|  | 2009 | 
|---|
| 37 |            | Yi Guo,
Junbin Gao,
Paul W. Kwan:
Regularized Kernel Local Linear Embedding on Dimensionality Reduction for Non-vectorial Data.
Australasian Conference on Artificial Intelligence 2009: 240-249 | 
| 36 |            | Adrian O'Connor,
Junbin Gao,
John Louis:
Termination Criteria for Evolutionary Algorithms.
GEM 2009: 35-42 | 
| 35 |            | Adrian O'Connor,
Junbin Gao,
John Louis:
Initiation of Evolutionary Algorithms.
GEM 2009: 73-78 | 
| 34 |            | Paul Wing Hing Kwan,
Junbin Gao,
Graham Leedham:
A User-Centered Framework for Adaptive Fingerprint Identification.
PAISI 2009: 89-100 | 
| 33 |            | Junbin Gao,
Jun Zhang:
Sparse Kernel Learning and the Relevance Units Machine.
PAKDD 2009: 612-619 | 
| 32 |            | Junbin Gao,
Paul Wing Hing Kwan,
Xiaodi Huang:
Comprehensive Analysis for the Local Fisher Discriminant Analysis.
IJPRAI 23(6): 1129-1143 (2009) | 
| 31 |            | Junbin Gao,
Paul Wing Hing Kwan,
Yi Guo:
Robust multivariate L1 principal component analysis and dimensionality reduction.
Neurocomputing 72(4-6): 1242-1249 (2009) | 
|  | 2008 | 
|---|
| 30 |            | Junbin Gao,
Michael Antolovich,
Paul Wing Hing Kwan:
L1 LASSO Modeling and Its Bayesian Inference.
Australasian Conference on Artificial Intelligence 2008: 318-324 | 
| 29 |            | Adrian O'Connor,
Junbin Gao,
John Louis:
Using a Stochastic Funnel to find NLR Starting Values.
GEM 2008: 96-102 | 
| 28 |            | Richard Yi Da Xu,
Junbin Gao,
Michael Antolovich:
Novel methods for high-resolution facial image capture using calibrated PTZ and static cameras.
ICME 2008: 45-48 | 
| 27 |            | Yi Guo,
Junbin Gao,
Paul W. Kwan:
Twin Kernel Embedding.
IEEE Trans. Pattern Anal. Mach. Intell. 30(8): 1490-1495 (2008) | 
| 26 |            | Junbin Gao:
Robust L1 Principal Component Analysis and Its Bayesian Variational Inference.
Neural Computation 20(2): 555-572 (2008) | 
|  | 2007 | 
|---|
| 25 |            | Kok-Leong Ong,
Wenyuan Li,
Junbin Gao:
Integrating Artificial Intelligence and Data Mining - Proceedings of the 2nd International Workshop on Integrating Artificial Intelligence and Data Mining (AIDM 2007). December 2007. Proceedings
Australian Computer Society 2007 | 
| 24 |            | Yi Guo,
Paul Wing Hing Kwan,
Junbin Gao:
Learning Optimal Kernel from Distance Metric in Twin Kernel Embedding for Dimensionality Reduction and Visualization of Fingerprints.
ADMA 2007: 227-238 | 
| 23 |            | Matthew Robards,
Junbin Gao,
Philip Charlton:
A Discriminant Analysis for Undersampled Data.
AIDM 2007: 11-18 | 
| 22 |            | Junbin Gao,
Richard Y. Xu:
Mixture of the Robust L1 Distributions and Its Applications.
Australian Conference on Artificial Intelligence 2007: 26-35 | 
| 21 |            | Yi Guo,
Junbin Gao,
Paul Wing Hing Kwan:
Twin Kernel Embedding with Relaxed Constraints on Dimensionality Reduction for Structured Data.
Australian Conference on Artificial Intelligence 2007: 659-663 | 
| 20 |            | Yi Guo,
Paul Wing Hing Kwan,
Junbin Gao:
Twin Kernel Embedding with Back Constraints.
ICDM Workshops 2007: 319-324 | 
| 19 |            | Xiaomao Liu,
Shujuan Cao,
Junbin Gao,
Jun Zhang:
The Kernelized Geometrical Bisection Methods.
ISNN (2) 2007: 680-688 | 
| 18 |            | Tianhai Tian,
Songlin Xu,
Junbin Gao,
Kevin Burrage:
Simulated maximum likelihood method for estimating kinetic rates in gene expression.
Bioinformatics 23(1): 84-91 (2007) | 
| 17 |            | Xiaodi Huang,
Wei Lai,
A. S. M. Sajeev,
Junbin Gao:
A new algorithm for removing node overlapping in graph visualization.
Inf. Sci. 177(14): 2821-2844 (2007) | 
| 16 |            | Junbin Gao,
Daming Shi,
Xiaomao Liu:
Significant vector learning to construct sparse kernel regression models.
Neural Networks 20(7): 791-798 (2007) | 
|  | 2006 | 
|---|
| 15 |            | Paul Wing Hing Kwan,
Junbin Gao:
A multi-step strategy for approximate similarity search in image databases.
ADC 2006: 139-147 | 
| 14 |            | Yi Guo,
Junbin Gao,
Paul Wing Hing Kwan:
Kernel Laplacian Eigenmaps for Visualization of Non-vectorial Data.
Australian Conference on Artificial Intelligence 2006: 1179-1183 | 
| 13 |            | Daming Shi,
Fei Chen,
Geok See Ng,
Junbin Gao:
The construction of wavelet network for speech signal processing.
Neural Computing and Applications 15(3-4): 217-222 (2006) | 
|  | 2005 | 
|---|
| 12 |            | Kishor Vaidya,
A. S. M. Sajeev,
Junbin Gao:
E-procurement assimilation: an assessment of e-business capabilities and supplier readiness in the Australian public sector.
ICEC 2005: 429-434 | 
| 11 |            | Daming Shi,
Daniel S. Yeung,
Junbin Gao:
Sensitivity analysis applied to the construction of radial basis function networks.
Neural Networks 18(7): 951-957 (2005) | 
|  | 2004 | 
|---|
| 10 |            | Daming Shi,
Junbin Gao,
Daniel S. Yeung,
Fei Chen:
Radial Basis Function Network Pruning by Sensitivity Analysis.
Canadian Conference on AI 2004: 380-390 | 
| 9 |            | Daming Shi,
Geok See Ng,
Junbin Gao,
Daniel S. Yeung:
Critical Vector Learning to Construct RBF Classifiers.
ICPR (3) 2004: 359-362 | 
| 8 |            | Junbin Gao,
Fei Chen,
Daming Shi:
On the construction of support wavelet network.
SMC (4) 2004: 3204-3207 | 
|  | 2003 | 
|---|
| 7 |            | Junbin Gao,
Steve R. Gunn,
Chris J. Harris:
Mean field method for the support vector machine regression.
Neurocomputing 50: 391-405 (2003) | 
| 6 |            | Junbin Gao,
Steve R. Gunn,
Chris J. Harris:
SVM regression through variational methods and its sequential implementation.
Neurocomputing 55(1-2): 151-167 (2003) | 
|  | 2002 | 
|---|
| 5 |            | Junbin Gao,
Steve R. Gunn,
Jaz S. Kandola:
Adapting Kernels by Variational Approach in SVM.
Australian Joint Conference on Artificial Intelligence 2002: 395-406 | 
| 4 |            | Junbin Gao,
Chris J. Harris:
Some remarks on Kalman filters for the multisensor fusion.
Information Fusion 3(3): 191-201 (2002) | 
| 3 |            | Junbin Gao,
Steve R. Gunn,
Chris J. Harris,
Martin Brown:
A Probabilistic Framework for SVM Regression and Error Bar Estimation.
Machine Learning 46(1-3): 71-89 (2002) | 
|  | 2001 | 
|---|
| 2 |            | Junbin Gao,
Chris J. Harris,
Steve R. Gunn:
On a Class of Support Vector Kernels Based on Frames in Function Hilbert Spaces.
Neural Computation 13(9): 1975-1994 (2001) | 
|  | 2000 | 
|---|
| 1 |            | Chris J. Harris,
Junbin Gao:
Adaptive linear finite-element method for modelling nonlinear dynamic systems.
Int. J. System Science 31(10): 1241-1248 (2000) |