| 2009 |
56 | | Emmanuel Hebrard,
Dániel Marx,
Barry O'Sullivan,
Igor Razgon:
Constraints of Difference and Equality: A Complete Taxonomic Characterisation.
CP 2009: 424-438 |
55 | | Dániel Marx,
Igor Razgon:
Constant Ratio Fixed-Parameter Approximation of the Edge Multicut Problem.
ESA 2009: 647-658 |
54 | | Erik D. Demaine,
MohammadTaghi Hajiaghayi,
Dániel Marx:
Minimizing Movement: Fixed-Parameter Tractability.
ESA 2009: 718-729 |
53 | | Dániel Marx,
Ildikó Schlotter:
Stable Assignment with Couples: Parameterized Complexity and Local Search.
IWPEC 2009: 300-311 |
52 | | Andrei A. Bulatov,
Dániel Marx:
The Complexity of Global Cardinality Constraints.
LICS 2009: 419-428 |
51 | | Dániel Marx:
Approximating fractional hypertree width.
SODA 2009: 902-911 |
50 | | Andrei A. Bulatov,
Víctor Dalmau,
Martin Grohe,
Dániel Marx:
Enumerating Homomorphisms.
STACS 2009: 231-242 |
49 | | Dániel Marx:
Tractable Structures for Constraint Satisfaction with Truth Tables.
STACS 2009: 649-660 |
48 | | Andrei A. Bulatov,
Víctor Dalmau,
Martin Grohe,
Dániel Marx:
Enumerating Homomorphisms
CoRR abs/0902.1256: (2009) |
47 | | Dániel Marx,
Barry O'Sullivan,
Igor Razgon:
Treewidth reduction for constrained separation and bipartization problems
CoRR abs/0902.3780: (2009) |
46 | | Dániel Marx:
Tractable hypergraph properties for constraint satisfaction and conjunctive queries
CoRR abs/0911.0801: (2009) |
45 | | MohammadHossein Bateni,
MohammadTaghi Hajiaghayi,
Dániel Marx:
Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth
CoRR abs/0911.5143: (2009) |
44 | | Dániel Marx,
Marcus Schaefer:
The complexity of nonrepetitive coloring.
Discrete Applied Mathematics 157(1): 13-18 (2009) |
43 | | Dániel Marx,
Ildikó Schlotter:
Parameterized graph cleaning problems.
Discrete Applied Mathematics 157(15): 3258-3267 (2009) |
42 | | Dániel Marx:
Complexity results for minimum sum edge coloring.
Discrete Applied Mathematics 157(5): 1034-1045 (2009) |
41 | | Dániel Marx,
Igor Razgon:
Constant ratio fixed-parameter approximation of the edge multicut problem.
Inf. Process. Lett. 109(20): 1161-1166 (2009) |
40 | | Martin Grohe,
Dániel Marx:
On tree width, bramble size, and expansion.
J. Comb. Theory, Ser. B 99(1): 218-228 (2009) |
39 | | Dániel Marx:
A parameterized view on matroid optimization problems.
Theor. Comput. Sci. 410(44): 4471-4479 (2009) |
| 2008 |
38 | | Albert Atserias,
Martin Grohe,
Dániel Marx:
Size Bounds and Query Plans for Relational Joins.
FOCS 2008: 739-748 |
37 | | Andrei A. Krokhin,
Dániel Marx:
On the Hardness of Losing Weight.
ICALP (1) 2008: 662-673 |
36 | | Dániel Marx,
Ildikó Schlotter:
Parameterized Graph Cleaning Problems.
WG 2008: 287-299 |
35 | | Dániel Marx,
Ildikó Schlotter:
Obtaining a Planar Graph by Vertex Deletion
CoRR abs/0812.4919: (2008) |
34 | | Dániel Marx:
Parameterized Complexity and Approximation Algorithms.
Comput. J. 51(1): 60-78 (2008) |
33 | | Dániel Marx:
Searching the k-change neighborhood for TSP is W[1]-hard.
Oper. Res. Lett. 36(1): 31-36 (2008) |
32 | | Dániel Marx:
Closest Substring Problems with Small Distances.
SIAM J. Comput. 38(4): 1382-1410 (2008) |
31 | | Dániel Marx:
Complexity of unique list colorability.
Theor. Comput. Sci. 401(1-3): 62-76 (2008) |
| 2007 |
30 | | Erik D. Demaine,
Gregory Gutin,
Dániel Marx,
Ulrike Stege:
Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs, 08.07. - 13.07.2007
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2007 |
29 | | Dániel Marx:
Can you beat treewidth?
FOCS 2007: 169-179 |
28 | | Dániel Marx:
On the Optimality of Planar and Geometric Approximation Schemes.
FOCS 2007: 338-348 |
27 | | Erik D. Demaine,
Gregory Gutin,
Dániel Marx,
Ulrike Stege:
07281 Abstracts Collection -- Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.
Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs 2007 |
26 | | Erik D. Demaine,
Gregory Gutin,
Dániel Marx,
Ulrike Stege:
07281 Open Problems -- Structure Theory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs.
Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs 2007 |
25 | | Dániel Marx,
Ildikó Schlotter:
Obtaining a Planar Graph by Vertex Deletion.
WG 2007: 292-303 |
| 2006 |
24 | | Dániel Marx:
A Parameterized View on Matroid Optimization Problems.
ACiD 2006: 158 |
23 | | Dániel Marx:
A Parameterized View on Matroid Optimization Problems.
ICALP (1) 2006: 655-666 |
22 | | Dániel Marx:
Parameterized Complexity of Independence and Domination on Geometric Graphs.
IWPEC 2006: 154-165 |
21 | | Martin Grohe,
Dániel Marx:
Constraint solving via fractional edge covers.
SODA 2006: 289-298 |
20 | | Dániel Marx:
Chordal Deletion Is Fixed-Parameter Tractable.
WG 2006: 37-48 |
19 | | Dániel Marx:
The complexity of chromatic strength and chromatic edge strength.
Computational Complexity 14(4): 308-340 (2006) |
18 | | Dániel Marx:
Precoloring extension on unit interval graphs.
Discrete Applied Mathematics 154(6): 995-1002 (2006) |
17 | | Dániel Marx:
Parameterized graph separation problems.
Theor. Comput. Sci. 351(3): 394-406 (2006) |
16 | | Dániel Marx:
Parameterized coloring problems on chordal graphs.
Theor. Comput. Sci. 351(3): 407-424 (2006) |
15 | | Dániel Marx:
Minimum sum multicoloring on the edges of trees.
Theor. Comput. Sci. 361(2-3): 133-149 (2006) |
| 2005 |
14 | | Dániel Marx:
Efficient Approximation Schemes for Geometric Problems?.
ESA 2005: 448-459 |
13 | | Dániel Marx:
The Closest Substring problem with small distances.
FOCS 2005: 63-72 |
12 | | Dániel Marx:
Parameterized complexity of constraint satisfaction problems.
Computational Complexity 14(2): 153-183 (2005) |
11 | | Dániel Marx:
NP-completeness of list coloring and precoloring extension on the edges of planar graphs.
Journal of Graph Theory 49(4): 313-324 (2005) |
10 | | Dániel Marx:
A short proof of the NP-completeness of minimum sum interval coloring.
Oper. Res. Lett. 33(4): 382-384 (2005) |
| 2004 |
9 | | Dániel Marx:
Parameterized Complexity of Constraint Satisfaction Problems.
IEEE Conference on Computational Complexity 2004: 139-149 |
8 | | Dániel Marx:
Parameterized Graph Separation Problems.
IWPEC 2004: 71-82 |
7 | | Dániel Marx:
Parameterized Coloring Problems on Chordal Graphs.
IWPEC 2004: 83-95 |
6 | | Dániel Marx:
Minimum Sum Multicoloring on the Edges of Planar Graphs and Partial k-Trees.
WAOA 2004: 9-22 |
5 | | Dániel Marx:
Eulerian disjoint paths problem in grid graphs is NP-complete.
Discrete Applied Mathematics 143(1-3): 336-341 (2004) |
4 | | Dániel Marx:
List edge multicoloring in graphs with few cycles.
Inf. Process. Lett. 89(2): 85-90 (2004) |
| 2003 |
3 | | Dániel Marx:
Minimum Sum Multicoloring on the Edges of Trees: (Extended Abstract).
WAOA 2003: 214-226 |
| 2002 |
2 | | Dániel Marx:
The Complexity of Tree Multicolorings.
MFCS 2002: 532-542 |
| 2000 |
1 | | Tibor Cinkler,
Dániel Marx,
Claus Popp Larsen,
Dániel Fogaras:
Heuristic Algorithms for Joint Configuration of the Optical and Electrical Layer in Multi-Hop Wavelength Routing Networks.
INFOCOM 2000: 1000-1009 |