes English question-answer
pairs and we use the following complex question types:

(1) Multi-hop: Questions that require chaining multiple pieces of
information to form the answer. It contains 231 queries.

(2) Post-processing: Questions that require reasoning or process-
ing of the retrieved information. It contains 108 queries.

(3) Set: Questions that expect the answer to be a set of entities or
objects. It contains 249 queries.

(4) Aggregation: Questions that involve aggregation of partial re-
sults. It contains 315 queries.

(5) Comparison: Questions that involve comparisons between enti-
ties. It contains 333 queries.

Evaluation Metric. Following [8], we use accuracy as the evalu-
ation metric. We employ the official automatic evaluation code of
CRAG [37], which utilizes rule-based matching and GPT-4 assessment
to verify answer correctness. Additionally, we report the average
end-to-end latency for efficiency evaluation. To measure the cost of
each method, we report the average token consumption amount for
each method.

Baselines. We compare AOP with several state-of-the-art RAG meth-
ods that do not modify the LLM model. These baselines follow
fixed pipelines, while AOP interactively determines the appropriate
pipeline based on queries and intermediate results.

(1) LLM: Directly querying the LLM.

(2) RAG: A simple pipeline that retrieves relevant information using
the query and generates answers based on the retrieved information
and the query.

(3) IterRAG [30]: Similar to RAG, but iteratively generates different
retrieval queries. We set the number of iterations to 5.

(4) RecurRAG [38]: Similar to RAG, but iteratively decomposes the
query and retrieves information, also with 5 iterations.
Hyper-parameter Setting. We use Llama 3.1-8B Instruct as the
LLM model for all experiments. We use the Sentence Transformer
model to compute 384-dimensional sentence embeddings. Sentences
are segmented, treated as chunks, and their embeddings are normal-
ized to unit vectors. During retrieval, we compute cosine similarity



AOP: Automated and Interactive LLM Pipeline Orchestration for Answering Complex Queries

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

LLM E= RAG [EZI IterRAG [E=1 RecurRAG EX3 AOP

] (a) Multi-hop (l;;'Post-pro.c.é'ssing

< < < < <

& 401 < 30/ S401 o7l <30 — =10

© oo © 20 — 5o © —] © 20 — © -

3 S 10| G Sl = S 10| 3 B

< | I 2 . O | — 4 = 2 < . el i £ JEE
(c) Set

(d) Aggreéé't.ion .,(.,é) Compa.\.riéon

Figure 7: Accuracy of different methods for different types of queries.

C g

) = s
E 5 7 oo £ 5] -
& oL B LA I 2 oL EH AL

LLM RAG Iter RecurAOP LLM RAG Iter RecurAOP
RAG RAG RAG RAG
(a) Execution Times of Methods (b) Execution Costs of Methods

Figure 8: Efficiency and cost of different methods.

between query embeddings and chunk embeddings to identify the
most relevant chunks, selecting the top 20 based on similarity scores.
Environment. All experiments are conducted on a Ubuntu server
with an Intel(R) Xeon(R) 6242R CPU, 4 Nvidia 3090 GPUs and
256GB RAM.

7.2 Evaluation of Multi-hop Retrieval

7.2.1 Comparison of Accuracy. Figure 7 shows the accuracy
of different methods on different query types. AOP consistently out-
performs the other baselines, with accuracy improvement reaching
up to 45%. For instance, on Comparison queries, AOP achieves an
accuracy of 54.1%, while LLM, RAG, IterRAG, and RecurRAG obtain
accuracies of 9.30%, 24.3%, 33.9%, and 38.1%, respectively.

The superior accuracy of AOP comes from its ability to inter-
actively orchestrate and refine execution pipelines by leveraging
intermediate results. Unlike LLM which directly queries the LLM,
AOP integrates external knowledge and executes multi-step reasoning,
thus obtaining higher accuracy. This capability also allows AOP to
surpass RAG, which relies solely on query-based retrieval. Addition-
ally, AOP outperforms IterRAG and RecurRAG by decomposing the
original query from multiple perspectives and focusing on solvable
sub-queries during execution. The interactive pipeline adjustment
in AOP ensures the execution focused on operations likely to con-
tribute to answering the query, thereby avoiding distractions from
less relevant sub-queries and non-retrievable information.

7.2.2 Comparison of Efficiency. We also compare the efficiency
of different methods, as shown in Figure 8(a). The results indicate
that AOP achieves similar latencies to advanced RAG methods in-
cluding IterRAG and RecurRAG. LLM has the shortest execution time
due to its straightforward process, albeit with significantly lower
accuracy than AOP. Although RAG is faster than AOP, its simplified
pipeline results in less accurate outcomes. Despite AOP involving
more steps than IterRAG and RecurRAG, the optimizations discussed
in Section 5, such as parallel execution and prefetching, allow AOP
to achieve comparable execution times.

7.2.3 Comparison of Cost. We compare the token consump-
tion of various methods, as illustrated in Figure 8(b). While LLM
has the lowest token usage due to its relatively simpler process,
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Figure 9: Evaluation of: (a) query optimization; (b) unstructured
data analytics.

its accuracy is significantly lower than that of AOP. Although RAG
uses fewer tokens than AOP, its static pipeline sacrifices accuracy.
Despite the additional steps involved in AOP compared to IterRAG
and RecurRAG, the context management optimizations detailed in
Section 5 enable AOP to effectively reduce overall token usage while
achieving significantly higher accuracy.

7.2.4 Evaluation of Query Optimization. In this section, we
evaluate the effectiveness of the query optimization techniques pro-
posed in Section 5. Figure 9(a) compares the execution time of AOP
with and without these optimizations, where the latter (AOP —Seq) ex-
ecutes sequentially. The results show that AOP reduces execution time
significantly compared with AOP —Seq, e.g., on Multi-hop, reducing
from 17.8s to 7.3s, achieving a 2.4x acceleration. This improvement
is attributed to parallel execution that allows multiple steps to run
concurrently, and the prefetch optimization that minimizes delays
caused by retrieval failures.

7.3 Evaluation of Unstructured Data Analytics

To evaluate the unstructured data analytics capabilities, we collected
100 web pages from Sports StackExchange, converting them into
plain text to standardize the data format. From this dataset, we gener-
ate 25 queries based on five manually designed templates inspired by
the StackExchange Data Explorer [6]. Each template produces five
queries by sampling specific values from the dataset. To enhance lin-
guistic diversity, we use an LLM to generate paraphrased variants of
each query, which are then manually verified to ensure equivalence.
Ground truth answers are computed manually.

We compare AOP with baseline methods introduced in Section 7.1,
with results shown in Figure 9 (b). The results demonstrate that
AOP outperforms other methods by up to 52% in accuracy. This is
attributed to the complex nature of these semantic analytical queries,
which require aggregating information across multiple unstructured
data sources and involve multi-step reasoning to arrive at the correct
answer. Unlike RAG methods, which retrieve specific data segments,
AOP effectively generates reasoning paths, scans necessary data and
dynamically adjusts its steps based on intermediate results, achieving
much higher accuracy.
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8 RELATED WORKS

Retrieval-Augmented Generation (RAG). RAG integrates retrieval-
based methods with generation-based models to improve the accu-
racy and relevance of LLM responses. RAG methods [8, 11, 30]
typically involve chunking documents, indexing documents, retriev-
ing documents most relevant to the given query, and generating
responses conditioned on both the query and retrieved information
via LLMs. Various methods, i.e., execution pipelines, have been
proposed to optimize the effectiveness of RAG, such as segment-
ing documents more fine-grained, decomposing complex queries
into simpler sub-queries, and iteratively or recursively applying re-
trieval and generation steps. Recent RAG methods are extended to
diverse data types, including knowledge graphs [10, 28], and struc-
tured tables [23], enabling LLMs to leverage heterogeneous data
sources. However, RAG is inherently limited to point lookups, where
it assumes a query can be fully addressed by retrieving relevant
segments [27]. This assumption is not satisfied in unstructured data
analytics, which demands complex semantic operations, such as ag-
gregating across heterogeneous documents and multi-step complex
reasoning over intermediate results.

LLM Programming Framework. Modern LLM programming
frameworks are widely used for developing advanced query pipelines,
offering user-friendly declarative methods to orchestrate workflows.
For example, LangChain [1] and Llamalndex [4] respectively intro-
duce LangChain Expression Language (LCEL) and QueryPipeline
abstraction to simplify pipeline composition. These abstractions en-
able the manual orchestration of pipelines that incorporate RAG,
prompts, and tool-calling. However, these frameworks lack semantic
data analytical operators, automated pipeline orchestration, requir-
ing manual configuration and optimization. These processes require
significant expertise and are time-consuming, particularly when
handling large-scale data and complex queries.

Native-COT Reasoning of LLMs. During the submission of this
paper, a new paradigm has emerged to improve the complex rea-
soning ability of LLMs by incorporating native chain-of-thought
(NCoT) processes directly within model architectures [22]. A key
example of this approach is OpenAI’s 01 model [3]. NCoT allows
LLMs to deep think through step-by-step reasoning before generat-
ing responses. However, LLMs still face limitations when applied to
complex queries over heterogeneous data sources. First, such ana-
lytics are time-consuming, while effective query planning demands
a thorough understanding of the underlying data, which LLMs in-
herently lack. Moreover, the NCoT training requires process reward
models (PRM) to assign intermediate rewards during the reasoning
process [17, 22], which are costly to obtain [29, 39] and the detailed
multi-step reasoning paths specific to data analytics queries remains
largely unavailable.

Agentic LLM Systems. LLM-based agentic workflows employ mul-
tiple LLMs working together to tackle complex tasks [21, 36, 41].
In these workflows, agents are similar to basic data analytics opera-
tors, such as Filter and Scan, in that each is designed for tackling
specific tasks. While manually designed agentic systems yield high
effectiveness, they are costly to develop and maintain [15, 40]. How-
ever, automatic agentic systems [14, 40] fall short of effectiveness
due to limited human expertise. To address this, we propose pre-
defining operators—given their stability in data analytics—to ensure
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accuracy. Our system is designed with flexibility, allowing new op-
erators to be added as new functionalities arise.

LLMs for Data Management. NL2SQL methods enable natural
language queries over structured data [12, 16, 20]. However, their
reliance on strict syntactic and schema constraints limits their appli-
cability to unstructured data. Recent advancements in LLMs have
expanded the possibilities for querying large, complex unstructured
datasets [7, 9, 18, 19, 24, 27, 33]. ZENDB [18] indexes documents
based on structural templates, but its template dependency limits
flexibility across general document formats. Evaporate [7] extracts
tables from documents using LLM-generated code and synthesized
rules but it is constrained by its SQL-based analytics, limiting the
depth of semantic analytics on unstructured data. LOTUS [27] trans-
forms unstructured data into tables through LLMs for semantic
queries, though it requires manual pandas-like code for analytical
pipeline orchestration. PALIMPZEST [19] optimizes performance for
large-scale tasks like information extraction and multimodal ana-
lytics, but user-defined schemas and logical plans are required. In
contrast to these approaches, AOP allows users to perform analytics
directly via natural language queries across heterogeneous data.

9 CONCLUSION AND FUTURE WORK

In this paper, we propose AOP, the first systematic framework for
automated pipeline orchestration using LLMs to address complex
queries over heterogeneous data lakes. AOP extracts standard se-
mantic operators, constructs optimized semantic execution pipelines
tailored to the input query, and employs interactive execution with
real-time adjustments to ensure high accuracy. By integrating ad-
vanced query optimization techniques, AOP achieves significant im-
provements in both accuracy and efficiency over state-of-the-art
baselines. Extensive experiments demonstrate that AOP effectively
handles challenges such as multi-hop semantic data retrieval and
linking, multi-step logical reasoning, and multi-stage semantic data
analytics across heterogeneous data formats, achieving up to 45%
accuracy improvements on challenging datasets.

We hope that this work will pave the way for numerous research

opportunities in the field of intelligent data lakes. For future work,
we plan to explore several key directions. First, we aim to improve
the cost estimation of semantic operators by leveraging advanced
cardinality estimation techniques, enabling more precise query op-
timization, particularly for pipelines involving unstructured data.
Second, we intend to fine-tune LLMs to specialize in pipeline or-
chestration, incorporating advanced reasoning capabilities such as
native chain-of-thought. This will allow LLMs to inherently generate
and optimize pipelines, similar to highly tuned database optimizers.
Third, we will focus on enhancing intelligent data lake analytics at
scale, which includes addressing challenges in linking heterogeneous
data types, integrating hybrid optimization strategies, and refining
cross-format data transformations to manage diverse and evolving
data sources effectively.
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