The VLDB Journal (1996) 5: 85-97 The VLDB Journal
© Springer-Verlag 1996

A taxonomy of correctness criteria in database applications

Krithi Ramamritham **, Panos K. Chrysanthig ***

1 Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA
2 Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA

Edited by Hector Garcia-Molina. Received September 16, 1993 / Revised June 13, 1994 / Accepted September 17, 1994

Abstract. Whereas serializability capturestabase consis- al. 1976) captures databases consistency requirements and
tency requirementg&nd transaction correctness properties transaction correctness properties via a single notion: (1) the
via a single notion, recent research has attempted to com&ate of the database at the end of a set of concurrent trans-
up with correctness criteria that view these two types ofactions is the same as the one resulting from some serial
requirements independently. The search for more flexibleexecution of the same set of transactions; (2) the results of
correctness criteria is partily motivated by the introductiontransactions and the interactions among the set of transac-
of new transaction models that extend the traditional atomidions are the same as the results and interactions, had the
transaction model. These extensions came about because ttransactions executed one after another in this serial order.
atomic transaction model in conjunction with serializability As applications using databases become more complex, the
is found to be very constraining when used in advanced apeorrectness criteriathat areacceptableto the application
plications (e.g., design databases) that function in distributedpecome more complex and hence harder to capture using a
cooperative, and heterogeneous environments. single correctness notion.

In this article we develop a taxonomy of variot@rrect-
ness criteriagthat focus on database consistency requirement
and transaction correctness properties from the viewpoint OE

what the different d|menS|ons of these wo are. This tax- 1981), in which the database consistency requirements are
onomy allows Us to categorize correctness criteria th_at h_av‘éaptured by requiring the serializability of independent (sub)-
been proposed in the literature. To help in this categorization 5 tions: additional transaction structural properties spec-
we have applied a “”'form spec!flca}non technique, bqsed_ Oﬁy the correctness of subtransactions of individual nested
ACTA, 1o EXpress the various criteria. Su?h a categorizalion 5 nqactions. The search for more flexible correctness re-
helps shed light on the similarities and differences between iroments is further motivated by the introduction of other
different criteria and places them in perspective. transaction models that extend the traditional atomic transac-
tion model (see Elmagarmid 1992 for a description of some
extended transaction modgl§ hese extensions came about
because the atomic transaction model in conjunction with se-
rializability is found to be very constraining when applied in
advanced applications such as design databases that function
in distributed, cooperative, and heterogeneous environments
(Barghouti and Kaiser 1991; Korth and Speegle 1988).

Proposed correctness criteria range from the standard

Database consistency requiremenépture correctness from serializability notion to eventual consistency (Sheth and
the perspective of objects in the database — as transactiofusinkiewicz 1990). Quasiserializability (Du and Elmagar-
perform operations on the objects. On the other htnacis-  mid 1989), predicatewise serializability (Korth and Speegle
action correctness propertiesapture correctness from the 1988), etc., are points that lie within this randéventual
perspective of the structure and behavior of transactions. Faronsistencycan be viewed as a “catch-all” term with dif-
example, they deal with the results of transactions, and théerent connotations: for example, requiring consistency “at
interactions between transactions. Serializability (Eswaran ea specific real-time”, “within some time” or “after a certain

. L ) ) ___amount of change to some data”, or enforcing consistency
w A prellmlnal_'y version of_thls paper was presented at the Interna_nonal.‘after a certain value of the data is reached”, etc. Whereas

orkshop on Distributed Object Management, Edmonton, Canada, in Au- — " . . . . . L
gust 1992 serlal|zab|llty_and its requanons are, in _ger_1era|, application
** a-mail: krithi@cs.umass.edu and transaction model independent criteria, eventual con-
*** g-mail: panos@cs.pitt.edu sistency, as the examples above show, is application and

Recent research has attempted to come up with correct-
ess criteria that view these two types of requirements in-
ependently. An early example is nested transactions (Moss
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transaction model specific. It is not difficult to see that these Database Consistency

relaxed correctness requirements are usful within a singl

database, as well as in multidatabase environments. /\
Whereas serializability works under the simple assump- Consistency Consistency

Unit Maintenance

tion that individual transactions maintain the consistency of /\ /N

the database, proposed correctness criteria require more fro
the transaction developers. In particular, a transaction MaAlcomplete  Setof  Individual At activity  Atspecific In specific
have to be aware of the functionality of other transactions o ’ boundaries  times - states

and the potential interactions among transactions, especiall /\ %\

in a cooperative environment. This makes transaction de  Lecaton = Location Operation  Setof  Transaction _ Setof
e rations

velopment as well as management more difficult. Our goal > ransactions

in this article is to understand the conceptual similaritiesFig. 1. Dimensions of database consistency

and differences between different correctness criteria with-
out getting into the practical implications of adopting them. 5 1 patabase consistency requirements

We examine database consistency constraints and trans- ) ) ) )
action correctness properties from the viewpoinabatthe ~ Database consistency requirements can be examined with
different dimensions of these two types of correctness are€Spect to two issues with further divisions of each as dis-
This taxonomy allows us to categorize existing proposalscussed below (see Fig.1.)
thereby shedding some light on the similarities and differ-
ences between the proposals and to place them in perspeg-
tive. The categorization also helps us determine whether or’
not a correctness notion is transaction model specific or apThis is related to the data items involved in a consistency
plication specific. We will see that even though some of therequirement.
correctness notions were motivated by specific transactior&

models or specific applications, they have broader applica- omplete_datal:_)ase. )
bility. All the objects in the database have to be consistent locally

as well as mutually consistent, i.e., they should satisfy all the

1o help in t.h's categorization, we apply a uniform SPEC” Jatabase integrity constraints typically specified in the form
ification technigue to express the various correctness cri-

teria that have been proposed. The technique is based of predicates on the state of the objects. Semantics of the ob-

qn . :
X : . jects can be taken into account to improve concurrent access
the ACTA. formalism (Chrysanthis and Ramamrltham_ .1999'to the objects while maintaining consistency (Chrysanthis et
1991) which heretofore has been used for the specificatio 1. 1991)

of and for reasoning about extended transactions. One 0
the key ingredients of ACTA is the idea of constraining the Example:traditional serializability (SR) applied to atomic
occurrence osignificant eventassociated with transactions, transactions (Bernstein 1987).

e.g.,Begin Abort, andSplit These constraints are expressed sypsets of the objects in the database

in terms of necessary and sufficient conditions for events to
occur. These, in turn, relate to the ordering of events ang;

the validity of relevant conditions. Such constraints can als v . ;
necessarily disjoint and may be statically or dynamically

facilitate the specification of database consistency require defined h obiect in the datab . dtob
ments and transaction correctness properties. The ACTA ford€fined. Each object in the database is expected to be con-
malism is introduced in Sect. 3. sistent locally, but mutual consistency is required only for

objects that are within the same subset.
xample:setwise serializability (SSR) applied t@mpound

1.1 Consistency unit

Location-independent subsefhe database is viewed as
eing made up of subsets of objects. The subsets are not

The rest of the article is structured as follows: Sub-

sect. 2.1 provides a taxonomy of database consistenc r%z- ; ; . P
quiremen?s, while Subsect.2.2yprovidesataxonomy of trgms_ransactlons(Sha 1985) and predicatewise serializability

action correctness properties. A specification of existing pro—(PSR) applied to cooperative transactions (Korth et al. 1988).

posal as well as their categorization (based on the taxonomy) Location-dependent subsetSach subset corresponds to

is the subject of Sect. 4. Section 5 concludes the article wittone of the sites of a (distributed/heterogeneous) database.

some discussions of the next step in this work. In addition to mutual consistency among objects in a sub-
set (i.e., site), consistency among subsets is also required
depending on which parts of a database are accessed by a
transaction.

2 A taxonomy of correctness criteria Example:Quasi-serializability (QSR) (Du and Elmagarmid
1989) and its generalization (Mehrotra 1991) applied to dis-
tributed transactions.

In this section we study the different dimensions of the twomd'vIdual objects

aspects of correctness — namely, consistency of databa@Ch object in the database is EXpECIEd to be consistent lo-
state and correctness of transactions — in order to develop @ally.

taxonomy of correctness criteria. For concreteness, we givExample:linearizability (Herlihy and Wing 1987) applied to
examples as the taxonomy is developed. objects accessed by concurrgmbcesses
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2.1.2 Consistency maintenance Correeines Froperties
This is related to the issue whena consistency requirement %\
is expected to hold. Correctness Correctness Correctness Correctness
of of of of
Transaction Transaction Data-access related Temporal

At aCtiVi ty bOUn daries Results Structure Behavior Behavior
An activity denotes a unit of work. The activity is allowed , gue  Retive
to complete only if the requirement holds, i.e., comple-
tion is delayed until consistency holds. If an activity cannot
complete successfully while maintaining consistency, it is
aborted or compensated.

Fig. 2. Dimensions of transaction correctness

2.2 Transaction correctness properties

Example: SR, PSR, QSR, and cooperative serializability

(CoSR), applied to atomic, nested, and distributed transacAs was mentioned in the introduction, serializability suffices

tions. as a correctness criterion for traditional atomic transactions,
since, onceindividual transactions are guaranteed to take

Depending on what the activity is, we can further developone consistent database state to another consistent siate

the taxonomy. rializability guarantees that a set of concurrent transactions
when started in a consistent state take the database to an-

— When an operation completeg/hen an operation com- other consistent state. So the only transaction correctness

pletes, the necessary consistency specifications must hold property of interest is: Each transaction when executed by

Example:Concurrent processes accessing shared objects. [tSelf must maintain database consistency. From this it fol-
lows that, under serializability, the output of a transaction

— When a set of operations complet¥ghen a set of op- reflects a consistent database state. However, more elabo-

erations performed by transaction completes, the necessaf@te correctness properties have been proposed in the context

consistency is expected to hold. of additional application requirements and newer transaction

models. These transaction correctness properties can be dis-

Example:semantic atomicity (Garcia-Molina 1983; Farrag . ,ssed with respect to four criteria (Fig. 2):

and Ozsu 1989) and multilevel atomicity (Lynch 1983).
Correctness of transaction results

— Absolute.The output of transactions must reflect a consis-
tent database state.

Example:atomic transactions. Example:SR applied to atomic transactions, QSR applied to
distributed transactions.

— Relative. Outputs of transaction are considered correct
‘even if they do not reflect a consistent state of the object,

as long as they are within a certain bound of the result that
Examplexcooperative transactions (Korth and Speegle 1988ljorresponds to the consistent state.

sagas (Garcia-Molina and Salem 1987). Example: epsilon-serializability (ESR) (Pu and Leff 1991)
applied to epsilon-transactions, approximate query process-
ing (Hou et al. 1989).

Consistency between related objects is maintained in a de- .
ferred manner only at/after specific points in time. This is COMeCtness of transaction structure

an example itemporal consistenc§Bheth and Rusinkiewicz Correctness depends on the (structural) relationship between
1990). transations. This is typically specified in terms of prescribed
and/or proscribedCommit Abort, Begin and other types

of dependencies (Chrysanthis and Ramamritham 1991) be-
Rween transactions. Since structural properties are governed
by a particular transaction model, the specifications of the
model express these requirements.

. . . Example:sagas (Garcia-Molina and Salem 1987), multilevel
Objects may be required to be mutually consistent only Wheréerializability (Korth and Speegle 1990).

a certain number of updates have been made to one of the
objects, or a state satisfying a certain predicate is reached:orrectness of data access-related transaction behavior
Thus, in this case also, consistency between related objectgansactions are required to perform operations on objects
is maintained in a deferred manner. in a certain manner to be considered correct. That is, these
Example:a centralized database of a department store chaiffduirements are constraints on the history of concurrent op-
may require updates only upon the completion of 100 sale§rations.

at a particular store. Such requirements are referred to aBxample:To satisfy serializability, conflict relationship be-
spatial consistencin Sheth and Rusinkiewicz (1990). tween transactions — as they access data concurrently — must

— When a transaction completegSonsistency is expected to
hold upon a transaction’s completion.

— When a set of transactions complet€ansistency is ex-
pected to hold not when individual transactions complete
but when a set of transactions completes.

At specific points of time

Example:A bank account is expected to be made consistent
with respect to the debits and credits that occur on a give
day, upon closing of business.

In specific states
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be acyclic. Patterns (Skarra 1991) are more applicationsubtransaction of a nested transaction implies that all of its
specific correctness requirements that reflect the (semantiaffects on the objects should be made persistent and visible
of) usage of the object. with respect to its parent and sibling subtransactions. Other
Correctness of temporal behavior of transactions transaction management primitives inclupawn found in

the nested transaction model (Moss 19&p)lit, found in the
Transactions have start time and completion time (deadlinejplit transaction model (Pu et al. 1988), ahuin, a trans-
constraints. action termination event also found in the split transaction

Example:transactions in real-time systems. model.

The taxonomy just presented shows how the various corDefinition 3.1 Invocation of a transaction management prim-
rectness requirements can be viewed from the perspectivdtive is termed asignificant eventA transaction model de-
of database consistency and transaction correctness. It is pdines the significant events that transactions adhering to that
haps clear that, from the perspective of a database applicanodel can invoke.
g??hgig')?onr?g;n\'vhat IS reqtgr;adhl_s /;O spec;fy ¥Yh'Ch lzat\;]eSThe set of events invoked by a transactida a partial order
) omy correspond to hisiher application, and thety, ..., ordering relation—, where — denotes the temporal
provide additional specifications required by the individual

leaves. For instance, if correctness depends on transactiongrder in which the related events occur.
' ' P ts(e) gives the time of occurrence of everaiccording to

structur_al properties, addition_al specifications will b_e neededa globally synchronized clodkClearly, ¢s(3) will be larger
to specify what these properties are. For example, if transacthants(a) if o appears earlier in the partial order & 3).

tions in an application behave according to the nested translfurther no two significant eventhat relate to the same
action model, an axiomatic specification of the nested transfransac,tion can oceur with the sames value
action model (Chrysanthis and Ramamritham 1991) will sup- '
plement the identification of the fact that transactions have
structure-related correctness requirements. 3.2 Historv. proiection of the histor

We revisit the correctness notions in Sect.4.1 where .d ty, .th i Y,
serializability-related correctness notions are formally spec—an constraints on event occurrences
ified and categorized along the different dimensions of the

taxonomy. Sections 4.2 and 4.3 deal with the formal spec] N concurrent execution of a set of transactighis rep-

ification of more general correctness criteria that are nolresei?ttédbby thheistory(Bgrnst(_ein ﬁt al. 198d7)' c:jf_the evel.;nts
directly related to serializability, but deal, for example, with Invoked by the transactions in the sEtand Iindicates the

transaction structure and behavior, specific states of objectéPartial) order in which these events occur. The partial order
or specific times. of the operations in a history is consistent with the partial

order of the events of each individual transaction 7.
Theprojectionof a historyH is a subhistory that satisfies

3 A quick introduction to the ACTA formalism a given criterion. For instance:

. ' , , i — The projection of a historyd with respect to a specific
ACTA is a first-order logic-based formalism. As mentioned  ansactiont yields a subhistory with just the events in-
earlier, the idea of significant events underlies ACTA’s spec-  ,oked byt. This is denoted by7,.
ifications. Section 3.1 discusses these events. Specifications. 1he projection of a historyd with respect to a specific

@nvolve constraints on the occurrence of individual signif-  ime interval i, ] vields the subhistory with the events

icant events, as well as on the h|§tory of occurrence of \\hich occurred between and j (inclusive) and is de-

these events. Hence the notion of history and the necessary ,5ied by Hli-11,

and sufficient conditions for the occurrence of significant  \ypen; = system initiation time, we drop the first element

events are introduced in Sect.3.2. Finally, Sect. 3.3 shows ¢ ine pair. ThusH/ = Hlsystem init time,j] denotes all

how sharing of objects leads to transaction inter-relationships  ihe events that occur until timg

which in turn induces certain dependencies between concur-

rent transactions. Consistency requirements imposed on concurrent transac-
tions executing on a database can be expressed in terms of
the properties of the resulting histories.

3.1 Significant events associated with transactions The occurrence of an event in a history can be con-
strained in one of three ways: (1) an eventan be con-

During the course of their execution, transactions invokestrained to occupnly afteranother event’, (2) an event

operations on objects. They also invoke transaction manean occuronly if a conditionc is true, and (3) a condition

agement primitives. For example, atomic transactions are asanrequire the occurrence of an eveat

sociated with three transaction management primitiBes:

gin, Commitand Abort The specific primitives and their L . .

semantics depend on the specifics of a transaction modé:'edes/e_ven_te’ in history H. It,'s false, otherwise. (Thus,

(Chrysanthis and Ramamritham 1991). For instance, whereds ™ € implies thate € H ande’ € H.)

the_Commltby an atomic transactlor_l implies that it is ter_ml' 1 This is obviously an abstraction — the effects of realizing this by a set

nating successfully and that all of its effects on the objectset closely synchronized clocks on individual nodes in a distributed system

should be made permanent in the databaseCtiramitof a  will not be discussed here

Definition 3.2 The predicatee — ¢’ is true if evente pre-



Definition 3.3 ¢ € H = Conditionyg, where= denotes
implication, specifies that the eveatan belong to history!
only if Conditiony is satisfied. In other word€§,ondition g
is necessary foe to be in H. Conditionyg is a predicate
involving the events ind.

Considere’ € H = (e — €'). This states that the event
can belong to the historff only if evente occurs before’.

Definition 3.4 Conditiony = ¢ € H specifies that if
Conditiong holds, e should be in the history{. In other
words, Conditiong is sufficientfor € to be in H.

We now describe some common types of constraints

1. Commit,, € H = (Commit,, € H = (Commit,, —
Committ'j )). This says that if both transactiotisandt;
commit, then the commitment of precedes the commit-
ment of¢;. This Commit Dependencyis indicated by
(t; €7t;). In general, Commit,, € H = condition)
specifies thatondition should hold fort; to commit.

2. Aborty, € H = Abort;, € H, i.e., if t; aborts then
t; aborts, states thébort Dependency of ¢; on ¢;
(tj¢<t;). In general, {ondition = Abort;, € H)
specifies that itondition holds,t; aborts.

3. Beging; € H = (Begin;, — Begin,,) states that trans-
actiont; cannot begin executing until transactionhas
begun. This is @eginDependingof ¢; on ¢;.

3.3 Objects, operations, and conflicts
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4 Specification and categorization of correctness criteria

In this section, we study various database consistency re-

quirements and transaction correctness properties that have
been proposed and place them in perspective, given the tax-
onomy of the previous section. Broadly speaking, Sect. 4.1

deals with transaction-model and application-independent

correctness criteria (even though, as we will see, those who

proposed them may have had a specific transaction model or
application in mind), Sect. 4.2 discusses transaction-model-

dependent but application-independent criteria, and Sect. 4.3
examines transaction- and application-dependent consistency
requirements. [For a complete axiomatic semantics of the

various extended transaction models, the reader is referred
to Chrysanthis and Ramamritham (1991).]

4.1 Transaction- and application-independent criteria

In general, transaction- and application-independent correct-
ness criteria are extensions to serializability. In this section,
we first specify some of these extensions using the formalism
described in the previous section and then use the specifi-
cations to show how the different extensions relate to each
other. All of these criteria are based on the notiocafflicts

and their preservation in equivalent histories. Thus, we do
not discuss correctness criteria suchvamw serializability
(Yannakakis 1984) that are not as easy to realize.

A transaction accesses and manipulates the objects in theefinition 4.7 Let.Z2 be a binary relation on a set of trans-
database by invoking operations specific to individual ob-actionsT, ¢;, t;, € T, t; # tx. .22* is the transitive-closure
jects. It is assumed that an operation always produces aof .72, i.e.,

output (return value), that is, it has an outcome (condition
code) or a result. The result of an operation on an objec

(Rt I (172 1) V 3ty € T((472 1) A (8:72711))]

depends on the current state of the object. For a given state

s of an object, we usecturn(s,p) to denote the output
produced by operatiop, andstate(s, p) to denote the state
produced after the execution pf

Definition 3.5 Invocation of an operation on an object is

termed anobject event The type of an object defines the
object events that pertain to it. We uggob] to denote the

object event corresponding to the invocation of the operation

p on objectob by transactiont. Object events are also part
of the historyH.

Definition 3.6 Let H(°®) denote the projection off with re-
spect to the operations @h. Two operationg andq conflict
in a state produced b °?), denoted by:on flict(H, p, q),
iff
state(H®Y o p, q) # state(H®Y o q,p) v
return(HY, q) # return(H©% o p,q) v
return(HY, p) # return(HY o ¢, p)

whereo denotes the composition of operatiordg;o p ap-
pendsp to history H. Two operations that do not conflict are

4.1.1 Serializability

In traditional databases, serializability, in particutanflict
serializability, is the well-accepted criterion for concurrencty
control.

Let Z be a binary relation on transactions’in

Let H be the history of events relating to committed
transactions iff". That is,H is the projection of the system’s
history with respect to committed transactionsTin

Definition 4.8 Vt;,t; € T, t; # t;,
(t: €t;) if 3ob3p, q(con flict(ps,[ob], qi,[0b])
A(pt;[ob] — g1,[0b])) -

Definition 4.9 H is (conflic) serializableiff Vi € T—(tZ *t).

To illustrate the practical implications of these definitions,
note that the conflict relatio®” captures the fact that two
transactions have invoked conflicting operations on the same

compatible Thus, two operations conflict if their effects on object and the order in which they have invoked the con-
the state of an object are not independent of their executiofflicting operations. Consequently, tH¢" relation captures
order (first clause) or their return values are not independendlirect conflicts between transactions in a history, as well as
of their execution order (second and third clauses). Frontheir serialization order. The fact that a serialization order is
now on, we drop the first parameter of conflict, namely, acyclic is stated by requiring that there be no cycles in the
H), ¢ relation.
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Note also that the above definitions do not involve any Vi € {1...n}, let Z; be a binary relation on transac-
significant events. This reflects the fact that serializability pertions inT".
se does not constrain the occurrence of any significant event, Let H be the history of events relating to committed
e.g., aCommit event to happen only after anoth@ommit transactions ir{".
event. (If the?Z” relationship between transactions is acyclic, -
transaétions i can comrrlljit in any order.) That is, tkrer%/— Definition 4.10vk € {1...n}vt;, t; €T, t; 7 1;
mit order of transactions is not necessarily the same as their (t; Zxt;) if 3ob € Dy3p, q(con flict(ps,[oblq:;[0b])
serialization order and hence, the commit order cannot be (p, [ob] — qz,[ob])) -
used to induce the serialization order. However, a commit_ . , ) , o .
oder induced by & relation is consistent with the serializa- Pefinition 4.11 H IS Eredlcatemse serializabléf vi ¢ T
tion order. For example, consider the caseigbrous histo- VDg; 1<k < n=(tE11).
ries (Breitbart et al. 1991) such as the ones produced by the |n (Sha 1985) eactD;, is said to be aratomic data
strict two-phase locking protocol (Eswaran et al. 1976). Inset With respect to the taxonomy, for PSR, an atomic data
this case, if transactiorts andt; have aZ” relationship, i.e., set (Sha 1985) forms a consistency unit, and consistency is
they have invoked conflicting operations, a commit depenrequired at transaction boundaries. Absolute correctness of
dency (Chrysanthis and Ramamritham 1991) forms betweegransaction results is expected. Compound transactions (Sha
t; andt;. (Conflicting operations may also produce abort de-1985) behave according to the PSR correctness criterion.
pendencies between the invoking transactions; but an abort
dependency implies a commit dependency.) By requiring
that the & relation be acyclic, commit dependencies must4.1.3 Cooperative serializability
also be acyclic. By inducing a commit dependency between
every pair of transactions invoking conflicting operations, We definecooperative serializabilitf COSR) with respect
the commit order specified by the commit dependencies i$0 @ set of transactions which maintain some consistency
the same as the serialization order. properties. Transactions form cooperative transaction sets.
With respect to the taxonomy of Sect. 2 for serializabil- A cooperative transaction set could be formed by the com-
ity, the consistency unit is the complete database and corRonents of an extended transaction or transactions collabo-
sistency is required at transaction boundaries. Absolute corating over some objects while maintaining the consistency
rectness of transaction results is expected. Atomic transac@f the objects. In such cases, consistency can be maintained
tions and top-level transactions of nested transactions, folf other transactions which do not belong to the set are seri-
example, behave according to the serializability correctnesdlized with respect to all the transactions in the set. In other
criterion. words, a set of cooperative transactions becomes the unit of
The semantics of the operations on the objects [for exameoncurrency with respect to serializability.
ple, see O’'Neil (1986), Herlihy and Weihl 1988), Badrinath L&t 7 be a set of cooperative transactiois,C 7.
and Ramamritham 1990)] can be used to define cive- Let Z. be a binary relation on transactions’ih _
flict relationship between operations. Furthermore, different L€t H be the history of events relating to committed
degreesof consistency (Gray et al. 1975) can be ensuredansactions inv'.
by ignoring some of the conflicts. The resulting inconsis- Definition 4.12 V¢;, tivth € T, ti #tj, ti # th, tj # ti
tencies can be accommodated in applications that can copgr, C T
with such inconsistencies, or when these are masked by the (¢, Cotj), if

structuring of the objects used by the applications. The for- _
mer is the case in (Gray et al. 1975) and with ESR (Pu Fob3p, q(((t; & T V 1 & Te) A (con flict(pe,[0b], i, [ob])

and Leff 1991) [see Ramaritham and Pu (1995) for a formal A(pt,; [0b] — g1,[0b]))) V

characterization of ESR]. The latter is the case with abstract (¢, ¢ T,.t; € T, t; € Ty(conflict(ps, [0b], i, [ob])
serializability — used in the context of multilevel transactions AP, [op] — qi, [ob]) V

(Weikum and Schek 1984; Moss et al. 1986; Martin 1988; t:LOP1 ™ G, {

Beeri et al. 1989; Badrinath and Ramamritham 1990). ti € Te,ty & Tey ti € Te(con flict(py, [0b], qi;[0b])

APy, [0b] — q1,[00]))))

In this definition, the first clause expresses how a depen-
4.1.2 Predicatewise serializability dency between two transactions which do not belong to the
same set is directly established when they invoke conflicting

Predicatewise serializabilitPSR) has been proposed by operations on a shared object. This is similar to the clause in

Korth and Speegle (1988) and Korth et al. (1988) as thethe classical definition of (conflict) serializability (Definition

correctness criterion for concurrency control in databases ir4'8)' The other two clauses reflect the fact that when a trans-

which consistency constraints are in a conjunctive normafalction establishes a dependency with another transaction, the

form. In such cases, consistency constraints can be maire@me dependency is established between all the transactions

tained by requiring serializability only with respect to objects in their correspondlng cooperative transactions sets, These
which rélate to a disjunctive clause. clauses can be viewed as expressions of the development of

Let P = (PL A P... A P,) be the database consistency dependencies between transaction sets.
constraint. Suppose the disjunctive clauierelates to ob- Definition 4.13 H is cooperative serializabldff V¢ €
jects inDy, C DB, whereDB is the database. T-(t€. t).
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With respect to the taxonomy of the previous section,(2) there exists a total order of all global transactigpsand
for CoSR, the consistency unit is the complete databasey,, whereg,, precedesy, in the order, and aly,,’s opera-
and consistency is required when an ordinary transactionions precedey,’s operations in all local histories in which
(not a member of &) completes or a set of cooperating they both appear. A quasi serializable history is equivalent
transactions complete. Absolute correctness of transactioto a quasi serial history.
results is expected. The correctness requirement expressed Let G be the set of global transactions agjdbe a (sub)-
informally by Martin and Pedersen (1992) corresponds totransaction of a global transactigp (g, € G) executing all
CoSR. the operations of,, on sites.

Note that if eacHI. is a singleton set, then no cooper- Let T, be the set of transactions, both local trans-
ation occurs andz; is equivalent toZ". In addition, coop- actions and global (sub)transactions, executing on site
erative serializability does not imply that all transactions inT" = (U,T5).

a cooperative set must commit or none. For example, let us Let H be the history of events relating to committed
consider the notion omultidatabase serializabilityMSR)  transactions irf".

(Mehrotra et al. 1991, 1992) which has been proposed to deal |et.# be a binary relation on a set of global transactions
with correctness of transactions in multidatabase systems;.

e.g. heterogeneous distributed databases. In these systems,

transactions can either execute on a single site (cileal ~ Definition 4.14Vg,,, g, € G, gm # gn

transactions), or can execute on multiple sites (cajletal (gm-22 gn) if

transactions). Specifically, MSR is defined in the context k ki koo k -k 1 — k

of emulating)two?phase cyommit protocols in multidatabases F: 9> 9 (G 9n)a V 3 to = Gyt = g

using redo transactions. The idea is that the commitment of Vi,l<i<l—=1t €Ty
a global transaction can be decided using the 2PC proto-  Jobdp, q((con flict(py,_,[0b], qi,[0b])
col between the multidatabase agents that interface the local Ay, _.[0b] — qu,[0b])) A

DBMS without the participation of the local DMBS and ,
hence, a subtransaction is not required to enter the prepare ob'3p’, ¢ (con flict(pi, [ob], g, [0b'])

to commit state during the decision phase. If the subtrans- A, [ob'] — g, [0b']) A

action is aborted but the final decision is to commit the gr.[ob] — p}. [0b]))

global transaction, the updates of the aborted subtransaction

are performed subsequently by a redo transaction. This imwhere ¢ is the binary relation defined in Definition 4.8.

plies that (1) the state of the database against which the The & relation captures the fact that two global trans-
redo transaction executes, should be the same as the ometionsdirectly conflictin a local history when they invoke
seen by the aborted subtransaction, and (2) the redo transenflicting operations on a share object. Two global trans-
action should not invalidate any other active or committedactions might alsandirectly conflictin a local history even
(sub)transaction. In a MSR local schedule, although a subi they do not access any shared objects. Indirect conflicts
transactiong; and its redo transactioRedo(g;) execute as are introduced by other transactions that directly conflict
independent transactions, they are considered together aswith each other and with the global transactions. These in-
pair. That is, database consistency is preserved by serialidirect conflicts between two transactions, particularly those
ing all other transactions executing on the same node witlintroduced by local transactions, are captured by the second
respect to the paifg;, Redo(g;}. Such a pair is an instance clause of the definition of#2. Note that this clause, and

of cooperative transactions and the histéfyof interest in-  consequentlyz2, is not equivalent to the transitive-closure
cludes events asociated with all transactions, i.e., both comef Z which does not place any restriction on the execution
mitted and aborted transactions. MSR then corresponds tordering of the conflicting operations, bug C Z*.

CoSR if all conflicts in this history are considered with re-

spect to two types of cooperative transaction sétg} in Definition 4.15 H is quasiserializableff

case{g; } commits, and{g; Redo(g;)} in case{g;} aborts. 1. Vst € Ty=(t%*1), and
2. Vg € G—(g.72%g).
4.1.4 Quasiserializability It should be pointed that since the? relation captures

both direct and indirect conflicts between two global transac-

Quasiserializability(QSR) has been proposed in Du and EI- tions in a history, the serializable execution of global transac-
magarmid (1989) as a correctness criterion for maintainingions is in terms of both direct and indirect conflicts. Indirect
transaction consistency in multidatabases. As mentioned eaconflicts between local transactions induced by conflicts of
lier, transactions in these systems are either local, i.e., exglobal transactions that execute on multiple sites are not cap-
ecute on a single site, or global, i.e., execute on multipledured by either clause; the reason being that QSR assumes
sites. QSR assumes that at most one (sub)transaction ofre data dependency across sites.
global transaction executes on a particular site. It is also appropriate to view QSR in terms of CoSR.

In QSR, the correctness of the execution of a set of globaBpecifically, transactions executing in each sitédorm a
and local transactions is based on the notion ofuasise- cooperative transaction set, with conflict relatighapplied
rial history which, unlike a serial history, specifies that only to them. The global transactions form another cooperative
global transactions are executed serially. A historyuasis-  transaction set with’2 being the conflict relation applied to
erial if (1) all local histories are (conflict) serializable, and them.
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With respect to the taxonomy of the previous section, LetT,, be a set of local cooperative transactions on site
for QSR, (sitebased) subsets of the database objects form T, C T;.
the consistency units (i.e., objects in each site form a subset) Let Z., be a binary relation on transactions’ii
and consistency should hold when a transaction completes. Let H be the history of events relating to transactions in
Absolute correctness of transactions’ results is expected. T.

Definition 4.16 vti,tj,tk etT; t; ?ﬁ tj, t; ?ﬁ tk, tj 7& thTci

t; €. t5), if
4.1.5 Relationship between serializability-based (fi%ects) ,
correctness criteria Job3p, q((ti & T, ,t; & Te,(conflict(p,[ob], qt; [ob])
Ape;[0b] — q¢,[0b]))) V

Thus far in this section, we have specified four serializability- (¢t € T, t; € Tt € Te,(con flict(py,[0b], qu, [0b])
based correctness criteria using the ACTA formalism and Ape,[0b] — g1, [0b]))) V
classified them with respect to our taxonomy in Sect. 2. Here, _ 4 .
we will use the formalpdefinitions to relat><; them to each (b € Tei, ty & Tey, by € Ty (con flict(pr,[ob] i, [ob])
other. In the next subsection, we will provide a consolidated AP [0b] = g1;[0b])))))
notion of correctness from which the different serializability Definition 4.17 H is local cooperative quasiserializablé
criteria can be seen as special cases. ) o

According to PSR, each;, is associated with &; and 1. Vivt € Tiﬁ(,tffi t), and
hence conflicting transactions can be serialized differently2- 79 € G=(g-729).
with respect to differenD,. This is contrary to serializabil-
ity which permits only a single system-wide serialization
order involving conflicting transactions based 6n How-
ever, if Dy is the complete database, theh = Z;, and
consequently, PSR is equivalent to serializability.

In the case of CoSR transactions in different cooperativ
transaction sets may be related by therelation (individ-
ual transactions not belonging to any cooperative set can b

viewed as singleton cooperative transaction sets). Hence, {f, ; ‘The sets are disjoint with respect to individual objects.

each cooperative transaction set has just one member, thqrhus each element a@foopTr Set(T,ob) is a cooperative
Z.= ¢ and, in this case, CoSR is equivalent to serializabil-y.. > ion set where each such set is a subs@t of

ity.

In the case of QSR, there are two distinct conditions un-Definition 4.18 C'oopT'r Set(T', ob) = {T'rSet| transactions
der which QSR is equivalent to serializability. These corre-in T'rSet cooperate oveob, TrSet C T'}
spond to the situations in which one of the two clauses of thg-; exam - -

o L Aot ple, leT" = {t1,t2,t3,t4} andDB = {ob1, oby, 0bs}.
defmmon of QSR is tr|y|ally true: (1) in the absence of global | ¢ t, andt, cooperate ovesbs, t1, L, andt; cooperate over
transaqtlons, transactions i) are serla_hzed based qnly ON b, andts andty cooperate oveobs. Then
¢ ; (2) in the absence of local transactions, transactiofi3 in
are serialized based only o2, i.e., here2 = ¢ . Indirect ~ CoopTr Set(T,ob1) = {{t1},{t2},{ta}, {ta}} .
conflicts due to local transactions are not possible, whereas'oopTr Set(T, 0by) = {{t1,t2,t3}, {ta}} -
g‘f';fft conflicts due to global transactions are considereqr, 1. get(T, obg) = {{ts, t2}, {ts, ta}} .

Finally, we would like to point out that these different Thus, if no cooperation occurs between transactions, such
correctness criteria can be combined and/or adopted within 8 in the case obb;, each cooperative transaction set
single database. For instance, it is easy to picture how CoS#® a singleton set. On the other end of the spectrum, if
can be used in conjunction with even QSR. CoopTr Set(T,ob1) = T, then we have concurrent process

For such combinations of correctness criteria, their specbehav'?r‘-/ ) _ _
ification can be derived from the specification of the individ- L&t Z.(T’, T¢., ob) be a binary relation on transactionsiin
ual correctness criteria. As an example, let us examine on®hereTe € CoopTr Set(T', ob). It defines conflict relations
way that CoSR can be combined with QSR in order to sup_that form when transactions accesgyiven that transactions
port a multidatabase system in which component databasd8 7. cooperate oveob.
allow local transactions to form cooperative groups. In thispefinition 4.19 vt;, it €Tyt #tj, t #tg, £ # i
case, according to CoSR, global (subjtransactions as well as ¢,z (T, T, ob)t;) if
other local transactions that do not belong to a cooperative _
set, are serialized with respect to all the transactions in the 3, q(((t: € TV t; & Te) A (conflict(Py;[ob], gt [0b])
set. The formal definition of this combined criterion is de- A(pe,;[0b] — g, [0b]))) V
rived from the definition of QSR (Definitions 4.14. and 4.15) (t; & Tot; € To, ty, € To(conflict(py,[ob], gz, [0b])
by replacing the binary relatiof®” with a binary relation Al ‘b] s g [ob) V
similar to #. defined in the context of CoSR. Specifically: 110 4t 10 .

Let T, be the set of transactions, both local transactions ~ (ti € Te,t; & Te, t € Te(conflict(py, [0b], g, [0b])
and global (sub)transactions, executing on &i€ = (U;T;). A(ps,,[0b] — g1, [0D])))))

4.1.6 Consolidation of the different types of serializability

In this section, we give a single definition of a serializability-

based correctness criterion from which the different types of
eserializability can be derived as special cases.

Let CoopTr Set(T, ob) denote the sets of transactions in
where the transactions in each set cooperate in their access
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This is similar to our definition of; except that it considers 4.2 Transaction-model-dependent and
a specific objecbb and a specific set of transactighs C T’ application-independent criteria
cooperating ovebb.
Let Z.(I',OB) stand for the union of alE.(T,T., ob) Transaction-model-dependent but application-independent
relations considering all objects in the setOB and con-  correctness criteria are typically related to the structure of

sidering all transactions in the sét transactions that conform to a particular model. (Note that
specific transaction models may be more suited to specific

Definition 4.20 ¢, Z.(T, OB)t;) iff applications.)

Job € OB 3T, € CoopTr Set(T, ob) (t;C.(T, T, ob)t;). Thus, this section elaborates on the different structure

o ) ) related properties of transactions (Fig. 2). As was mentioned
That is, Z.(T,0B) contains all the conflicts formed by earlier, different transaction models produce different trans-
transactions, after considering cooperation over accesses Hgtion structures where the structure of an extended trans-

objects inOB. action defines its component transactions and the relation-
Let H be the history of events relating to the set of ships between them. Dependencies can express these rela-
committed transactions'. tionships and thus, can specify the links in the structure. For

example, in hierarchically-structured nested transactions, the
Definition 4.21 H is Coop serializabel(OB) iff Vi €  parent/child relationship is established at the time the child
T-(tZ (T, 0B)}). is spawned This is expressed by a child transactignes-
H is cooperative serializablgf Coop serializable(DB)  tablishing a weak-abort dependency (defined below) on its
where DB stands for the set of objects in the database. parentt, (t. ZZ't,) and by a parent establishing a commit
dependency on its child{£Zt.). The weak-abort depen-
Let ADS Set be the set of atomic data sets in the databasegency guarantees the abortion of an uncommitted child if

as defined in Sect.4.1.2. its parent aborts, whereas the commit dependency prevents
o ) ) a child from committing after its parent has committed.
Definition 4.22 H is Setwise serialized(OB) if VOB € In Chrysanthis and Ramamritham (1991) we gave ax-
ADS Set, Coop serializable(OB) andVob € OB, Vs € jomatic definitions of different transaction models in terms
CoopTr Set(T',ob), |s| = 1. of dependencies that occur between transactions that con-
H is setwise serializabléf Setwise serializable(DB). form to a particular model. So we now formally specify

] o ) o . some of the dependencies that can occur in addition to the
Setwise serializability only considers serializability over in- commit Dependency Abort Dependency, andBegin De-
dividual ADSs and does not allow for cooperation. Hencependencyspecified in Sect. 3.2.
the need for each element &toopT'r Sei(T’,0b) to be a Lett; andt, be two transactions and be a finite history

singleton set. In this case, setwiserializability(DB) corre-  \yhich contains all the events pertainingttoand;.
sponds to setwise serializability.

For example assumBB = {oby, oby, obs}, T = {Tt, Tb, Weak-Abort Depen_dency (t; 77t;): if t; aborts andt; _
Ts}, and ADS Set = {{oby, obs}, {obs}}. If each coopera- has not yet committed, thety aborts. In other words, if
tive set is a singleton, i.e., there is no cooperation amongs; commits andi; aborts, then the commitment of pre-
transactions, cyclic ordering relationships ovler,ob,} ~ c€des the abortion of; in a history, i.e.Abort;, € H =
will be determined based o0&/ (T, {ob1,0b,}) and over (=(Commit,; — Abort,,) = Abort, € H).

{obs} basedZ (T, {obs}). Strong-Commit Dependency(t;.¥” ¢ &t;): if transaction

In the case that atomic sets iDS set are singleton ¢, commits, thent; commits, i.e.,Commit;, € H =
sets, we have independent objects — no consistency COommit,, € H.
straints exist across objects. o ] ]

Termination Dependency (¢;.77't;): t; cannot commit or
Definition 4.23 H is serializableif H is Setwise serial—  abort until ¢; either commits or aborts, i.&’ € H =
izable (DB) and|[ADS Set| = 1. (e — €), wheree € {Commity,, Abort;,}, and € €
{Commit,,, Abort,,}.
This follows from the fact that if we have just one ADS,

namely theD B, and we allow no cooperation, then we get ;
D . L J . begun executing, thet} aborts (botht; and¢; cannot com-
serializability if no cycles occur in th&,* relationship. _mit), i.e., Commit,, € H = (Begin, € H = Abort,, €

In Sect. 4.1.4 we discussed how one could view QSR mH)
terms of CoSR with two different conflict relationshifgs '
and.Z. If we expanded the above definitions to parameter-Force-Commit-on-Abort Dependency (¢; 4 2Zt;): if t;
ize them with respect to the conflict relationship of interestaborts,t; commits, i.e.,Abort;, € H = Commit;;, € H.
(instead of justZ; as assumed above), we can see how QS . . . .
can also be consolidated with the above generalized definFliﬂ?erlal Dependency(t;#27;): transaction:; cannot begin

tion of serializability. We do not do it here in the interest of EX€cuting untilt; either commits or aborts, i.eliegin,, €
brevity. H = (¢ — Beging,), wheree € {Commit;,, Aborty, }.

These definitions in conjunction with our discussions in Begin-on-Commit Dependency(t;. %2 ¢ &'t;): transaction
the previous section show that it is possible to combine &; cannot begin executin gunti} commits, i.e..Begin;; €
number of correctness criteria within a single application. H = (Commit;, — Beginy,).

Exclusion Dependency(t; #Z't;): if ¢, commits andt; has
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Begin-on-Abort Dependency(t;. 2. 4Z't;). transactiort; but s has to wait for them to commit or abort. This is ex-
cannot begin executing unti} aborts, i.e.Begin;, € H = pressed using a commit dependency.

(Aborty, — Beging,). YO < i < n(t; € VitalTrs = (s€71,)) .
Weak-Begin-on-Commit Dependency(t; Z ¢ t;):

if ¢; commits,t; can begin executing afteéf commits, i.e.
Beging, € H = (Commit;, € H = (Commit;, —
Beginy,)).

Assume that &ompensatable componerit s is a com-
ponent ofs which can commit its operations even before
s commits, but ifs subsequently aborts, the compensating
transactioncomp t; of the committed componert; must

With respect to the taxonomy, an application that usescommit. Compensatable components are members of the set
an extended transaction model will have correctness requirec'omp Trs.

ments related to transactions’ structure, where these require-  Aport, € H = V0 < i < n(t; € Comp Trs =
ments are specified via axioms that express the dependenciggmy t,.7 ¢ 7t,)).
that are formed when transactions execute according to the Recall that.” #" & stands for strong-commit depen-

given model. . dency, whereby it’ commits,t”” must commit.

We first look at some simple examples of structure-  Compensating transactions need to observe a state con-
related transaction correctness properties. In the transactiog)stent with the effects of their corresponding components
model proposed by Buchmann et al. (1990) and Garciaand hence, compensating transactions must execute (and
Molina et al. (1991), a parent can commit only if ¥8al ~ commit) in the reverse order of the commitment of their
children commit, i.e., a parent transaction has an abort decorresponding components. We can capture this requirement
pendency on itwital children ty(tp-,fzgtv) Child transac- by imposing abegin-on-commi‘dependencyﬁ “ o on
tions may also have different dependencies with their parentgompensating transactions.
if the transaction model supports various spawning or cou-
pling modes (Dayal et al. 1990). Sibling transactions may Vtit; € Comp Trs((Commit,, — Commity;)
also be interrelated in several ways. For example, compo- = (comp t;. 8 € L comp t;)) .
nents of asaga (Garcia-Molina and Salem 1987) can be
paired according to a compensated-for/compensating rela-

tionship (Korth et al. 1990a). Relations between a compen:- X 7 ; :
sated-for and compensating transactions, as well as thod§ady considered all the basic interactions among the various
ecial component transactions. For instance, it is possible to

between them and the saga, can be specified via begin-orfP€C! X ,
commit dependency” ¢ &, begin-on-abort dependency '€quire that some component transactions execute in a pre-
A 47, force-commit-on-abort dependendsi 47 and defined order as in the case of the Saga transaction model.
strong-commit dependency” z” &/ (Chrysanthis and Ra-

mamritham 1992). In a similar fashion, dependencies that ) o o

occur in the presence of alternative transactions and cort-3 Transaction- and application-dependent criteria

tingency transactions (Buchmann et al. 1990) can also be

specified (Chrysanthis and Ramamritham 1992). We now focus on the requirdathaviorof a transaction and

We now provide a complete example of the structuralheénce on the requirements imposed by the application that
properties of an open nested transaction model. In an ope@mploys that specific transaction. We distinguish between
nested transaction model, component transactions may déwo types of behavior-related properties:
cide to commit or abort unilaterally.

Assume that we need an open nested transaction mode
that supports two-level transactions with special compo-
nents. Lets be a two-level transaction that hascompo-
nent transactionsy, ..., t,. Some of the components are
compensatable; each sutthhas a compensating transaction
comp t; that semantically undoes the effectstpf

Component transactions can commit without waiting for
any other component or to commit. However, ifs aborts,

a component transaction that has not yet comitted will be
aborted. We can capture this requirement using a weak-abort
dependency: Thus, this section corresponds to the data-access-related be-
YO < i < n(t; WTs) . havior and the temporal beha_vior of transactions (see Fig. 2).
We elaborate upon the first type through an example.

Suppose some of the componentssofire considered Consider gpageobject with the standardad andwrite op-
vital in that s is allowed to commit only if itsvital com- erations, where read and write operations conflict. A read’s
ponents commit. These components are members of the segturn-value is dependent on a previous write, whereas a
VitalTrs. We can capture this requirement as follows: write’s return-value is independent of a read or another write.

. . D0 In addition, consider transactions which have the ability to
YO <i <t € VitalTrs = (5. €71)) . reconcile potential read-write conflicts: when a transac){ion
If a vital transaction aborts; will be aborted. Transaction  ¢; reads a page: and another transactiofj subsequently
can commit even if one of its non-vital components aborts,writes z, ¢; andt; can commit in any order. However, if

It is possible to continue the development of our simple
ierarchical transaction model but at this point we have al-

. Those that relate to constraints on a transaction’s access
to objects. Some of these are mandated by the concur-
rency properties of the objects. For instance, as discussed
in Sect. 4.1, serializability demands acycHc relation-
ships. Here we will discuss additional access require-
ments.

2. Those that relate to properties that deal with its other be-

havioral properties, such ashena transaction can/must

begin andvhenit can/must end. Spatial and temporal re-
quirements are related to this type.



95

t; commits beforet; commits,t; must reread: in order to (Commit,, € H A (ts(Commity,) < x))
commit. This is captured by the following requirement: = (Begin,, € H = (ts(Begin,) > y)) .
(ready,[z] — write,[z]) = (Commiy; — Commity,) Through several examples, we now consider requirements
= (Commit,, — ready,[x])) . and constraints associated with the termination of transac-
tions.
In this examplet; has to reread the pagewhen, subsequent Sometimes, we may want to specify that some specific

to the first read, the page is written and committedpyin  change of state (by one transaction) triggers (Dayal et al.
generalt; may need to invoke an operation on the same or1990) another transaction (that perhaps fixes the inconsis-
a different object. For instance, insteadoft; may have to  tency resulting from the first transaction). Clearly, this type
read ascratch-padobject whicht; andt; use to determine  of constraint is related to deferred consistency restoration.
and reconcile potential conflicts. In general, the specificationrhis can occur, for example, if we had two versions of a
of correct transaction behavior can include the specificatioyatabase, one which was complete and another (at perhaps
of operations that need to be controlled to produce correch different site) which only contained data required at that
histories, as well as the specification of operationstiaa®  sjte. The two are not required to be consistent at all times,
to occur in correct histories. These correspondtdaflicts byt changes done to the complete database are required to
and patternsin Skarra (1991). percolate to the other within a specified delay. If the changes

Let us now turn to other behavioral specifications, for should be reflected withid units of time, we have the fol-
example, those that concern the beginning and terminatiofbwing “temporal commit dependency”:

of transactions. Consider the following simple requirement,

which states that it-ondition is true, then transaction; (Commity, € H A (ts(Commity,) =1))
must begin: = Commit,; € H"* .
condition = Begin,, € H This says that it; commits at timet, ¢; should commitoy

time ¢ + d. For another example, consider the following:
condition can depend on the occurrence of an event, on )
the state of the database, and on time. As we will see, the (temperature > threshold A time =)
above requirement can be used for the flexible enforcement = Commit,, € H'*/unctionttemperature)
e e el of e 19 e2her 1, coul be a transacton it opens a valve 10 s
I ' , - . .. fnore coolant into the reactor whose temperature is above
above specification can be considered to be a specificatio

for the automatic triggering of situation-dependent actionsphreShOZd' The length of time available to complete this
- tniggering P : . ]:transaction is a function of the current temperature. This
e.g., for expressing the rules that govern the triggering of.

; . . - is a form of triggered transaction, but with specific time
actions in an aCt!V? dgtabase (Dittrich and Dayal 1991), constraints imposed on its completion (Korth et al. 1990c).
Supposecondition is related to the occurrence of som

L L - . € Such time constrained activities occur in real-time databases
significant event within a transaction. In this case, the

additional structural relationships (for instance, the different(RamaSrgrrgga;?t:;?osg's it may be desirable to specify an
coupllng modge{Dayal et al. 1990) b'etween Qnd f can interval [[,«] such thatt; does not commit beforé (the
be speC|f|e_d'V|a the dependencies discussed in Sect. 4.2. lower bound), but definitely commits before (the upper

If condition relates to the state of the database, whatyqnqy For example, consider deposits into a bank account.
we have is related tepatial consistencdiscussed by Sheth

inkiewi . > he foll During the day, if a deposit is made before 3p.m., it is just
and Rusinkiewicz (1990). For instance, consider the follow-«q4464 into a file but is reflected in the appropriate account
ing condition: “One hundred sales have occurred at this

! ; between 10 p.m. and 4 a.m. that night. Such constraints take
store since the master database at the store’s headquartes, sorm

was last updated.” lfondition relates to time, for instance,
if condition is “time > 8 p.m.”, we have aemporal consis- (Commit,, € H A (ts(Commit,,) < t))
tencyrequirement. . - _ = Commit,, € H .

Now let us consider situations whemnstraints are ] o )
placed on the beginning of transactions. For example, dhe above conditions imposed on the initiation and termi-
transactiont; to compute daily interest can start after mid- hation of transactions can be viewed as generalizations of
night but only after the day’s withdrawals and deposits havethe preconditions and postconditions associated with specific
been reflected in the account (say by a transadtjpriThis  transactions (Korth and Speegle 1988).

can be specified as For a final example of behavior-related specifications,
consider the situation in which it may be desirable to prevent
(ts(Beging,) > 12am) A (t,. 8 ¢ Dt;) . a transactior; from aborting after a time. This correponds

to the assumption that a transaction is implicitly committed

This is an example where a transaction has a time-basegl it has not aborted by a certain time (Rusinkiewicz et al.
start dependency, as well as a begin-on-commit dependencyygp). For example, no bets can be canceled after a race is

on another transaction. o started, and a lottery ticket cannot be refunded after a given
Let us consider another example. If a deposit is madgjme:

by time z, then the transaction that reflects it in the account . _ 1
should not be started until timg This is specified by Aborty, ¢ H* = Commit,, € H" .
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ness criteria and have attempted to provide a taxonomy Witlen previous versions of this paper. This material is based upon work sup-

respect talatabase consistency requiremeaitsltransaction
correctness propertie$siven space limitations, we could ex-
amine, in detail, only a subset of the proposals that have been
made to capture the correctness properties applicable to exs
tended transaction models, as well as those demanded by t
newer database applications.

We have approached the problem of categorizing the
different proposals by formally specifying them using the
framework of ACTA. This allows us to clearly see where
one proposal differs from another and what its relationship 2.
with serializability is.

It is important to point out that even though we have 3
used the word “transaction” in this article to refer to compu-
tations that have transaction-like properties, as we have seen‘,l'
such computations can have interrelated components. In the
literature, such computations have also been terautigity
models orworkflowmodels. Dependencies such as the oness.
defined in Sect.4.2, as well as more general requirements
such as the ones exemplified in Sect. 4.3, allow us to cap-
ture relationships between components of these activities or’:
workflows and thus to specify the correctness requirements8
of these computations.

We believe this taxonomy to be a good starting point in
our endeavor to classify proposed correctness criteria, and to
compare and contrast them. It can be viewed as a commor®.
framework with respect to which one can study where a
new correctness criterion fits and how it relates to existing
criteria. In this regard, we expect the taxonomy to evolve, a
better understanding is gained about the correctness needs
of emerging database applications.

Let us now examine some of the other implications of 11.
this work. In a recent survey (Breitbart et al. 1992) the au-
thors present a hierarchy of serializable schedules for mul-
tidatabases, each placing different types of restrictions ot
transaction management within individual databases and the
global database. In the conclusion of that paper they point
out the need to consider alternatives to the “standard” no4s.
tions of consistency. One of the intended contributions of
our work has been to review various alternatives that have
been proposed and to place them in perspective. In multi-
database systems, the specifications of database consisteri'c"y
and transaction correctness can be viewed as requirements
on the coordinator of the blackboxes (Breitbart et al. 1990);5.
that control individual databases.

In terms of future work, we would like to see the reason-
ing capabilities of the formalisms, such as ACTA, being used
to study the properties of mechanisms, such as in Sheth -
al. (1991), for maintaining relaxed correctness properties of

1.

interdependent data. In the same context, it will be useful to
investigate ways in which the formal primitives themselves
can be used as part of these mechanisms (Rusinkiewicz es.
al. 1991; Sheth et al. 1992). This is in line with the work on
the ConTract Model (\chter and Reuter 1991) and CACS 19.
(Stemple and Morrison 1992). Here, transactions are made
up of multiple steps, with explicit dependency reIationships2
specified between the steps. The system ensures that suc?i
dependencies hold when the steps execute.

ported by the National Science Foundation under grants IRI-9109210 and
IRI-9210588 and a grant from the University of Pittsburgh.
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