
The VLDB Journal (1996) 5: 3–18 The VLDB Journal
c© Springer-Verlag 1996

Parallelizing OODBMS traversals: a performance evaluation
David J. DeWitt, Jeffrey F. Naughton, John C. Shafer, Shivakumar Venkataraman

Computer Sciences Department, University of Wisconsin Madison, 1210 West Dayton St, Madison WI, 53706, USA

Edited by Henry F. Korth and Amit Sheth. Received November 1994 / Accepted March 20, 1995

Abstract. In this paper we describe the design and im-
plementation ofParSets, a means of exploiting parallelism
in the SHORE OODBMS. We used ParSets to parallelize
the graph traversal portion of the OO7 OODBMS bench-
mark, and present speedup and scaleup results from parallel
SHORE running these traversals on a cluster of commodity
workstations connected by a standard ethernet. For some
OO7 traversals, SHORE achieved excellent speedup and
scaleup; for other OO7 traversals, only marginal speedup
and scaleup occurred. The characteristics of these traversals
shed light on when the ParSet approach to parallelism can
and cannot be applied to speed up an application.

Key words: ParSets – Parallelism – SHORE – Object-
oriented database management systems

1 Introduction

The commercial success of parallel relational database sys-
tems (RDBMS) demonstrates convincingly that for RDBMS,
parallelism is a highly effective tool for providing high per-
formance (DeWitt and Gray 1992). However, it is much
less clear whether parallelism can be effectively applied
in object-oriented database systems (OODBMS). This is
primarily because of the difference in workloads between
RDBMS and OODBMS: while RDBMS typically execute
queries specified in a set-oriented declarative language (SQL),
OODBMS typically execute arbitrary C++ code.

A main goal of the SHORE Persistent Object Store
project (Carey et al. 1994) is to exploit parallelism to im-
prove the performance of OODBMS applications. Our goal
is not, however, to solve the problem of automatically par-
allelizing arbitrary C++ code. Rather, our goal is to provide
system primitives that make it easy for a programmer to
consciously and explicitly parallelize his or her OODBMS
application. This paper describes the design and implemen-
tation of one primitive we have provided theParSetfacility
and discusses how ParSets can be used to parallelize the
OO7 OODBMS benchmark traversals (Carey et al. 1993),

and finally presents performance results from an implemen-
tation on a cluster of Sun workstations.

The ParSet facility is a variation of an idea that has
appeared in many places before: essentially, it allows a pro-
gram to invoke a method on every object in a set in parallel.
[One place this idea appeared in a database context was the
“filter” operation in the Bubba project at MCC (Bancilhon et
al. 1987). Currently a related facility is being implemented
at Kendall Square Research on top of the Matisse OODBMS
(M.F. Kilian, personal communication 1994)]. Since this not
a new idea, this is not the contribution of this paper; rather,
the contributions of this paper are (1) a description of how
the ParSet facility is actually implemented within SHORE,
(2) a description of how the ParSet facility can be used to
parallelize the traversals of the OO7 benchmark, and (3) per-
formance results from an implementation that indicate how
successful we were at exploiting parallelism to speed up and
scale up these traversals.

Speeding up a benchmark in and of itself is perhaps of
interest only to benchmarking fanatics, and the point of this
work is not that OO7 can be sped up. Rather, the point is
that OO7 allows us to explore a range of application char-
acteristics and to see how various application characteris-
tics impact on parallel performance. The OO7 traversals we
tested range from sparse traversals that touch only a small
percentage of the database, to dense traversals that touch
most of the database, to dense traversals that touch most of
the database and update the visited objects. We also tested
performance on a number of database sizes.

Like any parallel application, we found that the perfor-
mance we saw depended upon the ratio of the size of the
sequential portions to the parallel portions of the traversals
(smaller is better), and upon the size of the chunks of work
that were executed in parallel (larger is better). While one
traversal exhibited virtually no improvement due to paral-
lelism, it was encouraging that for other traversals the ParSet
declustering facilities coupled with the ParSet conditional set
apply were enough to generate good speedup and scaleup
on up to 16 commodity workstations connected by a stan-
dard ethernet. Furthermore, the ParSet facility was a natural
way to parallelize these traversals; the programmer effort to

4

Workstation 1 Workstation 2

Server 1 Server 2

AppApp

a
a

b

b

b

App

a

c

c

App

a

Workstation 3

SHORE

SHORE

SHORE

SHORE

c

a = Application Requests
b = Page Caching and Return
c = Global Transaction

Management

Fig. 1. SHORE process structure

convert from a sequential to a parallel implementation was
minimal, roughly 3 h of coding.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the SHORE system sufficient
to enable a reader not familiar with SHORE to understand
the ParSet implementation. Section 3 describes the ParSet
facility and how it is implemented in SHORE. Section 4
covers the OO7 benchmark database and traversals and how
we used ParSets to parallelize these traversals. Section 5
presents the results of performance tests on the implemen-
tation of the ParSets, and Sect. 6 is the conclusion.

2 SHORE overview

SHORE (Scalable Heterogeneous Object REpository) is a
new persistent object system under development at the Uni-
versity of Wisconsin that represents a merger of object-
oriented database (OODB) and file system technologies. In
this section we present an overview of the SHORE system
in order to make this paper self-contained. This section is a
greatly abridged version of material in Carey et al. (1994).

A primary goal for SHORE is to provide a robust, high-
performance, persistent object system that is flexible enough
to be employed in a wide range of applications and comput-
ing environments. To meet this requirement, SHORE’s im-
plementation is based on a novelpeer-to-peerprocess struc-
ture. Figure 1 shows the overall process structure of SHORE
in a distributed, workstation-server environment.

SHORE executes as a group of communicating processes
called SHORE servers. SHORE servers consist exclusively
of trustedcode. In contrast to the trusted code, applications
are considered to be untrusted, and thus, they execute as sep-
arate processes (labeled App in Fig. 1). Applications manip-
ulate SHORE objects, while SHORE servers deal primarily
with fixed-length pages. Pages, in turn, are allocated from
disk volumes, each of which is managed by a single server.
Individual pages can be dynamically replicated through the
use of a caching mechanism. Caching allows data items to
be replicated for performance reasons while ensuring that

Machine

SHORE Server

Client

Object Cache Unix
Compatability

Language
Independent
Library

Application Code

RPC Interface

Storage Manager

Page Cache

SHORE VAS Interface

Fig. 2. Application/primary server interaction

the responsibility for the integrity of any given data item
resides with a single server.

SHORE servers perform two basic functions: (1) they
manage persistent object storage, and (2) they provide ap-
plications with access to persistent objects that are managed
either locally or by other remote SHORE servers. Each appli-
cation process communicates with a single SHORE server,
known as itsprimary server, through a SHORE value added
server (VAS) interface. SHORE servers that manage persis-
tent data items (shown with attached disk volumes in Fig. 1)
are said to be theownersof those data items. Servers are
responsible for providing concurrency control and recovery
guarantees for the data that they own. While all SHORE
servers are capable of acting both as primary servers and as
owners of data, a given SHORE server will not necessarily
perform both tasks.

A key concept behind the SHORE architecture is that
an application can be given access to the entire distributed
persistent object space through direct interaction only with
its primary server. This is accomplished through the use
of a caching-basedarchitecture. The interaction between an
application and its primary server is shown in Fig. 2. Ap-
plications are linked with a library of interface routines for
communication with SHORE. All communication between
an application and SHORE is initiated by application re-
quests.

Applications request objects from their primary servers.
The primary server obtains the physical data page (or pages)
on which the object is stored and then transfers the object to
the application. If the requested object resides on a disk vol-
ume that is managed by the primary server, then the request
can be satisfied locally. If, however, the object resides on a
page that is owned by a different server, then the primary
server must request a copy of the page from the owner. Upon
receiving a page, the primary server places the page in its
local page cache and returns a copy of the requested object
to the application. The application then places the object in
its object cache. Before an application is allowed to read or
update an object, however, the proper locks (read or write)
must be obtained on behalf of the application. These locks
are obtained by the primary server through interaction with
the owner server (if the two are different).

5

Each application process has a private object cache that
is presided over by an object cache manager. The primary
goal of the object cache manager is to make navigation of
persistent data structures convenient and efficient. To this
end, it attempts to keep the application’s working set of ob-
jects cached in the application’s memory, and it maintains
an efficient mapping between object pointers and their target
objects (whether those objects are in the object cache or not).
This mapping is enhanced by a swizzling technique where
object references are replaced by pointers into an object de-
scriptor table. The level of indirection provided by this table
provides for flexible cache management, e.g., replacing ob-
jects in the cache prior to commit, yet it still enables the
rapid navigation of cached object paths.

The dual nature of the SHORE server process provides
a great deal of flexibility in the structuring of SHORE sys-
tems. When acting as an owner, the SHORE server performs
the role of the server in a traditional data-shipping, client-
server DBMS. When acting as a primary server, a SHORE
server plays the role of the client of a data-shipping sys-
tem. This symmetry of nodes in a cluster of workstations
running SHORE servers, coupled with the global OID space
maintained by the servers, facilitates building parallel appli-
cations.

3 ParSets and SHORE

In this section we define ParSets, discuss how they are im-
plemented in SHORE, and demonstrate their use with a
simple programming example. A ParSet is simply a set of
objects of the same type or an appropriate subtype. The
SHORE data language (SDL), which is our interpretation
of the ODMG standard data definition language ODL (Cat-
tell 1993), is used as the type language for ParSet objects.
These sets of objects may be declustered over one or more
SHORE servers; they are manipulated through several op-
erations supported in the ParSet library. For example, one
may have a ParSet of employee objects declustered over
eight SHORE servers; issuing an Apply operation invokes a
specified method on every employee object in the ParSet, in
parallel.

Data parallelism is achieved by processing the fragments
of the ParSet in parallel. We employ the “master-slave” ar-
chitecture to achieve this. Initially, when the program begins
executing, there is only the “master” thread. When the mas-
ter first executes a ParSet call, “slave” processes are created
and they execute the ParSet operation on the nodes on which
the objects of the ParSet objects reside. Results returned by
the slaves are returned to the user. An example of a ParSet
operation is Apply, which invokes a specified method on
every object in the ParSet. Since there is only one slave per
ParSet fragment, the degree of parallelism is equal to the
number of nodes over which the ParSet is declustered.

Note that the programmer does not need to write any
slave code; this is supplied by the ParSet library. The pro-
grammer instead writes the code executed by the master,
together with methods that will be invoked in parallel on
ParSet objects. Communication between master and slaves,
together with ParSet manipulation, is transparently handled
by the ParSet library.

This simple description of the ParSet facility is sufficient
for a basic understanding of the rest of this paper; readers
that are not interested in the details of ParSets and how they
are implemented can safely skip to Sect. 4.

3.1 What is a ParSet?

The idea of a ParSet was first proposed by Kilian (1992) un-
der the name Parallel Set, as a way of adopting the data par-
allel approach to C++, although the ideas used in ParSets had
appeared earlier in other data-parallel languages. SHORE
ParSets differ from Kilian’s ParSets in a number of ways, as
will be discussed below. As envisioned by Kilian, ParSets
support five basic operations: Add, Remove, Apply, Select
and Reduce.Add adds an object to a ParSet.Removere-
moves an object from the ParSet.Apply invokes a function
on every member of a ParSet.Selectcollects the OIDs of all
ParSet objects that satisfy a specified predicate.Reducecal-
culates a single value from all objects in the set. Computing
a scalar aggregate such asmax or sum is an example of a
reduce operation.

3.2 Primary and secondary ParSets

SHORE provides two forms of ParSets: primary and sec-
ondary. (This is specific to SHORE ParSets; Kilian had no
notion of primary or secondary ParSets.) We use the terms
“primary” and “secondary” by analogy to their use with in-
dexes. Primary ParSets have a physical implication in that
Primary ParSets are used for declustering. Secondary ParSets
are just logical collections of objects; they can denote a set
of objects over which an apply operation is to be executed;
they do not imply anything about where the objects actually
reside.

The declustering strategy for primary ParSets must be
chosen when the ParSet is created. When objects are later
added to the ParSet, a decluster method is invoked to deter-
mine the node on which objects have to be placed. SHORE
ParSets provides standard declustering methods such as
hash, range, random, and etc, which the user can choose
to override. In addition, an “unspecified” declustering strat-
egy is supported, as there are certain cases when no mapping
exists from a value of an object to a processor number. For
example, if objects are stored on the nodes where they were
created there need not be any logical mapping from object
values to nodes.

Secondary ParSets are nothing more than collections of
OIDs of existing SHORE objects. Like a primary ParSet, a
secondary ParSet can be declustered over a set of SHORE
servers; however, no automatic declustering is supported.
Generally the objects referenced in a secondary ParSet will
themselves reside in some primary ParSet but this is not
required. In addition, the referenced objects need not be
“local”, in that they may physically reside on a different
SHORE server. These placement decisions are controlled
by the application programmer.

The notion of primary and secondary ParSets was intro-
duced to allow objects to dynamically change ParSet mem-
bership so that objects reside in more than one ParSet at the

6

Shore
Server

Node 1

Shore
Server

Node 2

Shore
Server

Node 3

Master Slave Slave
Slave

ParSet
Server

Fig. 3. SHORE parset architecture

same time. ParSets are realized by creating a set of SHORE
storage server files, one on each SHORE server over which
the ParSet is declustered. (Subsection 3.4 contains specific
details on how a ParSet gets created.)

3.3 ParSets in SHORE architecture

The SHORE process structure augmented to support ParSets
on a three-node shared nothing system is shown in Fig. 3. In
addition to the master and slave application-level processes,
one node runs a ParSet Server (PSS) process. The PSS pro-
cess provides two distinct services: a catalog service and
a slave managing service. The catalog service is responsi-
ble for maintaining a catalog of all ParSets that have been
created. ParSet information includes type, declustering strat-
egy, and the nodes over which the ParSet is distributed. The
slave managing service maintains a separate catalog of all
existing slaves for each known ParSet application. This ser-
vice is also responsible for the creation and destruction of
slaves on behalf of master applications. Lastly, the PSS is
also responsible for maintaining the mapping between node
IDs and the SHORE servers. The PSS process makes use of
the SHORE storage manager to maintain a persistent cata-
log. The role of the PSS, in various ParSet operations, will
be discussed in detail later in this section.

As mentioned earlier, the programmer need not write
any slave code; the master process, which executes user-
written code, and the slave processes, which carries out
ParSet operations on the actual SHORE objects, are derived
from the same application code. The ParSet library, which
is linked with the application, contains the slave code. The
PSS spawns the slave process with the binary derived from
the same application code as the master process, but supplies
command-line options that force the process to execute slave
code instead of master code. Sharing the application code
enables slave process access user functions that the master
invokes in a ParSet call.

It should also be noted that the slave processes are
threaded; therefore, they may service requests of more than
one master process, as long as they are all derived from the
same application binary. If sharing of slave processes with
existing masters is not desired, the user only has to rename

1

Shore
Server

Node 1

Shore
Server

Node 2

Shore
Server

Node 3

P1 P1

Master

Slave Slave Slave ParSet
Server

3
2

2

Messages:

1. Create ParSet
 ’P1’

2. Create SHORE
 files to hold
 members of
 ParSet ’P1’

3. Return status

Fig. 4. Process communication on Create

the application, or use a UNIX link with a different name,
before executing the application.

3.4 ParSet operations

As suggested by Kilian, ParSets are implemented using pa-
rameterized classes. This enables compile-time type-checking;
it also enables the ParSet library to get a handle on the SDL
type-object for its ParSet members. However, to prevent
code explosion, the templated classes for both primary and
secondary ParSets inherit nearly all their functionality from
a non-templated, base ParSet class. The following excerpt
from the ParSet class definitions specifies an application’s
interface to our ParSet facility (see top of next page).

Applications manipulate ParSets through a transient C++
object, analogous to a file handle used manipulate a file in
unix. All ParSet operations are invoked as methods of this
in memory object. Aspects of declustering, persistence, and
communication among servers are hidden from a parallel ap-
plication that uses the ParSets. There are also several over-
loaded versions of some ParSet operations that are not shown
in the class definitions. For example, there are versions of
Apply operation without the filterSet parameter.

3.4.1 ParSet creation – create(tid, dbname, parsetName,
nodes, declusterMode)

Note that there are two similar but different operations on
ParSets. The first is the creation of the ParSet itself; this is of
course done exactly once per ParSet. The second operation is
an Open call that creates a transient C++ object for accessing
and manipulating a ParSet. This Open call corresponds to
opening an existing file, while the Create call corresponds
to creating a new file. The steps involved in creating a ParSet
are illustrated in Fig. 4.

Any process (slave or master) may create a new ParSet.
To create a ParSet, the initiating process sends a message
to the PSS to create a ParSet by invoking the ParSet library
function PrimaryParSet::Create(). The parameters include:
database name, ParSet name, declustering method (hash,

7

class ParSet {
protected:

// Routines called by all public ParSet methods
int Open(XactId tid);
int Apply(XactId tid, Set* resultSet, void* (*functName)(void*, void *),

void* functArgs, int argSize, const TSet<OID>& filterSet);
int PSApply(XactId tid, ParSet& resultSet, void* (*functName)(void*, void *),

void* functArgs, int argSize, const TSet<OID>& filterSet);
int Select(XactId tid, TSet<OID>& resultSet, int (*predicate)(void*, void*),

void* predicateArgs, int argSize, const TSet<OID>& filterSet);
int PSSelect(XactId tid, ParSet& resultSet, int (*predicate)(void*, void*),

void* predicateArgs, int argSize, const TSet<OID>& filterSet);
ReduceStruct Reduce(XactId tid, PSReduceOps operation, void (*valExtractor)(void*, void*),

void* extArgs, int argSize, const TSet<OID>& filterSet);
static void Slave(); // Code executed by slaves (called automatically by ParSet::Init())

public:
enum PSDecluster { Undef, Hash, Modulo, Random, UserDefined }; // Supported decluster methods
// Desired Reduce operation (specified by user in ’Reduce’ member call)
enum PSReduceOps { Max, Min, Sum, Avg, Count };
static int Delete(XactId tid, char* dbName, char* parSetName);
int Remove(XactID tid, OID oidSet);
static int Init(int& argc, char* argv[]);
int Close(void);
static int Finish(char killSlaves = TRUE);

};

template <class Type>
class PrimaryParSet : public ParSet
{

public:
static int Create(XactId tid, char* dbName, char* parsetName,

const TSet<int>& nodes, PSDecluster declusterMode);
PrimaryParSet(char* dbName, char* parSetName);
int New(XactId tid, char* obj, int num, OID* oids);
int Open(XactId tid, functPtr constructor, int argSize, functPtr decluster);
// Templated and overloaded wrappers for Apply, PSApply, Select, PSSelect and Reduce not shown.

};

template <class Type>
class SecondaryParSet : public ParSet
{

public:
static int Create(XactId tid, char* dbName, char* parsetName, const TSet<int>& nodes);
SecondaryParSet(XactId tid, char* dbName, char* parSetName);
int Insert(XactId tid, OID* oid, int num, int node);
// Templated and overloaded wrappers for Apply, PSApply, Select, PSSelect and Reduce not shown.

};

range,. . .), and set of nodes for declustering. The declus-
tering method is implicit for a secondary ParSet and is not
specified.

The PSS first checks with the catalog that the ParSet
name is unique within the context of the specified database.
If so, it creates a catalog entry for the ParSet recording all
necessary information. The PSS then sends “create ParSet
fragment” messages to the slave processes on the nodes
(nodes 1 and 2 in this example) requesting that a SHORE file
be created to hold objects in the ParSet. It is possible that the
list of nodes for the ParSet may include a node on which the
application currently does not have a slave process. When
this happens the slave manager is requested to create new
slave processes on behalf of the application. An acknowl-
edgement is sent to the master once the file fragments are
created.

3.4.2 ParSet open – Open(tid)

Before use, a ParSet must first be opened. This is done
automatically before every ParSet call that manipulates the
ParSet. Opening a ParSet results in the following sequence
of operations shown in Fig. 5.

The master process first consults the catalog service to
determine which nodes contain relevant fragments of the
specified ParSet. Since this information is constant, the mas-
ter need only contact the catalog service once per ParSet;
catalog information is cached within the application. The
master then consults its local cache for information regard-
ing slaves (slaves are unique to applications, not ParSets).
If new slave processes are needed, the master sends a re-
quest to create slaves to the slave service on the PSS. Note
that unless Slave processes crash, this operation will also be
performed at most once per ParSet (hence, communication
will seldom be as messy as in Fig. 5). Information about the

8

1

Shore
Server

Node 1

Shore
Server

Node 2

Shore
Server

Node 3

Master

Slave Slave Slave ParSet
Server

24

46
6

7 7

3

5

P1.1 P1.2

Messages:

8

8

1) Request ParSet data

2) Return catalog data

3) Request slave creation

4) Slaves are created

5) Return slave ids

6) ParSet action to be
 performed by slaves

7) Request objects from
 SHORE for processings

8) Return results of ParSet
 operation

Fig. 5. Process communication on Open

new slaves is then added to the master’s local cache. For
example, in Fig. 5, an Open on ParSet P1 by an application
running on node 1 results in slave processes being forked
on nodes 1 and 2.

As mentioned earlier, the PSS maintains slave informa-
tion for each registered application as a part of its slave ser-
vice. Any process, including slaves, may consult the slave
service to determine the location of the slave processes. This
capability is needed to allow a slave process to operate on a
ParSet. For a slave to open a ParSet, it needs to be able to
communicate with the other slaves and possibly create new
slaves where none exist.

3.4.3 New – New(tid, objs[], num, oids[]) – primary
ParSets only

In Kilian’s initial Parallel Set this operation was called Add,
but for a primary ParSet this is a bad choice as it makes
it sound like the object already exists. Objects in primary
ParSets must be created in the context of the ParSet in which
they are to reside.

This operation creates new objects of the ParSet type in
the context of the specified ParSet by executing the following
sequence of operations:

1. The application process (either master or slave) uses the
decluster method associated with the ParSet to map the
object values contained in objs[] to node IDs. These node
IDs may not be on the same node on which the applica-
tion process is running and may in fact all be different.
The object values are then partitioned according to their
mapped node IDs.

2. The application process constructs messages of the form
<new, DBname, ParSetName, objectValues, numObjs,
ObjectType, objectSize> for each partition and sends
them to the slave processes executing on the correspond-
ing nodes.

3. The slave on each node then calls the appropriate con-
structor on the object values it was sent. This creates
new objects of the desired type which the slave then
adds to the appropriate SHORE file. The OIDs received
from SHORE for the new objects are then returned to
the calling process via a message.

4. The invoking process collects the OIDs from all the slave
processes. The OIDs are then reordered and packed into
the supplied OID array in an order such that oids[i] is
the correct OID for the object created using object value
objs[i].

Notice that the new objects are created on the nodes
where they are registered with SHORE. The objects are not
created by the master. This is a limitation of the current
version of SHORE; an object cannot migrate its home, so
an object must be created on the node on which it resides.

3.4.4 Insert – Insert(tid, oids[], num, node) – secondary
ParSets only

This operation adds OIDs of objects of to a secondary
ParSet. Its execution causes the following sequence of oper-
ations to be performed: The application process sends all the
OIDs in bulk to the specified node, which in turn adds them
to the appropriate SHORE file. If no node is specified, the
master will try to insert the OIDs locally. If the ParSet is not
declustered on the local node, a node is chosen at random.

3.4.5 Apply – Apply(tid, resultSet, function, functArgs,
argSize, oidFilterSet)

This method applies a function to each object in the ParSet.
The applied function takes two parameters, functArgs and
argSize. functArgs is a pointer to a structure containing func-
tion arguments and argSize is the size of this structure; these
two are passed as arguments to the method invoked by Ap-
ply. The use of these two arguments will be clear when
we get to the programming example. If oidFilterSet is not
NULL, the function is applied only to objects whose OIDs
are contained in oidFilterSet. The result is a set of values cor-
responding to the function’s return type; this set is returned
to the initiating process unless the resultSet is NULL. Execu-
tion of the Apply operation involves the following sequence
of steps:

1. The initiating process maps the function pointer to a
functId and sends messages of the form<apply, DB-
Name, ParSetName, resultSet, functId, functArgs, arg-
Size, oidFilterSet> to each slave process (the set of
slave processes can be determined from the local slave-id
cache).

2. Each slave process executes the following steps in par-
allel:
a) The functId is converted to a pointer to the corre-

sponding function (a memory address).
b) oidFilterSet (if it is non-NULL) is used to construct

an in-memory hash table.
c) A scan is initiated on the file identified by shore-

FileId. The following loop is executed for Apply’s
on Primary ParSets (see top of next page).

If the oidFilterSet is sufficiently small, the OIDs con-
tained may be used directly to retrieve objects from SHORE.
“Sufficient” implies that a selective retrieval will be faster
than scanning the entire extent.

9

while (<oid, obj> = GetNextObject(shoreScanId)) {
if (oidFilterSet != NULL) {

// check to see if oid is an element of the filter set
if ((probe_hash_table(oid)) == MISS) continue;

}
if (argSize < 0) resultSet.Add(function(obj));
else resultSet.Add(function(obj, functArgs));

}

The following loop is executed for Apply Operations on Secondary ParSets:

while (<oid> = GetNextObject(shoreScanId)) {
if (oidFilterSet != NULL) {

// check to see if oid is an element of the filter set
if ((probe_hash_table(oid)) == MISS) continue;

}
obj = GetObjectByOid(oid); // actually get the object
if (argSize < 0) resultSet.Add(function(obj));
else resultSet.Add(function(obj, functArgs));

}

There is an alternative version of Apply calledPSApply()
which combines the functionalities of Apply and New. In-
stead of returning sets of values to the calling process, slaves
executing a PSApply will use these values for the creation
of new persistent objects within another primary ParSet that
is specified as a parameter to this call.

3.4.6 Select – Select(tid, oidResultSet, predicate,
functArgs, argSize, oidFilterSet)

This method applies a selection predicate to each object in
the ParSet. Like Apply, the predicate may take an addi-
tional, user-supplied parameter. If oidFilterSet is not NULL,
the predicate is applied only to objects whose OIDs are con-
tained in oidFilterSet. The result is a set of OIDs of the ob-
jects that satisfy the predicate. This set is returned to the initi-
ating process by each slave process. The difference between
Select and Apply is that Apply invokes a method on each
object in the ParSet, while Select applies a selection predi-
cate such as(age < 40) && (salary > 100,000)
to each element of the ParSet.

As with Apply, there is an alternative version of Se-
lect calledPSSelect(). Similar to PSApply, PSSelect accepts
a ParSet object in place of an ordinary set object; instead
of returning OIDs to the calling process, OIDs are inserted
into the specified secondary ParSet. The advantage here is
that when the slaves perform the insertion, they attempt to
insert the OIDs locally (if no local partition exists, a ran-
dom node is chosen). In this way, we can force a secondary
ParSet to duplicate the declustering strategy of another. This
is extremely useful when PSApply is invoked on a primary
ParSet, since this ensures that all objects referenced in the
secondary ParSet will found locally avoiding any communi-
cation.

3.4.7 Reduce – (value,cnt) Reduce(tid, reduceOp,
valExtractor, oidFilterSet, extArgs, argSize)

Reduce applies the specified function to every object in the
ParSet. This function is often a method of the objects in the

ParSet, and is assumed in our initial implementation to re-
turn an int or a float. (The motivation for this function call
is to allow encapsulation – in many cases all the function
will do is return the current value of a private data member
of the object.) If oidFilterSet is not NULL, the operation is
applied only to objects whose OIDs are contained in oidFil-
terSet. In the initial implementation, reductionOp must be
one of Count, Sum, Average, Max, or Min. The result of the
reduction is a (value,cnt) pair that is returned to the initiat-
ing process by each participating slave process:valueholds
the final reduced value, whilecnt indicates the number of
objects to which the operation was applied.

Note that logically, Reduce subsumes Apply, since Ap-
ply can be interpreted as a Reduce in which the combining
function is a no-op (just return the set of values produced
by the method calls). Likewise, Apply logically subsumes
Select.

3.4.8 Remove – void Remove (tid, oidSet)

This operation simply requests that the set of objects identi-
fied by the oidSet be removed from the ParSet. For a primary
ParSet, this is really a “destroy” operation since the ParSet is
the only place in which the object exists. The master simply
retrieves the object by its OID, checks to ensure the object
resides in a SHORE file belonging to the ParSet and issues
a SHORE delete on the object. For secondary ParSets, this
operation is not so simple as it requires deleting the SHORE
object whose value is part of the oidSet. This means that
each slave will have to scan through its entire collection of
OIDs for the ParSet in order to locate and delete the refer-
ence.

3.5 Programming example

To demonstrate how a programmer would use the ParSet li-
brary, we present a simple example. Note that we omit some
of the trailing parameters in function calls for clarity. The
database, in this example, consists of a primary ParSet of
Employee objects, with data-members’ name, age, and job,

10

class EmployeeArg{ class Employee{
char name[80]; char name[80];
int age; int age;
JobType job; JobType job;

}; ... // Other data members
Employee(EmployeeArg *consArg);};

int main(int argc, char *argv[])
{

// Initialize ParSet environment
ParSet::Init(argc, argv);

// Nodes over which ParSets will be declustered
TSet<int> nodes;
nodes.Add(0); nodes.Add(1); // add node i d 0 & 1

// Create the Primary and Secondary ParSets
PrimaryParSet<Employee>::CreateParSet("BigCompany", "Employees", nodes, ParSet::UserDefined);
SecondaryParSet<Employee>::CreateParSet("BigCompany", "Lawyers", nodes);

// Instantiate ParSet handles and Open ParSets
PrimaryParSet<Person> employees("BigCompany", "Employees");
SecondaryParSet<Person> lawyers("BigCompany", "Lawyers");
employees.Open(tid, Employee::Employee(EmployeeCore*), sizeof(EmployeeCore), &employee2node);
lawyer.Open(tid); // tid is the transaction identifier

// Create new, persistent Employee objects within the Primary ParSet
int num; EmployeeArg *args;
LoadEmployeeArg(&num, &args);
employees.New(tid, args, num);

// Select OIDs of lawyers and add them to the ’lawyers’ ParSet
employees.PSSelect(tid, lawyers, &Employee::IsLawer);

// Collect OIDs of retirable lawyers (over 65) into oidSet and Fire them
TSet<OID> oidSet; int retireAge = 65;
lawyers.Select(tid, oidSet, &Employee::OlderThan, &retireAge, sizeof(int));
lawyers.Apply(tid, NULL, &Employee::Retire, NULL, 0, oidSet);
lawyers.Remove(tid, oidSet);

// Find the average age of all the employees
ReduceStruct avgAge = employees.Reduce(tid, ParSet::Avg, &Employee::Age);
cout << "Total number of employees: " << avgAge.count << nl;
cout << "Average age of employees: " << avgAge.val.iVal << nl;

// Cleanup ParSet facility and terminate slave processes
employees.Close(); lawyer.Close();
ParSet::Finish();

}

among others, and a secondary ParSet of employees who
are also lawyers. An Employee object is created through a
constructor that takes the structureEmployeeArgas an ar-
gument. First, the ParSet environment is initialized using
ParSet::Init() . In this routine, the command line ar-
gument,argv[] , is used to determine whether the program
executes as a master, in which case the user-written code is
executed, or a slave, in which case the ParSet library’s slave
code is invoked (see top of page).

We create the two ParSets, Employees and Lawyers, in
the BigCompany database. For both ParSets, parameters to
create includes the nodes on which the objects are to be
declustered. Both ParSets, in this example, are declustered
over SHORE servers identified by 0 and 1. The PSS main-
tains the mapping from node numbers to their corresponding
SHORE servers. The parameters to create the primary Parset,
BigCompany/Employees, also include a declustering strat-

egy. Here, a declustering strategy specified by the user when
the ParSet is opened is used to decluster the objects. Once a
ParSet is created, templated ParSet-class objects,employees
and lawyers, are instantiated to manipulate the ParSets.

The ParSets are first opened so that they can be ma-
nipulated. TheOpen() method onemployees takes the
Employee constructor [Employee::Employee()] and declus-
tering strategyemployee2node()as its arguments. If the user-
defined declustering strategy was not chosen, the decluster-
ing strategy will not be a parameter. The declustering method
maps EmployeeArg objects to specific node IDs on the basis
of odd or even age.

To create and add Employee objects into the primary
ParSet, theLoadEmployeeArg() is called to obtain an
array of arguments for the Employee constructor.
employees.New() is invoked with the array as its ar-
gument which will create the persistent Employee objects.

11

As this is the first ParSet call that manipulates a ParSet, the
PSS creates slave processes on nodes 0 and 1.

Having created our database of employees, we now wish
to identify employees that are lawyers and add them into the
lawyers’ secondary ParSet. This can be achieved by collect-
ing OIDs by invoking employees.Select(...) fol-
lowed by inserting the collected OIDs by invokinglawyers.
Insert(...) . Instead, we used employees.
PSSelect() , as a performance optimization, to ensure that
lawyer OIDs are placed on the same SHORE server as their
corresponding Employee objects. This ensures that subse-
quent calls on thelawyers ParSet will only require exam-
ing only the local SHORE server to locate the actual Em-
ployee objects. The argument to the select,Employee::
IsLawyer() , evaluates toTrue if the Employee is a
lawyer.

At this point, we decide to enforce a mandatory re-
tirement policy by firing all the lawyers over 65 years
of age. For this,lawyers.Select() is used to col-
lect the OIDs of all Employee objects who are retirable
lawyers.Employee::OlderThan() takes an argument
“age” and evaluatesTrue, for Employees above that age.
The set of OIDs collected is used as a filter set to apply
Employees::Retire() method on Employees who are
retirable lawyers. With a filter set,Apply() can be per-
formed on eitherlawyers or employee ParSet, to get the
same result. Usinglawyers will result in a SHORE file-
scan of OIDs intermixed with individual retrievals for actual
Employee objects; this would be expensive it the Employee
objects could not be found locally. Usingemployees
would only require a file-scan on the Employee objects, but
this is undoubtedly a much larger scan. In this example,
sincePSSelect()ensured that Employees are found locally,
we invokelawyers.Apply() . Note that the filter-set we
have collected can be used repeatedly, e.g., it can be used to
remove retired lawyers, or perhaps insert them into another
secondary ParSet of pensioners.

Finally, to demonstrate reduction, the average age of
all the employees is calculated by invokingemployees.
Reduce() with Employee::Age() (for extracting ages
from Employee) and Avg as parameters. The result, which
is the average age, is returned in the objectavgAge . Fi-
nally, the ParSet files are closed and this followed by a call
to ParSet::Finish() which informs the PSS about the
termination of the application and terminates the slaves.

4 The OO7 benchmark overview

In this section we describe enough of the OO7 benchmark
to make this paper self-contained; a more detailed descrip-
tion of the benchmark, along with performance results from
a number of commercial systems, appears in Carey et al.
(1993).

4.1 The OO7 database

The OO7 benchmark is intended to be suggestive of many
different CAD/CAM/CASE applications, although in its de-
tails it does not model any specific application. The goal

of the benchmark is to test many aspects of system perfor-
mance, rather than to model a specific application.

4.1.1 Composite parts and documents

A key component of the OO7 benchmark database is a set of
composite parts. The number of composite parts in this set
is controlled by the parameterNumCompPerModule, which
was set to 500 in our experiments. Each of these composite
parts corresponds perhaps to a register cell in a VLSI CAD
application, or perhaps a procedure in a CASE application.
A composite part has a number of attributes, including the
integer attributesid andbuildDate , and a small character
arraytype . Associated with each composite part is adocu-
mentobject, which models a small amount of documentation
associated with the composite part. A composite part object
and its document object are connected by a bi-directional
association.

In addition to its scalar attributes and its association with
a document object, each composite part has an associated
graph of atomic parts. Intuitively, the atomic parts within
a composite part are the units out of which the composite
part is constructed. In the small benchmark, each composite
part’s graph contains 20 atomic parts, while in the medium
benchmark, each composite part’s graph contains 200 atomic
parts. For example, if a composite part corresponds to a pro-
cedure in a CASE application, each of the atomic parts in
its associated graph might correspond to a variable, state-
ment, or expression in the procedure. One atomic part in
each composite part’s graph is designated the “root part.”

Each atomic part has the integer attributesid , build
Date , x , y , and docId and the small character array
buildDate . (Most of these attributes are not used in the
traversals we selected for this ParSet work.) In addition
to these attributes, each atomic part is connected via a bi-
directional association to three other atomic parts. The con-
nections between atomic parts are implemented by inter-
posing a connection object between each pair of connected
atomic parts. Here the intuition is that the connections them-
selves contain data; the connection object is the repository
for that data. A connection object contains the integer field
length and the short character arraytype . Figure 6 de-
picts a composite part, its associated document object, and
its associated graph of atomic parts.

4.1.2 Assemblies and modules

The composite parts and their associated atomic parts (in-
cluding the connection objects) and documents comprise the
bulk of the OO7 database. However, a set of composite parts
by itself is not sufficiently structured to support all the op-
erations we wished to include in the benchmark. Accord-
ingly we added an “assembly hierarchy” to the database.
Intuitively, the assembly objects correspond to higher-level
constructs in the application being modeled in the database.
For example, in a CAD application an assembly might cor-
respond to a register file, or an ALU. Each assembly is either
made up of composite parts (in which case it is abase as-
sembly) or made up of other assembly objects (in which case
it is a complex assembly).

12

Id = 248590

type = "typeNumber3"

buildDate = 3587341
title = "widget #27 docs"

text = "widget #27 doesn’t really do
 very much but we put one in the
 spec so here it is"

docId = 345

documentation

Fig. 6. A composite part and its associ-
ated document object

Table 1. Benchmark parameters

Parameter Small Medium
NumAtomicPerComp 20 200
NumConnPerAtomic 3–9 3–9
DocumentSize 20 KB 200 KB
ManualSize 100 KB 1 MB
NumCompPerModule 500 500
NumAssmPerAssm 3 3
NumAssmLevels 7 7
NumCompPerAssm 3 3
NumModules 1 1

The first level of the assembly hierarchy consists ofbase
assemblyobjects. Base assembly objects have the integer
attributesid andbuildDate , and the short character array
type . Each base assembly has a bi-directional association
with three composite parts.

Higher levels in the assembly hierarchy are made up of
complex assemblies. Each complex assembly has the usual
integer attributesid andbuildDate and the short charac-
ter arraytype ; additionally, it has a bi-directional associa-
tion with three; subassemblies (controlled by the parameter
NumAssmPerAssm, which can either be base assemblies (if
the complex assembly is at level two in the assembly hierar-
chy) or other complex assemblies (if the complex assembly
is higher in the hierarchy). There are seven levels in the
assembly hierarchy (controlled by the parameterNumAssm-
Levels).

Figure 7 depicts the full structure of the single-user OO7
benchmark database. Note that the picture is somewhat mis-
leading in terms of scale; there are only (37 − 1)/2 = 1093
assemblies per module in the database, compared to 10 000
atomic parts per module in the small database, and 100 000
atomic parts per module in the medium database. Table 1
summarizes the parameters of the single user OO7 bench-
mark database.

In the ParSet work we needed to scale the database over
a wider range of sizes than just small and medium; we did
so by varying the number of modules.

4.2 The OO7 traversals

The OO7 traversal operations are implemented as methods of
the objects in the database; a traversal navigates procedurally
from object to object, calling the appropriate method on each
object as it is visited. Some of the traversals update objects as
they are encountered; other traversals call a “null” procedure
on each object as it is visited, to simulate an application-level
procedure call.

In this paper we used a subset of the OO7 traversals:
two read-only traversals (traversals 1 and 6) and one update
traversal (traversal 2b). Each of the read-only traversals were
run in two ways, “cold” and “hot,” while the update traversal
was always run “cold.” In a cold run of the traversal, the
traversal begins with the database caches empty. We took
great pains to flush the caches between runs.

4.2.1 Traversal 1: raw traversal speed

Traverse the assembly hierarchy. As each base assembly is
visited, visit each of its referenced unshared composite parts.
As each composite part is visited, perform a depth-first search
on its graph of atomic parts. Return a count of the number
of atomic parts visited when done.

This traversal is a test of raw pointer traversal speed, and
that it is essentially equivalent to the performance metric
most frequently cited from the OO1 benchmark. Note that
due to the high degree of locality in the benchmark, there
should be a non-trivial number of cache hits even in the cold
case. Also, in order to implement the depth first search, the
benchmark must tightly interleave DBMS and application
data operations (e.g., to keep track of visited atomic parts
while traversing a given composite part).

4.2.2 Traversal 2b: traversal with updates

Repeat traversal 1, but update every atomic part as it is en-
countered.

13

Design Library of Composite Parts

1 2 3 4 N

base
assemblies

complex
assemblies

Manual text

id

type

builddate

manual

design_root

Module i

Fig. 7. Structure of a module

0 5 10 15
Number of Processors

0

5

10

15

20

25

R
es

po
ns

e
T

im
e

Cold
Hot

0 5 10 15
Number of Processors

0

5

10

15

Sp
ee

du
p

Cold

Hot

Linear

Fig. 8. Speedup for T1 on small database

4.2.3 Traversal 6: sparse traversal

Traversal 6 is the same as traversal 1 in the assembly hier-
archy, but instead of performing a depth first search on all
the atomic parts in each composite part, traversal 6 merely
visits the root atomic part in each composite part.

4.3 ParSets and parallel OO7

How can we use ParSets to parallelize the OO7 traversals?
Recall that the OO7 traversals all begin by doing a depth-
first traversal of the assembly hierarchy, following the ref-
erences from base assemblies to composite parts whenever
they reach a base assembly. Once a composite part has been
reached, the traversals differ: traversal 1 (T1) then does a
depth-first traversal of the atomic part graph associated with
the composite part, traversal 2b (T2b) does the same but

updates a field in each atomic part as it is visited, while
traversal 6 (T6) visits just the “root” atomic part in the com-
posite part’s associated graph of atomic parts. In all cases,
the traversals are implemented as methods of the objects.
That is, the T1 method on a complex assembly calls the T1
method of each of its subassemblies in turn, the T1 method
on a base assembly calls the T1 method of each of its child
composite parts in turn, etc.

In order to parallelize such a traversal we need to agree
on what semantics of the traversal need to be preserved. If
we require that the traversal visit all the objects sequentially
in DFS order, then by definition there is no parallelism and
we are done. This is rather uninteresting. Instead of requiring
these semantics, we instead require the following:

1. Each traversal must start at the root of the module, and
traverse the assembly hierarchy to determine which base
assemblies belong to the module.

14

0 5 10 15
Number of Processors

0

50

100

R
es

po
ns

e
T

im
e

Cold

0 5 10 15
Number of Processors

0

5

10

15

Sp
ee

du
p

Cold

Linear

Fig. 9. Speedup for T2b on small database

0 5 10 15
Number of Processors

0

5

10

R
es

po
ns

e
T

im
e

Cold

0 5 10 15
Number of Processors

0

5

10

15
Sp

ee
du

p

Cold

Linear

Fig. 10. Speedup for T6 on small database

2. Each composite part must have its traversal method in-
voked exactly as many times as it is invoked in the stan-
dard sequential implementation.

3. The composite part traversal method must visit the same
objects as are touched by the sequential implementation,
and furthermore it must traverse exactly the same links
as the sequential implementation.

These semantics cannot be proven right or wrong, since no
semantics were specified in the original OO7 traversals. Our
rationale for choosing these semantics was that they ensure
that:

1. Every object is visited in the parallel version exactly the
same number of times as in the sequential version.

2. Every pointer is traversed in the parallel version exactly
the same number of times as in the sequential version.

Furthermore, these semantics roughly match our original in-
tention when we designed the OO7 traversals; the assembly
hierarchy is there to provide access to the composite parts,
and the composite parts together with their associated atomic
part subgraphs form complex objects that should be acted
upon as a unit.

Given these semantics, there are a wide variety of options
for using ParSets to parallelize the traversals. Our choice was
simple and effective: we created a ParSet of composite parts
and clustered the atomic part subgraphs (which include the
associate connection objects) with their associated composite
parts. Then all of the traversals have the following form:

Perform a DFS on the assembly hierarchy;

Whenever a base assembly is reached, add
the OIDs of its referenced composite parts
to a filter set;

After the DFS of the assembly hierarchy
is complete, invoke a set Apply of the
appropriate traversal method (T1, T2b, or
T6) on the composite part ParSet with
the given filter set.

This ParSet Apply will ship the filter set to all the nodes
that contain members of the composite parts ParSet, and
invoke the appropriate traversal method on each composite
part as many times as that composite part’s OID appears in

15

0 5 10 15
Number of Processors

0

50

100

150

200

250
R

es
po

ns
e

T
im

e
Cold

0 5 10 15
Number of Processors

0

5

10

15

Sp
ee

du
p

Cold

Linear

Fig. 11. Speedup for T1 on medium database

0 5 10
Number of Modules

0

10

20

30

40

50

R
es

po
ns

e
T

im
e

Cold

0 5 10 15
Number of Processors

0

5

10

15

20

25
R

es
po

ns
e

T
im

e

Cold
Hot

Fig. 12. Scaleup for T1 on small database

the filter set, so the implementation satisfies the specified
semantics.

5 Performance results

We implemented the ParSet version of OO7 and ran a num-
ber of tests on a cluster of SparcStation 10/30 s connected
by an ethernet. Each workstation had 32 MB of main mem-
ory and a Sun0424 424-MB internal disk drive. The server
buffer pool was set to 10 MB; due to interference with the
OS and with the SHORE client object cache, this was the
largest we could use without introducing paging activity on
the server buffer pool. The SparcStations in the cluster were
not isolated, and since we did not have exclusive access to
these workstations we did not kill the usual suite of dae-
mons and background processes. However, we did ensure
that there were no active users on the workstations when
the tests were run. Furthermore, to reduce the impact of the
“noise” in the data due to not having isolated workstations,
we re-ran each test multiple times. The average of the trials
is reported here

5.1 Speedup

In these tests we held the database size constant and varied
the number of processors. For T1 on the small database, we
obtained the results presented in Fig. 8. The left graph in the
figure gives absolute times in seconds, while the right graph
gives the normalized speedup.

The speedup is initially reasonable, but soon begins to
fall far short of the ideal. The reason for this can be found in
the details of T1: there is an initial sequential portion when
the master program walks the assembly hierarchy collecting
composite part OIDs. Only after this is complete can the
master invoke the ParSet Apply, which the slaves then exe-
cute in parallel. For the cold test this took 2.2 s; as predicted
by Amdahl’s law, for larger numbers of processors this was
a significant portion of the total execution and speedup suf-
fered.

The hot curve shows worse speedup. The explanation
here is somewhat more subtle. In the initial sequential base
assembly traversal, no object is visited more than once; how-
ever, in the ParSet Apply on the composite parts, each com-
posite part can be visited multiple times. These multiple
visits mean that the ParSet Apply does a higher percent-

16

0 5 10
Number of Modules

0

50

100

150

R
es

po
ns

e
T

im
e

Cold

0 5 10
Number of Modules

0

1

2

3

Sc
al

eu
p

Cold

Linear

Fig. 13. Scaleup for T2b on small database

0 1 2 3 4 5
Number of Modules

0

20

40

60

80

100

R
es

po
ns

e
T

im
e

Cold

0 1 2 3 4 5
Number of Modules

0.0

0.5

1.0

1.5

2.0
Sc

al
eu

p

Cold
Linear

Fig. 14. Scaleup for T1 on medium database

age of work while the objects are in memory than does the
base assembly traversal. This in turn means that the ratio of
the hot to the cold times for the base assembly traversal is
smaller than the ratio of the hot to the cold times for the
ParSet Apply; in other words, the sequential portion of the
cold traversal is proportionately smaller than it is for the hot
traversals. This effect was repeated throughout the tests, so
in the remainder of this section we present times only for
the cold traversals.

Next, Fig. 9 shows the speedup curves for T2b on the
small database. Here, the speedup is considerably better –
in fact superlinear – than was the case for T1. The reason
is that the base assembly traversal, the sequential part of
the program, is unchanged from T1 to T2b, but the ParSet
Apply does much more work in T2b, since it updates every
atomic part as it is visited. The curve is superlinear because,
with a single server, the database traversed by T2b does not
fit in memory.

Finally, Fig. 10 shows the speedup for T6. Here the
speedup is terrible; the reason is that here the set Apply does
very little work, and the sequential base assembly traversal
dominates the execution for all but very few processors.

Next, we move to the medium database, which is approx-
imately a factor of 10 larger than the small database. The
speedup curve for T1 on the medium database is given in
Fig. 11. We started the curve in Fig. 11 with two processors
rather than with one, since T1 took a long time to run with
one processor. Here we observe wildly superlinear speedups;
this is due to memory effects, since the database does not fit
entirely in memory until 12 nodes. For the medium database,
the database size is almost 120 MB. This superlinear speedup
also occurred in T2b on the medium database, but not on T6
(since T6 only requires a tiny fraction of the database to be
brought into memory). Since these spurious speedups due to
memory effects are not the focus of this paper, we do not
present the graphs here.

5.2 Scaleup

In these tests we grew the database in proportion to the num-
ber of processors; the motivation for such scaleup tests was
to see if larger problems can be handled by adding proces-
sors to the system. Since the “official” OO7 database comes

17

0 50 100
Database Size (MB)

0

5

10

15

20

R
es

po
ns

e
T

im
e

Cold

0 50 100
Database Size (MB)

0

5

10

Si
ze

up

Cold

Linear

Fig. 15. Sizeup for T1 on various database sizes on 12 processors

0 50 100
Database Size (MB)

0

20

40

60

80

100

R
es

po
ns

e
T

im
e

Cold

0 50 100
Database Size (MB)

0

5

10

Si
ze

up

Cold

Linear

Fig. 16. Sizeup for T2b on various database sizes on 12 processors

in only two sizes (small and medium) we had to modify the
database in order to be able to run these experiments. The
way we did so was to increase the number of modules in
the database in proportion to the number of processors. [This
same scaleup is being used in the multiuser OO7 benchmark
that is currently under development (Carey et al. 1994).] The
only required change to the traversal code is that now the
initial assembly traversal that gathers the OIDs of composite
parts must traverse the assembly hierarchy of all modules.

Figure 12 shows the scaleup for T1 on multiple “small”
modules. For this workload the database fits entirely in mem-
ory. As could be predicted from the speedup curves, the
scaleup performance is not good (growing the problem size
while adding processors does not keep running times con-
stant). Again, this is due to the relatively large sequential
traversal of the assembly hierarchy by T1.

For T2b on the small database, the scaleup is better, as
expected – recall that for T2b the parallel portion of the
traversal involves updates, hence it is much larger in rela-
tion to the initial sequential assembly hierarchy traversal.
Figure 13 gives the results for this experiment.

Next, we move to scaleup numbers for the medium
database. Figure 14 shows the results of these tests. Here,
in contrast to the small database scaleup, we see excellent
scaleup results: quadrupling the database size from 1 to 4
modules produces only a 20% increase in running time. This
can be explained by examining the work involved in the par-
allel ParSet Apply portion on the two database sizes. For the
small database, the ParSet Apply involves a simple traver-
sal of a graph structure that fits entirely in memory. For
the medium database, the ParSet Apply involves a traversal
of a graph structure that fits only partially in memory, so
paging occurs. For both the small and medium databases,
the assembly hierarchy fits entirely in memory (the assem-
bly hierarchy is in fact identical in the two databases). This
means that in the medium database traversals, the ParSet
Apply does a much larger fraction of the total work of the
traversal than in the small database, so better scaleup occurs.

5.3 Sizeup

In these experiments we fixed the number of processors and
grew the database. This time, we grew the database by vary-

18

ing the number of atomic parts per composite part, from 20
(small database) to 200 (large database) with two intervening
points (80 and 140). Figure 15 shows the results of running
T1 over these databases on 12 processors.

Note that the curve is sublinear, meaning that the algo-
rithm is more efficient on larger databases. This is due to the
parallel efficiency of T1 on the various database sizes. As
the database grows, the ratio of the amount of work in the
sequential portion of the traversal to the amount of work in
the parallel portion of the traversal decreases. Another way
to view this is that as the database grows, the fraction of the
time for which 11 of the 12 processors are idle (awaiting a
slave operation from a ParSet Apply) decreases.

Figure 16 shows the result of the same experiment, run-
ning T2b instead of T1. Here the sizeup is much closer
to linear. The reason is that for T2b the traversal already
had very good parallel efficiency for the small database, so
moving to the larger database did not cause any significant
improvement.

6 Conclusion

The ParSet facility within the SHORE system provides
an easy-to-use means of adding data parallel execution to
OODBMS applications, applicable whenever the OODBMS
application invokes a method on each member of a collec-
tion of objects. Our experience with using this facility to
parallelize some traversals of the OO7 OODBMS bench-
mark indicates that this approach to parallelism is effective
for these workloads if the parallel portion of the workload is
large in proportion to the sequential portion. One important
case in which this criterion is satisfied is when the sequen-
tial portion of the application operates on memory-resident
data, while the parallel portion of the application operates
on a data set too large to fit entirely in memory.

Opportunities for future work in parallelizing OODBMS
workloads abound. We plan to make persistent a parallel
object-oriented language like PC++, using ParSets, and pro-

vide a suite of persistent parallel library classes, such as
ParVectors, ParArrays, and ParMatrices, to go with it. We
will also be studying optimization problems for implement-
ing the library classes. We intend to experiment with mul-
tiuser workloads to see how well SHORE can take advantage
of the parallelism inherent in multiple concurrent OODBMS
applications. An abridged version of this paper appeared in
DeWitt et al. 1994.

Acknowledgement.This research is sponsored by the Advanced Research
Project Agency, ARPA order number 018 (formerly 8230), monitored by
the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.

References

1. Bancilhon F, Briggs G, Khoshafian S, Valduriez P (1987) FAD, a pow-
erful and simple database language. In: Proceedings of the VLDB Con-
ference, Brighton, UK

2. Cattell R (1993) The Object database standard: ODMG-93. Morgan
Kaufmann, San Mateo, Calif

3. Carey MJ, DeWitt DJ, Franklin MJ, Hall NE, McAuliffe M, Naughton
JF, Schuh DT, Solomon MH, Tan CK, Tsatalos O, White S, Zwilling
MJ (1994) Shoring up persistent applications. In: Proceedings of the
1994 ACM-SIGMOD Conference on the Management of Data, Min-
neapolis, Minn, May

4. Carey MJ, DeWitt DJ, Naughton JF (1993) The OO7 benchmark. In:
Proceedings of the 1993 ACM-SIGMOD Conference on the Manage-
ment of Data, Washington DC, May

5. Carey MJ, DeWitt DJ, Naughton JF (1994) A status report on the 007
benchmarking effort. In: Proceedings of the ACM OOPSLA Confer-
ence, Portland OR, October

6. DeWitt DJ, Gray J (1992) Parallel database systems: The future of high
performance database processing. Commun ACM 35: 85–98

7. DeWitt DJ, Naughton JF, Shafer J, Venkataraman S (1994) Paralleliz-
ing OODBMS traversals: a performance evaluation. In: Proceedings of
the 1994 Conference on Parallel and Distributed Information Systems,
Austin, Tex, September

8. Kilian MF (1992) Parallel Sets: an object-oriented methodology for
massively parallel programming. PhD thesis, Harvard Center for Re-
search in Computing Technology, Cambridge, Mass

