14. ECML 2003:
Cavtat-Dubrovnik,
Croatia
Nada Lavrac, Dragan Gamberger, Ljupco Todorovski, Hendrik Blockeel (Eds.):
Machine Learning: ECML 2003, 14th European Conference on Machine Learning, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings.
Lecture Notes in Computer Science 2837 Springer 2003, ISBN 3-540-20121-1
Invited Papers
- Pieter W. Adriaans:
From Knowledge-Based to Skill-Based Systems: Sailing as a Machine Learning Challenge.
1-8
- Leo Breiman:
Two-Eyed Algorithms and Problems.
9
- Christos Faloutsos:
Next Generation Data Mining Tools: Power Laws and Self-similarity for Graphs, Streams and Traditional Data.
10-15
- Donald B. Rubin:
Taking Causality Seriously: Propensity Score Methodology Applied to Estimate the Effects of Marketing Interventions.
16-22
Contributed Papers
- Ulf Brefeld, Peter Geibel, Fritz Wysotzki:
Support Vector Machines with Example Dependent Costs.
23-34
- Pedro Campos, Thibault Langlois:
Abalearn: A Risk-Sensitive Approach to Self-play Learning in Abalone.
35-46
- Chien Chin Chen, Yao-Tsung Chen, Yeali S. Sun, Meng Chang Chen:
Life Cycle Modeling of News Events Using Aging Theory.
47-59
- François Coste, Daniel Fredouille:
Unambiguous Automata Inference by Means of State-Merging Methods.
60-71
- Paul A. Crook, Gillian Hayes:
Could Active Perception Aid Navigation of Partially Observable Grid Worlds?
72-83
- Walter Daelemans, Véronique Hoste, Fien De Meulder, Bart Naudts:
Combined Optimization of Feature Selection and Algorithm Parameters in Machine Learning of Language.
84-95
- Damien Ernst, Pierre Geurts, Louis Wehenkel:
Iteratively Extending Time Horizon Reinforcement Learning.
96-107
- César Ferri, José Hernández-Orallo, Miguel A. Salido:
Volume under the ROC Surface for Multi-class Problems.
108-120
- César Ferri, Peter A. Flach, José Hernández-Orallo:
Improving the AUC of Probabilistic Estimation Trees.
121-132
- Jörg Fischer, Kristian Kersting:
Scaled CGEM: A Fast Accelerated EM.
133-144
- Johannes Fürnkranz, Eyke Hüllermeier:
Pairwise Preference Learning and Ranking.
145-156
- Pascal Garcia:
A New Way to Introduce Knowledge into Reinforcement Learning.
157-168
- Amaury Habrard, Marc Bernard, Marc Sebban:
Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference.
169-180
- Pieter Jan't Hoen, Sander M. Bohte:
COllective INtelligence with Sequences of Actions - Coordinating Actions in Multi-agent Systems.
181-192
- Matti Kääriäinen, Tapio Elomaa:
Rademacher Penalization over Decision Tree Prunings.
193-204
- David Kauchak, Charles Elkan:
Learning Rules to Improve a Machine Translation System.
205-216
- Rinat Khoussainov, Nicholas Kushmerick:
Optimising Performance of Competing Search Engines in Heterogeneous Web Environments.
217-228
- Frédéric Koriche, Joël Quinqueton:
Robust k-DNF Learning via Inductive Belief Merging.
229-240
- Niels Landwehr, Mark Hall, Eibe Frank:
Logistic Model Trees.
241-252
- Jianguo Lee, Jingdong Wang, Changshui Zhang:
Color Image Segmentation: Kernel Do the Feature Space.
253-264
- Marie-Jeanne Lesot, Florence d'Alché-Buc, George Siolas:
Evaluation of Topographic Clustering and Its Kernelization.
265-276
- Yan Liu, Jaime G. Carbonell, Rong Jin:
A New Pairwise Ensemble Approach for Text Classification.
277-288
- Koichi Moriyama, Masayuki Numao:
Self-evaluated Learning Agent in Multiple State Games.
289-300
- ShyamSundar Rajaram, Ashutosh Garg, Xiang Sean Zhou, Thomas S. Huang:
Classification Approach towards Banking and Sorting Problems.
301-312
- Bohdana Ratitch, Doina Precup:
Using MDP Characteristics to Guide Exploration in Reinforcement Learning.
313-324
- Marko Robnik-Sikonja:
Experiments with Cost-Sensitive Feature Evaluation.
325-336
- Roberto Santana:
A Markov Network Based Factorized Distribution Algorithm for Optimization.
337-348
- Marc Sebban, Henri-Maxime Suchier:
On Boosting Improvement: Error Reduction and Convergence Speed-Up.
349-360
- James G. Shanahan, Norbert Roma:
Improving SVM Text Classification Performance through Threshold Adjustment.
361-372
- Khalil Sima'an, Luciano Buratto:
Backoff Parameter Estimation for the DOP Model.
373-384
- Dorian Suc, Ivan Bratko:
Improving Numerical Prediction with Qualitative Constraints.
385-396
- Cynthia A. Thompson, Roger Levy, Christopher D. Manning:
A Generative Model for Semantic Role Labeling.
397-408
- Kristina Toutanova, Mark Mitchell, Christopher D. Manning:
Optimizing Local Probability Models for Statistical Parsing.
409-420
- Karl Tuyls, Dries Heytens, Ann Nowé, Bernard Manderick:
Extended Replicator Dynamics as a Key to Reinforcement Learning in Multi-agent Systems.
421-431
- Jarkko Venna, Samuel Kaski, Jaakko Peltonen:
Visualizations for Assessing Convergence and Mixing of MCMC.
432-443
- Ricardo Vilalta, Irina Rish:
A Decomposition of Classes via Clustering to Explain and Improve Naive Bayes.
444-455
- Romain Vinot, François Yvon:
Improving Rocchio with Weakly Supervised Clustering.
456-467
- Nils Weidmann, Eibe Frank, Bernhard Pfahringer:
A Two-Level Learning Method for Generalized Multi-instance Problems.
468-479
- Yungang Zhang, Changshui Zhang, Shijun Wang:
Clustering in Knowledge Embedded Space.
480-491
- Zhi-Hua Zhou, Min-Ling Zhang:
Ensembles of Multi-instance Learners.
492-502
Copyright © Fri Mar 12 17:10:10 2010
by Michael Ley (ley@uni-trier.de)