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ABSTRACT
Exploiting parallelism is the name of the game for executing an-
alytical queries with low latency in in-memory database engines.
Most prominently, modern general-purpose CPUs, which continue
to dominate the area of computing units, offer high-computational
power through two data-oriented parallel paradigms: MIMD and
SIMD. Unfortunately, as both parallel paradigms exhibit different
programming models and memory access patterns, exploiting both
in a combined fashion is challenging. However, recent hardware
advances for SIMD on CPUs have relaxed the restrictions on SIMD-
friendly memory access patterns. The availability and performance
of alternative access patterns has improved significantly compared
to the state-of-the-art of a pure linear access pattern. As we will
demonstrate in this paper, these advancements pave the way for
a unified parallelization approach that harnesses both MIMD and
SIMD in a combined fashion, offering a novel and promising way
for an efficient analytical query processing.

1 INTRODUCTION
Processing of complex analytical queries with low latency and
high throughput on large amounts of data is a major challenge
in our data-driven world [31]. To master this challenge, database
engines constantly adapt to novel hardware features on a tech-
nical level [3, 4, 7, 9, 15, 18, 21, 32]. In the last two decades, we
have seen numerous hardware advances, in particular with re-
spect to main memory, computing units, and networks [6, 25, 29].
For example, the capacity of main memory has dramatically in-
creased allowing to keep the full (transactional) database in main
memory [10]. Also, novel variants such as non-volatile or high-
bandwidth main memory have been developed with an impact,
e.g., on data structure design [21], operator implementation [24],
or recovery mechanisms [2]. In the area of computing units, the
core count increased and internal techniques like advanced instruc-
tion set extensions, pre-fetching, or branch-prediction improved
within modern general-purpose CPUs [1, 12, 19]. Furthermore, al-
ternative computing units like GPUs, FPGAs, or any combination
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of them provide a wide field of opportunities to adapt database
engines [7, 14, 15, 23]. Relevant advances have also taken place
in the area of networks so that modern networks are larger, more
efficient, and offer more services [17, 28].

Even with the continuous evolution of computing units, the en-
during dominance of general-purpose CPUs in this field remains a
significant fact. In particular, modern general-purpose CPUs offer
high-computational power through three different sources of paral-
lelism [26]: thread-level parallelism (based on the Multiple Instruction
Multiple Data – MIMD – parallel paradigm), data-level parallelism
(based on the Single Instruction Multiple Data – SIMD – parallel par-
adigm), and instruction-level parallelism. State-of-the-art analytical
database engines leverage all three sources of parallelism in a more
or less common way to reduce query latency:

Thread-level parallelism: is usually applied on the level of in-
dividual query operators or pipelines (intra-operator/intra-
pipeline parallelism) by distributing the input data equally
among threads (physical cores) [16, 22]. That means the same
operator/pipeline is simultaneously executed on multiple
(logically) disjoint data partitions.

Data-level parallelism: is achieved by explicitly using SIMD in-
structions within query operators/pipelines. A single SIMD
instruction processes multiple data elements simultaneously,
increasing the single-thread performance. The SIMD instruc-
tions are usually applied to contiguous data elements in main
memory [12, 26].

Instruction-level parallelism: is achieved by applying the same
operation to a vector of elements [5] or by compiling opera-
tions into intertwined pipeline machine code [20].

While instruction-level parallelism is about executing several in-
structions in sequence on loaded or cached data, thread-level and
data-level parallelism are used to process data in parallel. Moreover,
thread-level and data-level parallelism complement each other and
should usually be combined to exploit the full potential of mod-
ern CPUs. Nevertheless, thread-level often has a higher priority
than data-level parallelism since the main memory bandwidth is al-
ready fully saturated with the use of thread-level parallelism. This
aspect is clearly shown in the diagram in Figure 1a illustrating
the measured memory throughput for calculating an aggregating
sum of a large array of integer values with increasing thread-level
parallelism (increasing number of physical cores) as well as with
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Figure 1: Comparing single-threaded throughput for aggregating sum with data in different main memory technologies.

(+SIMD) and without (+Scalar) using data-level parallelism. As de-
picted, the use of data-level parallelism only reduces the number of
required threads to achieve the maximum throughput of roughly
60GiB/s. The hardware foundation for these experiments was a
recent Intel Xeon Max 9648 (Sapphire Rapids architecture) with 48
physical cores on a socket. This hardware is also the basis for all
further experimental results in the remainder of the paper. More-
over, the socket was divided into four logical NUMA nodes using
Sub-NUMA clustering-4 (SNC4). Every resulting NUMA region
with 64GB DDR5 (regular DRAM) and 16GB HBM2 memory (high-
bandwidth memory) is associated with 12 physical cores. Unless
explicitly stated otherwise, we use Intel AVX512 as the SIMD in-
struction set extension for our SIMD experiments.

Since our hardware foundation does not only have regular DRAM,
we repeated the same experiment with the whole data in HBM2
as well. Interestingly, when executing the same operation on data
in HBM (cf. Figure 1b), exploiting data-level parallelism becomes
mandatory to utilize the interconnect fully. This experimental re-
sult clearly shows that the joint utilization of MIMD and SIMD is
gaining in importance with developments such as of HBM. How-
ever, due to diverging granularities of parallelism and scopes of
data accesses, the state-of-the-art interplay of MIMD and SIMD
execution paradigms requires different approaches, which creates
algorithmic overhead when combining them. Therefore, we argue
that it is time to fundamentally rethink the MIMD-SIMD interplay
on modern general-purpose CPUs through a unified memory access
approach.

Our Contribution and Outline
On the thread-level scope, data is divided into a set of coarse-grained
logical partitions, which are processed by individual threads. On
the data-level scope, the coarse-grained partitions are further sub-
divided into fine-grained logical partitions, which are processed
by individual SIMD register lanes. This paper proposes a novel
concept to coalesce thread-level and data-level parallelism for effi-
cient query processing in in-memory database engines. With our
approach it is possible to exploit both levels of parallelism with
the same access patterns and thus alleviates the combination of
both. Additionally, our unified approach offers a number of advan-
tages, e.g., the performance is similar to state-of-the-art and even
outperforms it in some cases. To support our claims, we make the
following contributions in this paper:

• In Section 2, we revisit the state-of-the-art for thread-level
and data-level parallelism for executing analytical queries
with low latency in in-memory database engines in more
detail.

• Based on these preliminary remarks, Section 3 presents a
novel, data-partitioned SIMD processing concept by intro-
ducing a suitable data access pattern. This novel approach
transfers the established thread-level data-partitioned con-
cept to SIMD.

• In the following Sections 4 and 5, we apply the unified par-
allelization strategy for the processing of data structured
according to columnar and n-ary storage model and show
the respective advantages by comparing them with the state-
of-the-art.

Finally, we close the paper with a brief summary and an outlook
on future research in Section 6.

2 PRELIMINARIES
As already mentioned, parallelism is the name of the game for an
efficient processing of analytical queries on general-purpose CPUs.
According to Flynn’s classification [11], modern CPUs offer the
following hardware parallelization opportunities: (i)Multiple In-
struction Multiple Data (MIMD) and (ii) Single Instruction
Multiple Data (SIMD). In the following, we will discuss the state-
of-the-art approaches for both. As a representative running an-
alytical example, we compute the aggregating sum over a large
column or array of integer data (contiguous memory area). A scalar
implementation of this aggregating sum sequentially iterates over
the array and adds up the values one after the other.

2.1 MIMD
CPUs offering MIMD have a number of processing elements (PE)
– cores – that operate asynchronously and independently. That
means individual PEs may be executing different instructions on
different pieces of data at any time. This opportunity – also called
thread-level parallelism – is a heavily used optimization technique
in columnar database engines [16, 27, 30]. In detail, MIMD is used
to realize a data-partitioned intra-operator parallelism. Here, all data
objects, e.g., columns, are logically partitioned and partitions are
exclusively accessed by the assigned worker thread that is pinned to
a specific PE. With this so-called data-oriented architecture [16, 22],
the same operator or query pipeline is logically simultaneously
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1 uint64_t const * data; /* previously initialized */

2 uint64_t sum = 0;

3 #pragma omp parallel for num_threads(T_CNT) reduction(+:sum)

4 for (size_t i = 0; i < total_elements; ++i) {

5 const auto val = data[i];

6 sum += val;

7 }

Listing 1: Basic OpenMP aggregation.

executed on disjoint data partitions. Data partitions are usually
equally sized, so every PE processes the same amount of data, thus
minimizing overall runtime.

Listing 1 illustrates our running example implemented as a par-
titionable loop. The #pragma omp parallel instructs the compiler to
partition the following for loop into T_CNT partitions (if specified)
and consequently assigns a set of loop iterations to a distinct thread.
Iterations can be assigned en bloc or interleaved based on a static or
dynamic OpenMP scheduler. However, a specific iteration is only
processed by a single thread. To avoid data loss or even a segmenta-
tion fault, the global sum variable must not be written by multiple
threads simultaneously Therefore, it could be either made atomic
or a thread-local partial sum is calculated, e.g., through the custom
reduction(+:sum) operation, which only adds up the partial sums
at the end of each block.

Therefore, this approach naturally extends the scalar process-
ing to a thread-level parallelism and is widely used as a standard.
Especially for query operators with a sequential memory access
pattern, no sophisticated control mechanisms are required, as there
are usually no data or control flow dependencies between the pro-
cessed partitions [16, 27, 30]. But it can also be used to realize more
complex operators [27]. We can conclude that MIMD is used to
realize a logically synchronous – but physically asynchronous – and
independent processing of logically partitioned data for an efficient
analytical query processing.

2.2 SIMD
Contrary to MIMD, SIMD describes computing units with multiple
PEs – SIMD register lanes – that perform the same instruction on
multiple data elements parallel in lock-step. That means SIMD ex-
ploits data-level parallelism, but not concurrency: there are parallel
computations, but each PE performs the exact same instruction on
different pieces of data at any time. On general-purpose CPUs, each
core offers SIMD capabilities through specific SIMD instruction set
extensions with varying capabilities (e.g., Intel SSE, AVX2, AVX512,
or ARM Neon/SVE). From an abstract point of view, the state-of-
the-art SIMD processing for an efficient analytical query processing
resembles its scalar counterpart [8, 26, 27]. Data has to be loaded
sequentially into a (SIMD-)register, which can then be further pro-
cessed through explicit intrinsics rather than higher-level abstract
operators such as + or -. Lines 7 and 8 of Listing 2 show the exact
translation of the scalar variant via AVX512 intrinsics. Based on the
SIMD properties and their standard interpretation, we can conclude
that SIMD is used to realize a synchronous and dependent process-
ing of consecutive data elements for efficient analytical processing.
This is an entirely different approach compared to the thread-level
parallelism discussed above.

1 #pragma omp declare reduction(simd_add :...)

2 uint64_t const * data; /* previously initialized */

3 uint64_t sum = 0;

4 __m512i vec_sum = _mm512_set1_epi64(0);

5 #pragma omp parallel for num_threads(T_CNT) reduction(simd_add : vec_sum)

6 for (size_t i = 0; i < total_elements / VEC_SZ; ++i) {

7 const auto vals = _mm512_loadu_epi64(data + (i * VEC_CNT));

8 vec_sum = _mm512_add_epi64(vec_sum, vals);

9 }

Listing 2: Basic OpenMP aggregation with explicit SIMD.

2.3 State-of-the-art MIMD-SIMD interplay
Nevertheless, Listing 2 also shows that linear SIMD processing
can be easily enriched with OpenMP to combine both approaches,
i.e., thread-level parallelism and data-level parallelism happen in the
same operator. On the outer scope, data is divided into a set of logical
partitions, which are processed by an individual thread. However,
the SIMD approach processes multiple elements simultaneously
in the inner scope per partition. This amalgamation employs two
orthogonal algorithmic approaches to realize an intra-operator
parallelism, although both want to execute the same operator code
for different data elements.

The difference can be explained in more detail from the data
access perspective, in this case, from the underlying array of our
running example. While non-contiguous array elements are ac-
cessed across all thread-level PEs, only contiguous array elements
are accessed by data-level PEs. Moreover, the non-contiguous ac-
cess is logically equivalent to a strided access, where array elements
are accessed equidistantly because the partitions are equally sized.
Therefore, the stride distance (or stride size) equals the partition size.
However, this strided access is implicitly executed by the thread-
level parallelism, as each thread is assigned its own start position
in the array and runs through the array from this start position to
the end position of the respective data partition.

This interleaving of strided and linear access naturally makes
implementing parallel query operatorsmore difficult, as different ap-
proaches have to be taken into account. To overcome that, we argue
that the strided access can also be applied to data-level parallelism
(SIMD), which thus allows for a unified parallelization concept as
follows: On the outer thread-level scope, data is divided into a set
of coarse-grained logical partitions, which are processed by an indi-
vidual thread. On the inner data-level scope, coarse-grained logical
partitions are further subdivided into fine-grained partitions, which
are processed by individual SIMD register lanes. To supplement
our claim, we developed a set of carefully designed microbench-
marks, which are explained in the remainder of the paper. Our
microbenchmarks tackle different corner cases for combinations of
data access patterns, applied query operators, and the underlying
storage format.

3 DATA-PARTITIONED SIMD PROCESSING
SIMD extensions of modern general-purpose CPUs consist of two
main building blocks: (i) SIMD registers, which are larger than
traditional scalar registers, and (ii) SIMD instructions working on
those SIMD registers. Contrary to scalar processing, SIMD registers
must be explicitly populated with data elements frommain memory
using a load or a gather instruction. On the one hand, load is
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Figure 2: Comparing single-threaded throughput for aggregating sum with all data in DDR5 main memory and with different
access patterns: scalar, linear, and data-partitioned SIMD.
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Figure 3: Comparing single-threaded throughput for aggregating sum with all data in HBMmain memory and with different
access patterns: scalar, linear, and data-partitioned SIMD.

applied, whenever a linear data access pattern is conducted as
done in the state-of-the-art for analytical query processing using
SIMD capabilities [8, 26, 27]. Linear implies that the accessed data
elements are organized as a contiguous sequence like an array. On
the other hand, gather is used when a random access pattern – data
elements from non-consecutive memory locations – is required.
The general guideline has been that gather should be avoided as
far as possible due to the considerable performance loss.

In [13], we already have shown that the gather instruction can
achieve the same performance as the load instruction with a so-
called block-strided access pattern. A memory access pattern is called
strided when memory fields accessed are equally distant and the
distance is usually denoted as stride size. The particular property
of our proposed block-strided access pattern is that the input data,
e.g., an array, is logically divided into blocks. In the simplest case,
each block consists of 𝑘 consecutive pages, where 𝑘 is the number
of SIMD lanes of the underlying SIMD register. The blocks are
successively processed and for each block, the SIMD processing
works as follows: Each SIMD lane is assigned a page from the block
and each lane is further responsible for processing the assigned
page. To achieve that, a strided access with the page size as the
stride size is performed on the block using the gather instruction.

However, the SIMD processing with this block-strided access
pattern is quite complicated and requires a two-stage partitioning
into blocks as well as pages. To overcome that shortcoming, we

investigated the conducted simple partitioning approach of thread-
level parallelism for SIMD processing. In this case, data is logically
divided into 𝑘 equally-sized partitions in a straightforward way
and partitions are exclusively pinned to a specific SIMD lane. To
load the corresponding data elements of the 𝑘 data partitions into
the 𝑘 lanes of a SIMD register, we issue a gather instruction con-
ducting a strided access, whereby the stride size now equals the
partition size. Then, the same processing functionality through a
SIMD instruction is simultaneously executed on the loaded data
elements. Subsequently, the consecutive data elements within the
𝑘 partitions are loaded until all data elements of the partitions are
processed.

In the case of our aggregating sum, each SIMD lane computes a
partial sum per data partition like each thread but synchronously.
The advantage now is that we apply the same instruction indepen-
dently for each lane and can, therefore, rely on element-wise SIMD
instructions. In the final step, we have to add up the individual par-
tial sums, which we can do through the use of horizontal addition.
Figure 2 compares the single-threaded throughput results for the
aggregating sum operation with all data in DDR5 main memory on
our hardware system using (i) purely scalar processing (Scalar), (ii)
AVX-512 SIMD processing with a linear access pattern (SIMD Lin-
ear), and (iii) AVX-512 SIMD processing with the described simple
data-partitioned approach (SIMD Gather). In the experiments, we
varied the array size with randomly generated uint64_t elements
in the range from 0.02 to 500 MiB as depicted on the x-axes of both
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Figure 4: Throughput for OpenMP with a linear and data-partitioned aggregating sum on SIMD with different memory types.

diagrams in Figure 2. As we can see, the linear SIMD variant offers
significant throughput advantages if the data fits into the L2 cache
(2 MiB on our CPU). However, if the total amount of data exceeds
the size of the L3 cache, then our proposed data-partitioned SIMD
approach outperforms the linear variant. This effect also applies
for AVX2 with 32-bit and 64-bit data types but not for AXV512
with 32-bit data types, which is in line with the results presented
in [13]. In addition, we repeated the same experiments with all
data in HBM2 main memory on our hardware system and Figure 3
shows the measured throughput values. The results confirm the
DRAM findings for HBM as well.

4 COLUMNAR STORAGE MODEL
Traditionally, SIMD is employed in analytical database engines
whenever a columnar storage or decomposition storage model
(DSM) is implemented [8, 26, 27]. Two reasons are decisive for this:
(i) only the columns that are relevant to the query need to be read,
and (ii) the values per column are stored contiguously and can
therefore be processed very well with a linear access pattern. In
the previous section, we showed that our data-partitioned SIMD
processing is on-par or even better than a linear SIMD processing
with the limitation to a single-threaded and single-column environ-
ment. This section transfers this finding in the multithreaded and
the multiple-column environment.

Multi-threaded Environment: Listing 3 and Figure 5 show
our proposed unified parallelization concept for thread-level and
data-level parallelism illustrated on our aggregating sum example.
In the illustration of Figure 5, each of the four threads is assigned

1 #pragma omp parallel num_threads(T_CNT) reduction(+:sum)

2 {

3 uint64_t sum = 0;

4 const size_t offset = elements_per_thread / VEC_SZ;

5 const __m512i idx = _mm512_setr_epi64(

6 0, 1 * offset, 2 * offset, ..., 7 * offset);

7 for (size_t i = 0; i < offset; ++i) {

8 const auto vals = _mm512_i64gather_epi64(

9 idx,

10 data + (omp_get_thread_num() * elements_per_thread) + i,

11 sizeof(uint64_t));

12 sum += _mm512_reduce_add_epi64(vals);

13 }

14 }

Listing 3: Hierarchical partitoned aggregating sum using
OpenMP and strided access.

to a contiguous, coarse-grained and equally-sized partition of the
data column. Within each logical partition, we subdivide again into
four smaller partitions, whereby each equally-sized fine-grained
partition is now processed by one of the register lanes in parallel.
To apply the same partitioning scheme, the MIMD stride size equals
one-fourth of the data size, whereas the SIMD stride size equals
one-fourth of the coarse-grained partition size. Hence, the access
pattern for both the global and local computation follows the same
pattern. The corresponding code snippet is depicted in Listing 3.

Now, Figure 4 compares the achieved performance results for
the aggregating sum of the state-of-the-art OpenMP approach from
Listing 2 to our proposed unified data-partitioned approach as out-
lined in Listing 3. We varied the explicit T_CNT parameter from 1 to
12, since our hardware exhausts the memory bus with 12 concurrent
threads in a memory-bound scenario. Further, we tested different
data placements for both DRAM and HBM. When the data was
placed in DRAM, cf. Figure 4a, we can observe a plateau forming
at around 63 GiB/s, for both SIMD-linear and SIMD-Gather. The
right-hand side of this figure shows the results of the same experi-
ment but with data placed in HBM. However, no such plateau can
be observed for either variant, leaving a throughput gap between
the two of about 40 GiB/s. We used the code from the mentioned
listings for this experiment and fixed the coarse-grained partition
size per thread to 256 MiB, filled with 64-bit unsigned integer val-
ues. Consequently, when increasing T_CNT, the total amount of
data increases, but the coarse- and fine-grained partition size and,
hence, both the outer and inner stride size stays constant. We used
AVX512 for SIMD processing, which provides 8 SIMD lanes for 64-
bit values. The general finding of this experiment emphasizes our
claim that, at least for DRAM, our proposed data-partitioned SIMD
processing can be applied to the inner loop part while maintaining
a comparable throughput.

Multiple Columns: To analyze the effect of the slightly lower
throughput compared to the microbenchmark results from Sec-
tion 3, we take a step back to the single-threaded execution but

Figure 5: Unified data access pattern for a combined outer
MIMD and inner SIMD aggregating sum.
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Figure 6: Filter-aggregating sum comparison for linear load and gather, based on a DSM storage layout in DRAM.
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Figure 7: Filter-aggregating sum comparison for linear load and gather, based on a DSM storage layout in HBM.

with multiple columns now. We expanded our aggregating sum into
a filter-aggregating sum scenario to do this. This scenario works
as follows: Assuming we have 𝑋 columns, then a filter condition
is checked on each of the 𝑋 − 1 columns. Only the last attribute is
used for the aggregation if the tuple qualifies, and we observe that
the selectivity of the filter has no visible impact since we have to
read all the data in any case. In Figure 6a, we have chosen a column
size of 128 MiB and used this size for all columns. Since we consider
AVX512 and 64-bit integer data, our fine-grained partitions have
a size of 16 MiB in this case. This size is also our stride size for
the necessary strided access. Moreover, each fine-grained partition
occupies 4096 pages in this case since our system uses a page size of
4 KiB. This results in a setting where the fine-grained partitions are
page-aligned, and therefore, the strided access is also page-aligned.
The strided access now loads the following data: The first gather
instruction loads the elements at position 0 of 8 different pages,
whereby the page distance between two elements is 4096 pages
(stride size of 16 MiB). The subsequent gather instructions load
the following elements with ascending positions. As illustrated in
Figure 6a, the achieved throughput of the data-partitioned SIMD
processing (DSM SIMD Gather) is slightly slower compared to lin-
ear SIMD processing (DSM SIMD). This is also consistent with the
results as presented in [13].

Based on this finding, however, the question arises as to why the
microbenchmark results from Section 3 have shown a performance
benefit. The reason for this can only be the page alignment. To
investigate that, we reduced the total amount of data by a small
fraction in a second experiment, i.e., to 127.98 MiB per column,

which in turn means that not every fine-grained partition starts
on a new page. As visible in Figure 6b, the linear SIMD processing
achieves the same throughput results as for the column size of 128
MiB (cf. Figure 6a). However, now our data-partitioned SIMD pro-
cessing clearly outperforms the linear variant. The main takeaway
from this experiment is, that we achieve higher throughput values
compared to the state-of-the-art when the resulting fine-grained
partitions are not perfectly page-aligned. We suspect the hash func-
tion of the cache system to play a crucial role in this effect since it
might hash accessed data elements to conflicting cache positions.

Figure 7 recreates the experiment from Figure 6, but places the
data in HBM instead of DRAM. We can observe that the same
effects are visible for both memory technologies, but there is more
variance whenworkingwith HBM.We can conclude that the strided
gather access can be employed to achieve comparable or higher
performance, but (i) the actual gain is dependent on where the data
is actually stored and (ii) the data partition size is important, i.e., if
data access is page aligned or not.

5 N-ARY STORAGE MODEL
While the application of SIMD in a DSM environment is considered
state-of-the-art, quite the opposite is true for the N-ary Storage
Model (NSM), also known as row-store [33]. Generally, using SIMD
in an NSM environment is currently ill-advised since the linearly
loaded elements contain values from different columns, which (i)
do not necessarily contribute to the current operator and (ii) may
thus incur an unnecessary burden on the memory system since
their values should just be disregarded and discarded.
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Figure 8: Filter-aggregating sum comparison for linear load and gather, based on an NSM storage layout in DRAM.
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Figure 9: Filter-aggregating sum comparison for linear load and gather, based on an NSM storage layout in HBM.

Since we can efficiently load data from different locations with
our proposed data-partitioned strided access, this should actually
reduce the challenge to some degree. To investigate that aspect in
more detail, we executed the same benchmark from Figure 6, but
with an NSM storage model. For NSM, we created a large array
for each column count and saved the tuples consecutively with the
attribute values for each tuple one after the other (array-of-struct).
According to our data-partitioned SIMD processing concept, we
divide the large array into eight equally-size partitions for AVX512
and 64-bit integer values. Then, processing can take place column-
wise by loading 8 column values from 8 different tuples. Figure 8a
shows the achieved throughput results for the data-partitioned NSM
SIMD processing in comparison to the state-of-the-art DSM SIMD
processing (linear variant) if we partition the NSM data as-is. This,
of course, leads to the page-alignment problem as discussed above.
However, this can be addressed by choosing a fine-grained partition
size that does not lead to this problem, as shown in Figure 8b. For
this diagram, we tried out different fine-grained partition sizes and
selected the best one. The remaining tuples that were not assigned
to a partition were subsequently processed as scalar remainder. We
repeated the same experiment for HBM and presented the results in
Figure 9a. It shows, that the same page-alignment problem occurs,
which in this case leads to a completely worse performance of our
NSM concept compared to the state-of-the-art. When we select the
same partition size as previously, we can improve the throughput
again, as seen in Figure 9a. The main takeaway from these experi-
ments is, that we can apply our data-partitioned SIMD processing
for NSM as well and achieve similar throughput results as for DSM.
Moreover, we can optimize our data-partitioned SIMD processing

by carefully selecting an appropriate fine-grained partition size,
which works both for DRAM and HBM.

We further tested the applicability of our approach in an MIMD
environment. Hence, we assign each thread the same amount of data
to mimic the algorithmic behavior as closely as possible and keep
the gathered strides equal to the scalar case. For DRAM, the threads
would each process 128 MiB per column. However, using the same
column size in HBM would only permit 5 columns, which is an
amount that is too small to point to a trending behavior. Therefore,
we reduced the data per column to 32 MiB, which allowed us to
process up to 20 columns with 12 concurrent threads.

Figure 10a shows that NSM SIMD Gather is around 3 GiB/s
slower compared to DSM SIMD, 59.5 GiB/s to 62 GiB/s. When
adjusting the partition size, this throughput gap gets closed (cf.
Figure 10b). For HBM this gap is much more noticeable, roughly 50
GiB/s, and again, nearly disappears when we optimize the partition
size, ending up in a difference of around 6 GiB/s (cf. Figure 10c and
Figure 10d). The main takeaway from this experiment is that the
previously fine-grained partition size, not only optimizes single
threaded performance but also multithreaded performance. Overall,
our data-partitioned SIMD processing is competitive in DRAM as
is and with a carefully selected partition size even in HBM.

A limiting factor of the NSM SIMD Gather approach is that
columns are unused during query processing. With an NSM ap-
proach, every column is loaded whether it contributes to the query
or not, thus wasting precious bandwidth. This effect is illustrated in
Figure 11, which shows that the throughput drops for NSM SIMD
Gather with a decreasing percentage of attributes used. Expectedly,
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Figure 10: Filter-aggregating sum comparison for linear load and gather, 12 Threads.

both DSM experiments can maintain their respective bandwidth
since only the necessary data is read.

However, processing larger vectors, either in NSMorDSM layout,
is a contemporary use case, e.g., in data clustering, Large Language
Models (LLMs) or other AI related research. To validate our claim,
that using our unified parallelization concept (MIMD + SIMD) can
be beneficial, we chose the calculation of the Manhattan distance,
which is commonly used as a distance metric for data with high di-
mensionality. Figure 12 compares the calculation of the Manhattan
distance using linear SIMD based on the DSM layout from Section 4
with a data-partitioned SIMD implementation which is based on
an NSM layout as shown in Section 5. The experiment is set in a
multithreaded environment with 12 parallel threads to investigate
the MIMD-SIMD interplay. We deliberately chose the seemingly
best-case state-of-the-art, i.e., linear SIMD on columns, to compare
against the unconventional gather on a row store with an ideal
partition size. For this experiment, we again set the data size per
column and per thread to 128 MiB for DRAM (Figure 12a) and 32
MiB for HBM respectively (Figure 12b). Our observation can be
explained as follows. Consider a reference vector −→𝑣𝑟 = {𝑥,𝑦, 𝑧} and
the three respective columns

−→
𝑋 ,

−→
𝑌 ,

−→
𝑍 containing the dimensional

values for multiple vectors
−→
𝑉 . In the DSM format, we calculate

the Manhattan distance of −→𝑣𝑟 to all vectors
−→
𝑉 using the following

scheme:

(0) Initialize a temporary buffer 𝑏 that fits into L1d with 0, broad-
cast 𝑥 from −→𝑣𝑟 into a SIMD register −−−→𝑟𝑑𝑖𝑚 .
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Figure 11: Throughput for varying percent of attributes used.

(1) Load a SIMD register from a dimension-column, e.g., −→𝑣𝑥 =

𝑋 [𝑖 : 𝑖+𝑉𝐸𝐶_𝑆𝑍 ] and load the corresponding elements from
𝑏 into another register −→𝑣𝑏 .

(2) Calculate the absolute difference between −−−→𝑟𝑑𝑖𝑚 and −→𝑣𝑥 and
add it to −→𝑣𝑏 .

(3) Store −→𝑣𝑏 back into the buffer 𝑏, overwriting the previous
values.

(4) If the buffer is full, broadcast the next dimension from −→𝑣𝑥 to
−−−→𝑟𝑑𝑖𝑚 and start over from step (1) with the next column.

(5) When all columns are calculated, determine the minimum
value within 𝑏 and start over from step (0) for the remaining
elements in the columns.

In contrast, when using the NSM layout and strided gather access,
the algorithm works as follows:

(0) Initialize a SIMD register −−→𝑣𝑟𝑒𝑠 with 0, set 𝑖 to 0 and broadcast
𝑥 into a SIMD register −−−→𝑟𝑑𝑖𝑚 .

(1) Gather unprocessed elements from a column, e.g., −→𝑣𝑥 =

{𝑋 [𝑖], 𝑋 [𝑖 + 𝑁 ], 𝑋 [𝑖 + 2𝑁 ], ...}.
(2) Calculate the absolute difference between −→𝑣𝑥 and −−−→𝑣𝑑𝑖𝑚 and

add it to −−→𝑣𝑟𝑒𝑠 .
(3) Increment 𝑖 by 1 and start over from (1).

Besides the different access strategies and data layouts, both al-
gorithms vary primarily in how intermediates are treated. While
the DSM variant relies on a temporary buffer, the NSM variant
directly processes the data in registers. As shown in Figure 12a, the
DSM is memory-bound and the temporary buffer does not intro-
duce relevant overhead. We argue that with a relative difference of
approximately 1%, the performance of DSM and NSM is on par. In-
terestingly, NSM, in combination with our novel approach, obtains
up to 10% higher throughput on HBM compared to the DSM variant.
The observable offset is likely to stem from the fact that the DSM
variant incurs two load operations from HBM per iteration, which
suffers from the additional latency of HBM and thus underutilizes
the available memory subsystem.

6 CONCLUSION AND FUTUREWORK
Exploiting parallelism is crucial to achieve low latency for analyti-
cal queries in in-memory database engines. For example, modern
general-purpose CPUs offer high-computational power through
two data-oriented parallel paradigms: MIMD and SIMD. As both



Rethinking MIMD-SIMD Interplay for Analytical Query Processing in In-Memory Database Engines CIDR’25, January 19–22, 2025, Amsterdam, the Netherlands

62.8

62.6

62.4

62.2

62.0

20161284
Vector Size

G
iB

/s

DSM SIMD NSM SIMD Gather

(a) Columns in DRAM with 128 MiB per Column per Thread.

140

132

124

116

21191715131197531
Vector Size

G
iB

/s

DSM SIMD NSM SIMD Gather

(b) Columns in HBM with 32 MiB per Column per Thread.
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tackle different granularities, data has to be partitioned differently
to satisfy their respective requirements, which in turn creates al-
gorithmic overhead when combining them. To overcome that, we
showed that we are able to seamlessly transfer the MIMD parti-
tioning to SIMD in this paper due to the recent advances for SIMD
on CPUs. Moreover, we clearly demonstrated that the resulting
unified parallelism approach offers a number of advantages for
DSM and NSM data layouts, e.g., the performance is similar to the
state-of-the-art and even outperforms it in many cases.

From our perspective, our proposed approach offers interesting
points for future work. On the one hand, the transfer of MIMD
techniques for SIMD should be further investigated. Our approach
can only be seen as an initial attempt showing the potential. On the
other hand, it would of course also be very interesting to investigate
whether the simple OpenMP programming approach for MIMD
can also be transferred to SIMD. This would (i) simplify the SIMD
utilization and (ii) improve the possibilities for autovectorization.
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