
Databases in the Era of Memory-Centric Computing
Yannis Chronis

chronis@google.com
Google

Anastasia Ailamaki
anastasia.ailamaki@epfl.ch

EPFL

Lawrence Benson
lawrence.benson@tum.de

Technische Universität München

Helena Caminal
hcaminal@google.com

Google

Jana Gičeva
jana.giceva@in.tum.de

Technische Universität München

Dave Patterson
davidpatterson@google.com

Google

Eric Sedlar
eric.sedlar@oracle.com

Oracle Labs

Lisa Wu Wills
lisa@cs.duke.edu
Duke University

ABSTRACT
The increasing disparity between processor core counts and mem-
ory bandwidth, coupled with the rising cost and underutilization
of memory, introduces a performance and cost Memory Wall and
presents a significant challenge to the scalability of database sys-
tems. We argue that current processor-centric designs are unsus-
tainable, and we advocate for a shift towards memory-centric com-
puting, where disaggregated memory pools enable cost-effective
scaling and robust performance. Database systems are uniquely
positioned to leverage memory-centric systems because of their
intrinsic data-centric nature. We demonstrate how memory-centric
database operations can be realized with current hardware, paving
the way for more efficient and scalable data management in the
cloud.

1 INTRODUCTION
Databases have always been memory- and data-movement con-
scious, but the systems supporting them are or have been organized
in a processor-centric way. In other words, most infrastructures
running databases treat compute power as a first-class citizen and
assume an even technology scaling between compute and memory
metrics, such as FLOPs, bandwidth, and capacity. This processor-
first design view is not exclusive to database infrastructure; in the
cloud, resources are organized/sold around vCPUs, namely, each
vCPU comes with a fixed amount of memory.

Current technological and economic trends suggest that scaling
systems with a processor-centric design may become unsustainable
in the future. Three key observations lead to this conclusion. First,
the memory-bandwidth-per-core is not keeping up with demand.
Core counts per CPU are increasing, cores continue to get per-
formance improvements with every generation but the memory
bandwidth is not increasing at the same rate (Figure 1, shows the
memory-bandwidth-per-core across AMD EPYC CPU generations).
Thus, this leads to underutilized chips for memory-bound jobs. Us-
ing more machines will be required to increase aggregate memory

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

Rome Milan GenoaBergamo Turin
AMD EPYC CPU Generations

0

2

4

6

8

M
ax

 th
eo

re
tic

al
 m

em
or

y
ba

nd
wi

dt
h

pe
r c

or
e

(G
B/

s)

Figure 1: Theoretical maximummemory bandwidth per core
for the current and past generations of AMD EPYC CPUs.
Turin, the latest generation of AMD EPYC, has the lowest
memory-bandwidth per core.1

bandwidth. Second, memory is already the dominant part of the
server cost and will continue to grow as the cost per byte plateaus
(see Figures 2 & 3). Third, cloud vendors report that a significant
portion of the memory in their datacenters is stranded/unused [18].
The result is that memory is the most expensive resource, and we
are not using it efficiently.

We argue that these trends introduce a performance and cost
Memory Wall. A promising direction to achieve a well-balanced
system is to shift from a processor-centric to a memory-centric
design. Memory-centric computing aims to reduce the cost
of memory in cloud systems by enabling efficient memory
sharing. A memory-centric system treats memory itself as
the dominant cost and compute power as commodity. In a
memory-centric system, memory is disaggregated, data is logically
dissociated from processors, and different processing units (not just
CPUs) can share memory and data via a pool (accessible over the
network).

The goal of a memory-centric system is to scale memory capacity
and bandwidth in a cost-efficient way for distributed query process-
ing. Amemory pool allows scaling ofmemory capacitywhile adding
more compute nodes (with modest local DRAM) scales memory
bandwidth. The cost savings are achieved by reducing the overall

1For each generation we use the CPU with the max number of cores.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Chronis et al.

1990 2000 2010 2020
1$

10$
100$

10K$

1M$

100M$

10B$ DRAM
Disk
SSD
GFlops

Figure 2: Cost of compute (cost/GFlops), memory, and stor-
age (cost/TB) over time. DRAM price per byte has remained
virtually constant since 2010 [1, 3].

memory required and memory waste. Interestingly, memory pools
have additional benefits for distributed query processing. They can
make performance more robust (for example, in the presence of data
skew) and potentially make programming easier (depending on the
memory pool implementation). For example, a CXL2 shared mem-
ory makes the programming abstraction for a memory pool simple.
Instances of memory-centric computing have been proposed in the
past [12, 18, 21, 29].

Databases, compared to general-purpose applications, are uniquely
positioned to take advantage of memory pooling for distributed
query processing [16]. Databases already manage memory and data
movement and use efficient out-of-core algorithms. Therefore, the
design shift required to implement a memory-centric database is
not disruptive. Section 3 gives examples of memory-centric data-
base operations implemented with existing hardware technologies.
Note that, even in a memory-centric design, being memory and
cache-conscious inside each compute node remains important.

This paper presents the technological trends that introduce a
new bandwidth and cost Memory Wall and makes the case that we
need to shift from a processor-centric to a memory-centric system
design. We further discuss how to design memory-centric database
systems and the cost, robustness, and potential programmability
benefits.

2 TECHNOLOGICAL TRENDS
The slowing of Moore’s Law has forced chip manufacturers to turn
to increasing the number of cores to improve performance. While
chiplets have allowed AMD to increase the number of cores, in-
creasing the memory-bandwidth-per-core is not as easy. Adding
an equivalently increasing number of memory channels that run at
a sufficient speed to supply cores with data is challenging3. There-
fore, as the number of cores per chip increases, and each core’s

2https://computeexpresslink.org/
3Turing, the latest generation of AMD EPYC CPUs can reach up to 192 cores/CPU and
at the same time has the lowest memory-bandwidth-per-core out of all AMD EPYC
CPU generations (Figure 1)

performance improves, the memory bandwidth ratio to core perfor-
mance does not keep up.Microprocessors will likely become
memory-bound for many applications.

Domain Specific Architectures (DSAs) are the only remaining
opportunity for significant gains in processor performance. DSAs
follow Amdahl’s Law: performance improvement is limited by the
fraction of the time the DSA is used. Given the high expense of
developing new hardware, the domains that merit DSAs are limited.
One example is Deep Neural Networks (DNNs), where GPUs and
in-house alternatives developed by hyperscalers (TPUs, Azure Maia,
and Cobalt) are used [10, 22]. While DSAs are easily justified for
DNNs, it is hard to make a similar case for specialized compute
for database management systems (DBMS). This is partly because
databases are more focused on data access than computation and
partly because the wide surface of databases and Amdahl’s law
limit the benefit of a DSA. Ideally, we need to find a solution
that reorganizes the standard components to provide a more
promising foundation for DBMSs without having to justify
the cost of developing and deploying specialized architec-
tures.

Today, the path to much faster general-purpose computing that
improves all applications requires investment via scaling out by
deployingmore computers and buildingmore data centers. Improv-
ing performance when scaling out is not trivial; it requires so-
phisticated distributed systems that optimize resource man-
agement, data movement, coordination, and failure recovery.

Figure 2 & 3 demonstrates that DRAM chip capacity and cost
are not improving as quickly as they did in the past. As a result,
an increasing fraction of the cost of future computers will
be DRAM. Already a few years ago, Azure reports 50% of the
server cost is memory [2], 40% for Meta [20], Google faces similar
pressure[7].

New memory technologies like HBM have been proposed but
it is unlikely that their byte/dollar can replace DRAM. Therefore,
new memory technologies are unlikely to benefit general-
purpose architectures.

At the same time, in the cloud, the fixed allocation of DRAM per
CPU leads to under-utilization of the expensive memory resource.
At Microsoft, an average of 25% of DRAM capacity is stranded [18].
AsDRAMbecomes relativelymore expensive, strandingDRAM
due to its static binding to microprocessors becomes even
less attractive. In conclusion, all trends indicate that memory, not
compute, is now the most precious resource, and hence, building
memory-centric algorithms and systems is a logical next step.

2.1 The New Memory Wall
Until now, the term Memory Wall has been used to express the
widening gap between processor speed and main memory access
times [28]. This gap is particularly important for DBMS as analytical
workloads are traditionally memory latency-bound. To bridge the
gap, proposed algorithms carefully optimize the implicit "vertical"
data movement from memory to the processor through the cache
hierarchy. Databases use cache-conscious algorithms and data struc-
tures to mitigate the effects of this performance gap [4, 6, 23, 24].

Databases in the Era of Memory-Centric Computing CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

1980 1990 2000 2010 202016KB

1MB
16MB

128MB
1GB

24GB

DR
AM

 C
ap

ac
ity

Figure 3: DRAM capacity per chip over time [8].

The combined effects of hardware and economic trends are push-
ing towards a new, multi-dimensional memory wall of band-
width, capacity, and cost. The current conditions require increas-
ing the number of servers in data centers to increase the aggregate
memory bandwidth, which, coupled with the processor-centric de-
sign (Figure 4), memory capacity, and cost trends, will make scaling
of database systems cost prohibitive.

3 A MEMORY-CENTRIC ARCHITECTURE FOR
DATABASES

In this paper, we advocate to shift from a processor-centric to a
memory-centric computer design (Figure 4). This naturally fol-
lows the technological trends and makes memory the centerpiece,
thereby enabling memory disaggregation that can effectively mini-
mize the cost of a cloud system.

3.1 Memory Pooling
As shown in Figure 4, in a memory-centric architecture, processors
are dissociated from memory and data. This is in contrast to the
traditional processor-centric computer design, where memory is a
fixed resource attached to a processor core4. In the memory-centric
design, compute nodes will have a modest amount of local DRAM.
Most of the DRAM will be placed in a shared memory pool, thereby
keeping the individual server and overall system cost in check.
Data in the pool is not directly linked to any processor (of an exe-
cution node) and can be accessed by any compute node connected
to the network fabric. Here, we want to highlight that the compute
nodes that share the memory pool are not just high-end proces-
sors (left side of the memory pool) but also more power-efficient
ARM/RISC-V cores (bottom side of the memory pool), or various
types of accelerators (see right side of the pool). Such a memory
pool-based architecture is particularly beneficial in cloud infrastruc-
tures. Not only does it help with reducing memory stranding, but
it also helps with modern complex workload pipelines that move
significant amounts of memory across the network between the
various compute devices.

4For example, cloud vendors sell virtual CPUs with a fixed slice of associated
memory; this is a direct result of existing hardware and software system design
(https://aws.amazon.com/ec2/instance-types/).

One can reason about the memory pool as extending the mem-
ory/storage hierarchy with a layer that offers larger memory ca-
pacity than the local main memory, albeit at lower performance.
Applications can use the memory pool in a few ways: (a) to extend
the capacity of local DRAM memory (lowering the cost of local
memory) and (b) to disaggregate memory for a distributed system
(allowing the system overall to utilize memory more efficiently),
and (c) to enable a more efficient data exchange.

3.1.1 MemoryPool Implementation. Themove from a processor-
centric model to a memory-centric model represents a logical shift
that can be realized by reorganizing commodity computer compo-
nents. In this section, we discuss the implementations of memory-
centric design and the impact of emerging technologies.

Google’s BigQuery [21] is an example of a database system that
has a memory-centric system design for shuffles. BigQuery uses
a separate shuffle service that is built on top of a disaggregated
distributed memory pool to facilitate communication between com-
pute nodes. Compute nodes that produce data to be shuffled write to
the distributed memory service, and the consumer compute nodes
read from the distributed memory. This design led to fast, large
shuffles and reduced overall system memory requirements (and
thus cost). Furthermore, it enables dynamic handling of intermedi-
ate results, re-optimization, and query check-pointing. The success
of this design led to adopting it for other systems within Google5.

Another instance of a memory-centric system design is RDMA-
enabled memory disaggregation (remote memory). A notable in-
dustry example is Microsoft, which uses RDMA to temporarily
“borrow” memory from remote nodes to avoid spilling data to disk
in situations where not enough local memory is available [17].
However, there is no standard and easy-to-use way for cross-node
memory sharing as envisioned by our paper.

Moving forward, new technologies like the Compute Express
Link (CXL) promise an even more efficient and capable implemen-
tation of memory pooling. CXL is a new industry standard that con-
nects up to 8 sockets and even various accelerators that can share
a pooled DRAM memory [15]. With its larger logical aggregated
memory capacity, CXL can significantly reduce the implementation
effort when operating data stored in the memory pool and enable
finer granular memory access. CXL is supported by current genera-
tions of computer architectures, including x86, ARM, and RISC-V.
Refer to CXL papers [16, 18, 19, 25–27] for technology-specific
trade-offs.

While CXL is close to general availability, other promising tech-
nologies like photonics [9] can enable even faster memory pooling
and potentially facilitate deployment on a wider scale.

3.1.2 Cost of memory in the memory pool. Disaggregated and
pooled memory reduces the cost of memory by reducing the overall
provisioned memory. It can also improve the cost-effectiveness by
recycling older generations of hardware that would have normally
been retired. For example, memory modules of older technologies
currently become obsolete when cloud providers upgrade their
systems to the latest generation servers (e.g., move from DDR4 to
DDR5). However, memories have a relatively large lifespan (i.e., 25
years) [8], and can thus technically continue to be used, although

5https://cloud.google.com/products/dataflow

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Chronis et al.

CPU

Caches
DRAM

SSD

Data Center
Network

TP
U

A

ccelerator I/O Bus

NIC

ARM/RISC-V

Local
DRAM

SSD

ARM/RISC-V

Local
DRAM

SSD

ARM/RISC-V

Local
DRAM

SSD

. . .

Memory Pool

High Bandwidth Network (CXL / Optical)

C
P

U

Lo
ca

l
D

R
A

M Local
D

R
A

M
Local

D
R

A
MC

P
U

Lo
ca

l
D

R
A

M

C
P

U

Lo
ca

l
D

R
A

M
Figure 4: Left: Conventional Processor-Centric Computer. The CPU is at the heart of the design, surrounded by main memory
(DRAM) and connected over I/O busses to storage and networking. The basic organization has dominated data centers and
remained unchanged for decades. Right: A memory-centric architecture where memory is shared via a pool. Execution nodes
contain a CPU, a TPU, or some other accelerator. Storage servers are provisioned with SSDs and low-cost processors. The
memory pool can be made up from one or more physical servers, depending on the performance needed.

at the cost of a performance penalty. The drop in performance
from a previous generation memory will not be noticeable in a
memory pool when accessed over CXL. Thus, memory pools can
help us better navigate the performance/cost trade-off by choosing
the fraction and generation of memory to use in the pool and the
compute nodes.

3.2 Databases and Memory Pooling
A fast memory pool is a natural fit for distributed query processing.
It can be used as an extension of local memory and as a disag-
gregated memory for data movement between different execution
stages [21] and data sharing.

Extending the memory/storage hierarchy with a memory pool
layer will be challenging for many applications that do not explicitly
manage data movement and placement [16]. Luckily, this is not the
case with databases. Databases already manage the data movement
between layers of the memory/storage hierarchy and use optimized
out-of-core algorithms. This puts them in an advantageous position
when it comes to realizing a memory-centric design.

Besides the cost-benefits that memory pooling brings, the extra
layer in the memory/storage hierarchy can help mitigate the per-
formance penalty of long-standing distributed query processing
challenges and offer manifold system improvements. Two such
challenges are: miss-estimation of intermediate results size [13, 14]
and data skew. When either occurs, the working set data size can
exceed the local memory capacity and degrade performance in an
unpredictable way. Both are hard to predict, and when they occur,
database systems either spill to secondary storage, over-provision
memory to avoid spilling, abort execution, or use adaptive meth-
ods to redistribute the excess data. A memory pool benefits all
approaches by extending the local memory to handle excess data,
allowing easier implementation of adaptive algorithms, and en-
abling easier sharing of large intermediate results.

3.3 Cost of Data Movement
Traditionally, data movement is a significant cost in distributed
query processing. A memory-centric design could directly or indi-
rectly reduce data movement costs.

Section 3.1.1, discusses an efficient memory centric shuffling
operation. Moving data from remote storage to an execution node
or between execution nodes incurs the cost of moving data over the
network but also the cost of data (de)compression), (de)serialization,
(de)allocating buffers, copying, and (sometimes) format transforma-
tion [11]. Spilling to the memory pool instead of the storage layer
reduces the overall cost, which is contributed to by the factors men-
tioned above. Emergent technologies such as CXL greatly simplify
the implementation of this data movement reduction as they allow
the data processing systems to spill at lower granularity instead
of at storage format granularity. It is also helpful that most of the
complexity of CXL is in the hardware, enabling the CXL pool to be
seen as a (or multiple) remote DRAM socket(s).

3.3.1 Data Sharing. Databases are the first step in most data-
intensive tasks (e.g., recommendation systems, retrieval augmented
generation, ML inference, sensor data monitoring), where the data-
base output is the input to one (or more) “consumer” systems (e.g.,
Tensorflow inference). End-to-end task execution is organized in a
data pipeline, where each part of the pipeline uses the hardware
(e.g., GPU and CPU, CPU and TPU, etc.) and software platforms
suited to the operation it executes.

A memory-centric design can enable a shift where CPUs and
accelerators, which are increasingly becoming part of such data
pipelines, are “equidistant” from the data, enabling simpler com-
munication and minimizing the performance cliffs observed when
CPUs and accelerators operate with vastly different memory bud-
gets.

Databases in the Era of Memory-Centric Computing CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

4 EXAMPLE USE-CASE: DISTRIBUTED JOIN
In this section, we use an analytical model to compare the perfor-
mance and cost of a memory-centric architecture to a processor-
centric architecture for databases.

We use a distributed equi-join as our example use case. We join
two relations, R (20 GB) and S (100 GB). R and S are stored on disk
using a distributed storage service. The first step for the processor-
centric and the memory-centric setups is to fetch the relations
from the distributed storage service. This step is identical for both
setups, so we omit it from our calculations. Next, the two tables are
partitioned and shuffled to the execution nodes.We build hashtables
on the R partitions and probe it for all tuples of S. Below, we list
the performance assumptions we use in our analytical modeling:
Network: Each compute server is connected via 200 Gbit RDMA.
With a 200 Gbit RDMA link, we can transfer data at 25 GB/s.
Local DRAM Bandwidth: The effective memory bandwidth for
an execution node is 100GB/s.
Partitioning: For simplicity, we assume that partitioning is a
memory-bound task that happens at 100GB/s in the compute servers.
In a real deployment, each task would use a slice of memory band-
width relative to the number of cores it uses. To keep this example
simple, we assume we can use all of the available memory band-
width to perform the join.
CXL memory pool: In our memory-centric setup, we add a mem-
ory pool implemented by one server connected via CXL to the
compute nodes.
Join Build and Probe: We assume we can build and probe a
hashtable at 8GB/s [5] when using local memory. We assume we
can build and probe a hashtable at 5GB/s when CXL memory is
used (the CXL performance was adjusted based on the relative
performance between DDR and CXL [25]).

4.1 Join using the Processor-Centric setup
4.1.1 Join Algorithm and Latency. In this setup, we assume 10
computing servers. To perform the join, we first partition and shuf-
fle table R (the build side). Each node partitions an equally sized
chunk of R, 20𝐺𝐵

10 = 2𝐺𝐵 which takes part𝑅 = 2𝐺𝐵
100𝐺𝐵/𝑠 = 0.02 𝑠

to partition. For shuffling, we pessimistically assume that only
0.2 GB out of the 2 GB stays in the same compute node. There-
fore, shuffling takes shuf𝑅 = 1.8𝐺𝐵

25𝐺𝐵/𝑠 = 0.072 𝑠 . We assume that
data distribution is skewed, and server 1 will end up with a 5𝐺𝐵
partition of table R, server 2 with 2𝐺𝐵 partition, and the rest
with 1.625 𝐺𝐵 sizes partitions. Partitioning and shuffling R takes
0.02𝑠𝑒𝑐 + 0.072𝑠𝑒𝑐 = 0.092𝑠𝑒𝑐 . To build a hashtable on table R, we
spend build𝑅 = 5𝐺𝐵

8𝐺𝐵/𝑠 = 0.625 𝑠 (the largest partition defines the
time this stage takes).

For S we follow similar steps, with the difference that partition-
ing, shuffling S and probing the R hashtable with S can be done
in a streaming fashion. We assume that the slowest stage of this
pipeline defines the speed; in this case, this is probing, which takes
probe𝑆 = 10𝐺𝐵

8𝐺𝐵/𝑠 = 1.25 𝑠 .
In total, this joins takes 0.092 + 0.625 + 1.25 = 1.967𝑠𝑒𝑐 .

4.1.2 Memory Requirements. In this setup, to perform the join
without using secondary storage each node has 5.5𝐺𝐵 of memory
allocated. The 5.5𝐺𝐵 are used to hold the largest build partition

Execution
Node 1

Execution
Node 2

Execution
Node 10

…

network

Execution
Node 1

Execution
Node 2

Execution
Node 10

…

network
Memory Pool

Node(s)

Figure 5: Processor-Centric Experiment Setup (left), Memory-
Centric Experiment Setup (right)

(5𝐺𝐵) and an additional 0.5𝐺𝐵 buffer to partition and shuffle S in a
streaming way.

4.2 Join using the Memory-Centric setup
In this setup, we assume 10 compute servers, each with 3 GB of
local memory allocated to this join. We also assume a memory pool
server connected to the execution nodes via CXL.

4.2.1 Join Algorithm and Latency. The time required to partition
and shuffle R is the same as in the processor-centric design: 0.092𝑠𝑒𝑐 .
The difference in processing the join in the memory-centric setup
comes from the fact that the partition of R assigned to server 1
does not fit in its local memory (5𝐺𝐵 > 3𝐺𝐵). Therefore server
1 will borrow 2.5𝐺𝐵 of CXL memory from the pool and use it
alongside 2.5𝐺𝐵 of local memory to store the R hashtable. Therefore
build𝑅 = 2.5𝐺𝐵

8𝐺𝐵/𝑠 + 2.5𝐺𝐵
5 = 0.3125 + 0.5 = 0.8125 𝑠 . Similarly, the

probe on server 1 takes probe𝑆 = 5𝐺𝐵
8𝐺𝐵/𝑠 + 5𝐺𝐵

5𝐺𝐵/𝑠) = 1.625 𝑠 (We
assume that half of the probes will touch data stored in the local
memory and half the data stored in the CXL memory). In total, the
join takes 0.092 + 0.8125 + 1.625 = 2.5295𝑠𝑒𝑐 .

4.3 Memory Usage Reduction
This example shows that memory pooling can be used to reduce
the total amount of memory used to perform the same join from
55𝐺𝐵 (10 ∗ 5.5𝐺𝐵) to 32.5𝐺𝐵 (10 ∗ 3𝐺𝐵 Local Memory + 2.5𝐺𝐵 CXL
Memory).

The processor-centric setup uses 1.7× more memory to achieve
a 20% faster execution time compared to the memory-centric setup.
The latest published literature describes memory as being 50% of
the server cost [2]. Currently, a cloud-optimized Saphire Rapids
CPU (without accelerators) costs around 4,000 USD, and loading a
server with 4TB DDR5 (the maximum amount this CPU supports)
costs around 40,000 USD. This represents a 10× price difference and
a great opportunity for memory-centric computing. Depending on
the configuration of a server (memory amount and CPU SKU), the
cost difference could be anywhere from 2× to 10×6.

We expect a much larger gain in real deployments, as memory
in servers today is over-provisioned to handle spikes in usage.
This means that during normal operation, memory usage is kept
below 100% (for example, at 80% or even lower). This limit can be
more aggressive with an efficient memory pool. In addition to cost
benefits, the memory-centric setup is able to handle data skew in
a natural way. The performance modeling of the memory-centric

6Retail prices were used for the comparison.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Chronis et al.

setup in our example is pessimistic, and detailed experiments are
required to understand its performance potential.

4.4 Discussion
The example presented in this section is simple but effective at illus-
trating the cost benefits of a memory-centric approach. As the mem-
ory of local nodes is varied, we expect to see a trade-off between
performance and memory cost, and here lies an opportunity for
databases to control this trade-off to hit different cost-performance
balances depending on the needs of each query.

Technologies like CXL can make the implementation and use of
a memory pool much more efficient. From the programmer’s point
of view, local and remote memories appear similar, and cache coher-
ence and error handling are handled by the hardware. Regarding
data movement, it is likely that CXL will offer more opportunities
to optimize the necessary processing costs (memory allocations,
copying, format transformation, etc). Although we think CXL is
a promising technology, we still need to understand the cost of
additional networking it requires [16] and quantify the complexity
it will bring to the deployment of resources and management.

Another area that needs careful study is the cost to performance
tradeoff of the memory pool implementation. In Figure 4, the mem-
ory pool can be made up of one or more servers, depending on the
performance and costs needs. More servers will increase the cost
of the pool but will also increase the memory aggregate memory
bandwidth the pool can support.

5 CONCLUSION
This paper is the result of discussions during Dagstuhl Seminar
24162: Hardware Support for Cloud Database Systems in the Post-
Moore’s Law Era 7. We present and discuss the vision of memory-
centric computing specifically for databases.

Memory-centric computing aims to introduce a new system de-
sign philosophy that treats memory as the most critical resource.
It aims to address the effect of this new Memory Wall. There are
multiple ways to make systems memory-centric. In this paper we
discuss memory pooling as a means of memory disaggregation and
memory sharing. New technologies like CXL and optical networks
can enable efficient implementations of a memory-centric system.
Nevertheless, we argue that the move from a processor-centric
model to a memory-centric model represents a logical shift that
can be realized by reorganizing existing commodity computer com-
ponents. We plan to continue the exploration of the opportunities
and implications of a memory-centric design for databases.

6 ACKNOWLEDGEMENTS
We are thankful to the organizers and attendees of the Dagstuhl
Seminar 24162, which inspired this work. We also thank Prof. Nikos
Hardavellas (Northwestern University) for providing valuable feed-
back.

REFERENCES
[1] 2017. Historical price of computer memory and storage. https://aiimpacts.org/

wikipedia-history-of-gflops-costs/.

7https://www.dagstuhl.de/de/seminars/seminar-calendar/seminar-details/24162

[2] 2020. The Next Platform. CXL And Gen-Z Iron Out A Coherent Interconnect
Strategy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-
a-coherent-interconnect-strategy/.

[3] 2023. Historical price of computer memory and storage. https://ourworldindata.
org/grapher/historical-cost-of-computer-memory-and-storage.

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. 1999.
DBMSs on a Modern Processor: Where Does Time Go?. In Proceedings of the 25th
International Conference on Very Large Data Bases (VLDB ’99). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 266–277.

[5] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
168–180. https://doi.org/10.1145/3448016.3452831

[6] Trishul Chilimbi, James Larus, and Mark Hill. 1998. Improving pointer-based
codes through cache-conscious data placement. Technical Report. University of
Wisconsin-Madison Department of Computer Sciences.

[7] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi Xu,
Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, et al. 2023.
Towards an adaptable systems architecture for memory tiering at warehouse-
scale. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. 727–741.

[8] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[9] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, et al. 2023.
Tpu v4: An optically reconfigurable supercomputer for machine learning with
hardware support for embeddings. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–14.

[10] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/
3579371.3589350

[11] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-scale
computer. In Proceedings of the 42nd annual international symposium on computer
architecture. 158–169.

[12] Kimberly Keeton. 2015. The Machine: An Architecture for Memory-centric
Computing. In Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS 2015, Portland, OR, USA, June 16,
2015, Torsten Hoefler and Kamil Iskra (Eds.). ACM, 1:1. https://doi.org/10.1145/
2768405.2768406

[13] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[14] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668. https://doi.org/10.1007/S00778-017-0480-7

[15] Alberto Lerner and Gustavo Alonso. 2024. CXL and the Return of Scale-Up
Database Engines. arXiv preprint arXiv:2401.01150 (2024).

[16] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Memory Pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Cambridge,
MA, USA) (HotNets ’23). Association for Computing Machinery, New York, NY,
USA, 18–24. https://doi.org/10.1145/3626111.3628195

[17] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. 2016. Accel-
erating Relational Databases by Leveraging Remote Memory and RDMA. In
Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma
Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 355–370. https:
//doi.org/10.1145/2882903.2882949

[18] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-
Based Memory Pooling Systems for Cloud Platforms. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 574–587.
https://doi.org/10.1145/3575693.3578835

[19] Jie Liu, Xi Wang, Jianbo Wu, Shuangyan Yang, Jie Ren, Bhanu Shankar, and
Dong Li. 2024. Exploring and Evaluating Real-world CXL: Use Cases and System
Adoption. arXiv preprint arXiv:2405.14209 (2024).

[20] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen,Mosharaf Chowdhury, Shobhit Kanaujia, and

https://aiimpacts.org/wikipedia-history-of-gflops-costs/
https://aiimpacts.org/wikipedia-history-of-gflops-costs/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-coherent-interconnect-strategy/
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/2768405.2768406
https://doi.org/10.1145/2768405.2768406
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/S00778-017-0480-7
https://doi.org/10.1145/3626111.3628195
https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/3575693.3578835

Databases in the Era of Memory-Centric Computing CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

Prakash Chauhan. 2023. Tpp: Transparent page placement for cxl-enabled tiered-
memory. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. 742–755.

[21] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava
Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: a decade of interactive
SQL analysis at web scale. Proc. VLDB Endow. 13, 12 (aug 2020), 3461–3472.
https://doi.org/10.14778/3415478.3415568

[22] Microsoft. 2024. Azure Maia for the era of AI: From silicon to software to
systems. https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-
from-silicon-to-software-to-systems/.

[23] Jun Rao and Kenneth A. Ross. 2000. Making B+- trees cache conscious in main
memory. SIGMOD Rec. 29, 2 (may 2000), 475–486. https://doi.org/10.1145/335191.
335449

[24] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for Relational Query Processing. In Proceedings of the 20th Inter-
national Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 510–521.

[25] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho

Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada)
(MICRO ’23). Association for ComputingMachinery, New York, NY, USA, 105–121.
https://doi.org/10.1145/3613424.3614256

[26] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, et al. 2024. Exploring Per-
formance and Cost Optimization with ASIC-Based CXL Memory. In Proceedings
of the Nineteenth European Conference on Computer Systems. 818–833.

[27] Zixuan Wang, Suyash Mahar, Luyi Li, Jangseon Park, Jinpyo Kim, Theodore
Michailidis, Yue Pan, Tajana Rosing, Dean Tullsen, Steven Swanson,
Kyung Chang Ryoo, Sungjoo Park, and Jishen Zhao. 2024. The Hitchhiker’s
Guide to Programming and Optimizing CXL-Based Heterogeneous Systems.
arXiv:2411.02814 [cs.PF] https://arxiv.org/abs/2411.02814

[28] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News 23, 1 (mar 1995), 20–24. https:
//doi.org/10.1145/216585.216588

[29] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu. 2021. Octo-
pus+: An RDMA-Enabled Distributed Persistent Memory File System. ACM Trans.
Storage 17, 3, Article 19 (Aug. 2021), 25 pages. https://doi.org/10.1145/3448418

https://doi.org/10.14778/3415478.3415568
https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-from-silicon-to-software-to-systems/
https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-from-silicon-to-software-to-systems/
https://doi.org/10.1145/335191.335449
https://doi.org/10.1145/335191.335449
https://doi.org/10.1145/3613424.3614256
https://arxiv.org/abs/2411.02814
https://arxiv.org/abs/2411.02814
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/3448418

	Abstract
	1 Introduction
	2 Technological Trends
	2.1 The New Memory Wall

	3 A Memory-Centric Architecture for Databases
	3.1 Memory Pooling
	3.2 Databases and Memory Pooling
	3.3 Cost of Data Movement

	4 Example Use-Case: Distributed Join
	4.1 Join using the Processor-Centric setup
	4.2 Join using the Memory-Centric setup
	4.3 Memory Usage Reduction
	4.4 Discussion

	5 Conclusion
	6 Acknowledgements
	References

