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ABSTRACT 

Testing a database engine has been and continues to be a 

challenging task. The space of possible SQL queries along with 

their possible access paths is practically unbounded. Moreover, 

this space is continuously increasing in size as the feature set of 

modern DBMS systems expands with every product release. To 

tackle these problems, random query generator tools have been 

used to create large numbers of test cases. While such test case 

generators enable the creation of complex and syntactically 

correct SQL queries, they do not guarantee that the queries 

produced return results or exercise desired DBMS components. 

Very often the generated queries contain logical contradictions, 

- at the query optimization layer, 

failing to exercise the lower layers of the database engine (query 

optimization, query execution, access methods, etc.)  

In this paper we present a random test case generation technique, 

which provides solutions to the above problems. Our technique 

utilizes execution feedback, obtained from the DBMS under test, 

in order to guide the test generation process toward specific 

DBMS subcomponents and rarely exercised code paths. Test 

cases are created incrementally using a genetic approach, which 

synthesizes query characteristics that are of interest for the 

purposes of test coverage. Our experiments indicate that our 

technique can outperform other methods of random testing in 

terms of efficiency and code coverage. We also provide 

experimental results which show that the use of execution 

feedback improves code coverage of specific DBMS components. 

Finally, we share our experiences gained from using this testing 

approach during the development cycles of Microsoft SQL 

Server. 

1. INTRODUCTION 
Modern database servers are immensely large and complex 

software systems. The expressive power of the SQL language 

combined with the large number of optimization and execution 

strategies that database systems (DBMS) support today result in a 

test matrix with practically infinite number of dimensions.  

Every major DBMS product release contains several dozens of 

new features which result in an ever-increasing number of test 

dimensions. At the same time, as hardware technology advances 

and becomes more affordable, new database applications include 

more complicated queries which process increasingly larger 

amounts of data. For instance, many decision support applications 

allow the user to define complex queries via query-builder user 

interfaces. Such SQL queries tend to be complex and large in size. 

All these factors make the testing of a DBMS an overwhelming 

task. 

A decade ago functional testing of database systems relied mainly 

on large test suites consisting of thousands of hand-crafted tests. 

These tests were created using partitioning and sampling methods 

over a large number dimensions in the test matrix. Additionally, 

thousands of queries collected using SQL traces from existing 

customer applications were also used to prove result correctness 

and to ensure backward compatibility. Since then, it has become 

apparent that such testing techniques are neither scalable nor 

sustainable solutions. The cost of developing new test suites and 

extending the existing ones is increasing as DBMS become larger 

and more complex. During the development of SQL Server we 

saw several cases in which the cost of test development for a new 

feature significantly exceeded the cost of code development. In 

addition, there have been a number of cases that indicated that 

traditional testing techniques on their own are no longer effective; 

defects were discovered long after they were originally 

introduced, simply because they involved a rare combination of 

events or product features.  

In order to overcome some of the above problems and limitations 

of traditional test engineering methods, software quality assurance 

groups responsible for complex software systems have started 

employing stochastic testing techniques [14]. These techniques 

involve the creation of stochastic models that encapsulate the 

expected behavior of the system under test, and the usage of these 

models to create a large number of test cases. In the domain of 

database systems an example of such a stochastic test system is 

RAGS [13]. RAGS uses a stochastic parse tree to create complex 

SQL statements that can be utilized as test cases in various ways. 

Our experience with using RAGS for past releases of SQL Server 

is that the more complex the generated queries become, the less 

likely it is that they return results. While such queries can still be 
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useful tests, especially for testing the language parser, they often 

terminate early during the phases of optimization or execution, 

e.g. due to logical contradictions in predicates, or empty data 

intersections. This fact makes these queries less interesting for 

testing the lower layers of a DBMS such as the query execution, 

and access methods. Another inherent limitation of random test 

case generators like RAGS is that it is hard to utilize them when 

test coverage of specific database components is required. 

Although controlling the test generation process is possible 

mainly by controlling the SQL syntax and its complexity, this 

alone is not enough to exercise specific DBMS components in the 

desired fashion. 

Motivated from our experience using RAGS during the 

development of SQL Server, we have developed a new system for 

creating random test cases for testing DBMS and specifically the 

query processor component.  

Our approach enables the creation of complex queries which 

always return results and contain a set of desired characteristics. 

These characteristics describe the effect that the execution of the 

query has on the DBMS, in terms of code coverage or changes in 

its internal state. We call those characteristics genes. The 

definition of genes is based on information collected from the 

DBMS after a query is executed. We refer to such information as 

execution feedback. Different sources of information can be used 

as execution feedback and hence as a basis for query genes, e.g. 

query results, query plan, traces that expose internal DBMS state, 

etc. Execution feedback can be customized to meet certain testing 

goals. For example if we are interested in testing different join 

implementations, we could use the query plan as execution 

feedback and the physical join operators as interesting query 

genes. 

Our query generation technique resembles a genetic algorithm. 

Genetic algorithms are evolutionary algorithms which can be used 

as a general purpose problem solving technique for various types 

of problems. A basic trait of evolutionary algorithms is a set of 

individuals that evolve according to some rules of selection. 

Evolution takes place using genetic operations like mutation and 

recombination. In a similar fashion our algorithm creates new 

queries by mutating and synthesizing queries with interesting gene 

combinations. A fitness function is used to determine whether a 

newly created query will be used further in the generation process 

to create more queries. The fitness function can be defined in 

ways that reflect specific testing goals, e.g. testing of particular 

DMBS components, or testing of interactions between particular 

subcomponents. 

During the development and test cycle of SQL Server 2005 our 

technique significantly outperformed RAGS in number of product 

defects found. In this paper we present results from controlled 

experiments, which show that our technique outperforms RAGS 

in terms of code coverage, as well. Additionally, our experiments 

indicate that the use of feedback increases the test coverage of 

internal DBMS components when compared to purely random 

testing. 

The remainder of paper is organized as follows: In section 2 we 

present some of the motivating problems related to query 

processor testing. In section 3 we provide some information about 

how random testing is used in SQL Server. We continue with a 

description of the design and the mechanics of our test case 

generation system in section 4. Section 5 includes experimental 

results from three different variations of our test generation 

technique and provides an evaluation based on code coverage 

metrics. In sections 6 and 7 we review existing related work and 

discuss some possible future extensions to our method. Finally, 

we conclude in section 8. 

2. QUERY PROCESSOR TESTING  
There are several aspects of DBMS testing that lend themselves to 

the use of random testing techniques. In this section we will 

examine some of those related to query processor testing. 

Although testing the query processor involves multiple testing 

methods, e.g. performance, reliability, stress, tuning and 

calibration, etc., for the purposes of this paper we are only 

interested in functional testing; that is testing which aims to 

ensure the functional correctness of the system. 

2.1 Infinite input space 
The practically infinite space of the possible query statements, 

database schema, data distributions, large number of potential 

query plan choices, and execution and runtime conditions, makes 

exhaustive testing impossible. Random testing is a particularly 

attractive solution for tackling such testing problems (section 6 

includes some applications of random testing for tackling large 

input spaces).  

2.2 Dynamic code paths  
Two widely used metrics for measuring testing effectiveness are 

block and arc code coverage. These code coverage metrics aim to 

ensure that the code is exercised by tests 

necessarily reflect the context under which the code executes. For 

example class and interface inheritance allows object methods to 

be potentially called by multiple caller methods. Specifically, the 

concepts of polymorphism and dynamic binding which can be 

found in all modern object-oriented languages allow dynamic 

code paths which can be formed during runtime. It is desirable to 

test such code paths in all possible contexts. This is a known 

problem in the domain of object-oriented software testing [1].  

SQL Server  query execution component is based on an abstract 

iterator interface similar to the Volcano [9]. According to this 

model the query execution tree is built from physical operators 

which support a standard iterator1 interface. These iterators can be 

thought as stand-alone building blocks for assembling execution 

trees. Execution trees can become arbitrarily complex, creating a 

vast space of caller-callee combinations that need to be tested. In 

addition, each physical operator may contain different 

implementations or alternative code paths. For example a Hash 

Join may use main memory or if the build side of 

the join does not fit in memory.  

Similar types of dynamic code paths can found throughout the 

query optimizer component. 

2.1 Difficult to test in isolation 
It is a standard practice to divide large software systems into 

smaller more manageable subcomponents. The separation into 

subcomponents also allows unit-testing at the subcomponent 

level. Unit-

development practices. 

                                                                 
1 In this paper we will use the terms iterators and physical 

operators interchangeably. 
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Although the boundaries between the main components of a 

DBMS are well-defined and understood [4], i.e. language parsing, 

binding, optimization, execution, access methods, etc., testing 

these components in isolation is hard. Main database components 

assume that their input is validated by the previous component 

higher in the stack. Therefore, even though these components and 

their subcomponents may be well-architected with clear 

interfaces, the contracts between these interfaces are difficult to 

verify independently. For example, the primary input to the query 

optimizer is a tree of logical operators which is typically provided 

after binding takes place. It is easy to craft a trivial case of such a 

tree programmatically and use it as a unit test for the query 

optimizer directly, without having to go through the language 

parsing and binding layers. However, for non-trivial cases it very 

quickly becomes hard to verify that the semantics of the unit test 

are correct. If such a test case uncovers a defect in the query 

optimizer the test case itself becomes an equally probable suspect 

for investigation.  

For the same reasons, building detailed stochastic test models for 

a complex system such as the query processor is extremely hard to 

do beyond a few well- contained areas and subcomponents.   

Therefore in practice the development of end-to-end tests (at SQL 

the language level) is often the only practical option. 

3. RANDOM TESTING IN SQL SERVER 
Random testing has been an integral part of the testing process of 

SQL Server since RAGS was first used during the development of 

SQL Server 7.0. RAGS has been invaluable for testing the SQL 

parser and compiler components that underwent significant 

restructuring at the subsequent release (SQL Server 2000). Since 

then, several other methods of random testing have been explored 

and used in parallel with regular testing techniques.  

According to our experience, random testing provides significant 

benefits when used in parallel with traditional test development. 

First, random testing helps in exploring code paths which are not 

easily accessible without the development of very complex test 

cases. In most cases the manual development and maintenance of 

such test cases is costly.  

Second, random test case generators have been useful tools for 

smoke testing; that is quick sanity testing in order to find 

relatively simple bugs, which were easily exposed by the volume 

of random queries that are generated. This scenario is most useful 

in providing an initial quality bar that has to be met before we 

begin investing manpower on developing, running and verifying 

manually written tests. As well, this helped us screen risky code 

changes by ensuring that at least the fundamentals were in place. 

In some cases we found that extending the query generator tools 

to support a new product feature prior to the development of 

regular test cases, allowed us to find some of the non-trivial 

defects earlier than usual. That allowed the investigation and 

resolution of these defects to take place in parallel with traditional 

test development. Moreover, since traditional test development is 

typically done in incremental fashion, the more complex defects 

are not found until the very end of the test development cycle, a 

fact that oftentimes introduces risk to the project schedule. 

Finally, we made extensive use of random test generation methods 

for generating regression test cases. We implemented a solution 

which allows the archiving of each generated query in a data 

warehouse along with its characteristics. This enables us to do 

data mining over the data warehouse in order to choose queries 

that fit our needs for various regression testing projects.   

The technique that we present in this paper is similar to RAGS 

since it involves the generation of SQL queries, which can be 

used to generate other types of SQL statements and specific test 

cases. 

Our technique was first developed and deployed as a testing tool 

for SQL Server 2005. In its early form, the tool was used along 

with RAGS on an ad-hoc basis to test changes to the query 

processor. Later we used different variations of feedback for each 

new feature that involved changes in the query processing layer. 

During that time, we observed that our test case generator 

consistently outperformed RAGS, and by the end of the product 

development cycle had discovered almost ten times more defects. 

The defects found by random generator tools have been a 

substantial percentage of the total functional defects found in the 

query processor component2. In their vast majority these defects 

-check mechanisms (assert 

conditions and debug-only code).  

4. METHOD 
Our technique utilizes a simple genetic algorithm to create new 

SQL statements by combining or mutating existing ones with 

known interesting characteristics/genes. Certain genes are 

considered to be interesting if they support the desired test 

coverage goals. In this section we describe architecture of the test 

system and the mechanics of the test generation process. 

4.1 Test system Architecture 
The architecture of our test generation system is displayed in 

Figure 1.   

 

 

Figure 1. The test generation system 

The Test Case Generator is the primary query generation 

component of the system. It analyzes the database schemas in 

order to extract tables, columns, views, functions, and other items 

which can be used for query generation. It generates queries on 

                                                                 
2 Specific information related to bug counts is proprietary and 

cannot be disclosed.  
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top of this schema and processes execution feedback3 from these 

queries in order to evaluate their effectiveness for future use. 

The Test Case Executor acts as a connection layer between the 

Test Case Generator and the DBMS Server Under Test (SUT). It 

is used to execute the generated queries against the server under 

test. 

The Reference Server is a trusted reference DBMS which is used 

by the test case executor to verify correctness of query results. 

Results are compared against this reference server, and differences 

are reported for investigation. This part of the process applies to 

queries that produce deterministic results. 

The Test Logging Component is used to archive queries and 

associated information into a data warehouse (Test Case Storage 

System) for future use, which can include the assembly of 

regression test suites. 

4.2 Initialization 
During the initialization phase the query generator creates a first 

set of basic queries which are used to populate the best query 

pool. The best query pool contains the query population to be 

used by the genetic algorithm. The query generator reads the 

database schema of all the active databases on the server under 

test (SUT) and randomly chooses up to k tables or views. It then 

creates the initial population of queries as simple SELECT 

statements. At this stage the generated SELECT statements are 

trivial; they simply project a randomly chosen number of table 

columns. 

4.3 SQL Statement Reproduction 
The creation of a new query statement is done by mutating or 

combining selected queries from the best query pool. The query 

generator uses a variety of methods: query mutation, query 

simplification, synthesis using join, synthesis using sub-query and 

synthesis using union. A random decision is made about which 

method is to be used and for any parameters required by each 

method. Figure 2 shows an example of a query based on the 

TPCH database schema which is generated after 4 iterations of the 

genetic process.  

4.3.1 Query mutation 
A query is mutated into a new query using a one or more of the 

following methods, chosen randomly: 

 Modification of the projection list, e.g.  add/remove one 

or more columns or expressions, replace a column with 

an expression, CAST/convert the type of one or more 

projected columns to another type, etc. 

 Modification of the WHERE clause, e.g. 

addition/removal of predicates 

 Addition of aggregates and GROUP BY, HAVING 

clauses 

 Addition of TOP and ORDER BY clauses 

                                                                 
3 We will refer to feedback collected from executing a query/test- 

case as execution feedback. The term execution feedback is not 

limited to the query execution component of the DBMS but it 

can include information from any database component, e.g. 

language parser, query optimizer, etc.  

 

Figure 2. A simple query after four process steps  

4.3.2 Query simplification 
Query simplification is a form of query mutation which removes 

random parts of the query such as predicates or clauses (WHERE, 

GROUP BY, or ORDER BY, etc). The new query that results 

may or may not retain all of the genes of the original. However, if 

it does, the simplified query is preferred and will likely replace the 

original in the best query pool since it is shorter and more 

readable. This is the ultimate goal of query simplification  to 

replace an existing query with an equally interesting one that is 

either more readable, or executes faster. Since other mutations 

tend to increase the query text size, simplification is necessary to 

keep queries from overgrowing into huge, unreadable statements. 

This aspect of simplification is important since it makes it easier 

for engineers to investigate and diagnose defects.  Note that it is 

possible for simplified queries to exercise new code paths and 

create new genes as well. 

4.3.3 Query synthesis using Join 
This method creates a new query out of two or more queries from 

query-pool by joining them together. It searches the best query 

pool for queries with one or more columns of the same type. The 

two queries are joined together using the JOIN clause and the 

compatible columns (one or more column pairs are chosen 

randomly) are placed as a join condition in the ON clause. The 

join condition may include different types predicates. Multiple 

join types are possible, i.e. LEFT, RIGHT, OUTER, CROSS, etc. 

4.3.4 Query synthesis using sub-query 
This method combines multiple queries into a single query 

statement by adding an EXIST or NOT EXIST condition on the 

WHERE clause of the first query and using the second query as a 

sub-query. Alternatively if the second query returns a single row it 

can be mutated to one that projects only one column and then 

placed in the WHERE clause of the first query as a predicate on 

one of its columns, or in the SELECT clause.  

SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_   

FROM 

( 

   SELECT [L_ORDERKEY] _n16_, [L_PARTKEY] 

   _n17_, [L_EXTENDEDPRICE] _n18_, [L_DISCOUNT] 

   _n19_, [L_TAX] _n20_, [L_RETURNFLAG] _s21_ 

   FROM tpch100m.dbo.[LINEITEM]  

) t0 RIGHT OUTER JOIN ( 

   SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] 

   _s12_  

   FROM tpch100m.dbo.[ORDERS] 

   ) t1 ON _s12_ > _s21_ and _n14_ = _n16_ 

WHERE _s12_ in  

 ( 

 SELECT max(tt._s12_)  

 FROM  

        ( 

           SELECT [O_TOTALPRICE] _n14_, 

           [O_COMMENT] _s12_  

    FROM tpch100m.dbo.[ORDERS]) tt  

    where tt._n14_ = t1._n14_ 

         ) 
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Optionally the above alternatives can be mutated to include 

correlation. This is done by changing/adding the WHERE clause 

of the sub-query so that it includes a predicate containing a 

column from the outer query.  

4.3.5 Query synthesis using Union 
This query generation method uses the UNION clause to combine 

two queries with compatible projection lists. In most cases there 

will be no queries with compatible projection lists in the query 

pool and the query generation process will have to mutate one of 

the two queries to force the compatibility of the projection lists. 

4.4 SQL Statement Transformations 
The generated queries can also be transformed to other types of 

SQL statements such as Data Modification Language (DML) 

statements, cursor statements, etc. These transformations are 

different from the reproductions mentioned in section 4.3 since 

they are terminal, i.e. they are not used to generate additional 

statements. 

4.4.1 Transformation to INSERT/UPDATE/DELETE 
SELECT statements can be transformed DML statements, i.e. 

INSERT, UPDATE and DELETE. Transforming a SELECT 

statement into an INSERT is simply done as an INSERT <table> 

SELECT  statement. SELECT statements are transformed into 

UPDATE and DELETE statements by placing the SELECT 

statement into the WHERE clause as a sub-query with correlation. 

The UPDATE and DELETE statements are built using a table 

name selected randomly from the database schema.  

The DML statements are enclosed inside a transaction which is 

rolled back at the end of the test. Alternatively, the DML 

statements can be allowed to execute. This will create random 

changes to the data in the test database and may bring additional 

test coverage depending on how diverse are the existing data 

distributions in the test database. However, it will also invalidate 

some of the genes of the queries in the best query pool making 

them less favorable for creating new queries. 

4.4.2 Transformation to CURSOR 
The transformation of SELECT statements to cursors is 

straightforward. Typically cursors involve different optimization, 

execution and locking strategies depending on a variety of user-

specified options. A set of cursor options is selected randomly by 

the query generator. The results returned by the cursor can be 

verified against the ones returned by the select statement for 

correctness. 

4.5 Genetic Algorithm 
The outline of the genetic algorithm used by the query generator 

is shown in Figure 3. The algorithm selects one or more queries 

from the best query pool and uses one of the aforementioned 

query mutation and combination techniques to create a new query. 

The new query is executed and feedback information is collected 

from the SUT, which should capture all the interesting 

characteristics of a query. We refer to those characteristics as 

query genes. Query genes can be as simple and accessible as the 

number of rows returned by a query, or as complex and esoteric as 

the sequence of state transitions of an iterator during query 

execution4. The feedback information also includes whether the 

query succeeded or returned an error, along with the result set 

returned by the SUT. Queries that returned errors are typically 

discarded unless negative testing is the desired test goal. Queries 

that return empty results are also discarded and not used for future 

query generation. This ensures that, unlike RAGS and other tools 

that do not use feedback, we avoid iterating down paths that have 

no hope of generating a result due to logical contradictions in 

predicates or non-correlated joins. Feedback information is either 

returned along with the query result set or at a subsequent step, 

depending on what type of feedback information is used. As soon 

as the feedback information is collected the new query is 

evaluated for fitness against the best query set population. If it is 

found fit (or in other words it is found to extend the test coverage) 

it is added in the best query pool. If the new query is equally fit 

with an existing query in the best query pool but its SQL text is 

smaller in size, then the existing query is removed from the pool. 

Alternatively, the existing query can be removed based on the 

length of execution time.  

 

Figure 3. Genetic algorithm for query generation 

The new query contains combinations of genes inherited from 

queries in the best query pool, and as soon as the new query itself 

enters the best query pool, its set of genes will become input for 

later iterations of the query generation process. We allow 

unlimited best query pool growth, and empirically we see that it 

typically contains somewhere on the order of a few hundred 

queries. 

4.5.1 Feedback and fitness function 
Feedback is consumed by the generator in the form of a set of 

strings describing the coverage achieved while running particular 

query. Each string describes an , 

as well as context information about under which circumstances 

given code path was reached. Some simple examples of feedback 

strings (translated in human-readable form) are:  

    

                                                                 
4 In some cases the SUT needs to be instrumented or modified in 

order to expose internal state and events. 

while timePeriod not expired do 

   (Q1 k)  getQueriesFromBestQueryPool(randNum) 

    generateNewQuery(Q1 k) 

   resultSet   

   if resultSet = empty then 

      continue 

   end if 

   feedback   

   isFit  evaluateFitne  

   if isFit = true then 

       

   end if 

end while 
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X of bitmap filtering 3 join 

columns involved.   

 . 

considers them to be important genes to be tracked and makes 

sure they are not get lost. For every such string/gene the generator 

remembers which query was able to achieve it. The total number 

of possible feedback strings usually is in order of hundreds to few 

thousands. Along with feedback strings the generator remembers 

the frequency of appearance of this string. 

During the process of mutating and combining queries, preference 

is given to queries that include rarely seen genes, i.e. unique 

feedback strings. This achieves two goals: first, rare code paths 

are exercised more frequently, and second, mutations of queries 

with rare code paths are more likely to exercise other rare code 

paths. As an example: suppose that a particular rare gene indicates 

some uncommon data type was processed by this query. 

Mutations of this query are likely to still process the same 

uncommon data type, but will do so in a different context (such as 

a different join flavor) and thus are likely to touch other rare code 

paths related to the data type. 

The fitness function decides whether query goes into best query 

pool or not. If query includes a gene that we see for the first time, 

then that query always passes the fitness check and is added to the 

best query pool. Otherwise the fitness decision depends on 

whether a new query is more readable/shorter or faster.  

The fitness function can be customized so that particular feedback 

strings are given additional weight, or specific logic can be added 

to make particular gene combinations more fit than others.  

The following two sections discuss two testing problems and the 

feedback and fitness function used to tackle them. 

4.5.2 Testing physical operators  
As we mentioned SQL Server uses an iterator model for 

implementing physical operators and query plans, similar to the 

one of Volcano. Oftentimes, during the product development 

cycle new code changes are introduced that may affect multiple 

iterators. Such changes generate the need for testing those 

iterators in the context of different query plans; that includes their 

possible placement in a query plan, whether they run in parallel or 

serial execution mode, etc. As an 

introducing a new large object data type (LOB) to DBMS. This 

new feature requires code changes across multiple physical 

operators. Our test goal, described in simple terms, is to ensure 

that every physical operator is tested in combination with LOB 

columns. For this particular testing problem our fitness function is 

designed to favor queries with: 

 operators that consume LOB columns 

 unique combinations of operators in a query plan 

 unique combinations of state transitions per operator 

The feedback information is based on the query plan as it is 

returned by the SUT [11] and on an internal query execution trace 

which is used for testing and debugging. The trace indicates 

whether a LOB column was used by an operator, along with its 

state transitions during the execution of the query. Figure 4 shows 

a snippet of the trace for a query that has exercised the Sort 

operator along with some of its state transitions. The fLOB 

attribute indicates that the Sort operator consumes a LOB column.  

Every time a new query is generated and executed our fitness 

function checks if it includes any LOB columns, and then 

compares the set of physical operators in the query plan to those 

corresponding to the queries stored in the best query pool. If the 

new set of operators is similar to existing ones in the best query 

pool then the sets of state transitions are compared. If those are 

significantly different then the query is entered in the best query 

pool. 

The test plan can rely on self-checking mechanisms in the server 

to detect defects (debug-only code and assert conditions), or 

additionally the results of each query can be compared to a trusted 

DBMS implementation. As an alternative (which can also be used 

on release builds), results correctness can be verified 

automatically by the system as it generates variations of the same 

query with different query plans (with the use of query hints).  

 

Figure 4. Snippet of feedback information for iterator testing 

4.5.3 Testing the correctness of optimization rules 

described in the Cascades Framework [8]. The query optimizer 

makes use of transformation rules which create the search space of 

query plan alternatives. For the purposes of this example we 

assume that there is a need to test code changes in the 

optimization rules framework. Such changes may include the 

addition of new exploration or implementation rules, changes in 

property derivation, etc., and may affect the correctness of the 

query plan and consequently the correctness of query results. To 

test such changes we want to include queries with large and 

diverse query plan space. The size of the plan space is a function 

of the query  size and complexity but also proportional to the 

number of exploration rules that created alternatives during 

optimization. The diversity of search space is proportional to the 

number of different optimization rules which executed 

successfully during optimization.  

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="Dormant" 
NewState="ScanStart" Method="Open" /> 

</Iterator> 

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="Nil" NewState="Dormant" 
Method="Constructor" /> 

</Iterator> 

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="Scan" NewState="EOS" 
Method="GetRow" /> 

</Iterator> 

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="Scan" 
NewState="ScanRowOut" Method="GetRow" /> 

</Iterator>   

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="ScanRowOut" 
NewState="Scan" Method="GetRow" /> 

</Iterator>   

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1"> 

<NewStateChange OldState="ScanStart" 
NewState="ScanRowOut" Method="GetRow" /> 

</Iterator>   
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Feedback is collected from an internal system table which 

provides counters for the optimization rules. A partial example of 

such information is shown in Table 1. The Succeeded  column 

indicates how many times each rule has been used by the 

optimizer.  

This fitness function favors rule diversity over rule frequency. 

Alternative implementations may favor frequency over diversity, 

or specific rules, e.g. queries that use the Join to Hash Join rule.   

Table 1. Query optimization rule feedback 

Rule  Succeeded 

Join to Nested Loops 3 

Left Outer Join to Nested Loops 2 

Left Semi-Join to Nested Loops 1 

Left Anti-Semi-Join to Nested Loops 0 

Join to Hash Join 1 

Full Outer Join to Hash Join 0 

5. EVALUATION 
In this section we compare the experimental results from three 

different variations of our test generator. Our experiments were 

aimed at exploring the hypothesis that the use of execution 

feedback would allow us to target a specific component within the 

DBMS more effectively than when no feedback is used. Also, we 

compare the performance of our technique against RAGS.  

5.1 Experimental Results 
We define three different variations of our technique and we 

compare their performance and code coverage.  

 The first variation of our technique uses execution 

feedback and a fitness function that aims to maximize 

the coverage of the query optimization rules. We 

described this execution feedback and fitness function 

in section 4.5.3. We will refer to this variation as QO 

Rules feedback. 

 The second variation aims to maximize the coverage of 

physical operators. This variation is identical to the one 

described in section 4.5.2 with one differen

favor specially LOB types. We will refer to this 

variation as Iterator feedback. 

 To measure the effect of feedback to the query 

make use 

of execution feedback. It does, however, discard 

statements that do not return results.  We will refer this 

variation as No feedback. 

For all the experiments presented in this section we used the 

database used by the TPCH benchmark [15] (100MB) and SQL 

Server 2005. We measure code coverage in number of unique 

function combinations (call from function to function). We have 

chosen this metric rather than the more widely used function 

block and arc metrics since it represents better dynamic code 

paths such as the iterator trees in query execution.  In addition, we 

have performed a parallel experiment with RAGS using the same 

hardware and software configuration. 

Figure 5 shows the total code coverage achieved by the three 

variations of our test generation techniques and RAGS. All three 

variations outperform RAGS and achieve significant code 

coverage very quickly. Their performance is comparable initially 

but as time progresses both the variations which use feedback 

provide additional coverage. 

The graph shown in Figure 6 illustrates the code coverage 

achieved specifically over the query optimizer component. As 

intended, QO rules feedback achieves the highest code coverage 

much faster than the other two variations. The variation that uses 

Iterator feedback starts slow but eventually achieves better code 

coverage than the variation without feedback. The code coverage 

achieved by RAGS is significantly lower and for this reason we 

do not include it this graph. 

 

Figure 5. Code coverage over time 

 

Figure 6. Code coverage of the optimizer component over time 
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Finally, in Figure 7 we show the number of different optimization 

rules exercised by the three test generation techniques. The same 

code coverage pattern is observed; QO Rules exercises the largest 

number of optimization rules in the shortest period of time.  

 

Figure 7. Query optimization rules covered over time 

The results of our experiments are summarized in Table 2. The 

results represent the final measurements after a 48-hour run of 

each variation. Each column in the table corresponds to the test 

generation method used, and the results are grouped by the 

different DBMS components that were exercised. The row titled 

includes the total code coverage achieved across SQL 

QO  and QE  correspond to the Query 

Optimizer and Query Execution components respectively. All 

numbers express unique function caller/callee invocations with 

the exception of QO Rules which is measured in number of 

distinct optimization rules exercised. 

Table 2. Coverage by each method per DBMS component 

 RAGS No Feedback Iterator QO Rules 

DBMS  75975 87600 89603 90820 

QO 32108 39581 39869 40193 

QE 7066 7431 7538 7655 

# QO Rules 173 210 213 215 

5.1.1 Results discussion and conclusions 
The QO Rules variation aims in exercising the query optimizer 

code and as intended it achieves the highest code coverage of that 

component. Since it favors queries which exercise a variety of 

optimization rules, these queries involve a more diverse set of 

alternative plans. The larger number of alternatives in the plan 

space contributes in exercising more code beyond the query 

optimizer component than the two other variations, resulting in 

higher overall code coverage.  

Although the number of different iterators used by a query is 

loosely correlated with the number of different optimization rules 

used, i.e. each different physical operator in a query plan is a 

result of a corresponding implementation rule, that correlation is 

not expected to increase the coverage of the query optimizer 

significantly. In fact, as it is evident in Figure 6 and Figure 7  

initially significantly help the test 

coverage of the query optimizer in both functions and rules 

covered. However, as the queries in the best query pool become 

very complex, more possibilities for query optimization open up, 

and the variation with iterator feedback seems to get closer to the 

variation without feedback and eventually exceeds it (as shown in 

Figure 6 and Figure 7 after the 50000th second). In terms of 

overall code coverage iterator feedback is consistently more 

efficient than when no feedback is used. 

At the end of the experiment, the best queries pool for the QO 

Rules variation included a set of queries that exercised every rule 

exercised during the duration of the whole experiment; something 

which is self-evident from the definition of the feedback and 

fitness function. This is significant because as the best set evolves 

over time, it encourages more frequent usage of interesting genes 

from previous queries, which helps to test specific components 

more intensively. The final set of best queries can be used as a 

regression test suite for future changes in the component under 

test. We observed over several repeated experiments that, with 

similar fitness functions, the set of QO rules covered was also 

similar. From the definition of the best query set, this means we 

saw similar convergence towards a set of queries that will exercise 

the areas defined in the fitness function. Note that this does not 

imply that the best query sets themselves are always similar, but it 

does demonstrate that they will converge towards a set which 

exercises similar feedback genes as defined by the fitness 

function.  We will discuss this further in the remainder of this 

section. 

The difference in code coverage achieved by the three different 

variations may appear small comparing to the overall number of 

functions covered. However, what needs to be emphasized is that 

increases in code coverage tend to become harder as code 

coverage increases. That fact is not particular to our technique but 

also noticeable when manual methods are used. For example, an 

increase in code coverage from 50% to 51% is much easier to 

achieve than an increase from 90% to 91%. 

an approximation of the upper code coverage bound which 

includes the coverage of dynamic code paths and we do not 

attempt it in this paper. 

When compared to RAGS our test generation technique is 

performing significantly better in terms of both efficiency and 

code coverage, with or without the use of feedback.  

From our experiments, we noted that early random decision 

making can affect the future generation of queries by creating 

some genes that get heavily favored over others. This happens 

because of the fact that at the start, there are not many gene 

flavors to work with, and so almost any new gene is given very 

high importance. In order to overcome this and give the system 

more time to work through the early genes, we delay the use of 

feedback until a certain amount of time has elapsed. 

In other experiments that were performed using more complex 

databases schemas, we observed similar patterns to the ones that 

we showed based on the TPCH database. In general, we try to use 

test databases which include a variety of SQL Server features in 

order to maximize the code coverage.  These test databases can 

also be configured in a way that assists the system in generating 
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more interesting genes, such as by creating views that include 

query statements that are interesting or otherwise difficult to 

reach. 

6. RELATED WORK 
There are many existing approaches to random software testing. 

There is ongoing evidence that random testing provides great 

value to testing systems that are large and complex [10]. In the 

area of databases systems Slutz [13] developed the RAGS 

framework which has motivated our work. The ways that our 

approach differs has already been described earlier in this paper. 

Waas and Galindo-Legaria have developed a technique that 

allows enumeration and random sampling of query plans across a 

query  plan space [16]. The effectiveness of this technique 

depends on the set of queries used for plan space exploration. Our 

technique partners well with plan enumeration and sampling and 

specifically the variation of our technique based on QO-rules 

feedback, since works towards creating queries with large and 

diverse plan spaces.  

Beyond the domain of DBMS, the area of random testing is being 

actively researched. For some random testing techniques the usage 

of execution feedback has been also explored to create test valid 

inputs for functions [4] or to facilitate the selection of random test 

cases without replacement [12]. Other techniques aim toward 

constraining, sampling the random space of test cases/inputs [2] 

[12]. Godefroid [5] attempts to compute test inputs to drive a 

program along a specific path using methods of compositional 

creation.  His method aims to predict how changing inputs can 

result in changing code paths.   

7. FUTURE WORK 
The query mutation and synthesis techniques can be extended to 

include a wider coverage of the SQL language. More complex 

mutation techniques can be implemented by exchanging query 

parts between two or more best queries. 

The best query pool could potentially be seeded with manually 

created queries that include specifically selected query genes. That 

should give a head start to the test generation algorithm and allow 

the use of query combinations that may not be possible by the 

current implementation of the generation process. 

The database schema and the data stored in the test database 

include important parameters which can constrain and influence 

the generation of queries. The use of random schema and data 

generation methods perhaps combined with execution feedback to 

alter and extend the schema and datasets can also be explored as 

an extension our to technique. 

8. CONCLUSION 
We presented a practical method for generating queries that can 

be used as test cases for testing a DBMS and we offered examples 

specific to query processor testing. We have shown that the use of 

execution feedback improves the efficiency of the test generation 

process and increases code coverage of specific DBMS 

components. 
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