
Optimization of Nonrecursive Queries

Ravi Krishnamurthy Haran Boral Carlo Zaniolo

MCC, 9430 Research Blvd, Austin, TX, 78759

Abstract
State-of-the-art optimization approaches for relational
database systems, e.g., those used in systems such as OBE,
SQL/DS, and commercial INGRES. when used for queries in
non-traditional database applications, suffer from two problems.
First, the time complexity of their optimization algorithms, being
combinatoric, is exponential in the number of relations to be
joined in the query. Their cost is therefore prohibitive in situa-
tions such as deductive databases and logic oriented languages
for knowledge bases, where hundreds of joins may be required.
The second problem with the traditional approaches is that, al-
beit effective in their specific domain, it is not clear whether they
can be generalized to different scenarios (e.g. parallel evalua-
tion) since they lack a formal model to define the assumptions
and critical factors on which their valiclity depends. This paper
proposes a solution to these problems by presenting (i) a formal
model and a precise statement of the optimization problem that
delineates the assumptions and limitations of the previous ap-
proaches, and (ii) a quadratic-tinie algorithm th& determines
the optimum join order for acyclic queries. The approach
proposed is robust; in particular, it is shown that it remains
heuristically effective for cyclic queries as well.

1. Introduction:

In traditional database applications, queries requiring
more than 1.0 joins are considered improbable. However,
deductive databases [Kellog 81, Gallaire 841, or logic
based Ian uages for knowledge applications [Ullman 85,
Tsur 85 , typically contain hundreds of rules. Trans- f
lated into relational algebra, these correspond to expres-
sions (similar to database queries) with hundreds (if not
thousands) of joins [Zaniolo 85, Kellog 8.51; these num-
bers underscore the need for efficient optimization algo-
rithm.

Optimization of database queries has been extensively
investigated. Many heuristics have been proposed and
are still being proposed. For instance, pushing selects,
preprocessing relations (e.g. sorting), avoiding duplica-
tion of work due to common subexpressions, composing
a sequence of operations on a single relation into one
operation, etc. are a few that are well known. These
heuristics, though invaluable in the proper context,
rarely take into account the global picture. That is, they

Permission fo copy wifhout fee all or part of this material is
granted provided that the copies are not made or distribufed for
direct commercial adoantage, the VLDB copyright notice and fhe
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
ana!!or special permission from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

do not individually present a framework in which the
choices are made; e.g. in what order the heuristics are to
be used, under what circumstances are they useful, how
are the conflicting heuristics resolved, how to compare
them etc. A method, that is both practical as well as
comprehensive, was proposed in [Sellinger 791 in which
all possible join orders are, in effect, compared to find
the optimal execution. The proposed algorithm is func-
tionally equivalent to an exhaustive search, in which, the
different alternatives are compared for each element of
the search space. In our opinion, an important property
of this approach is that the search space is defined inde-
pendent of the set of heuristics used in the optimization
algorithm. As a consequence, this approach provides a
systematic framework in which the choices for the above
heuristics (and for any more that may be found to be
interesting for optimization) can be made in a uniform
way.

Although this approach has been proven effective in
many existing systems (e.g. SQL/D& Commercial
INGRES, OBE, etc.), there are many questions that are
unanswered. The algorithm ihcludes a multitude of
parameters (e.g. cost functions, approximations, etc.)
whose relevance/effects on the result are very difficult to
comprehend. The ramifications of the assumptions are
not easily isolatable. Further, the combinatoric behavior
of the algorithm is alarming. For ti given query on N
relations, the worst case time complexity of the algo-
rithm is O(N!) (or O(2N) if the space requirement is in-
creased exponentially [Sell 791). This may be acceptable
for less than 10 relations, but to optimize a query with
100 relations this approach is prohibitively expensive.

In this paper we present a model and a formal statement
of the problem of optimization. In so doing, we delineate
the assumptions and ramifications on the results of the
optimizer. The model enables us to isolate the various
parameters and understand their utility in an optimiza-
tion algorithm and further indicate the important areas
of research to be pursued. We import the polynomial
time optimization algorithm for tree queries, proposed
by [Ibaraki 841 for a restricted case of query processing,
to the more general case discussed in this paper. We
also improve this algorithm to present an O(N2) solution,
where N is the number of relations in the query. This,
unlike the exponential algorithm presented in [Sellinger
791, is capable of handling queries with large number of
relations. Finally we extend this algorithm to include
cyclic queries.

Before we discuss the outline of this paper, we would
like to emphasize a practical difficulty in designingiim-
plementing query optimizers. The spectrum of execu-

-128- Kyoto, August, 1986

tions that are possible for a given query is vast and the
worst execution may be many orders of magnitude
worse than a reasonable, (not necessarily the best) ex-
ecution. Further, the input to such optimizers (e.g. es-
timates of the selectivities, cardinalities, etc.) are not
very accurate for reasons of efficient maintenance of
these values. Lastly, even when supplied with accurate
input, the problem of optimization is quite difficult (in
fact known to be NP-hard), so an approximate algo-
rithm may be the only feasible alternative. Therefore, it
is generally accepted by most designers of optimizers,
that while the coal of an ootimizer is to obtain the
“best” execution: it is even more important to avoid the
worst cases. Thus, we propound the following maxim:
For an optimizer, it is more important to avoid the worst ex-
ecutions than to obtain the best execution. The obvious
drawback of this maxim is that it defines what not to do
but fails to state what an ootimizer should do. We shall -r

still seek to obtain the best execution at all times in an
optimizer; but whenever we are not sure of optimality,
we shall at least ensure the avoidance of the worst cases,

In Section 2 we set up the terminology. The model is
described in Section 3. We also define a notion of rooted
join tree for a query, which is used to develop the
strategy. Intuitively, the root is the first relation to be
joined in any resulting execution. In Section 4, we im-
port/improve on the polynomial time algorithm
presented in [Ibaraki 841. First, the algorithm is
presented that optimizes a rooted join tree. Then, all
possible choices for root are investigated to compute the
best,execution for tree queries. The specific assumptions
needed in this section are clearly listed in the beginning
of this section. All of these assumptions are relaxed in
Section 5. One important assumption that is used till
Section 5, is that the database is memory resident - i.e.
there is no paging to disk during the execution. Most
knowledge bases of today satisfy this property and we do
not consider this to be a restrictive assumption. But, as
discussed in Section 5, this method is also applicable to
the case of disk resident databases. Although the con-
tributions of the model are put forth along with the
development of the model, they are not consolidated in
any one section. In conclusion, we briefly summarize
these contributions and propose some interesting direc-
tions for future research.

2. Terminology:

h.t RI, RI, R, be the relations defining the database
DE, and without loss of generality, let us assume that all
of these relations are referenced in a given query Q. A
query Q = (QL,TL) on the database DB, is a non-
procedural request for extracting information from the
DB:

QPB) = ‘T~~[C‘Q-(R, XR,XR,X . . . XR”)]

where u, IT, and x are selection, projection and cross
product operators respectively; QL is the conjunct of
predicates that include both join and selection predicates
(i.e. R,.a = R,.b and R.,. a = constant), and TL is the list
of attributes required rn the answer. Certain features of
relational languages like aggregation, set difference, etc.
are omitted. This is traditionally justified on the basis
that the join operation is the most expensive operation

[Sellinger 791. As a matter of fact we go one step further
and omit the selection predicates which are not joins
(i.e. of the type, R, .a = constant), and restrict our atten-
tion to the query with only joins. In Section 5, we relax
this simplification. We make no use of the projection
attributes in the optimization. This aspect of the
problem, even though quite interesting, has been an
open problem in the literature. In summary, we view a
query to be a set of join operations (both equality and
inequality) on the relations.

Corresponding to a given query, we define a graph
representing all the joins implied by the query. This join
graph is an undirected graph on the set of relations (as
nodes) and an edge between Rr and Ri represents a join
(e.g. predicate of the type R, .a = R, .b). A query is called
a tree query if its join graph is acyclic; the corresponding
graph is called join tree - to emphasize the tree property.

A rooted join tree is a join tree in which a relation is a
priori chosen to be the root of the join tree. Although the
join tree is undirected, any choice of a root for the join
tree can be viewed as the-process of converting the tree
into a directed tree. the direction beine defined from the
parent to the chiih. Consequently, a’ rooted join tree
defines a partial order or in other words, defines the set
of total orderings of the joins. In both the partial order-
ing as well as in each of the total orderings, the root
relation precedes all other relations; i.e., root relation
must be the first relation to join.

The selectivity SII , with respect to the join of ~~ and R, is
defined to be the expected fraction of tuple pairs from ai
and RI that will join, quantified as,

%I’
expected no. of tuples in the result of joining R, and R,

number of tuples in R, t number of tuples in RI

We make the usual assumptions here, regarding the
uniformity of the distribution of values and the indepen-
dence with respect to each other. These assumptions are
only approximations to the reality and have been tradi-
tionally adopted for convenience [Sellinger 79, Whang
83, Ibaraki 841. As a consequence of these assumptions,
number of tuples satisfying two joins (say R, joins with
R2 and R2 joins with RJ is n&n, s,, su ; i.e. the product
of all the cardinalities and selectivities. This can be ex-
tended in the obvious way for k joins. This property will
be used in deriving a cost equation for an execution.

For the sake of symmetry, we associate a unique selec-
tivity for each relation in a given rooted join tree. Ob-
viously, a relation may join with many relations and
therefore has many selectivities associated with it. But
for a given rooted join tree, each relation Ri has a unique
parent and the selectivity of the join with the parent is
deEned to be si . As for the root, the selectivity is defmed
to be unity. This definition is only to provide a notational
convenience, without any loss of generality. This obser-
vation for a rooted join tree also has one more interest-
ing implication. That is, in any total ordering for a
rooted join, a non-root relation joins first with its parent.

-129-

3. Model:

In any system the query optimizer has to come up with a
processing strategy in some form. A strategy, modelled
as ‘processing tree’, includes decisions regarding the
operations to be performed, the sequence of the opera-
tions, and the intermediate relations to be materialized.
Since the most expensive operation is join, it is further
necessary to prescribe “how” each join must be per-
formed. Thus, we first classify the methods of perform-
ing joins into three categories and then give a definition
for the processing tree which models an execution. This
model also defines the execution space over which the
optimization problem is defined. Using this definition,
we formulate a precise statement for the optimization
problem.

3.1. Join Methods:

Let ni be the cardinality of a,. Binary join methods can
be categorized as follows:

1) Nested Loop (NL): Relations Rt, and Ra are scanned in a
nested fashion to find tuples in the cross product that satisfy the
join predicate. The estimated cost is nt*na, which is invariant
even if we commute the two relations. This is true onfy because
of the database memory resident assumption.

2) Selective Access @A): Several methods have been proposed
including indexed methods, link based methods (Blasgen 761
and hash based methods, having respective cost estimates oI
n,*log(na), t-r,, and n,‘h, where h is the average chain length.
Note that the cost estimates for these accesses are not invariant
over commutation. Thus, one relation is treated as the “outer”
relation and the other is the relation that is selectively accessed.

3) Serf-Merge (SM): Here, R, and Ra are sorted on join column
values, and then the sorted relalions are merged to obtain the
result. The cost can be estimated by n, + na + n, l log(n,) + na *
Wn2).

In order to model an execution in which the decisions
regarding the join methods are made “independently” of
the decisions on other parameters, we make the follow-
ing assumption. We observe that a generic cost function
for most of the above cases is n,*g(n,), where g(n,) is
the differential ‘cost incurred per tuple of the outer rela-
tion and is based on the method used. Obviously, the
sort-merge technique does’ not fit this category; neither
is the case when the outer relation is selectively accessed
(i.e. g(n,)). Initially, we limit our discussion to the class
of methods whose cost estimates are n,*g(n,). In Section
5, we relax this assumption to include these’other tech-
niques. Note that the accuracy of the proposed cost for-
mulae is debatable. As our intention is to use these for-
mulae in deriving the cost formulae for an execution,
the particular formulae used (as long as it is of the
above type) is an orthogonal issue and therefore, the
accuracy is not discussed here. We will discuss this issue
in the context of sort-merge in Section 5.

3.2 Processing Tree:

‘In most cases, there are many ways to execute a query.
An execution of Q is represented by a processing tree
PT(Q). PT(Q) is a labelled tree where leaf nodes are
relations in Q and each non-leaf node (represented by a
square node) is an intermediate relation (i.e. a tem-
porary relation) resulting from the join of all its children;
the label specifies the join method. For example, Figure
la shows a processing tree representing an execution of

(-JTE: If the labels are omlrted
t en these h!m PTs define the
canonical BLPT and PPT resp.

3 Figure l-a: BLPT

523...k

Figure l-b: PPT

a query on m relations. R, and R2 are joined to obt: n
R,*; RI,... I and Rt2..(l+t) are joined to obtain
R,,... (i+ 3 ; . . .;and R,*. (k-1) and Rk are joined to obtain
the answer to the query. The particular join method used
for each join operation is a label for the resulting non-
leaf node in PI(Q); e.g. R,* in Figure la is the result of
joining R, and R2 using nested loop method.

Processing trees can be classified according to the na-
ture of the tree. For example, the tree in Figure l-a has
a linear structure - so it is termed a Linear Processing
Tree (LP7J. It has the special property that no more than
one temporary relation is used as input to any join
operation. A processing tree will be a binary tree (BPT)
if all the joins performed are binary in nature, leading to
an obvious definition of a Binary LPT (BLPlJ. Another
type of LPT, called Pipelined Processing Tree, PPT, is an
LPT whose height is unity. An example of a canonical
PPT is shown in Figure l-b. That is, the answer is
generated directly from the relations without creating
any temporary relations. Traditionally, this is known as
the nested loop n-ary join method. Note that the pipelin-
ing (and therefore, the joining) takes place in the order
from left to right - which defines the order of nesting
and a join method is specified for each level of nesting.
A particular variation of this method was assumed in
[Ibaraki 841. It is possible to classify various other types
of processing trees. For our subsequent discussion, LPTs
(and in particular, binary LPTs and PPTs) are sufficient.

A class of PTs defines an execution space over which the
optimization is defined. For example, LPT execution
space is the set of all executions whose processing trees
are LpTs, which is the search space assumed by many
optimizers [Sellinger 79, Whang 8.51. We use the terms

-130-

PTs, LPTs, BLPTs, PPIs to refer to the execution space
as well as the class of processing trees.

A processing tree also represents the partial order of the
join operations; i.e.., the lower level joins must be per-
formed before the Joins above them. In the case of LPTs
this ordering is a total order, called the LPT sequence.
Consequently, a given total order has a unique binary
LPI’ (or PPT). Further, an LPT is said to correspond to a
rooted join tree in which the root is the first element of
the LPI sequence.

Even though all processing trees will produce the same
answer, some processing trees can be discarded a priori
(e.g. those trees that require the result of a cross
product). We formalize this notion here. For a given
LPI, the LPI sequence is a traversal of the correspond-
ing rooted join tree (i.e. a directed tree) if and only if
the following two properties are satisfied: (1) the LPT
sequence is consistent with the partial order defined by
the corresponding rooted join tree; (2) that a join opera-
tion (that is not a cross product) is performed at each of
the non-leaf node of the LPT. Thus we define an LPT to
be consistent if the LPT sequence is consistent with the
partial order implied by the rooted join tree that cor-
responds to the LPI. For example, executions allowed
by SQUDS, OBE are limited to consistent LPTs.

3.3. Cost Equation:

Given a processing tree, based on the cost of the in-
dividual joins, we can estimate the cost of the cor-
responding execution - this is defined to be the cost of
the processing tree. In this subsection, we compute the
cost of a given PPT and a given BLPT. In Section 5, we
handle the case of any general LPT. Note that any
reference to selectivity si, for the relation Rr is the selec-
tivity of the join of R, with its parent, based on the rooted
join tree corresponding to the LPI’.

In order to compute the cost of joining a relation with
the result of the join of ali the previous relations, -
either in the form of a materialized temporary relation,
or if done in a pipelined fashion - we need to compute
the cardinality of the result of a series of joins. It is easy
to see that the cardinality of the result of joining R, and
R2 (i.e. cardinality of R,, in Figure l-a) is

n12= s2 l (n2 * n, 1 = (s2 l s1) * (n2 * nl) (1)

Note that the “dummy” selectivity s, (i.e. the selectivity
associated with the root of the join tree) was defined to
be unity. Using n2 we can compute n,23 as follows:

n123 = s3 * n12 * n3 = (s3 * s2 * s,) * (n, ’ n2 * n,) (2)

In general, n =
123...] I=1

6, *n,)

Note that nr23.,, j .is the size of R,,,. j in a BLPT whereas

n123.. j is the number of times the pipelined strategy goes
past the j-th relation in a PPT. The above expression is
valid for both PPTs and BLPTs, whose canonical execu-
tions are given in Figure 1, where the labels are omitted.

The cost for a PPT(Q) is computed as the sum of the
individual join costs. Intuitively, the cost is measured in
terms of the number of comparisons made.

Cost of PPT(Q) = ,~K~ll,...f,-lJ * s,Q)l
= k[(fi 13, * nil)*g,Fj)] t4)

j=2 I=1

where g j (n,) is dependent on the join method used.

The cost of a given BLPT differs from that of a PPT only
because the BLPT execution has the extra overhead of
storing temporary relations. In most systems, insert
operations would be considerably more expensive than a
simple retrieve. So the equation has an extra component
that estimates the cost of materialization. For each tem-
porary relation created, (say R,2... f), a cost of c*n12... j ,
is incurred where c is the constant that relates the cost
of comparison and cost of insert (assuming the cost of
comparison is unity). Thus the cost of BLPT(Q) is

Cost of BLPT(Q)

=,~[(~,,..~,-,~)*g,(n,) 1 + $c” 923 . ..I) (5)

=,Q,, ..(I-, ,)*9,h)l + ,$Kn12..+11) * c VJ

*ml) *(q(q) + cq9)] (6)

Note that the equ,ations (6) and (4) are identical if we
redefine the ‘g’ function. This leads us to an interesting
observation that the cost of materializing the temporary
(which is a function of the size of the temporary rela-
tion) does not change the structure of the cost equation.
Also note that the above cost does include the cost of
constructing the answer, whereas equation (4) does not.
As this is a fixed cost per query, neither omitting this
cost nor including it affect the result of the minimization
algorithm.

3.4. Optimization problem:

We define a query optimization strategy as an algorithm
used to choose an “optimal” processing tree (including
the necessary join methods) for a given query. This can
be formally stated as follows: Given a query Q, and an
execution space E, find an execution in E that is of minimum
cost. As the execution space can be abstractly viewed as
a set of processing trees, the above problem can be res-
tated to search for the minimum cost processing tree. As
mentioned before, not all possible executions are al-
lowed by a given system. For example the execution
space allowed by QBE, System-R and OBE are all a
subset of LPTs. Ail these systems choose executions that
have no more than one temporary relation used in any
join operation, at any time during the execution. Fur-
ther, the execution space of the optimization presented
in [Ibaraki 841 is a subset of PPTs and PPTs c LPTs.
Thus we restrict our problem as follows:

LPT Query Optimization Problem:
Given a query Q, find a processing tree pt in LPT that
is of minimum cost: i.e.

-131-

Note that if Q is a tree query then the cost of pt(Q) is
estimated by equation (4) or (6) as long as the class is
limited to either BLPT or PPT. As every pt in BLPT and

MIN [cost of PVQ) 1
Pt E LPT -

PPT uniquely correspond to an LPT sequence and vice
versa, this problem in effect defines the search space to
be the n! sequences, out of which the optimal sequence
is chosen. In [Sellinger 791 they suggest searching this
combinatoric space, with the restriction that only consis-
tent sequences are checked. Obviously, checking consis-
tent sequences does not change the worst case size of
the search space. Although this approach is effective in
the database domain, unfortunately, in knowledge base
systems this is not feasible. In the next Section we dis-
cuss the problem of LPT query optimization where we
import the polynomial time solution for tree queries
from [Ibaraki 841 to this general model of ,optimization.
Further, we also improve on their solution.

4. Strategy for Tree Queries:

In this subsection we first develop a strategy for a rooted
tree query and then find the optimal execution over all
possible choices for the root. Before we present the
strategy, we first reiterate the list of assumptions, we
restate the cost equatioti of the previous section and ob-
serve some properties.

4.1. Assumptions:

We restate the list of significant assumptions here, all of
which will be relaxed in’ the next section.

1) The query is restricted to contain only join predicates; i.e. t-16
selection predicates.

2) The general cost formula (i.e. nI*g2(n2)) is applicable for all
the join methods.

3) The execution space is restricted to be either PPT or BLF’T in
the proposed optimization algorithm.

4) Database is assumed to be memory resident. Therefore, the cost
functions are based on the processing costs (e.g. comparisons,
insert operations) instead of number of disk accesses.

5) Query is assumed lo be a tree query

The above list is only a partial list of assumptions - i.e.
those that we consider significant. There are other as-
sumptions in the definition of the query, definition of the
selectivity, etc. that are made by most, if not all, pre-
vious solutions to this problem [Sellinger 79, Ibaraki 84,
Whang 851.

4.2. Cost Model:

The cost of processing a query for a given sequence

t
i.e. a BLPT or Pm), which was formulated in equations
4) and (6) of the previous section, can be recursively

defined as follows:

C(A) = 0 for the null sequence A.
C(Rj) = gj(nj)

Rj’
non-root relation

C(Rj) = 0 Rj is the root of join tree

C(S,W =WI) + -WI) l C&) any subsequences S, and Sp.

where T(*) is given by
T(A) = 1 for the null sequence A.

T(S) =&&*“I,) for any sequence S.
k

It is easy to show that the above recursive definition cor-
rectly corn

P
utes the cost of a consistent sequence as per

equations 4) and (6). Note that the ‘g’ functions depend
on the join method specified in the chosen PPT or BLPT.
For any consistent LPT, corresponding to a given rooted
join tree, the join of any relation is with its parent.
Therefore, the best join method for each relation can be
determined independent of the choice for LPT. Note that
the independence is a direct consequence of the two as-
sumptions: 1) tree query; 2) differential cost formulae
for joins. Interestingly, Ibaraki and Kameda [Ibaraki 841
started with a model that computes the number of page
fetches (i.e. the database is disk resident) and derived
an identical cost equation where gj(nj) is computed only
for the restricted form of the nested loop. More discus-
sion on this topic is relegated to the next section when
we attempt to relax the assumptions. Consequence of
this similarity is that we can import their polynomial
time solution to the above general statement of the
problem and also present an improved version of their
solution.

An interesting propert
served by [Ibaraki 841 7

of the above equation (as ob-
is that it satisfies the adjacent

sequence interchange property (AS1 property for short,
(Monma 791). Even though it is straightforward, for the
sake of completeness, we reiterate the following lemma
and proof from [Ibaraki 841. This lemma identifies the
AS1 property.

Lemma 1: Given arbitrary sequences A. B and nonnull se-
quences U and V, such that AUVB and AVUB are consistent
with the given rooted join tree. then C(AUVB) 5 C(AVUB) if
and only if rank(U) < rank(V), where the rank is defined for
any nonnull sequence as rank(S) = (T(S)-1)/C(S).

Proof: Using the recursive definition of the cost function, we have

C(AUVB) = C(A)+T(A)C(U)+ T(A)T(U)C(V)+T(A)T(U)T(V)C(B).

Thus, we can derive,
C(AUVB) - C(AVUB)

= T(A) [CWlT(U) - 11 - C(U) [T(V) - 111
= T(A)C(U)C(V) [rank(U) - rank(V)]

The lemma follows directly from the above equation. n

A corrollary of the above lemma can de stated as fol-
lows: purely based on the properties of the subsequences U
and V, their ordering can be decided irrespective of the rest
of the sequence (i.e. A and B). Thus a cost function is said
to satisfy the AS1 property if there exists a rank function
as defined in the above lemma [Monma 791.

Let us consider an example of Figure 2 in which the
relation R, joins with R, and R, and the root is assumed
to be R,. The question of finding the total order is same

-132-

Join Tree:

R,

a:-:::-
R3

PT #l: PT #2:

GJ&fz&J

Figure 2: A simple example of a query

as determining which of the two relations, R,or I&, is to
be joined first. The two PPT cases R, R,R, and RR, R,
are shown in PT#l and PI#2 respectively. The rank
function dictates that if rank(R*) < rank&) then R,
should join before % . To understand the rank function
intuitively, let us analyze the case when pT#l is better
than pf#2. Obviously, from equation (4), we can argue
that PT#l is better if the following holds.

n, *g2(nJ + ",2* Q,tn3) < "1 *Q&"a) + ",a*Q2(n2)

or, "12 - “1 < “13 - “1
g2(n2) Q3(“3)

Intuitively, the increase in the ‘intermediate result’, nor-
malized by the cost of doing the join is to be minimized
for optimality. Replacing m2 and nrs using equation (3)
of the previous section, we get,

n2*s2- 1
g2(n2) <

n3*s3- 1
Q3(n3) I

or Rank@,) < Rank(R,)

I”tUitiVely, the rank measures the increase in the intermediate
result per unit diffeiential cost of doing the join.

It is known that an optimal sequence based on such a
cost function can be obtained in O(N log N) time for the
case of series-parallel order constraints, where N is the
number of elements to be sequenced &awl-et- 78,
Monma 79, Abdel-Waheb SO]. Having observed that a
rooted join tree is a special case of the series-parallel
constraints, Ibaraki and Kameda [Ibaraki 841 imported
the solution to find the optimal order of the joins for a
rooted join tree in O(N log N) time. As there are N
choices for the,root, they conclude that the time taken to
compute the optimal sequence for the query is O(N* IOQ
N). We use the same algorithm to compute the order for
a rooted tree. Subsequently, we present an O(N2) algo-
rithm that finds the optimal sequence for the query.

4.3. A” Example:

Let us first show the use of the AS1 property on an
example given in Figure 3. The query consists of 5 rela-
tions that are joined as given by the join tree. This join
tree is assumed to be rooted at R,. In the adjoining table
the values for functions T and C are given for each in-
dividual relation. Also shown for each relation is the
computed value for the rank function. The following al-
gorithm uses a bottom-up approach. Succinctly, the al-

Note: The numbers next to the nodes
are the respective ranks.

Figure 3: Algorithm applied to an example

gorithm uses the ranks of the individual nodes to order
the lowest level subtrees, converting each subtree into a
chain (i.e. a total order). Then the subtrees of the next
higher level are converted to chains by merging the sib-
ling chains based on the ranks...... and so on... until the
tree under the root is converted into a chain.

First, the subtree rooted at & is converted into a chain
using the rank function. As rank(&) < rank(&), the total
order for this subtree is &I&R., which is shown as step
1. The intuition behind this transformation is that the
relations & and & are not constrained to be ordered in
any way. Therefore, we can order them based on their
ranks. This ordering, by the lemma of the previous sec-
tion, minimizes the cost. But R, has to precede % and R+
due to the partial ordering defined by the rooted join
tree.

Next the two subtrees of RI are combined. Note that
these two subtrees are chains and therefore we can com-
bine the two chains in any order that preserves the in-
dividual order of each chain. We do this by merging the
two chains based on the ranks. In order to merge them
we must ensure that each chain is ordered by rank to
begin with. Note that the chain under & is not ordered

-133-

by rank, but R3 has to be the first element in the chain
due to the constraints in the rooted join tree. Note that
only the root of the chain may violate the order.

To transform this chain into a chain where the nodes are
ordered by rank, we apply a normalization step in which
we combine the nodes Ra and Rj into one node and the
rank is computed for this sequence of nodes as follows:

rank (R35 ,=m = T(%) T(R5) - ’
C(FP5)

= 0.99978
C(R,) + T(R,)W, 1

We can combine these nodes because it can be shown,
in general, that no other nodes can be placed between R.-,
and R, if the cost is to be minimized. The result is shown
in step 2. This normalization step is repeated until the
chain containing the merged nodes is ordered by rank.

In step 3 the two chains are merged and in step 4 the
final total order for the query is shown where the
merged nodes have been expanded.

4.4. Algorithm for rooted tree queries:

Restating the BLPT (or PPT) optimization probolem:
given a rooted join tree for a query, the goal is to find
the total order of relations that minimizes the cost. The
sequence is constrained by the fact that it be consistent
with the partial order defined by the rooted join tree.
The algorithm uses a bottom-up approach of transform-
ing each subtree (all of whose children are chains) into
one chain. Thus the result of transforming the join tree
produces one chain that determines the total order.

Algorithm OPT:
Inpuf: rooted tree query Q, including the values for the functions

,T and C.
Ou/put: Total Order for the rooted tree query.

1. If the tree is a single chain then stop.
2. Find a subtree (say rooted at r) all of whose children are chains.
3. Merge the chains based on the ranks such that the resulting

single chain is nondecreasing on the rank.
4. Normalize the root r of the subtree (i.e. a single chain now) as

follows:
a. While the rank of the root is greater than its im-
mediate child c do;

Replace root and c by a new node representing the
subchain r followed by c

5. Go to 1.

Intuitively, the algorithm works bottom up, whereby, the
lowest subtree is converted into a chain; then all the sib-
ling chains are converted to form a chain under their
parent, etc. Thus, the algorithm terminates after
creating the chain under the root. The total order for the
query is obtained by decomposing all the composite
nodes created by the normalization step above.

For a formal proof of correctness the reader is referred
to [Monma 791 wherein this is proved in a more general
context. We present an intuitive argument here. If the
normalization step is never executed then it is obvious
from the lemma of subsection 4.2 that the correct total
order is obtained. In order to show that the creation of
the composite nodes does not prohibit any interesting
order we can show the following: if the rank(c) < rank(r)

1. Original Join Tree

b. a view of the join
tree based on the
chosen total order

:. a new join tree that
is rooted at node a.

7gure 4: Transformation between Join trees
then any node from the subtrees rooted at the siblings of
r has to be placed either above r or below c.

This algorithm can be implemented to run in O(N log N)
time [Lawler 781. This may not be an interesting bound
for our case because we will spend O(NZ) time to find the
optimal rooted tree for which the cost is minimized,

4.5. Algorithm for Tree queries:

As mentioned before, one approach to find the rooted
join tree with the optimal cost (termed the optimal
rooted join tree) is to compute the cost for each choice
of the root and choose the one with the minimum cost.
We present in this section, a more efficient method to
find the optimal rooted join tree. This approach uses the
fact that the computation corresponding to two choices
for the root have a lot in common - especially if the
roots are adjacent in the join tree.

In Figure 4-a, a join tree rooted at r (say T,) is shown
with its subtrees, one of which is rooted at, say, a. Let us
compute the optimal order for the join tree rooted at a,
given the optimal total order for T,.

We first transform T1 into another tree (as shown in
Figure 4-b) based on the optimal total order for T, . All
the nodes al, a2. etc. (bl, b2, etc.) are nodes from
the subtree rooted at a (from the rest of the subtrees).
Without loss of generality, let the order of ai’s and hi’s
be the order in the respective subsequences of the op-
timal order for T,. It is straight forward to show that the

--134-

transformation to the tree shown in Figure 4-b can be
done in O(N) time, given the optimal order for T, .

To compute the optimal order for the join tree rooted at
a, we have to do the following: (I) Compute the rank of r
using a as its parent; (2) Merge the two chains (shown in
Figure 4-c) under a based on their ranks. Obviously,
these two steps can also be done in O(N) time. There-
fore, given the optimal order for a join tree rooted at r.
the optima1 order for a join tree that is rooted at an
adjacent node to r can be computed in O(N) time. As
there are (N-l) such transformations to be done to ex-
haust all possible choices for the root, the total time
taken is O(N2).

The correctness of this algorithm can be shown from the
following observation. If the parent of a node is same in
two join trees, then the respective ranks remain un-
changed and therefore their respective ordering also
remains unchanged. In the proposed transformation, all
the ai’s, and the bi’s have the same parent. Only a and r
have different parents. As a is the root of the new join
tree, it must be the first in the optimal order irrespective
of its rank. As for r, we compute the new rank. Based on
these observations, it is straightforward to prove the cor-
rectness of the above algorithm.

5. Relaxing the Assumptions:

In this section we relax the major assumptions we made
in presenting the strategy of the previous section. First,
we emphasize a practical difficulty regarding the estima-
tion of selectivities. Being an estimation, the accuracy is
an issue. Accurate estimation is quite expensive; there-
fore, in most systems, accuracy is sacrificed for the sake
of efficient implementation. Lack of accuracy in the es-
timation of selectivities is assumed in this paper. The
consequence of this assumption is that the accuracy of
computations using the selectivities need only be com-
parably accurate.

5.1 Pushing the select:

Pre-selecting a relation is known to be advantageous in
many cases. The main drawback of pre-selecting is that
the existing indices on the original relation cannot be
used on the selected version of the relation. If pre-selec-
tion is chosen, then either an index has to be created on
the selected version or use the selected version without
any index. Ideally, an optimizer should weigh these al-
ternatives based on the expected savings. It is easy to
see that the choice of pre-selecting or not can be made
in conjunction with the choice of the join method for a
given rooted join tree.

5.2. Accommodating other Join Methods:

We omitted two join methods from our discussion so far.
These are: i) s’ortlmerge technique, and ii) the join
method in which an index is created on the temporary
relation and then the other relation is joined by looking
up the created index. Both these resulted in a cost for-
mula that did not correspond to the general formula,
namely n,’ g(n,). Here we argue that we can find an
approximation to the cost of these join methods and use
the proposed strategy using these approximate cost es-
timates. Note that if all the relations are in memory,
which is at least the case in most knowledge base sys-
tems of today, then sort-merge is never an useful join

method [see Krishnamurthy]. But if database is disk
resident then sort-merge is an useful technique.

The main reason for any method to fit the general cost
formula is that the “differential ” cost per tuple for the
join of any relation must be computed only on the infor-
mation from that relation. Mathematically speaking, the
partial differentiation of the join cost with respect to the
n, (i.e. number of tuples in the outer relation) is inde-
pendent of n,. Obviously, if the cost has a nonlinear
term on n, (e.g. n, log (n,)) then the differential cost
will not be independent of n,. We argue here that if we
can estimate that cost to a reasonable accuracy, then we
can use that approximation to be the value for g(n) and
expect to get a reasonably correct result from the op-
timization algorithm. This argument underscores two
fundamental maxim/assumption. First, the optimizer
should avoid the worst cases and attempt to get a
reasonably good execution. Second, the selectivities are
themselves estimations with considerable inaccuracies.
In short, we feel that a simple minded estimations
should prove to be sufficient to accommodate these join
methods.

5.3. LPT Query Optimization:

Until now we have restricted our attention to either
BLPT or PF’T query optimization problem. Interestingly,
we can view BLPT and PPT as the two ends of the
spectrum of processing trees in LPT. The trees in be-
tween have some temporary relations materialized and
others are computing the joins using the pipelined ex-
ecution approach. So the important question to be
answered is: under what circumstances, does a tem-
porary relation have to be materialized? Obviously, if
all join methods are of the nested loop or selective ac-
cess then the pipelined strategy is always better - this is
a direct consequence of the cost equations in (4) and
(6). As a matter of fact, when all relations are in
memory, then PFT is the best choice in all but few
cases. This is an obvious consequence of the uselessness
of the sort-merge technique. On the other hand if sort-
merge technique is used, then the temporary relation has
to be sorted, for which it must be materialized. Thus, we
need to materialize the temporary relation, if and only if the
subsequent join operation requires it. Below we ,extend the
strategy to find an optimal LPT for a given query.

If we use the approximations of the previous subsections
for the join methods such as sort-merge, then we can
find the total order of the execution assuming the
processing tree to be a PPT. Note the cost of writing the
temporaries should be included into the cost formula for
these join methods. We observed in the formulation of
the cost equation for BLPT that such an inclusion is
feasible. On obtaining the total order, any relation
whose join method requires a materialized temporary
relation is identified and the processing tree is modified
to reflect the change from the pipelined mode to LPT
mode. Thus an optimal LPT can be obtained.

5.4. Disk Resident Databases:

One of the important claims we make in this paper is
that the problem of optimization is not complicated by
the fact that the database is disk resident. The structure
of the equation in Section 4.2 is solely dependent on the
fact that the optimization is limited to the LPI execution
class. The fact that the data is disk resident is reflected

-135-

in formulating the ‘g’ functions. This is also confirmed
by the fact that in [Ibaraki 841 they start with a disk
based model (i.e. computing the number of I/OS) and
the cost equation developed by them is structurally iden-
tical. Thus, we claim that extending this proposal to a
disk based model is a straightforward task.

The change to disk based model may have some
ramifications indirectly. For instance, sort-merge tech-
nique may become more important and a good ap-
proximation may be desired. Further, the cost estimates
and discussions in the previous subsections will have to
be argued on the basis of block accesses and not tuples.
Nevertheless, it is our contention that the structure of
the cost equation will remain intact and the strategy will
be applicable.

5.5. Optimizing cyclic queries:

Extending the solution to allow the queries to be cyclic is
difficult because this problem can be shown to be NP-
hard. In [Ibaraki 841 they have shown that this problem
for the restricted case of optimizing in the PPT exe&ion
space is NP-hard. The reduction from this problem to
the more general problem is straightforward. Here we
present a heuriqtic to handle cyclic queries in the context
of the LPT query optimization problem. As the proposal,
is based qn heuristics, it is not necessarily an optimal
solution, ,but we argue that the resulting order is likely to
be reasonably good.

The basis of this heuristic depends on the following two
observations:

Observation No. I: The answer to a query, corresponding to
any subgraph of the join graph, is a ,superset of the answer
to the original query.

Intuitively, by disregarding a join predicate we get more
tuples in the answer. Theiefore, if we compute the query
corresponding to any spanning tree for the graph and
then check each tuple in the ariswer for the satis~fiability
of fhe join predicates (i.e. edges) not in the spanning
tree, the resultirig Set will be the answer to the original
query. In fact, we can improve ori this. approach by qb-
serving that we need the tree property only for comput-
ing the ‘optimal’ order. The subsequent coniputation of
the query may use all the join predicates and compute
the final answer directly. The relevant question to be
answered is 2 how good i-s the chosen order that is com-
puted based on the spanning tree for the original cyclic
query. The following observation gives a clue that leads
us to the proposed heuristic.

Observation No. 2: A join that has a good selectivity is more
likely to be influential in choosing the order than a join that
has poor selectivity.

Let us take the limiting case of a join that has the worst
selectivity (i.e. unity), which is the case of a cross
product. Note that in a join graph, the lack of an edge
between two relations is by default a cross product. As
we mentioned in the motivation of the definition of ‘con-
sistency’, any join is implicitly favored over a cross
product. This is because, the cross product, in most
cases, is better if done as late as possible. Therefore, a
cross product is of no use in dictating the order of the
joins - as mentioned before, this has been assumed in

the approach taken by all the optimizer of known sys-
tems as well as the previous research [Sellinger 79,
Ibaraki 84, Whang 851. The above observation is a
straightforward extension of this argument.

Combining the two observations, we conclude that a
spanning tree containing the joins with good selectivities
is possibly a good choice. Thus the following strategy:

Choose the minimum cost spanning tree from the
join graph, where the selectivities are the weights
for the edges. Then use this spanning tree to
compute the total order, which is used to com-
pute the original query.

Here, the total cost of the spanning tree is defined as the
product of all the selectivities and riot the summation as
it is commonly stated for the minimum cost spanning
tree Droblem. Intuitivefv. the DroDosed heuristic finds a
spanking tree such thai ihe c&d&ality of the answer to
the query (corresponding to the spanning tree) is mini-
mized. Thus, the reduction from this intermediate
answer to the final answer is also minimized. Conse- .-
quently, the order chosen for the spanning tree, even if
it is not oDtimal. is’likelv to assure’the maxim outlined
in the intr’oductibn. ’

6. Conclusion:

We have presented a viable strategy for optimizing
knowledge bdse queries. In’s0 doing, we have proposed
a model for the general problem of optimization of
queries that captures many approaches (e.g. BLPT, PPT
optimizations). In this model tie have imported and im-
proved the previously proposed polynomial time algo-
rithm for ordering the Joins. We have extended this to
include heuristics such as pushing selects, preprocessing
of relations, allotiing othei join methods, etc. By these
examples, we have demonstrated the capability and the
flexibility of incorporating various heuristics into the op-
timization strategy without changing the structure of the
algorithm. In summary, we have presented an algorithm
for optimization of queries with large number of joins
that is adaptable i? the new scenario.

We consider the model to .be a by-product of this
research. ‘By presenting a formal model for the well-
known optimization problem, the strengths and
weaknesses of the traditional approach are made ap-
parent. We briefly summarize tiiem here. One of the
advantaee of the traditional aDDroach. as evident from
the mod<l, is the separation oit’he abstract search space
and the set of heuristics. This provides the flexibility to
extend the algorithm to incorporate new heuristics. On
the other side, although the traditional algorithm is an
exhaustive search, it is still liniited to the LPT execution
space. Therefore, the approach is not necessarily op-
timal, especially if intra-query parallelism is to be ex-
ploited. Further, pruning effect due to consistent execu-
tions or branch-and-bound techniques are not neces-
sarily successful in many cases (e.g. a relation joining
with 99 other relations in a star-like join graph).

An interesting observation that can be made from the
proposed algorithm is the importance of the notion of
differential cost of a join method. By estimating the join
cost independent of the join order, the optimization algo-
rithm is drastically simplified. This is, in our opinion,

-136-

References: the major deviation from the traditional approach that
provides the handle for efficient optimization.

Based on the model, it is clear that if sorting of tem-
porary results is not required by the processing tree,
then PPT is the optimal strategy. An observation con-
firmed by the results from implemented systems (e.g.
SQL/D& OBE). This leads us to the important conclu-
sion that pipelined strategy is optimal when database is
memory resident, because the sort-merge technique is
useless. As a consequence of this observation, we make
an important observation in the arena of expert systems.
A commonly pondered question: is the tuple-at-a-time
modus operandi a source of poor performance for ex-
pert systems? Stated otherwise, can the performance be
improved by taking the approach of a set-at-a-time
processing? This model answers both these questions in
the negative as long as the database is in memory, which
is true in most knowledge base systems. As a matter of
fact, based on the above cost model, the conclusion is
that PPT executions may be better to the extent that they
do not materialize the temporaries. On the other hand if
database is in disk there is some advantage to
materializing temporaries.

Finally, this model clearly puts forth areas of research
that has not been investigated. First, can we optimize
over a larger class of executions, namely the entire PT.
This will allow us to create more than one temporary
result and thereby allow more parallelism if there are
resources (e.g. DB machine) to support it. Second, is it
possible to develop cost functions for other heuristics,
such as, union/intersection operations, duplicate elimina-
tion, aggregation etc., such that the recursive cost struc-
ture is retained. Yet another more difficult problem is to
extend this approach to optimization of recursive
queries. Last, can this method be validated? These are
some of the areas of an on going research by the
authors.

Acknowledgments: We are grateful to Francois
Bancilhon, George Copeland, Setrag Khoshafian, Won
Kim, and Patrick Valduriez, who provided a forum for
discussion at various stages of development of this
paper. We would like to thank Guy Lehman and Kyu-
Young Whang for their help in disproving some earlier
conjectures and to David Maier for focusing our atten-
tion to the quadratic-time solution.

[Abdel-W. 801

[Blasgen 761

[Gallaire 841

[Ibaraki 841

(Lawler 781

[Kellog 811

[Kellog 85-l

(Krishnamur.]

[Monma 791

[Sellinger 791

[Tsur 851

[Ullman 851

[Whang 851

[Zaniolo 851

Abdel-Wahab, H.M., and Kameda. T. On
strictly optimal schedules for the cumulative
cost-oplimal scheduling problem. Computing 24
(1980), 61-86

Blasgen, M.W., and Eswaran, K.P. Storage
and Access in relational databases, IBM Sys-
tem J. 16, 4 (1977). 363-377

Gallaire, H.. Minker. J. and Nicholas, J. Logic
and Databases; A deductive approach, Vol.
16. No. 2, June 1984, 153-185

Ibaraki, T., and Kameda, T. Optimal nesting
for Computing N-relational Joins, TODS 9, 3
(1984), 482-502

Lawler. E.L., Sequencing jobs to minimize to-
tal weighted completion time subject to
precedence constraints, Ann. Discrete Math. 2
(1978) 75-90

Kellog, C., and Travis, L. Reasoning with data
in a deductively augmented database system, in
Advances in Database Theory: Vol 1, H.Gal-
laire, J. Minker, and J. Nicholas eds., Plenum
Press, New York, 1981, pp 261-298.

Kellog, C., O’Hare, T., and Travis, L. Op-
timizing the rule-data interface in a KMS,
Submitted for publication.

Krishnamurthy, R., Navathe, S., and Morgan,
S.P. A Pragmatic approach to Query Process-
ing . in preparation.

Monma, C.L., and Sidney, J.B. Sequencing
with series-parallel precedence constraints.
Math. Oper. Res. 4 (1979), 215-224

Sellinger, P.G. et. al. Access Path Selection in
a Relational Database Management System. In
Proc. of ACM-SIGMOD Intl. Conf. on Mgt.
of Data, (1979), 23-34

Tsur. S., and Zaniolo, C. LDL: A logic-based
data language, submitted for publication.

Ullman, J. D. Implementation of logical query
languages for databases, TODS, 10, 3, 1985,
pp 289-321

Whang. K. Y. Query Optimization in Office-
by-Example, IBM Research report, RC 11571,
(1985).

Zaniolo, C. The representalion and deductive
retrieval of complex objects, Proc. of 11th
VLDB, pp 458-469. 1985

-137-

