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Abstract 

We explore the implications of supporting bags (i.e. 
multisets) in a data model and associated query lan- 
guage, and present some formal results concerned with 
the algebraic properties of bags. We extend previous 
work to provide a formal basis for query optimization 
and for defining the appropriate semantics for bag op- 
erations in data models supporting ba.gs. 

1 Introduction 

A bag (or multiset) is a collection of elements, like a 
set, but which may contain duplicates. A bag which 
cont.a.ins no duplicates is a set. Various proposed and 
existing database systems have been designed t-o sup- 
port ba.gs in their data model 11, 2, 5, 6, IO, 15, 16, 171. 
Typical motivations for this choice are based upon 
the desired semantic modeling capability of the data 
model, or upon saving the cost of duplicate elimination 
that is required to implement some set operations. 

Some authors, for example #lug [a], have a.rgued 
against supporting bags in a dat,a model. It is not, 
our purpose to validate or invalidate the use of bags. 
Rather, we wish to understand further the properties 
of bags since many data models have been designed to 
support them. 

In this paper, we extend the typical set operations, 
union, int,ersection, difference, and boolean salect,ion 
to bags, and derive some theoret.icnl results regard- 
ing the algebraic properties of these extended oper- 
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ations. In particular, we address the issue of which 
algebraic properties of union, intersection, difference, 
and boolean selection can be maintained in the exten- 
sion of these operations to bags, and which properties 
of these set operations fail for bags. 

This work grew out of a study of the semantics of 
bag operations in OSQL, the query language for Iris 
[5]. However, we have presented the results in a gen- 
eral form to be applicable to most data models which 
support bags. We would like to develop a formal ba- 
sis for query optimization for data models which are 
based on bags. 

The notion of using algebraic transformations for 
query optimization was originally developed for the re- 
lational algebra. A survey of these techniques for the 
rclat,ional algebra can be found in [18]. Given some 
expression in t,he relationa. algebra, the idea is to try 
to apply algebraic transformation rules to the expres- 
sion to find an equivalent expression which is cheaper 
to evaluate. 

The key point regarding union, intersection, and 
complement for sets is that these operations satisfy the 
axioms of a boolean algebra. A complete list of these 
axioms may be found in any one of many texts on the 
subject, for example (Ill. The transformation rules 
that can be applied to an expression involving union, 
intersection, and complement (or difference) are pre- 
cisely the algebraic identities of a boolean algebra (for 
example, DeMorgan’s Laws). Thus, when extending 
union, int,ersection, and difference to bags, we would 
like to preserve (as much as is possible) the boolean 
algebra structure. 

There has been some previous research in extending 
the set operations union, intersection and difference to 
bags, as well as in developing techniques for algebraic 
query optimization for dat,a models supporting bags. 
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Dayal et al. [4] define the relational operators for bags, 2 Algebraic Properties of Bags 
and present some of the usual algebraic identities for 
sets. They define a framework for query optimization, 2.1 Preliminaries 
and state that the algebraic identities applicable to sets 
will continue to hold for bags, since union, intersection, In this section, we formalize some of the algebraic 
and difference for bags form a boolean algchra. properties of bags. In particular we define bag opera- 

We show that in general, no boolean algebra struc- tions which correspond to the usual set operations of 

ture is available for bags if it is desired that the hag op- union, intersection, difference, and boolean selection, 

erations have their standard semantics when restricted and investigate to what extent the typical algebraic 

to sets. In particular, the operations defined in (41 for identities of these set operations are obeyed. Various 

bag union, intersection, and difference do not form a ideas for defining the semantics of these bag opera- 

boolean algebra. tions have been proposed [4, 7, 12, 13, 14, 191. Our 

However, we can define the operations so t#hat. many 
definitions agree with those in [4]. 

of these set-theoretic identities (in particular, many of 
We begin with the premise that there is a count- 

those that are relevant to query optimization) continue 
able set, of primitive objects, Obj, and a set of atomic 

to hold for bags. We state and prove a number of 
predicates, Atom, defined on Obj. Let the set Pred 

such results, and derive some other properties of bag 
consist of the quantifier-free predicates that may be 

operations which have no set-theoretic counterpart. In 
built up from Atom. That is, Pred is the smallest 

addition, we discuss some of the properties of boolean 
set of predicates which includes the atomic predicates, 

algebras that fail for bags. 
and is closed under the propositional connectives. We 
assume t#hat there are no function svmbols, so that the 

Vandenberg and Dewitt [19] develop a framework 
for algebraic query optimization for an object-orient,ed 
data model which supports bags. In this work, a large 
number of specific algebraic transformation rules are 
presented, and are used for query transformation. The 
emphasis of this work is on rules for manipulating 
the instances of types in a super-typr/srih-t.ype la.1 tice, 
wit,h complex type construct,ors. Union, int,ersPction, 
and difference are defined for bags, and some transfor- 
mation rules for these operations are given. Thus, our 
results complement this work. 

The work of Mumick et al. [12, 13, 141 extends the 
usual set-theoretic operations to bags, and studies t.he 
semantics of recursion and a.ggregat,es with bag seman- 
tics. However, while the primitive operations, union, 
intersection, and difference are defined, no formal re- 
sults regarding these operations are given. 

On another track, Klausner et al. [8] take the view 
that, with regard to the relational model, support for 
bags can be handled by viewing a relation with dupli- 
cates as only a part of a (set,-t.lieoretic) relat#ion, keep- 
ing invisible additional attribut,es which guarant.ee the 
uniqueness of all the tuples in the relat,ion. While this 
technique may resolve at least some of the problems 
associated with bags for the relational model, it does 
not provide an adequate basis for query optimization 
for other data models which might be based on bags. 

only t,erms on which predicates are evaluated are either 
variables or the elements of Obj. 

We deliberately have not specified the particular 
atomic predicates in order that the results presented 
apply for any particular set Atom that might be cho- 
sen. For the remainder of the paper, we assume that, 
unless ot,herwise noted, any pa.rticular set or bag con- 
sist.s of elements chosen from Obj, and that any pred- 
ica.te is in Pred. 

Note that the construction of a new predicate from 
atomic predicates may yield a result of greater ar- 
ity. For example, if $1(z) is the atom (Z = 5), 
and &(y) is the atom (y = S), then we have that 
cp(t, y) = Q!J~(z) V $2(y) is a predicate of arity 2. From 
now on we assume that all variables are typeless. For 
notational convenience we sometimes write $(z) when 
x satisfies $, even if $J has arity greater than 1. In case 
11 has arity greater than 1, it is assumed that 2: is a 
tuple variable with the correct arity. 

A bag is a collection of elements that may contain 
duplicates. We write x E B when the bag B contains 
z. To writ,e down a represent,ation of some finite bag, 
we use the notation [/is2 of elements]. For example, 
[a!a,a,b,b] is the bag with 3 copies of a and 2 copies of 
b. 

In [4], [7], and [13] it is noted that, while a set is 
characterized by its membership, a bag is characterized 
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by the multiplicity of its elements. We will use the infix For transitivity, suppose A C B C C. Then we have 
notation from [7] for the multiplicity of element,s of a that Vx E A, (z EE A) < (z EE B), and Vz E B, 
bag. Specifically, for a bag B, we write r EE B for (z EE B) < (z EE C). Since the containments are 
the number of copies of 2 in B. For our purposes, 
it will suffice only to consider bags having countable 

strict, we have that 3x E A, (z EE A) < (z EE B), 
and 32 E 8, (z EE B) < (z EE C). It follows that 

multiplicities of elements. We write z EE B = w if Vx E A, (t EE A) 5 (I EE C) and that 3a E A, 
there are infinitely many copies of z in B. The rllles (x EE A) < (x EE C), so A C C, which completes the 
for evaluating arithmetic expressions involving w are proof. 
given in the appendix. I 

For most cases, finite bags suffice. It is necessary 
to consider bags with countably infinite multiplicities 
so that the results presented are applicable to alge- 
bras containing finite bags with arbitrarily large finite 
multiplicities (where it is required t,hat, increasing se- 
quences of finite bags have least upper bounds). Read- 
ers who so choose may ignore the existence of infinite 
bags for the remainder of the paper without significant 
loss of content. 

2.2 Definitions and Properties of Bag 
Operations 

Now we define the other bag operations. The no- 
tions of largest and smallest in the following definitions 
refer to largest and smallest with respect to the par- 
tial order, C. Let A and B be bags, and $ a predicate 
whose domain includes the elements of A. 

A u B dsf the smallest bag C such that 

A c C and B s C. 

AnB %f the largest bag C such that 

C C A and C 2 B. 

We consider the set theoretic operations union, inter- 
section, difference, as well as boolean selection, and use 
the familiar notations: a E A for membership, A c B 
and A E B for containment, AU B for union, An B for 
intersection, A \ B for difference, -A for complement, 
P(d) for power-set, and b&(A) for boolean sclect,ion. 

With the exception of set) complement, we can ex- 
tend the above set operations to bags in a natural way. 
We will show that no suitable definition of bag comple- 
ment exists. We are also interested in some operations 
whose restrictions to sets are not standard set opera- 
tions. 

6(B) ‘%’ {XIX E B}. 

A\B %f the bag C s A such that Vx E Obj, 

XEEC = max( (x EE A) - (z EE B), 0). 

?‘(A) gf {B[ Bc A}. 

First we define the notion of bag containment. Sup- 
pose A and B are bags. 

adA) d&f the bag C such that Vx E Obj 

x EE c = x EE A if $(x) 

XEEC = 0 otherwise. 

A u B dsf the bag C such that Vx E Obj 

A $& B & Vz E A, (z EE A) 5 (z EE B). 

AcB 4% ACBandAfB. 

In either case, we call A a subbag of B. 

x EE c = (x EE A) + (x EE B). 

We will call 6 the duplicate elimination function, and 

Theorem 1 Given any se2 B of bags, C ts a parlial 

order relation on t3. 

Proof: It is necessary to show that C is irreflexive 
and transitive. Irreflexivity is immediate from the def- 

use the name bag concatenation for U. The definitions 
for U and n will yield the usual set union and inter- 
section when restricted to sets. However, we need to 
show that these operations are well-defined for bags. 
That is, we would like to show that there is a unique 
bag satisfying the definition of A U B and A n B for 
some fixed bags A and B. This is the content of the 

inition of C. following result. 
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Theorem 2 Let A, 

ZGAUB 

2EcAnB 
ACCand BEC 
CC_AandCEB 

B, and C be bags. Theorem 3 Given any bags A and B, and predicates 

= max(z EE A, x EE B) (1) 
$ and cp whose domains include ii(A), we have: 

= min(z EE A, x EE B) (2) ~,wo(A) = u+,(A) u uv(A) (1) 
=+. AuBEC (3) uwlp(A) = ud4 n uv(A) (2) 

a CsAnB (4) ~44 = A\ u,(A) (3) 

Proof: These follow from the definition of U and 
Nad-9) = ud6(4) (4) 

fl. For (l), let Y be the bag such that Vz E Obj, 
x EE u+,(A) = (x EE A) *(x EE a&(A))) (5) 

x EE Y = max(x EE A,1: EE B). It follows t,hat AUB = (A\B)UB (6) 
A C Y and B C‘Y. We need to show that Y is the 
smallest such bag. Suppose not. Then there is some 
bag X such that A E X, B C X, but it is not the 

AUB = (AuB)\(AnB) (7) 
AnB = A\(A\B) (8) 

case that Y C X. Thus a EE X < a EE Y for some 
AnB = (AuB)\(AuB) o-9 

a. By the definition of Y, either a EC X < a EE A or P roof: 
a EE X < a EE B, contradicting A 2 X and B & X. 

The proofs of these identities follow from sim- 

The proof of (2) is similar to (1). Let Y be t,he bag 
ple arithmetic on the bag multiplicity functions. 

such that b”z E Obj, E EE Y = min(z EE A,z EE B). 
, 

It follows that Y E A and Y C B. We need t,o show 
Now we discuss the importance of the above prop- 

that Y is the largest such bag. Suppose not. Then 
erties. First note that (l), (2), (3) above imply that 

there is some bag X such that X E A, X 2 B, but it 
the semantics of V, A, and 1 with respect to boolean 

is not the case that X C Y. Thus a EE X > a EC Y 
selection correspond to U, n, and \, respectively. 

for some a. From the definition of Y, we have that 
Item (5) is a formal way of saying that the bag selec- 

either a EE X > a EE A or a EE X > o EE R, 
tion operator has what we will refer to as all-or-nothing 

contradicting X 2 A and X E R. 
semantics. In accor;d with the definition on page 3, if 

For (3), we have 
R is a hag, then u,(B) will select all elements of B 
which satisfy the predicate cp, If some c E B does not 

ACCandBGC satisfy (p, then it is not selected. Either all copies of 

=+ (x EEA) < (x EE C) 
some 2 E B are selected, or none are. 

Finally, (6) through (9) demonstrate that u and \ 
and (z EE B) < (x EE C) are sufficient to define U and ft. It is natural to ask the 

* max(x EE A, x EE B) < (x EE C) converse question, that is, can u or \ be constructed 

=+AUBcC. out of the remaining operations? The following two 
results give this a negative answer. 

For (4), we have 
Theorem 4 There is no bag expression involving the 

CGA andCEB symbols {A,B,u,n,\} which is equivalent to AU B for 

+ (x EE C) < (x EE A) all bags A and B. 

and (z EE C) 5 (z EE B) Proof: We first claim that if E is the value of any well- 
3 (z EE C) 5 min(x EE A,2 EE B) formed bag expression constructed from the symbols 

+CCAnB, {A,B,U,n,\} then E E AUB. This claim is established 
by induction on the number of U,n, or \ operators 

and we have proved the theorem. occurring in E. As a basis, suppose E haa 0 of the 

I u,n, or \ operators. Then either E = A or E = B, 
The following result establishes for some of t,he bag and certainly E C A U B. 

operations, properties which play a rent,ral role in the For the inductive step, let E be an expression having 
design of a query language having hag srmant,ics. Note exactly n operat.ors, where n > 0, and suppose that 
that some of these identities are stated in [4] a.nd [19]. the claim is true for expressions having fewer than n 
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operators. Then E has one of the following forms: every bag A and B. Then E = A \ B, and by the 

E = El uEz (I) 
claim, A n B C A \ B. If A = [z] and B = [r], then 

E = J% n E2 

[z] = A n B E A \ B = 0, a contradiction, and the 
(2) theorem follows. 

E = E1\E2. (3) I 
The number of operators in either El or E2 is less 

The implication of these results is that LI and \ are 

tha.n n., so, by the induction hypot,hesis, El C A U R 
strictly more general operations than U and n. Note 

and Ez 2 AUB. But then, it immediately follows.that. 
that some query languages, for example SQL [2], use 

EIUEZ C AuB, EInE2 C AuB, and El\E2 E AUB, 
the keyword ‘union’ for the operator U. We have cho- 

which establishes the claim. 
sen to call the U operation ‘union’ since this opera- 

To complete the proof, suppose, to the contrary, that 
tor shares the s;qme algebraic properties as the stan- 

there was an expression, E, constructed from the sym- 
dard set-theoretic union, and in fact is the usual set- 

bols {A,B,U,n,\}, which was equivalent to AU B for 
theoretic union when restricted to sets. However, The- 

all bags A and B. Then E = ALI B, and by t,he claim, 
orems 4 and 5 imply that a query language which sup- 

AU B 2 AU B. This leads to a cont’radiction. Choose 
ports bag concatenation (the U operator) as well as 

any bags A and B such that An B # 0, in which Case 
union, ‘int,ersection, and difference, is more powerful 

A U B C A U B is false, and the theorem follows. 
than a langua,ge supporting only union, intersection, 
and difference. 

I Now we discuss bag difference. The bag difference 
Theorem 5 There is no bag expression involving the operator is just the usual notion of set difference when 
symbols {A, B,U,n,U} which is equivalent to A \ B for restricted to sets. However, taking 8ny bag that is not 

all bugs A and B. a set as a universe, this operator does not induce a 

Proof: This result is established with a proof very 
complement operator relative to this universe. In fact, 

similar t.o that for Theorem 4. As before, we begin 
we ca.n demonst,rate a stronger result, that no such 

with an auxiliary claim. If E is the value of any well- 
operator exists. Thus, looking for a different semantics 
f 

formed bag expression constructed from the symbols 
or ag I b d’ff erence cannot resolve this problem. 

{A,B,U,n,L.I} then AnB c E. This claim is established 
The properties that a complement operator must 

by induction on the number of u,n, or U operators 
satisfy are a subset of the axioms of a boolean alge- 
b ra. 

occurring in E. As a ba,sis, suppose E has 0 of t,hp 
If we restrict the axioms of a boolean algebra to 

u,n, or u operators. Then eitjher E = A or E = B, 
t,hose in which complement is not referenced, then we 

and certainly An B 2 E. 
have t.he axioms of a distributive lattice. That is, if 

For the inductive step, let E be an expression having 
(P(U),u,n,-) is a boolean algebra (with unit U, and 

exactly n operators, where n > 0, and suppose that 
zerO @), then (P(V),u,n) is a distributive lattice, 

the claim is true for expressions having fewer than n 
Given a bag U, we would like to have some suit- 

is a 
operators. Then E has one of t’he following forms: 

able unary operator, _ such that (p(u),u n,-) 

boolean algebra, with &it U, and zero 0. ‘What we 

E = El u E2 

E = 4 n ~92 

E = EIUE2. 

(1) 
can show is that, while a distributive lattice structure 

(2) 
is available on P(V), there is no unary operator which 

(3) 
extends the structure to a boolean algebra. We estab- 
lish these facts in the following two theorems. 

The number of operators in either EI or E2 is less Theorem 6 (p(lr),u,n) is a distributive lattice in- 

than n, so, by the induction hypothesis, A n B s El duced 
and An B C E2, But then, it immediately follows t,hat 

by the partial order C. We will call it the subbag 
/allice. 

AnB c EluE2, AnB c E,n&. a.nd AnB 2 E1UE2, 
which establishes the claim. Proof: The operations u and n were defined, respec- 

To complete the proof, suppose, to the contrary, that’ tively, as the least upper bound and greatest lower 
there was an expression, E, constructed from the sym- bound of the partial order, C. Thus, to establish that, 
bols {A,B,U,n,U}, which was equivalent to A \ B for given some arbitrary bag, U, (P(U),U,n) is the lattice 
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induced by the partial order C, it sufkes to show that 
P(U) is closed with respect to U and n. This was al- 
ready shown in Theorem 2, taking C in iterns (3) and 
(4) to be U. 

It remains to be shown that U distributes over n, 
and n distributes over U, 
arithmet,ic. Fix z. Then: 

~:EEAu(B~C) 

= max(z EE A, min(z EE 

= min(max(a: EE A, t EE 

which follow from simple 

B, I EE C)) 

B), max(z EE A, I EE C)) 

= ZEE(AUB)~(AUC). 

And similarly, we have: 

zEEAn(BUC) 

= minjr EE A, max(r EE B, x EE C) 

= max(min(z EE A, I EE B), min(z EE A, t EE C)) 

=zEE(AnB)U(AnC). 

I 

Theorem 7 If U is a bag which is not a set, then 
there is no unary operator, -, that cnn be defined on 
P(IJ) such ihat (F(U),lJ,n,-) is a hoolenn n/,qrhra. 

Proof: The axioms that a unary operat.or, -. rntlst 
satisfy t.o be a complement are: 

VA E P(U), AU (-A) = U 

VAEP(U), An(-A) = 0. 

Let U be a bag which is not a set,. Then there is some 
z E U such that z EE U > 1. Fix A c M an arbit,rary 
bag such that 0 < (z EE A) < (x EE U). ([xl E ‘P(U) 
is such a bag, so such A always exist). 

Now assume, to the contrary of the statement of the 
theorem, that there is a unary operator, -, satisfying 
the above axioms for a complement. Applying the ax- 
ioms t,o A, we have: AU (-A) = CT which implies t,hat 
(.z EE (-A)) = (z EE V). Similarly, A n (-A) = 0 
implies that (z EE (-A)) = 0. Thus (2 EE U) = 0, 
contradicting that (X EE U) > 1. 
I 

Since (P(u),u,n) is a distributive lattice, all of the 
usual algebraic properties of U and n are sat,isfied by 

Pmceedings of the 17th International 
Conference on Very Large Data Bases 

their ext,ensions to bags. However, since it is observed 
that bag difference does not generate a proper comple- 
ment operator, it must be that some of the propert,ies 
of a boolean algebra fail for bags. We will first give an 
example of an identity for sets that fails for bags, and 
then try to understand when bag difference behaves 
like set difference. 

Suppose A, B, and C are sets. Then we have the 
following identity. 

A\(BuC) = An(BuC) = An(znc) 
= (AnB)nC = (A\B)\C. 

Here we have used the equivalence of set difference 
and the intersection with the complement, DeMorgan’s 
law, a.nd the associativity of intersection. The point is, 
that the above identities hold for any sets A, B, and 
C. 

However, it may be that A \ (B U C) # (A \ B) \ C 
when A, B, and C are bags. Here is a simple example. 

A = [t,t,z:,z] 

B = [+,x1 

c = [z] 

A\(BuC) = [+,+I 

(A\B)\C = bl- 
We would like to know which transformations of set 

expressions are valid for bags, since these are useful for 
query optimization. What we will show is that expres- 
sions involving U, n, and \ exhibit the same behavior 
for bags as for sets either when these operat.ors arise 
from selection predicates, or when the operands are 
bags which are formed by applying a boolean selection 
to some universal bag. 

Looking back at the above example, where we have 
A = [x, c,z, z], B = [z, z] and C = [z], we see that 
there is no predicat,e 11: such that B = F,J,(A). This 
is because of the all-or-nothing semantics- it is not 
possible to select two copies of z. Either all four copies 
are selected, or none are selected. 

The following result is suggestive. 

Theorem 8 Let El and E2 be two bag operators con- 
structed as a composition of u operators. That is, 

El = uv, 0 up, 0 . .o ulp, 

Ez = Util 0 U& 0 * ’ * 0 u** 

Then, iffor every set A, El(A) = &(A), then also 
El(B) = Ez(B) for every bag B. 
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Proof: We establish the all-or-nothing property of S(u) dGf {A c u : (3$1 E Pred)(A = c4(u)}. 
expressions having several composed selections by in- 
duction on the length of the expression. That is, if Then we would like to define a boolean algebra struc- 

E = ~4, o u+? o ’ o ~4, is such an expression, t.hen ture on S(U). For A E S(U), let (-A) dgf U \ A. On 
we claim that for any bag, B, we have: S(U), bag difference does indeed generate a proper 

IEEE(B) = (z EE B) * (2 EE E(b(B))). 
complement operator, as the following result eluci- 
dates. 

As a basis for the induction take m = 1. Then the 
desired property was established in Theorem 3, item Theorem 9 (s(~),U,n,-) is a boolean algebra. 

(5). 
For the inductive step, fix m > 1 and suppose t’hat 

the result holds for expressions having length rn, - 1. 
Then if E = CYT,+~ o ~4, o . . a o c#,,, , we have t*hat: 

I EE E(B) = z EE adI o u+~ o a “0 ud,(B) 

= 2 EE a+, 0 a+, 0 * ’ ’ 0 u&+, (a+, (B)) 

= (x EE U&(B)) * (2 EE UdJl 0 * * 0 ug,-, (NUd, B))) 

= (2 EE U&(B)) * (x EE uq51 0 ’ *. 0 udJ,-, (u4,6(B))) 

= (2 EE ud,(B)) * (x EE E(b(B))) 

Proof: Rather than checking all of the axioms of a 
boolean algebra,, it will suffice to show that (S(V),U,n) 
is a sub-lattice of (P(U),U,n), and verify the axioms 
for complement. To this end, it suffices to show that 
S(U) is closed under U, n, and -, and that - satisfies 
the axioms for a complement operator. 

Let A and B be subbags of U such that A = u+(U) 
for some $J, and B = bV (U) for some cp. Then: 

AuB = utiL(U) u %4U) = qvqJ(U) E S(U) 
AnB = u+(u) n MO = UW(W E W) 
(-A) = U \ A = U \ ati = u,,(U) E S(U). 

= (z EE B) *(z EE ~4, (6(B))) * (z EE E(6(B))) Now checking the complement axioms, we see that: 

= (z EE B) * (z EE E(6(B))), Au(-A) = u+(U) u u+(U) = U~“~~(U) = u 
An(-A) = U*(U) n G&J) = Us,+ = 0, 

which establishes the claim. 
Now if El and Ez are as in the statement of the and we have established the theorem. 

theorem, then for any bag B, I 

z EE El(B) = (x EE B) * (z EE &(6(B))) 
z EE Ez(B) = (2 EE B) * (z EE &(6(B))). 3 Conclusions 

But 6(B) is a. set, so E1(5(13)) = Ep(b(B)), and the 
theorem follows. 
I 

Theorem 8 states that, with respect to selection op- 
erations, bags behave like sets. A selection expres- 
sion involving bags may be transformed into a log- 
ically equivalent expression either hy cascading t.he 
predicat,ea, or by substituting logirally equivalent prod- 
icates. In fact, we can demonst,rat,e a more basic 
result- t,hat the operations of union, intersection, and 
difference for bags give rise to a boolean algebra when 
the operations arise from boolean selection. 

Given a bag, U, we will define a structure, S(U), 
analogous to the power set of U, hut conta.ining only 
subbags obtained by applying a selection operat#or t’o 
u. 

In summary, we have extended union, intersection, dif- 
ference, and boolean selection to bags, giving them a 
semantics which agrees with the usual set-theoretic se- 
mantics when the operands are sets. In addition, we 
have defined and studied the notion of bag concatena- 
tion. 

We have observed that union and intersection for 
bags form a distributive lattice. Thus, the usual al- 
gebraic properties of these set operations continue to 
hold for bags. Further, union and intersection corre- 
spond, respectively, to disjunction and conjunction for 
boolean selection. 

We have also shown that there is no unary oper- 
at,or available i,o play the role of a complement, so 
t,hat union, intrrscction and the complement would 
form a boolean l;lgebra. However, we have defined a 
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bag difference operator that conforms to set difference 
when applied to sets, and corresponds to negation for 
boolean selection over bags. 

While showing that some of t.he algebraic propcrt,ies 
of sets fail for bags, we have shown t,hat the collect,ion 
of bags which are the result of a boolean selection ap- 
plied to some universal bag forms a boolean algebra 
with respect to union, intersection, and difference. In 
this case, the usual algebraic properties for sets will 
hold, and in particular, the algebraic transformations 
that are applied to sets for query optimization continue 

to be valid. 

4 Appendix 

Here we extend the usual arithmetic functions to op- 
erat#e on w. For any natural number n, 

w+n = n-+-w = w 

w-n = w 

w+w = w 

w-w = 0 

w*n = n*w = w 

max(w,n) = max(n,w) = w 

min(w, ?a) = min(n,w) = n 

max(w,w) = min(w, w) = w 
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