
A genetic approach for random testing of database

systems

Hardik Bati, Leo Giakoumakis, Steve Herbert, Aleksandras Surna
Microsoft Corporation
One Microsoft Way

Redmond WA 98052 USA
{hardikb, leogia, stevhe, asurna}@microsoft.com

ABSTRACT

Testing a database engine has been and continues to be a

challenging task. The space of possible SQL queries along with

their possible access paths is practically unbounded. Moreover,

this space is continuously increasing in size as the feature set of

modern DBMS systems expands with every product release. To

tackle these problems, random query generator tools have been

used to create large numbers of test cases. While such test case

generators enable the creation of complex and syntactically

correct SQL queries, they do not guarantee that the queries

produced return results or exercise desired DBMS components.

Very often the generated queries contain logical contradictions,

- at the query optimization layer,

failing to exercise the lower layers of the database engine (query

optimization, query execution, access methods, etc.)

In this paper we present a random test case generation technique,

which provides solutions to the above problems. Our technique

utilizes execution feedback, obtained from the DBMS under test,

in order to guide the test generation process toward specific

DBMS subcomponents and rarely exercised code paths. Test

cases are created incrementally using a genetic approach, which

synthesizes query characteristics that are of interest for the

purposes of test coverage. Our experiments indicate that our

technique can outperform other methods of random testing in

terms of efficiency and code coverage. We also provide

experimental results which show that the use of execution

feedback improves code coverage of specific DBMS components.

Finally, we share our experiences gained from using this testing

approach during the development cycles of Microsoft SQL

Server.

1. INTRODUCTION
Modern database servers are immensely large and complex

software systems. The expressive power of the SQL language

combined with the large number of optimization and execution

strategies that database systems (DBMS) support today result in a

test matrix with practically infinite number of dimensions.

Every major DBMS product release contains several dozens of

new features which result in an ever-increasing number of test

dimensions. At the same time, as hardware technology advances

and becomes more affordable, new database applications include

more complicated queries which process increasingly larger

amounts of data. For instance, many decision support applications

allow the user to define complex queries via query-builder user

interfaces. Such SQL queries tend to be complex and large in size.

All these factors make the testing of a DBMS an overwhelming

task.

A decade ago functional testing of database systems relied mainly

on large test suites consisting of thousands of hand-crafted tests.

These tests were created using partitioning and sampling methods

over a large number dimensions in the test matrix. Additionally,

thousands of queries collected using SQL traces from existing

customer applications were also used to prove result correctness

and to ensure backward compatibility. Since then, it has become

apparent that such testing techniques are neither scalable nor

sustainable solutions. The cost of developing new test suites and

extending the existing ones is increasing as DBMS become larger

and more complex. During the development of SQL Server we

saw several cases in which the cost of test development for a new

feature significantly exceeded the cost of code development. In

addition, there have been a number of cases that indicated that

traditional testing techniques on their own are no longer effective;

defects were discovered long after they were originally

introduced, simply because they involved a rare combination of

events or product features.

In order to overcome some of the above problems and limitations

of traditional test engineering methods, software quality assurance

groups responsible for complex software systems have started

employing stochastic testing techniques [14]. These techniques

involve the creation of stochastic models that encapsulate the

expected behavior of the system under test, and the usage of these

models to create a large number of test cases. In the domain of

database systems an example of such a stochastic test system is

RAGS [13]. RAGS uses a stochastic parse tree to create complex

SQL statements that can be utilized as test cases in various ways.

Our experience with using RAGS for past releases of SQL Server

is that the more complex the generated queries become, the less

likely it is that they return results. While such queries can still be

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1143

useful tests, especially for testing the language parser, they often

terminate early during the phases of optimization or execution,

e.g. due to logical contradictions in predicates, or empty data

intersections. This fact makes these queries less interesting for

testing the lower layers of a DBMS such as the query execution,

and access methods. Another inherent limitation of random test

case generators like RAGS is that it is hard to utilize them when

test coverage of specific database components is required.

Although controlling the test generation process is possible

mainly by controlling the SQL syntax and its complexity, this

alone is not enough to exercise specific DBMS components in the

desired fashion.

Motivated from our experience using RAGS during the

development of SQL Server, we have developed a new system for

creating random test cases for testing DBMS and specifically the

query processor component.

Our approach enables the creation of complex queries which

always return results and contain a set of desired characteristics.

These characteristics describe the effect that the execution of the

query has on the DBMS, in terms of code coverage or changes in

its internal state. We call those characteristics genes. The

definition of genes is based on information collected from the

DBMS after a query is executed. We refer to such information as

execution feedback. Different sources of information can be used

as execution feedback and hence as a basis for query genes, e.g.

query results, query plan, traces that expose internal DBMS state,

etc. Execution feedback can be customized to meet certain testing

goals. For example if we are interested in testing different join

implementations, we could use the query plan as execution

feedback and the physical join operators as interesting query

genes.

Our query generation technique resembles a genetic algorithm.

Genetic algorithms are evolutionary algorithms which can be used

as a general purpose problem solving technique for various types

of problems. A basic trait of evolutionary algorithms is a set of

individuals that evolve according to some rules of selection.

Evolution takes place using genetic operations like mutation and

recombination. In a similar fashion our algorithm creates new

queries by mutating and synthesizing queries with interesting gene

combinations. A fitness function is used to determine whether a

newly created query will be used further in the generation process

to create more queries. The fitness function can be defined in

ways that reflect specific testing goals, e.g. testing of particular

DMBS components, or testing of interactions between particular

subcomponents.

During the development and test cycle of SQL Server 2005 our

technique significantly outperformed RAGS in number of product

defects found. In this paper we present results from controlled

experiments, which show that our technique outperforms RAGS

in terms of code coverage, as well. Additionally, our experiments

indicate that the use of feedback increases the test coverage of

internal DBMS components when compared to purely random

testing.

The remainder of paper is organized as follows: In section 2 we

present some of the motivating problems related to query

processor testing. In section 3 we provide some information about

how random testing is used in SQL Server. We continue with a

description of the design and the mechanics of our test case

generation system in section 4. Section 5 includes experimental

results from three different variations of our test generation

technique and provides an evaluation based on code coverage

metrics. In sections 6 and 7 we review existing related work and

discuss some possible future extensions to our method. Finally,

we conclude in section 8.

2. QUERY PROCESSOR TESTING
There are several aspects of DBMS testing that lend themselves to

the use of random testing techniques. In this section we will

examine some of those related to query processor testing.

Although testing the query processor involves multiple testing

methods, e.g. performance, reliability, stress, tuning and

calibration, etc., for the purposes of this paper we are only

interested in functional testing; that is testing which aims to

ensure the functional correctness of the system.

2.1 Infinite input space
The practically infinite space of the possible query statements,

database schema, data distributions, large number of potential

query plan choices, and execution and runtime conditions, makes

exhaustive testing impossible. Random testing is a particularly

attractive solution for tackling such testing problems (section 6

includes some applications of random testing for tackling large

input spaces).

2.2 Dynamic code paths
Two widely used metrics for measuring testing effectiveness are

block and arc code coverage. These code coverage metrics aim to

ensure that the code is exercised by tests

necessarily reflect the context under which the code executes. For

example class and interface inheritance allows object methods to

be potentially called by multiple caller methods. Specifically, the

concepts of polymorphism and dynamic binding which can be

found in all modern object-oriented languages allow dynamic

code paths which can be formed during runtime. It is desirable to

test such code paths in all possible contexts. This is a known

problem in the domain of object-oriented software testing [1].

SQL Server query execution component is based on an abstract

iterator interface similar to the Volcano [9]. According to this

model the query execution tree is built from physical operators

which support a standard iterator1 interface. These iterators can be

thought as stand-alone building blocks for assembling execution

trees. Execution trees can become arbitrarily complex, creating a

vast space of caller-callee combinations that need to be tested. In

addition, each physical operator may contain different

implementations or alternative code paths. For example a Hash

Join may use main memory or if the build side of

the join does not fit in memory.

Similar types of dynamic code paths can found throughout the

query optimizer component.

2.1 Difficult to test in isolation
It is a standard practice to divide large software systems into

smaller more manageable subcomponents. The separation into

subcomponents also allows unit-testing at the subcomponent

level. Unit-

development practices.

1 In this paper we will use the terms iterators and physical

operators interchangeably.

1144

Although the boundaries between the main components of a

DBMS are well-defined and understood [4], i.e. language parsing,

binding, optimization, execution, access methods, etc., testing

these components in isolation is hard. Main database components

assume that their input is validated by the previous component

higher in the stack. Therefore, even though these components and

their subcomponents may be well-architected with clear

interfaces, the contracts between these interfaces are difficult to

verify independently. For example, the primary input to the query

optimizer is a tree of logical operators which is typically provided

after binding takes place. It is easy to craft a trivial case of such a

tree programmatically and use it as a unit test for the query

optimizer directly, without having to go through the language

parsing and binding layers. However, for non-trivial cases it very

quickly becomes hard to verify that the semantics of the unit test

are correct. If such a test case uncovers a defect in the query

optimizer the test case itself becomes an equally probable suspect

for investigation.

For the same reasons, building detailed stochastic test models for

a complex system such as the query processor is extremely hard to

do beyond a few well- contained areas and subcomponents.

Therefore in practice the development of end-to-end tests (at SQL

the language level) is often the only practical option.

3. RANDOM TESTING IN SQL SERVER
Random testing has been an integral part of the testing process of

SQL Server since RAGS was first used during the development of

SQL Server 7.0. RAGS has been invaluable for testing the SQL

parser and compiler components that underwent significant

restructuring at the subsequent release (SQL Server 2000). Since

then, several other methods of random testing have been explored

and used in parallel with regular testing techniques.

According to our experience, random testing provides significant

benefits when used in parallel with traditional test development.

First, random testing helps in exploring code paths which are not

easily accessible without the development of very complex test

cases. In most cases the manual development and maintenance of

such test cases is costly.

Second, random test case generators have been useful tools for

smoke testing; that is quick sanity testing in order to find

relatively simple bugs, which were easily exposed by the volume

of random queries that are generated. This scenario is most useful

in providing an initial quality bar that has to be met before we

begin investing manpower on developing, running and verifying

manually written tests. As well, this helped us screen risky code

changes by ensuring that at least the fundamentals were in place.

In some cases we found that extending the query generator tools

to support a new product feature prior to the development of

regular test cases, allowed us to find some of the non-trivial

defects earlier than usual. That allowed the investigation and

resolution of these defects to take place in parallel with traditional

test development. Moreover, since traditional test development is

typically done in incremental fashion, the more complex defects

are not found until the very end of the test development cycle, a

fact that oftentimes introduces risk to the project schedule.

Finally, we made extensive use of random test generation methods

for generating regression test cases. We implemented a solution

which allows the archiving of each generated query in a data

warehouse along with its characteristics. This enables us to do

data mining over the data warehouse in order to choose queries

that fit our needs for various regression testing projects.

The technique that we present in this paper is similar to RAGS

since it involves the generation of SQL queries, which can be

used to generate other types of SQL statements and specific test

cases.

Our technique was first developed and deployed as a testing tool

for SQL Server 2005. In its early form, the tool was used along

with RAGS on an ad-hoc basis to test changes to the query

processor. Later we used different variations of feedback for each

new feature that involved changes in the query processing layer.

During that time, we observed that our test case generator

consistently outperformed RAGS, and by the end of the product

development cycle had discovered almost ten times more defects.

The defects found by random generator tools have been a

substantial percentage of the total functional defects found in the

query processor component2. In their vast majority these defects

-check mechanisms (assert

conditions and debug-only code).

4. METHOD
Our technique utilizes a simple genetic algorithm to create new

SQL statements by combining or mutating existing ones with

known interesting characteristics/genes. Certain genes are

considered to be interesting if they support the desired test

coverage goals. In this section we describe architecture of the test

system and the mechanics of the test generation process.

4.1 Test system Architecture
The architecture of our test generation system is displayed in

Figure 1.

Figure 1. The test generation system

The Test Case Generator is the primary query generation

component of the system. It analyzes the database schemas in

order to extract tables, columns, views, functions, and other items

which can be used for query generation. It generates queries on

2 Specific information related to bug counts is proprietary and

cannot be disclosed.

Test Generation System

Test Case Generator

DBMS Server
Under Test Test Case

Executor

Test Logging
Component

Reference Server

Test Case
Storage Server

1145

top of this schema and processes execution feedback3 from these

queries in order to evaluate their effectiveness for future use.

The Test Case Executor acts as a connection layer between the

Test Case Generator and the DBMS Server Under Test (SUT). It

is used to execute the generated queries against the server under

test.

The Reference Server is a trusted reference DBMS which is used

by the test case executor to verify correctness of query results.

Results are compared against this reference server, and differences

are reported for investigation. This part of the process applies to

queries that produce deterministic results.

The Test Logging Component is used to archive queries and

associated information into a data warehouse (Test Case Storage

System) for future use, which can include the assembly of

regression test suites.

4.2 Initialization
During the initialization phase the query generator creates a first

set of basic queries which are used to populate the best query

pool. The best query pool contains the query population to be

used by the genetic algorithm. The query generator reads the

database schema of all the active databases on the server under

test (SUT) and randomly chooses up to k tables or views. It then

creates the initial population of queries as simple SELECT

statements. At this stage the generated SELECT statements are

trivial; they simply project a randomly chosen number of table

columns.

4.3 SQL Statement Reproduction
The creation of a new query statement is done by mutating or

combining selected queries from the best query pool. The query

generator uses a variety of methods: query mutation, query

simplification, synthesis using join, synthesis using sub-query and

synthesis using union. A random decision is made about which

method is to be used and for any parameters required by each

method. Figure 2 shows an example of a query based on the

TPCH database schema which is generated after 4 iterations of the

genetic process.

4.3.1 Query mutation
A query is mutated into a new query using a one or more of the

following methods, chosen randomly:

 Modification of the projection list, e.g. add/remove one

or more columns or expressions, replace a column with

an expression, CAST/convert the type of one or more

projected columns to another type, etc.

 Modification of the WHERE clause, e.g.

addition/removal of predicates

 Addition of aggregates and GROUP BY, HAVING

clauses

 Addition of TOP and ORDER BY clauses

3 We will refer to feedback collected from executing a query/test-

case as execution feedback. The term execution feedback is not

limited to the query execution component of the DBMS but it

can include information from any database component, e.g.

language parser, query optimizer, etc.

Figure 2. A simple query after four process steps

4.3.2 Query simplification
Query simplification is a form of query mutation which removes

random parts of the query such as predicates or clauses (WHERE,

GROUP BY, or ORDER BY, etc). The new query that results

may or may not retain all of the genes of the original. However, if

it does, the simplified query is preferred and will likely replace the

original in the best query pool since it is shorter and more

readable. This is the ultimate goal of query simplification to

replace an existing query with an equally interesting one that is

either more readable, or executes faster. Since other mutations

tend to increase the query text size, simplification is necessary to

keep queries from overgrowing into huge, unreadable statements.

This aspect of simplification is important since it makes it easier

for engineers to investigate and diagnose defects. Note that it is

possible for simplified queries to exercise new code paths and

create new genes as well.

4.3.3 Query synthesis using Join
This method creates a new query out of two or more queries from

query-pool by joining them together. It searches the best query

pool for queries with one or more columns of the same type. The

two queries are joined together using the JOIN clause and the

compatible columns (one or more column pairs are chosen

randomly) are placed as a join condition in the ON clause. The

join condition may include different types predicates. Multiple

join types are possible, i.e. LEFT, RIGHT, OUTER, CROSS, etc.

4.3.4 Query synthesis using sub-query
This method combines multiple queries into a single query

statement by adding an EXIST or NOT EXIST condition on the

WHERE clause of the first query and using the second query as a

sub-query. Alternatively if the second query returns a single row it

can be mutated to one that projects only one column and then

placed in the WHERE clause of the first query as a predicate on

one of its columns, or in the SELECT clause.

SELECT _s12_ _s13_ ,_n14_ + _n14_ _n15_

FROM

(

 SELECT [L_ORDERKEY] _n16_, [L_PARTKEY]

 n17, [L_EXTENDEDPRICE] _n18_, [L_DISCOUNT]

 n19, [L_TAX] _n20_, [L_RETURNFLAG] _s21_

 FROM tpch100m.dbo.[LINEITEM]

) t0 RIGHT OUTER JOIN (

 SELECT [O_TOTALPRICE] _n14_, [O_COMMENT]

 s12

 FROM tpch100m.dbo.[ORDERS]

) t1 ON _s12_ > _s21_ and _n14_ = _n16_

WHERE _s12_ in

 (

 SELECT max(tt._s12_)

 FROM

 (

 SELECT [O_TOTALPRICE] _n14_,

 [O_COMMENT] _s12_

 FROM tpch100m.dbo.[ORDERS]) tt

 where tt._n14_ = t1._n14_

)

1146

Optionally the above alternatives can be mutated to include

correlation. This is done by changing/adding the WHERE clause

of the sub-query so that it includes a predicate containing a

column from the outer query.

4.3.5 Query synthesis using Union
This query generation method uses the UNION clause to combine

two queries with compatible projection lists. In most cases there

will be no queries with compatible projection lists in the query

pool and the query generation process will have to mutate one of

the two queries to force the compatibility of the projection lists.

4.4 SQL Statement Transformations
The generated queries can also be transformed to other types of

SQL statements such as Data Modification Language (DML)

statements, cursor statements, etc. These transformations are

different from the reproductions mentioned in section 4.3 since

they are terminal, i.e. they are not used to generate additional

statements.

4.4.1 Transformation to INSERT/UPDATE/DELETE
SELECT statements can be transformed DML statements, i.e.

INSERT, UPDATE and DELETE. Transforming a SELECT

statement into an INSERT is simply done as an INSERT <table>

SELECT statement. SELECT statements are transformed into

UPDATE and DELETE statements by placing the SELECT

statement into the WHERE clause as a sub-query with correlation.

The UPDATE and DELETE statements are built using a table

name selected randomly from the database schema.

The DML statements are enclosed inside a transaction which is

rolled back at the end of the test. Alternatively, the DML

statements can be allowed to execute. This will create random

changes to the data in the test database and may bring additional

test coverage depending on how diverse are the existing data

distributions in the test database. However, it will also invalidate

some of the genes of the queries in the best query pool making

them less favorable for creating new queries.

4.4.2 Transformation to CURSOR
The transformation of SELECT statements to cursors is

straightforward. Typically cursors involve different optimization,

execution and locking strategies depending on a variety of user-

specified options. A set of cursor options is selected randomly by

the query generator. The results returned by the cursor can be

verified against the ones returned by the select statement for

correctness.

4.5 Genetic Algorithm
The outline of the genetic algorithm used by the query generator

is shown in Figure 3. The algorithm selects one or more queries

from the best query pool and uses one of the aforementioned

query mutation and combination techniques to create a new query.

The new query is executed and feedback information is collected

from the SUT, which should capture all the interesting

characteristics of a query. We refer to those characteristics as

query genes. Query genes can be as simple and accessible as the

number of rows returned by a query, or as complex and esoteric as

the sequence of state transitions of an iterator during query

execution4. The feedback information also includes whether the

query succeeded or returned an error, along with the result set

returned by the SUT. Queries that returned errors are typically

discarded unless negative testing is the desired test goal. Queries

that return empty results are also discarded and not used for future

query generation. This ensures that, unlike RAGS and other tools

that do not use feedback, we avoid iterating down paths that have

no hope of generating a result due to logical contradictions in

predicates or non-correlated joins. Feedback information is either

returned along with the query result set or at a subsequent step,

depending on what type of feedback information is used. As soon

as the feedback information is collected the new query is

evaluated for fitness against the best query set population. If it is

found fit (or in other words it is found to extend the test coverage)

it is added in the best query pool. If the new query is equally fit

with an existing query in the best query pool but its SQL text is

smaller in size, then the existing query is removed from the pool.

Alternatively, the existing query can be removed based on the

length of execution time.

Figure 3. Genetic algorithm for query generation

The new query contains combinations of genes inherited from

queries in the best query pool, and as soon as the new query itself

enters the best query pool, its set of genes will become input for

later iterations of the query generation process. We allow

unlimited best query pool growth, and empirically we see that it

typically contains somewhere on the order of a few hundred

queries.

4.5.1 Feedback and fitness function
Feedback is consumed by the generator in the form of a set of

strings describing the coverage achieved while running particular

query. Each string describes an ,

as well as context information about under which circumstances

given code path was reached. Some simple examples of feedback

strings (translated in human-readable form) are:

4 In some cases the SUT needs to be instrumented or modified in

order to expose internal state and events.

while timePeriod not expired do

 (Q1 k) getQueriesFromBestQueryPool(randNum)

 generateNewQuery(Q1 k)

 resultSet

 if resultSet = empty then

 continue

 end if

 feedback

 isFit evaluateFitne

 if isFit = true then

 end if

end while

1147

X of bitmap filtering 3 join

columns involved.

 .

considers them to be important genes to be tracked and makes

sure they are not get lost. For every such string/gene the generator

remembers which query was able to achieve it. The total number

of possible feedback strings usually is in order of hundreds to few

thousands. Along with feedback strings the generator remembers

the frequency of appearance of this string.

During the process of mutating and combining queries, preference

is given to queries that include rarely seen genes, i.e. unique

feedback strings. This achieves two goals: first, rare code paths

are exercised more frequently, and second, mutations of queries

with rare code paths are more likely to exercise other rare code

paths. As an example: suppose that a particular rare gene indicates

some uncommon data type was processed by this query.

Mutations of this query are likely to still process the same

uncommon data type, but will do so in a different context (such as

a different join flavor) and thus are likely to touch other rare code

paths related to the data type.

The fitness function decides whether query goes into best query

pool or not. If query includes a gene that we see for the first time,

then that query always passes the fitness check and is added to the

best query pool. Otherwise the fitness decision depends on

whether a new query is more readable/shorter or faster.

The fitness function can be customized so that particular feedback

strings are given additional weight, or specific logic can be added

to make particular gene combinations more fit than others.

The following two sections discuss two testing problems and the

feedback and fitness function used to tackle them.

4.5.2 Testing physical operators
As we mentioned SQL Server uses an iterator model for

implementing physical operators and query plans, similar to the

one of Volcano. Oftentimes, during the product development

cycle new code changes are introduced that may affect multiple

iterators. Such changes generate the need for testing those

iterators in the context of different query plans; that includes their

possible placement in a query plan, whether they run in parallel or

serial execution mode, etc. As an

introducing a new large object data type (LOB) to DBMS. This

new feature requires code changes across multiple physical

operators. Our test goal, described in simple terms, is to ensure

that every physical operator is tested in combination with LOB

columns. For this particular testing problem our fitness function is

designed to favor queries with:

 operators that consume LOB columns

 unique combinations of operators in a query plan

 unique combinations of state transitions per operator

The feedback information is based on the query plan as it is

returned by the SUT [11] and on an internal query execution trace

which is used for testing and debugging. The trace indicates

whether a LOB column was used by an operator, along with its

state transitions during the execution of the query. Figure 4 shows

a snippet of the trace for a query that has exercised the Sort

operator along with some of its state transitions. The fLOB

attribute indicates that the Sort operator consumes a LOB column.

Every time a new query is generated and executed our fitness

function checks if it includes any LOB columns, and then

compares the set of physical operators in the query plan to those

corresponding to the queries stored in the best query pool. If the

new set of operators is similar to existing ones in the best query

pool then the sets of state transitions are compared. If those are

significantly different then the query is entered in the best query

pool.

The test plan can rely on self-checking mechanisms in the server

to detect defects (debug-only code and assert conditions), or

additionally the results of each query can be compared to a trusted

DBMS implementation. As an alternative (which can also be used

on release builds), results correctness can be verified

automatically by the system as it generates variations of the same

query with different query plans (with the use of query hints).

Figure 4. Snippet of feedback information for iterator testing

4.5.3 Testing the correctness of optimization rules

described in the Cascades Framework [8]. The query optimizer

makes use of transformation rules which create the search space of

query plan alternatives. For the purposes of this example we

assume that there is a need to test code changes in the

optimization rules framework. Such changes may include the

addition of new exploration or implementation rules, changes in

property derivation, etc., and may affect the correctness of the

query plan and consequently the correctness of query results. To

test such changes we want to include queries with large and

diverse query plan space. The size of the plan space is a function

of the query size and complexity but also proportional to the

number of exploration rules that created alternatives during

optimization. The diversity of search space is proportional to the

number of different optimization rules which executed

successfully during optimization.

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="Dormant"
NewState="ScanStart" Method="Open" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="Nil" NewState="Dormant"
Method="Constructor" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="Scan" NewState="EOS"
Method="GetRow" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="Scan"
NewState="ScanRowOut" Method="GetRow" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="ScanRowOut"
NewState="Scan" Method="GetRow" />

</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="Sort" fLob="1">

<NewStateChange OldState="ScanStart"
NewState="ScanRowOut" Method="GetRow" />

</Iterator>

1148

Feedback is collected from an internal system table which

provides counters for the optimization rules. A partial example of

such information is shown in Table 1. The Succeeded column

indicates how many times each rule has been used by the

optimizer.

This fitness function favors rule diversity over rule frequency.

Alternative implementations may favor frequency over diversity,

or specific rules, e.g. queries that use the Join to Hash Join rule.

Table 1. Query optimization rule feedback

Rule Succeeded

Join to Nested Loops 3

Left Outer Join to Nested Loops 2

Left Semi-Join to Nested Loops 1

Left Anti-Semi-Join to Nested Loops 0

Join to Hash Join 1

Full Outer Join to Hash Join 0

5. EVALUATION
In this section we compare the experimental results from three

different variations of our test generator. Our experiments were

aimed at exploring the hypothesis that the use of execution

feedback would allow us to target a specific component within the

DBMS more effectively than when no feedback is used. Also, we

compare the performance of our technique against RAGS.

5.1 Experimental Results
We define three different variations of our technique and we

compare their performance and code coverage.

 The first variation of our technique uses execution

feedback and a fitness function that aims to maximize

the coverage of the query optimization rules. We

described this execution feedback and fitness function

in section 4.5.3. We will refer to this variation as QO

Rules feedback.

 The second variation aims to maximize the coverage of

physical operators. This variation is identical to the one

described in section 4.5.2 with one differen

favor specially LOB types. We will refer to this

variation as Iterator feedback.

 To measure the effect of feedback to the query

make use

of execution feedback. It does, however, discard

statements that do not return results. We will refer this

variation as No feedback.

For all the experiments presented in this section we used the

database used by the TPCH benchmark [15] (100MB) and SQL

Server 2005. We measure code coverage in number of unique

function combinations (call from function to function). We have

chosen this metric rather than the more widely used function

block and arc metrics since it represents better dynamic code

paths such as the iterator trees in query execution. In addition, we

have performed a parallel experiment with RAGS using the same

hardware and software configuration.

Figure 5 shows the total code coverage achieved by the three

variations of our test generation techniques and RAGS. All three

variations outperform RAGS and achieve significant code

coverage very quickly. Their performance is comparable initially

but as time progresses both the variations which use feedback

provide additional coverage.

The graph shown in Figure 6 illustrates the code coverage

achieved specifically over the query optimizer component. As

intended, QO rules feedback achieves the highest code coverage

much faster than the other two variations. The variation that uses

Iterator feedback starts slow but eventually achieves better code

coverage than the variation without feedback. The code coverage

achieved by RAGS is significantly lower and for this reason we

do not include it this graph.

Figure 5. Code coverage over time

Figure 6. Code coverage of the optimizer component over time

1149

Finally, in Figure 7 we show the number of different optimization

rules exercised by the three test generation techniques. The same

code coverage pattern is observed; QO Rules exercises the largest

number of optimization rules in the shortest period of time.

Figure 7. Query optimization rules covered over time

The results of our experiments are summarized in Table 2. The

results represent the final measurements after a 48-hour run of

each variation. Each column in the table corresponds to the test

generation method used, and the results are grouped by the

different DBMS components that were exercised. The row titled

includes the total code coverage achieved across SQL

QO and QE correspond to the Query

Optimizer and Query Execution components respectively. All

numbers express unique function caller/callee invocations with

the exception of QO Rules which is measured in number of

distinct optimization rules exercised.

Table 2. Coverage by each method per DBMS component

 RAGS No Feedback Iterator QO Rules

DBMS 75975 87600 89603 90820

QO 32108 39581 39869 40193

QE 7066 7431 7538 7655

QO Rules 173 210 213 215

5.1.1 Results discussion and conclusions
The QO Rules variation aims in exercising the query optimizer

code and as intended it achieves the highest code coverage of that

component. Since it favors queries which exercise a variety of

optimization rules, these queries involve a more diverse set of

alternative plans. The larger number of alternatives in the plan

space contributes in exercising more code beyond the query

optimizer component than the two other variations, resulting in

higher overall code coverage.

Although the number of different iterators used by a query is

loosely correlated with the number of different optimization rules

used, i.e. each different physical operator in a query plan is a

result of a corresponding implementation rule, that correlation is

not expected to increase the coverage of the query optimizer

significantly. In fact, as it is evident in Figure 6 and Figure 7

initially significantly help the test

coverage of the query optimizer in both functions and rules

covered. However, as the queries in the best query pool become

very complex, more possibilities for query optimization open up,

and the variation with iterator feedback seems to get closer to the

variation without feedback and eventually exceeds it (as shown in

Figure 6 and Figure 7 after the 50000th second). In terms of

overall code coverage iterator feedback is consistently more

efficient than when no feedback is used.

At the end of the experiment, the best queries pool for the QO

Rules variation included a set of queries that exercised every rule

exercised during the duration of the whole experiment; something

which is self-evident from the definition of the feedback and

fitness function. This is significant because as the best set evolves

over time, it encourages more frequent usage of interesting genes

from previous queries, which helps to test specific components

more intensively. The final set of best queries can be used as a

regression test suite for future changes in the component under

test. We observed over several repeated experiments that, with

similar fitness functions, the set of QO rules covered was also

similar. From the definition of the best query set, this means we

saw similar convergence towards a set of queries that will exercise

the areas defined in the fitness function. Note that this does not

imply that the best query sets themselves are always similar, but it

does demonstrate that they will converge towards a set which

exercises similar feedback genes as defined by the fitness

function. We will discuss this further in the remainder of this

section.

The difference in code coverage achieved by the three different

variations may appear small comparing to the overall number of

functions covered. However, what needs to be emphasized is that

increases in code coverage tend to become harder as code

coverage increases. That fact is not particular to our technique but

also noticeable when manual methods are used. For example, an

increase in code coverage from 50% to 51% is much easier to

achieve than an increase from 90% to 91%.

an approximation of the upper code coverage bound which

includes the coverage of dynamic code paths and we do not

attempt it in this paper.

When compared to RAGS our test generation technique is

performing significantly better in terms of both efficiency and

code coverage, with or without the use of feedback.

From our experiments, we noted that early random decision

making can affect the future generation of queries by creating

some genes that get heavily favored over others. This happens

because of the fact that at the start, there are not many gene

flavors to work with, and so almost any new gene is given very

high importance. In order to overcome this and give the system

more time to work through the early genes, we delay the use of

feedback until a certain amount of time has elapsed.

In other experiments that were performed using more complex

databases schemas, we observed similar patterns to the ones that

we showed based on the TPCH database. In general, we try to use

test databases which include a variety of SQL Server features in

order to maximize the code coverage. These test databases can

also be configured in a way that assists the system in generating

1150

more interesting genes, such as by creating views that include

query statements that are interesting or otherwise difficult to

reach.

6. RELATED WORK
There are many existing approaches to random software testing.

There is ongoing evidence that random testing provides great

value to testing systems that are large and complex [10]. In the

area of databases systems Slutz [13] developed the RAGS

framework which has motivated our work. The ways that our

approach differs has already been described earlier in this paper.

Waas and Galindo-Legaria have developed a technique that

allows enumeration and random sampling of query plans across a

query plan space [16]. The effectiveness of this technique

depends on the set of queries used for plan space exploration. Our

technique partners well with plan enumeration and sampling and

specifically the variation of our technique based on QO-rules

feedback, since works towards creating queries with large and

diverse plan spaces.

Beyond the domain of DBMS, the area of random testing is being

actively researched. For some random testing techniques the usage

of execution feedback has been also explored to create test valid

inputs for functions [4] or to facilitate the selection of random test

cases without replacement [12]. Other techniques aim toward

constraining, sampling the random space of test cases/inputs [2]

[12]. Godefroid [5] attempts to compute test inputs to drive a

program along a specific path using methods of compositional

creation. His method aims to predict how changing inputs can

result in changing code paths.

7. FUTURE WORK
The query mutation and synthesis techniques can be extended to

include a wider coverage of the SQL language. More complex

mutation techniques can be implemented by exchanging query

parts between two or more best queries.

The best query pool could potentially be seeded with manually

created queries that include specifically selected query genes. That

should give a head start to the test generation algorithm and allow

the use of query combinations that may not be possible by the

current implementation of the generation process.

The database schema and the data stored in the test database

include important parameters which can constrain and influence

the generation of queries. The use of random schema and data

generation methods perhaps combined with execution feedback to

alter and extend the schema and datasets can also be explored as

an extension our to technique.

8. CONCLUSION
We presented a practical method for generating queries that can

be used as test cases for testing a DBMS and we offered examples

specific to query processor testing. We have shown that the use of

execution feedback improves the efficiency of the test generation

process and increases code coverage of specific DBMS

components.

9. REFERENCES
[1] Binder V. R. Testing object-oriented systems: models,

patterns, and tools, Addison-Wesley object oriented series,

Addison-Wesley Longman, 2000

[2] Chen T.Y., Kuo F.C. Is Adaptive Random Testing Really

Better than Random Testing. In Proceedings of the First

(Jul

20, 2006, Portland, ME, USA) , 64-69

[3] Ciupa I., Leitner A., Oriol M., Meyer B. Object distance and

its application to adaptive random testing of object-oriented

programs. In Proceedings of the First International

(Jul 20, 2006,

Portland, ME, USA), 55-63

[4] Ferguson R. and Korel B. The Chaining Approach for

Software Test Generation. ACM Transactions on Software

Engineering and Methodology, 5,1 (Jan 1996) , 63-86

[5] Godefroid P. Compositional dynamic test generation, In

Proceedings of the 34th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages (Nice,

France), ACM Press, New York, NY, 2007, 47-54

[6] Godefroid P., Klarlund N., Sen k. DART: Directed

Automated Random Testing, In Proceedings of the 2005

ACM SIGPLAN conference on Programming language

design and implementation (Chicago, IL, USA). ACM Press,

New York, NY, 2005, 213 - 223

[7] Graefe G. Query evaluation techniques for large databases,

ACM Computing Surveys (CSUR), 25,2, (June 1993), 73-169

[8] Graefe G. The Cascades Framework for Query Optimization,

IEEE Data Engineering Bulletin, 18,3 (1995), 19-29

[9] Graefe G. Volcano - An Extensible and Parallel Query

Evaluation System, IEEE Trans. Knowl. Data Eng., 6,1

(1994), 120-135

[10] Hamlet D. When Only Random Testing will do. In

Proceedings of the First International Workshop on Random

Testi (Jul 20, 2006, Portland, ME, USA)

[11] Microsoft Coproration, XML Showplans, SQL Server 2005

Books Online, http://msdn2.microsoft.com/en-

us/library/ms189298.aspx

[12] Pacheco C., Lahiri S.K., Ernst M.D., and Ball T. Feedback-

directed Random Test Generation. In ICSE '07: Proceedings

of the 29th International Conference on Software

Engineering, (Minneapolis, MN, USA), 2007

[13] Slutz, D. Massive Stochastic Testing of SQL, In Proceedings

of the 24th VLDB Conference, (New York USA 1998), 618-

622

[14] Stobie, K. Too Darned Big to Test. ACM Queue, 3, 1,

(February 2005)

[15] TPC Benchmark H. Decision Support.http://www.tpc.org.

[16] Waas F. and C. A. Galindo-Legaria, Counting, Enumerating,

and Sampling of Execution Plans in a Cost-Based Query

Optimizer. In Proceedings of the 2000 ACM SIGMOD

international conference on Management of data (Dallas,

Texas, USA). ACM Press, New York, NY, 2000, 499 - 509

[17] Whittaker, J. Stohastic Software Testing. Annals of Software

Engineering, 4, , J. C. Baltzer AG, Science Publishers Red

Bank, NJ, USA, 1997, 115-1

1151

