2009 | ||
---|---|---|
123 | Thomas G. Dietterich: Machine Learning and Ecosystem Informatics: Challenges and Opportunities. ACML 2009: 1-5 | |
122 | Gonzalo Martínez-Muñoz, Natalia Larios Delgado, Eric N. Mortensen, Wei Zhang, Asako Yamamuro, Robert Paasch, Nadia Payet, David A. Lytle, Linda G. Shapiro, Sinisa Todorovic, Andrew Moldenke, Thomas G. Dietterich: Dictionary-free categorization of very similar objects via stacked evidence trees. CVPR 2009: 549-556 | |
121 | Wei Zhang, Akshat Surve, Xiaoli Fern, Thomas G. Dietterich: Learning non-redundant codebooks for classifying complex objects. ICML 2009: 156 | |
120 | Thomas G. Dietterich: Machine Learning in Ecosystem Informatics and Sustainability. IJCAI 2009: 8-13 | |
119 | Jianqiang Shen, Jed Irvine, Xinlong Bao, Michael Goodman, Stephen Kolibaba, Anh Tran, Fredric Carl, Brenton Kirschner, Simone Stumpf, Thomas G. Dietterich: Detecting and correcting user activity switches: algorithms and interfaces. IUI 2009: 117-126 | |
118 | Jianqiang Shen, Erin Fitzhenry, Thomas G. Dietterich: Discovering frequent work procedures from resource connections. IUI 2009: 277-286 | |
117 | Jianqiang Shen, Thomas G. Dietterich: A Family of Large Margin Linear Classifiers and Its Application in Dynamic Environments. SDM 2009: 164-172 | |
116 | Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret M. Burnett, Thomas G. Dietterich, Erin Sullivan, Jonathan L. Herlocker: Interacting meaningfully with machine learning systems: Three experiments. Int. J. Hum.-Comput. Stud. 67(8): 639-662 (2009) | |
115 | Jianqiang Shen, Thomas G. Dietterich: A family of large margin linear classifiers and its application in dynamic environments. Statistical Analysis and Data Mining 2(5-6): 328-345 (2009) | |
2008 | ||
114 | Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton: Probabilistic, Logical and Relational Learning - A Further Synthesis, 15.04. - 20.04.2007 Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2008 | |
113 | Thomas G. Dietterich, Xinlong Bao: Integrating Multiple Learning Components through Markov Logic. AAAI 2008: 622-627 | |
112 | Michael Wynkoop, Thomas G. Dietterich: Learning MDP Action Models Via Discrete Mixture Trees. ECML/PKDD (2) 2008: 597-612 | |
111 | Neville Mehta, Soumya Ray, Prasad Tadepalli, Thomas G. Dietterich: Automatic discovery and transfer of MAXQ hierarchies. ICML 2008: 648-655 | |
110 | Wei Zhang, Thomas G. Dietterich: Learning visual dictionaries and decision lists for object recognition. ICPR 2008: 1-4 | |
109 | Sriraam Natarajan, Prasad Tadepalli, Thomas G. Dietterich, Alan Fern: Learning first-order probabilistic models with combining rules. Ann. Math. Artif. Intell. 54(1-3): 223-256 (2008) | |
108 | Natalia Larios, Hongli Deng, Wei Zhang, Matt Sarpola, Jenny Yuen, Robert Paasch, Andrew Moldenke, David A. Lytle, Salvador Ruiz-Correa, Eric N. Mortensen, Linda G. Shapiro, Thomas G. Dietterich: Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Mach. Vis. Appl. 19(2): 105-123 (2008) | |
107 | Thomas G. Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, Prasad Tadepalli: Structured machine learning: the next ten years. Machine Learning 73(1): 3-23 (2008) | |
2007 | ||
106 | Thomas G. Dietterich: Machine Learning in Ecosystem Informatics. ALT 2007: 10-11 | |
105 | Hongli Deng, Wei Zhang, Eric N. Mortensen, Thomas G. Dietterich, Linda G. Shapiro: Principal Curvature-Based Region Detector for Object Recognition. CVPR 2007 | |
104 | Thomas G. Dietterich: Machine Learning in Ecosystem Informatics. Discovery Science 2007: 9-25 | |
103 | Jianqiang Shen, Lida Li, Thomas G. Dietterich: Real-Time Detection of Task Switches of Desktop Users. IJCAI 2007: 2868-2873 | |
102 | Jianqiang Shen, Thomas G. Dietterich: Active EM to reduce noise in activity recognition. IUI 2007: 132-140 | |
101 | Simone Stumpf, Vidya Rajaram, Lida Li, Margaret M. Burnett, Thomas G. Dietterich, Erin Sullivan, Russell Drummond, Jonathan L. Herlocker: Toward harnessing user feedback for machine learning. IUI 2007: 82-91 | |
100 | Simone Stumpf, Margaret M. Burnett, Thomas G. Dietterich: Improving Intelligent Assistants for Desktop Activities. Interaction Challenges for Intelligent Assistants 2007: 119-121 | |
99 | Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Kristian Kersting, Stephen Muggleton: 07161 Abstracts Collection -- Probabilistic, Logical and Relational Learning - A Further Synthesis. Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 | |
98 | Natalia Larios, Hongli Deng, Wei Zhang, Matt Sarpola, Jenny Yuen, Robert Paasch, Andrew Moldenke, David A. Lytle, Ruiz Correa, Eric N. Mortensen, Linda G. Shapiro, Thomas G. Dietterich: Automated Insect Identification through Concatenated Histograms of Local Appearance Features. WACV 2007: 26 | |
2006 | ||
97 | Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton: Probabilistic, Logical and Relational Learning - Towards a Synthesis, 30. January - 4. February 2005 Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany 2006 | |
96 | Wei Zhang, Hongli Deng, Thomas G. Dietterich, Eric N. Mortensen: A Hierarchical Object Recognition System Based on Multi-scale Principal Curvature Regions. ICPR (1) 2006: 778-782 | |
95 | Xinlong Bao, Jonathan L. Herlocker, Thomas G. Dietterich: Fewer clicks and less frustration: reducing the cost of reaching the right folder. IUI 2006: 178-185 | |
94 | Jianqiang Shen, Lida Li, Thomas G. Dietterich, Jonathan L. Herlocker: A hybrid learning system for recognizing user tasks from desktop activities and email messages. IUI 2006: 86-92 | |
2005 | ||
93 | Simone Stumpf, Xinlong Bao, Anton N. Dragunov, Thomas G. Dietterich, Jonathan L. Herlocker, Kevin Johnsrude, Lida Li, Jianqiang Shen: The TaskTracker System. AAAI 2005: 1712-1713 | |
92 | Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan Fern, Angelo C. Restificar: Learning first-order probabilistic models with combining rules. ICML 2005: 609-616 | |
91 | Anton N. Dragunov, Thomas G. Dietterich, Kevin Johnsrude, Matthew R. McLaughlin, Lida Li, Jonathan L. Herlocker: TaskTracer: a desktop environment to support multi-tasking knowledge workers. IUI 2005: 75-82 | |
90 | Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton: 05051 Abstracts Collection - Probabilistic, Logical and Relational Learning - Towards a Synthesis. Probabilistic, Logical and Relational Learning 2005 | |
89 | Luc De Raedt, Thomas G. Dietterich, Lise Getoor, Stephen Muggleton: 05051 Executive Summary - Probabilistic, Logical and Relational Learning - Towards a Synthesis. Probabilistic, Logical and Relational Learning 2005 | |
88 | Eric Altendorf, Angelo C. Restificar, Thomas G. Dietterich: Learning from Sparse Data by Exploiting Monotonicity Constraints. UAI 2005: 18-26 | |
87 | Valentina Bayer Zubek, Thomas G. Dietterich: Integrating Learning from Examples into the Search for Diagnostic Policies. J. Artif. Intell. Res. (JAIR) 24: 263-303 (2005) | |
2004 | ||
86 | Pengcheng Wu, Thomas G. Dietterich: Improving SVM accuracy by training on auxiliary data sources. ICML 2004 | |
85 | Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov: Training conditional random fields via gradient tree boosting. ICML 2004 | |
84 | Giorgio Valentini, Thomas G. Dietterich: Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods. Journal of Machine Learning Research 5: 725-775 (2004) | |
2003 | ||
83 | Giorgio Valentini, Thomas G. Dietterich: Low Bias Bagged Support Vector Machines. ICML 2003: 752-759 | |
82 | Xin Wang, Thomas G. Dietterich: Model-based Policy Gradient Reinforcement Learning. ICML 2003: 776-783 | |
2002 | ||
81 | Dídac Busquets, Ramon López de Mántaras, Carles Sierra, Thomas G. Dietterich: A Multi-agent Architecture Integrating Learning and Fuzzy Techniques for Landmark-Based Robot Navigation. CCIA 2002: 269-281 | |
80 | Thomas G. Dietterich, Dídac Busquets, Ramon López de Mántaras, Carles Sierra: Action Refinement in Reinforcement Learning by Probability Smoothing. ICML 2002: 107-114 | |
79 | Valentina Bayer Zubek, Thomas G. Dietterich: Pruning Improves Heuristic Search for Cost-Sensitive Learning. ICML 2002: 19-26 | |
78 | Giorgio Valentini, Thomas G. Dietterich: Bias-Variance Analysis and Ensembles of SVM. Multiple Classifier Systems 2002: 222-231 | |
77 | Thomas G. Dietterich: Machine Learning for Sequential Data: A Review. SSPR/SPR 2002: 15-30 | |
2001 | ||
76 | Todd K. Leen, Thomas G. Dietterich, Volker Tresp: Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA MIT Press 2001 | |
75 | Thomas G. Dietterich, Suzanna Becker, Zoubin Ghahramani: Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada] MIT Press 2001 | |
74 | Thomas G. Dietterich, Xin Wang: Support Vectors for Reinforcement Learning. ECML 2001: 600 | |
73 | Thomas G. Dietterich, Xin Wang: Batch Value Function Approximation via Support Vectors. NIPS 2001: 1491-1498 | |
72 | Xin Wang, Thomas G. Dietterich: Stabilizing Value Function Approximation with the BFBP Algorithm. NIPS 2001: 1587-1594 | |
71 | Thomas G. Dietterich, Xin Wang: Support Vectors for Reinforcement Learning. PKDD 2001: 492 | |
2000 | ||
70 | Thomas G. Dietterich: The Divide-and-Conquer Manifesto. ALT 2000: 13-26 | |
69 | Eric Chown, Thomas G. Dietterich: A Divide and Conquer Approach to Learning from Prior Knowledge. ICML 2000: 143-150 | |
68 | Dragos D. Margineantu, Thomas G. Dietterich: Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers. ICML 2000: 583-590 | |
67 | Tony Fountain, Thomas G. Dietterich, Bill Sudyka: Mining IC test data to optimize VLSI testing. KDD 2000: 18-25 | |
66 | Thomas G. Dietterich: Ensemble Methods in Machine Learning. Multiple Classifier Systems 2000: 1-15 | |
65 | Valentina Bayer Zubek, Thomas G. Dietterich: A POMDP Approximation Algorithm That Anticipates the Need to Observe. PRICAI 2000: 521-532 | |
64 | Thomas G. Dietterich: An Overview of MAXQ Hierarchical Reinforcement Learning. SARA 2000: 26-44 | |
63 | Thomas G. Dietterich: Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. J. Artif. Intell. Res. (JAIR) 13: 227-303 (2000) | |
62 | Thomas G. Dietterich: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40(2): 139-157 (2000) | |
1999 | ||
61 | Thomas G. Dietterich: State Abstraction in MAXQ Hierarchical Reinforcement Learning. NIPS 1999: 994-1000 | |
60 | Thomas G. Dietterich: Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition CoRR cs.LG/9905014: (1999) | |
59 | Thomas G. Dietterich: State Abstraction in MAXQ Hierarchical Reinforcement Learning CoRR cs.LG/9905015: (1999) | |
1998 | ||
58 | Thomas G. Dietterich: The MAXQ Method for Hierarchical Reinforcement Learning. ICML 1998: 118-126 | |
57 | Thomas G. Dietterich: Approximate Statistical Test For Comparing Supervised Classification Learning Algorithms. Neural Computation 10(7): 1895-1923 (1998) | |
1997 | ||
56 | Dragos D. Margineantu, Thomas G. Dietterich: Pruning Adaptive Boosting. ICML 1997: 211-218 | |
55 | Prasad Tadepalli, Thomas G. Dietterich: Hierarchical Explanation-Based Reinforcement Learning. ICML 1997: 358-366 | |
54 | Thomas G. Dietterich: Machine-Learning Research. AI Magazine 18(4): 97-136 (1997) | |
53 | Thomas G. Dietterich, Richard H. Lathrop, Tomás Lozano-Pérez: Solving the Multiple Instance Problem with Axis-Parallel Rectangles. Artif. Intell. 89(1-2): 31-71 (1997) | |
52 | Thomas G. Dietterich, Nicholas S. Flann: Explanation-Based Learning and Reinforcement Learning: A Unified View. Machine Learning 28(2-3): 169-210 (1997) | |
1996 | ||
51 | Thomas G. Dietterich, Michael J. Kearns, Yishay Mansour: Applying the Waek Learning Framework to Understand and Improve C4.5. ICML 1996: 96-104 | |
50 | Thomas G. Dietterich: Machine Learning. ACM Comput. Surv. 28(4es): 3 (1996) | |
49 | Thomas G. Dietterich: Editorial. Machine Learning 22(1-3): 5-6 (1996) | |
1995 | ||
48 | Thomas G. Dietterich, Nicholas S. Flann: Explanation-Based Learning and Reinforcement Learning: A Unified View. ICML 1995: 176-184 | |
47 | Eun Bae Kong, Thomas G. Dietterich: Error-Correcting Output Coding Corrects Bias and Variance. ICML 1995: 313-321 | |
46 | Wei Zhang, Thomas G. Dietterich: A Reinforcement Learning Approach to job-shop Scheduling. IJCAI 1995: 1114-1120 | |
45 | Wei Zhang, Thomas G. Dietterich: High-Performance Job-Shop Scheduling With A Time-Delay TD-lambda Network. NIPS 1995: 1024-1030 | |
44 | Thomas G. Dietterich: Overfitting and Undercomputing in Machine Learning. ACM Comput. Surv. 27(3): 326-327 (1995) | |
43 | Thomas G. Dietterich, Ghulum Bakiri: Solving Multiclass Learning Problems via Error-Correcting Output Codes CoRR cs.AI/9501101: (1995) | |
42 | Thomas G. Dietterich, Ghulum Bakiri: Solving Multiclass Learning Problems via Error-Correcting Output Codes. J. Artif. Intell. Res. (JAIR) 2: 263-286 (1995) | |
41 | Thomas G. Dietterich, Hermann Hild, Ghulum Bakiri: A Comparison of ID3 and Backpropagation for English Text-to-Speech Mapping. Machine Learning 18(1): 51-80 (1995) | |
40 | Dietrich Wettschereck, Thomas G. Dietterich: An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning 19(1): 5-27 (1995) | |
1994 | ||
39 | Hussein Almuallim, Thomas G. Dietterich: Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artif. Intell. 69(1-2): 279-305 (1994) | |
38 | Ajay N. Jain, Thomas G. Dietterich, Richard H. Lathrop, David Chapman, Roger E. Critchlow Jr., Barr E. Bauer, Teresa A. Webster, Tomás Lozano-Pérez: Compass: A shape-based machine learning tool for drug design. Journal of Computer-Aided Molecular Design 8(6): 635-652 (1994) | |
37 | Thomas G. Dietterich: Editorial: New Editorial Board Members. Machine Learning 16(1-2): 5-6 (1994) | |
1993 | ||
36 | Thomas G. Dietterich, Dietrich Wettschereck, Christopher G. Atkeson, Andrew W. Moore: Memory-Based Methods for Regression and Classification. NIPS 1993: 1165-1166 | |
35 | Dietrich Wettschereck, Thomas G. Dietterich: Locally Adaptive Nearest Neighbor Algorithms. NIPS 1993: 184-191 | |
34 | Thomas G. Dietterich, Ajay N. Jain, Richard H. Lathrop, Tomás Lozano-Pérez: A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction. NIPS 1993: 216-223 | |
33 | Thomas G. Dietterich: Editorial. Machine Learning 10: 5 (1993) | |
1992 | ||
32 | Hussein Almuallim, Thomas G. Dietterich: On Learning More Concepts. ML 1992: 11-19 | |
31 | Thomas G. Dietterich: Editorial. Machine Learning 8: 105 (1992) | |
1991 | ||
30 | Hussein Almuallim, Thomas G. Dietterich: Learning with Many Irrelevant Features. AAAI 1991: 547-552 | |
29 | Thomas G. Dietterich, Ghulum Bakiri: Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs. AAAI 1991: 572-577 | |
28 | Giuseppe Cerbone, Thomas G. Dietterich: Knowledge Compilation to Speed Up Numerical Optimisation. AI*IA 1991: 208-217 | |
27 | Steve A. Chien, Bradley L. Whitehall, Thomas G. Dietterich, Richard J. Doyle, Brian Falkenhainer, James Garrett, Stephen C. Y. Lu: Machine Learning in Engineering Automation. ML 1991: 577-580 | |
26 | Giuseppe Cerbone, Thomas G. Dietterich: Knowledge Compilation to Speed Up Numerical Optimization. ML 1991: 600-604 | |
25 | Dietrich Wettschereck, Thomas G. Dietterich: Improving the Performance of Radial Basis Function Networks by Learning Center Locations. NIPS 1991: 1133-1140 | |
24 | Ashok K. Goel, Tom Bylander, B. Chandrasekaran, Thomas G. Dietterich, Richard M. Keller, Chris Tong: Knowledge Compilation: A Symposium. IEEE Expert 6(2): 71-93 (1991) | |
1990 | ||
23 | Thomas G. Dietterich, Hermann Hild, Ghulum Bakiri: A Comparative Study of ID3 and Backpropagation for English Text-to-Speech Mapping. ML 1990: 24-31 | |
22 | Thomas G. Dietterich: Exploratory Research in Machine Learning. Machine Learning 5: 5-9 (1990) | |
1989 | ||
21 | Ritchey A. Ruff, Thomas G. Dietterich: What Good Are Experiments?. ML 1989: 109-112 | |
20 | Thomas G. Dietterich: Limitations on Inductive Learning. ML 1989: 124-128 | |
19 | Thomas G. Dietterich: News and Notes. Machine Learning 3: 373-375 (1989) | |
18 | Thomas G. Dietterich: News and Notes. Machine Learning 4: 107-109 (1989) | |
17 | Nicholas S. Flann, Thomas G. Dietterich: A Study of Explanation-Based Methods for Inductive Learning. Machine Learning 4: 187-226 (1989) | |
1988 | ||
16 | Caroline N. Koff, Nicholas S. Flann, Thomas G. Dietterich: An Efficient ATMS for Equivalence Relations. AAAI 1988: 182-187 | |
15 | Thomas G. Dietterich: News and Notes. Machine Learning 3: 247-249 (1988) | |
1987 | ||
14 | Nicholas S. Flann, Thomas G. Dietterich, Dan R. Corpon: Forward Chaining Logic Programming with the ATMS. AAAI 1987: 24-29 | |
13 | Thomas G. Dietterich: News and Notes. Machine Learning 2(1): 75-96 (1987) | |
12 | Thomas G. Dietterich: News and Notes. Machine Learning 2(2): 191-192 (1987) | |
11 | Thomas G. Dietterich: News and Notes. Machine Learning 2(3): 277-278 (1987) | |
10 | Thomas G. Dietterich: News and Notes. Machine Learning 2(4): 397-398 (1987) | |
1986 | ||
9 | Nicholas S. Flann, Thomas G. Dietterich: Selecting Appropriate Representations for Learning from Examples. AAAI 1986: 460-466 | |
8 | Thomas G. Dietterich, Nicholas S. Flann, David C. Wilkins: News and Notes. Machine Learning 1(2): 227-242 (1986) | |
7 | Thomas G. Dietterich: Learning at the Knowledge Level. Machine Learning 1(3): 287-316 (1986) | |
6 | Yves Kodratoff, Gheorghe Tecuci, Thomas G. Dietterich: News and Notes. Machine Learning 1(3): 355-358 (1986) | |
5 | Thomas G. Dietterich: News and Notes. Machine Learning 1(4): 453-454 (1986) | |
1985 | ||
4 | Thomas G. Dietterich, Ryszard S. Michalski: Discovering Patterns in Sequences of Events. Artif. Intell. 25(2): 187-232 (1985) | |
1984 | ||
3 | Thomas G. Dietterich: Learning About Systems That Contain State Variables. AAAI 1984: 96-100 | |
1981 | ||
2 | Thomas G. Dietterich, Ryszard S. Michalski: Inductive Learning of Structural Descriptions: Evaluation Criteria and Comparative Review of Selected Methods. Artif. Intell. 16(3): 257-294 (1981) | |
1980 | ||
1 | Thomas G. Dietterich: Applying General Induction Methods to the Card Game Eleusis. AAAI 1980: 218-220 |