| 2010 |
22 | | Hua Yan,
Keke Chen,
Ling Liu,
Zhang Yi:
SCALE: a scalable framework for efficiently clustering transactional data.
Data Min. Knowl. Discov. 20(1): 1-27 (2010) |
| 2009 |
21 | | Keke Chen,
Jing Bai,
Srihari Reddy,
Belle L. Tseng:
On domain similarity and effectiveness of adapting-to-rank.
CIKM 2009: 1601-1604 |
20 | | Hua Yan,
Keke Chen,
Ling Liu,
Joonsoo Bae:
Determining the best K.
Data Knowl. Eng. 68(1): 28-48 (2009) |
19 | | Keke Chen,
Ling Liu:
Privacy-Preserving Multiparty Collaborative Mining with Geometric Data Perturbation.
IEEE Trans. Parallel Distrib. Syst. 20(12): 1764-1776 (2009) |
18 | | Keke Chen,
Ling Liu:
"Best K": critical clustering structures in categorical datasets.
Knowl. Inf. Syst. 20(1): 1-33 (2009) |
17 | | Keke Chen,
Ling Liu:
HE-Tree: a framework for detecting changes in clustering structure for categorical data streams.
VLDB J. 18(6): 1241-1260 (2009) |
| 2008 |
16 | | Keke Chen,
Rongqing Lu,
C. K. Wong,
Gordon Sun,
Larry Heck,
Belle L. Tseng:
Trada: tree based ranking function adaptation.
CIKM 2008: 1143-1152 |
15 | | Keke Chen,
Ya Zhang,
Zhaohui Zheng,
Hongyuan Zha,
Gordon Sun:
Adapting ranking functions to user preference.
ICDE Workshops 2008: 580-587 |
| 2007 |
14 | | Zhaohui Zheng,
Hongyuan Zha,
Tong Zhang,
Olivier Chapelle,
Keke Chen,
Gordon Sun:
A General Boosting Method and its Application to Learning Ranking Functions for Web Search.
NIPS 2007 |
13 | | Keke Chen,
Ling Liu:
Space adaptation: privacy-preserving multiparty collaborative mining with geometric perturbation.
PODC 2007: 324-325 |
12 | | Keke Chen,
Gordon Sun,
Ling Liu:
Towards Attack-Resilient Geometric Data Perturbation.
SDM 2007 |
11 | | Zhaohui Zheng,
Keke Chen,
Gordon Sun,
Hongyuan Zha:
A regression framework for learning ranking functions using relative relevance judgments.
SIGIR 2007: 287-294 |
| 2006 |
10 | | Hua Yan,
Keke Chen,
Ling Liu:
Efficiently clustering transactional data with weighted coverage density.
CIKM 2006: 367-376 |
9 | | Keke Chen,
Ling Liu:
Detecting the Change of Clustering Structure in Categorical Data Streams.
SDM 2006 |
8 | | Keke Chen,
Ling Liu:
iVIBRATE: Interactive visualization-based framework for clustering large datasets.
ACM Trans. Inf. Syst. 24(2): 245-294 (2006) |
| 2005 |
7 | | Keke Chen,
Ling Liu:
Privacy Preserving Data Classification with Rotation Perturbation.
ICDM 2005: 589-592 |
6 | | Keke Chen,
Ling Liu:
The "Best K" for Entropy-based Categorical Data Clustering.
SSDBM 2005: 253-262 |
| 2004 |
5 | | Keke Chen,
Ling Liu:
ClusterMap: labeling clusters in large datasets via visualization.
CIKM 2004: 285-293 |
4 | | Keke Chen,
Ling Liu:
VISTA: validating and refining clusters via visualization.
Information Visualization 3(4): 257-270 (2004) |
| 2003 |
3 | | Keke Chen,
Ling Liu:
Validating and Refining Clusters via Visual Rendering.
ICDM 2003: 501-504 |
2 | | Keke Chen,
Ling Liu:
Cluster Rendering of Skewed Datasets via Visualization.
SAC 2003: 909-916 |
1 | | Keke Chen,
Ling Liu:
A Visual Framework Invites Human into the Clustering Process.
SSDBM 2003: 97-106 |