9. ICDM Workshops 2009:
Miami,
Florida,
USA
Yücel Saygin, Jeffrey Xu Yu, Hillol Kargupta, Wei Wang, Sanjay Ranka, Philip S. Yu, Xindong Wu (Eds.):
ICDM Workshops 2009, IEEE International Conference on Data Mining Workshops, Miami, Florida, USA, 6 December 2009.
IEEE Computer Society 2009, ISBN 978-0-7695-3902-7
Domain Driven Data Mining
- Mohammad Salim Ahmed, Latifur Khan:
SISC: A Text Classification Approach Using Semi Supervised Subspace Clustering.
1-6
- Stefano Basta, Fabio Fassetti, Massimo Guarascio, Giuseppe Manco, Fosca Giannotti, Dino Pedreschi, Laura Spinsanti, Gianfilippo Papi, Stefano Pisani:
High Quality True-Positive Prediction for Fiscal Fraud Detection.
7-12
- Toon Calders, Faisal Kamiran, Mykola Pechenizkiy:
Building Classifiers with Independency Constraints.
13-18
- Jonathan Klinginsmith, Malika Mahoui, Yuqing Wu, Josette F. Jones:
Discovering Domain Specific Concepts within User-Generated Taxonomies.
19-24
- Wei Liu, Sanjay Chawla:
A Game Theoretical Model for Adversarial Learning.
25-30
- Fumiya Nakagaito, Tomonobu Ozaki, Takenao Ohkawa:
Discovery of Quantitative Sequential Patterns from Event Sequences.
31-36
- Houssam Nassif, Ryan Woods, Elizabeth S. Burnside, Mehmet Ayvaci, Jude W. Shavlik, David Page:
Information Extraction for Clinical Data Mining: A Mammography Case Study.
37-42
- Thao Pham Thanh Nguyen, Takahiro Hayashi, Rikio Onai, Yuhei Nishioka, Takamasa Takenaka, Masaya Mori:
A New Minimally Supervised Learning Method for Semantic Term Classification - Experimental Results on Classifying Ratable Aspects Discussed in Customer Reviews.
43-50
- Yakub Sebastian, Brian Chung Shiong Loh, Patrick Hang Hui Then:
A Paradigm Shift: Combined Literature and Ontology-Driven Data Mining for Discovering Novel Relations in Biomedical Domain.
51-57
- Masaki Shinoda, Tomonobu Ozaki, Takenao Ohkawa:
Weighted Frequent Subgraph Mining in Weighted Graph Databases.
58-63
- Daria Sorokina, Rich Caruana, Mirek Riedewald, Wesley M. Hochachka, Steve Kelling:
Detecting and Interpreting Variable Interactions in Observational Ornithology Data.
64-69
- Peerapon Vateekul, Kanoksri Sarinnapakorn:
Tree-Based Approach to Missing Data Imputation.
70-75
- Shuo Wang, Xin Yao:
Theoretical Study of the Relationship between Diversity and Single-Class Measures for Class Imbalance Learning.
76-81
- Yanshan Xiao, Bo Liu, Longbing Cao, Xindong Wu, Chengqi Zhang, Zhifeng Hao, Fengzhao Yang, Jie Cao:
Multi-sphere Support Vector Data Description for Outliers Detection on Multi-distribution Data.
82-87
- Zheng Zhao, Shashvata Sharma, Nitin Agarwal, Huan Liu, Jiangxin Wang, Yung Chang:
Integrating Knowledge in Search of Biologically Relevant Genes.
88-93
- Indre Zliobaite, Jorn Bakker, Mykola Pechenizkiy:
Towards Context Aware Food Sales Prediction.
94-99
Privacy Aspects of Data Mining
Internet Multimedia Mining
- Hrishikesh Aradhye, George Toderici, Jay Yagnik:
Video2Text: Learning to Annotate Video Content.
144-151
- Guiguang Ding, Jianmin Wang, Na Xu, Lu Zhang:
Automatic Image Annotations by Mining Web Image Data.
152-157
- Bo Geng, Linjun Yang, Chao Xu:
A Study of Language Model for Image Retrieval.
158-163
- Hao Li, Meng Wang, Xian-Sheng Hua:
MSRA-MM 2.0: A Large-Scale Web Multimedia Dataset.
164-169
- Qifeng Qiao, Peter A. Beling:
Localized Content Based Image Retrieval with Self-Taught Multiple Instance Learning.
170-175
- Kimiaki Shirahama, Chieri Sugihara, Kana Matsumura, Yuta Matsuoka, Kuniaki Uehara:
Mining Event Definitions from Queries for Video Retrieval on the Internet.
176-183
- Si Si, Dacheng Tao, Kwok-Ping Chan:
Cross-Domain Web Image Annotation.
184-189
- Adrian Ulges, Markus Koch, Damian Borth, Thomas M. Breuel:
TubeTagger - YouTube-based Concept Detection.
190-195
- Bo Wang, Jinqiao Wang, Shi Chen, Ling-Yu Duan, Hanqing Lu:
Semantic Linking between Video Ads and Web Services with Progressive Search.
196-201
- Jie Yu, Xin Jin, Jiawei Han, Jiebo Luo:
Mining Personal Image Collection for Social Group Suggestion.
202-207
Knowledge Discovery from Climate Data:
Prediction,
Extremes and Impacts
- Dima Alberg, Mark Last, Roni Neuman, Avi Sharon:
Induction of Mean Output Prediction Trees from Continuous Temporal Meteorological Data.
208-213
- David Erickson, Jamison Daniel, Melissa Allen, Auroop Ganguly, Forrest Hoffman, Steven Pawson, Lesley Ott, Eric Neilson:
Data Mining Geophysical Content from Satellites and Global Climate Models.
214-216
- Hai Jin, Diansheng Guo:
Understanding Climate Change Patterns with Multivariate Geovisualization.
217-222
- Shih-Chieh Kao, Auroop R. Ganguly, Karsten Steinhaeuser:
Motivating Complex Dependence Structures in Data Mining: A Case Study with Anomaly Detection in Climate.
223-230
- Chris Mattmann, Daniel J. Crichton, Amy Braverman, Dean Williams, Michael Gunson, David Woollard, Sean C. Kelly, Michael Cayanan:
A Distributed Computing Infrastructure for the Evaluation of Climate Models Using NASA Observational Data.
231-232
- Kristin Potter, Andrew Wilson, Peer-Timo Bremer, Dean Williams, Charles Doutriaux, Valerio Pascucci, Chris R. Johnson:
Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data.
233-240
- Khachik Sargsyan, Cosmin Safta, Bert J. Debusschere, Habib N. Najm:
Uncertainty Quantification in the Presence of Limited Climate Model Data with Discontinuities.
241-247
- Raquel Sebastião, Pedro Pereira Rodrigues, João Gama:
Change Detection in Climate Data over the Iberian Peninsula.
248-253
- Dean N. Williams, Charles M. Doutriaux, Robert S. Drach, Renata B. McCoy:
The Flexible Climate Data Analysis Tools (CDAT) for Multi-model Climate Simulation Data.
254-261
Large-Scale Data Mining:
Theory and Applications - Long Presentations
- Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda:
Link Prediction on Evolving Data Using Matrix and Tensor Factorizations.
262-269
- Ying Chen, W. Scott Spangler, Jeffrey T. Kreulen, Stephen Boyer, Thomas D. Griffin, Alfredo Alba, Amit Behal, Bin He, Linda Kato, Ana Lelescu, Cheryl A. Kieliszewski, Xian Wu, Li Zhang:
SIMPLE: A Strategic Information Mining Platform for Licensing and Execution.
270-275
- Tianyuan Chen, Lei Chang, Jianqing Ma, Wei Zhang, Feng Gao:
HOCT: A Highly Scalable Algorithm for Training Linear CRF on Modern Hardware.
276-281
- Wenxuan Gao, Robert L. Grossman, Philip S. Yu, Yunhong Gu:
Why Naive Ensembles Do Not Work in Cloud Computing.
282-289
- B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju, Christos Faloutsos:
EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs.
290-295
- Dennis Wegener, Michael Mock, Deyaa Adranale, Stefan Wrobel:
Toolkit-Based High-Performance Data Mining of Large Data on MapReduce Clusters.
296-301
- Yuk Wah Wong, Dominic Widdows, Tom Lokovic, Kamal Nigam:
Scalable Attribute-Value Extraction from Semi-structured Text.
302-307
Large-Scale Data Mining:
Theory and Applications - Short Presentations
- Daniel Gillblad, Rebecca Steinert, Diogo R. Ferreira:
Estimating the Parameters of Randomly Interleaved Markov Models.
308-313
- Ramesh Natarajan, Vikas Sindhwani, Shirish Tatikonda:
Sparse Least-Squares Methods in the Parallel Machine Learning (PML) Framework.
314-319
- Peerapon Vateekul, Miroslav Kubat:
Fast Induction of Multiple Decision Trees in Text Categorization from Large Scale, Imbalanced, and Multi-label Data.
320-325
- Zuobing Xu, Christopher Hogan, Robert Bauer:
Greedy is not Enough: An Efficient Batch Mode Active Learning Algorithm.
326-331
- Shengqi Yang, Bai Wang, Haizhou Zhao, Bin Wu:
Efficient Dense Structure Mining Using MapReduce.
332-337
- Jia-Ching Ying, Vincent S. Tseng, Philip S. Yu:
Efficient Incremental Mining of Qualified Web Traversal Patterns without Scanning Original Databases.
338-343
- Bin Zhao, Changshui Zhang:
Compressed Spectral Clustering.
344-349
Optimization-Based Methods for Emerging Data Mining Problems
- Pritam Chanda, Young-Rae Cho, Aidong Zhang, Murali Ramanathan:
Mining of Attribute Interactions Using Information Theoretic Metrics.
350-355
- Shuo Chen, Bin Liu, Mingjie Qian, Changshui Zhang:
Kernel K-means Based Framework for Aggregate Outputs Classification.
356-361
- Hongliang Fei, Brian Quanz, Jun Huan:
GLSVM: Integrating Structured Feature Selection and Large Margin Classification.
362-367
- Chengying Mao:
An Effective Network Partitioning Algorithm Based on Two-Point Diffusing Strategy.
368-373
- Gregory M. Moore, Charles Bergeron, Kristin P. Bennett:
Nonsmooth Bilevel Programming for Hyperparameter Selection.
374-381
- Jana Novovicová, Petr Somol, Pavel Pudil:
A New Measure of Feature Selection Algorithms' Stability.
382-387
- Kunal Punera, Suju Rajan:
Improved Multi Label Classification in Hierarchical Taxonomies.
388-393
- Mingjie Qian, Feiping Nie, Changshui Zhang:
Probabilistic Labeled Semi-supervised SVM.
394-399
- Rui Wang, Ke Tang:
Feature Selection for Maximizing the Area Under the ROC Curve.
400-405
- Dan Zhang, Luo Si:
Multiple Instance Transfer Learning.
406-411
Transfer Mining
- Hidenao Abe, Shusaku Tsumoto:
Detecting Similarity of Transferring Datasets Based on Features of Classification Rules.
412-415
- Wei Bi, Yuan Shi, Zhen-zhong Lan:
Transferred Feature Selection.
416-421
- Eric Eaton, Marie desJardins:
Set-Based Boosting for Instance-Level Transfer.
422-428
- Evan Wei Xiang, Nathan Nan Liu, Sinno Jialin Pan, Qiang Yang:
Knowledge Transfer among Heterogeneous Information Networks.
429-434
- Pu Wang, Carlotta Domeniconi:
Towards a Universal Text Classifier: Transfer Learning Using Encyclopedic Knowledge.
435-440
- Fei Wang, Tao Li:
Knowledge Transformation by Cross-Domain Belief Propagation.
441-446
- Indre, Ludmila I. Kuncheva:
Determining the Training Window for Small Sample Size Classification with Concept Drift.
447-452
Semantic Aspects in Data Mining
Mining Multiple Information Sources
- Bahareh Bina, Oliver Schulte, Hassan Khosravi:
LNBC: A Link-Based Naive Bayes Classifier.
489-494
- Haimonti Dutta, Xianshu Zhu, Tushar Mahule, Hillol Kargupta, Kirk D. Borne, Codrina Lauth, Florian Holz, Gerhard Heyer:
TagLearner: A P2P Classifier Learning System from Collaboratively Tagged Text Documents.
495-500
- Germain Forestier, Cédric Wemmert, Pierre Gançarski, Jordi Inglada:
Mining Multiple Satellite Sensor Data Using Collaborative Clustering.
501-506
- Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Randall Wald:
Feature Selection with High-Dimensional Imbalanced Data.
507-514
- Aleksandar Lazarevic, Nisheeth Srivastava, Ashutosh Tiwari, Josh Isom, Nikunj C. Oza, Jaideep Srivastava:
Theoretically Optimal Distributed Anomaly Detection.
515-520
- Xinhai Liu, Shi Yu, Yves Moreau, Frizo A. L. Janssens, Bart De Moor, Wolfgang Glänzel:
Hybrid Clustering by Integrating Text and Citation Based Graphs in Journal Database Analysis.
521-526
- Yuuki Miyoshi, Tomonobu Ozaki, Takenao Ohkawa:
Frequent Pattern Discovery from a Single Graph with Quantitative Itemsets.
527-532
- Tomonobu Ozaki, Takenao Ohkawa:
Efficient Discovery of Closed Hyperclique Patterns in Multidimensional Structured Databases.
533-538
- Guangzhi Qu, Hui Wu:
Bucket Learning: Improving Model Quality through Enhancing Local Patterns.
539-544
- Lisa Tan, Farshad Fotouhi, William I. Grosky, Horia F. Pop, Noureddine Mouaddib:
Improving Similarity Join Algorithms Using Fuzzy Clustering Technique.
545-550
- Huanjing Wang, Taghi M. Khoshgoftaar, Kehan Gao, Naeem Seliya:
Mining Data from Multiple Software Development Projects.
551-557
- Jianfei Wu, Anne Denton, Omar Elariss, Dianxiang Xu:
Mining for Core Patterns in Stock Market Data.
558-563
Spatial and Spatiotemporal Data Mining - Regular Papers
- Matthew Bodenhamer, Samuel Bleckley, Daniel Fennelly, Andrew H. Fagg, Amy McGovern:
Spatio-temporal Multi-dimensional Relational Framework Trees.
564-570
- Guido Cervone, Anthony Stefanidis, Pasquale Franzese, Peggy Agouris:
Spatiotemporal Modeling and Monitoring of Atmospheric Hazardous Emissions Using Sensor Networks.
571-576
- Cheng Chang, Baoyao Zhou:
Multi-granularity Visualization of Trajectory Clusters Using Sub-trajectory Clustering.
577-582
- Arie Croitoru:
Deriving Low-Level Steering Behaviors from Trajectory Data.
583-590
- Diansheng Guo:
Greedy Optimization for Contiguity-Constrained Hierarchical Clustering.
591-596
- Goo Jun, Ranga Raju Vatsavai, Joydeep Ghosh:
Spatially Adaptive Classification and Active Learning of Multispectral Data with Gaussian Processes.
597-603
- Shrikant Kashyap, Sujoy Roy, Mong-Li Lee, Wynne Hsu:
FARM : Feature-Assisted Aggregate Route Mining in Trajectory Data.
604-609
- Mirco Nanni, Roberto Trasarti:
K-BestMatch Reconstruction and Comparison of Trajectory Data.
610-615
- Dhaval Patel, Chidansh Bhatt, Wynne Hsu, Mong-Li Lee, Mohan S. Kankanhalli:
Analyzing Abnormal Events from Spatio-temporal Trajectories.
616-621
- Anthony Stefanidis, Caixia Wang, Lu Xu, Kevin M. Curtin:
Multilayer Scene Similarity Assessment.
622-629
- Timothy A. Supinie, Amy McGovern, John Williams, Jennifer Abernathy:
Spatiotemporal Relational Random Forests.
630-635
- Hyunjin Yoon, Cyrus Shahabi:
Accurate Discovery of Valid Convoys from Moving Object Trajectories.
636-643
Spatial and Spatiotemporal Data Mining - Short Papers
- Zubin Abraham, Pang-Ning Tan:
A Semi-supervised Framework for Simultaneous Classification and Regression of Zero-Inflated Time Series Data with Application to Precipitation Prediction.
644-649
- Jason N. Bank, Olufemi A. Omitaomu, Steven J. Fernandez, Yilu Liu:
Visualization and Classification of Power System Frequency Data Streams.
650-655
- Surya S. Durbha, Roger L. King, Santhosh K. Amanchi, Shruthi Bheemireddy, Nicolas H. Younan:
Information Services and Middleware for the Coastal Sensor Web.
656-661
- Lamia Fattouh Ibrahim, Weam M. Minshawi, Isra Yosef Ekkab, Nehal Mahmoud Al-Jurf, Afnan Salem Babrahim, Samar Faisl Al-Halees:
Enhancing the DBSCAN and Agglomerative Clustering Algorithms to Solve Network Planning Problem.
662-667
- Thomas Liebig, Christine Körner, Michael May:
Fast Visual Trajectory Analysis Using Spatial Bayesian Networks.
668-673
Copyright © Fri Mar 12 17:13:52 2010
by Michael Ley (ley@uni-trier.de)