Innovations in Bayesian Networks 2008
Dawn E. Holmes, Lakhmi C. Jain (Eds.):
Innovations in Bayesian Networks: Theory and Applications.
Studies in Computational Intelligence Vol. 156 Springer 2008, ISBN 978-3-540-85065-6
- Dawn E. Holmes, Lakhmi C. Jain:
Introduction to Bayesian Networks.
1-5
- Richard E. Neapolitan:
A Polemic for Bayesian Statistics.
7-32
- David Heckerman:
A Tutorial on Learning with Bayesian Networks.
33-82
- Kevin B. Korb, Ann E. Nicholson:
The Causal Interpretation of Bayesian Networks.
83-116
- I. S. P. Daryle Niedermayer:
An Introduction to Bayesian Networks and Their Contemporary Applications.
117-130
- Sylvia B. Nagl, Matt Williams, Jon Williamson:
Objective Bayesian Nets for Systems Modelling and Prognosis in Breast Cancer.
131-167
- Xia Jiang, Michael M. Wagner, Gregory F. Cooper:
Modeling the Temporal Trend of the Daily Severity of an Outbreak Using Bayesian Networks.
169-185
- Eitel J. M. Lauría:
An Information-Geometric Approach to Learning Bayesian Network Topologies from Data.
187-217
- Philippe Leray, Stijn Meganck, Sam Maes, Bernard Manderick:
Causal Graphical Models with Latent Variables: Learning and Inference.
219-249
- M. Julia Flores, José A. Gámez, Serafín Moral:
Use of Explanation Treesto Describe the State Space of a Probabilistic-Based Abduction Problem.
251-280
- Dawn E. Holmes:
Toward a Generalized Bayesian Network.
281-288
- Rodrigo de Salvo Braz, Eyal Amir, Dan Roth:
A Survey of First-Order Probabilistic Models.
289-317
Copyright © Tue Mar 16 01:52:03 2010
by Michael Ley (ley@uni-trier.de)