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Abstract. Whereas serializability capturesdatabase consis-
tency requirementsand transaction correctness properties
via a single notion, recent research has attempted to come
up with correctness criteria that view these two types of
requirements independently. The search for more flexible
correctness criteria is partily motivated by the introduction
of new transaction models that extend the traditional atomic
transaction model. These extensions came about because the
atomic transaction model in conjunction with serializability
is found to be very constraining when used in advanced ap-
plications (e.g., design databases) that function in distributed,
cooperative, and heterogeneous environments.

In this article we develop a taxonomy of variouscorrect-
ness criteriathat focus on database consistency requirements
and transaction correctness properties from the viewpoint of
what the different dimensions of these two are. This tax-
onomy allows us to categorize correctness criteria that have
been proposed in the literature. To help in this categorization,
we have applied a uniform specification technique, based on
ACTA, to express the various criteria. Such a categorization
helps shed light on the similarities and differences between
different criteria and places them in perspective.

Key words: Transaction processing – Concurrency control
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1 Introduction

Database consistency requirementscapture correctness from
the perspective of objects in the database – as transactions
perform operations on the objects. On the other hand,trans-
action correctness propertiescapture correctness from the
perspective of the structure and behavior of transactions. For
example, they deal with the results of transactions, and the
interactions between transactions. Serializability (Eswaran et
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al. 1976) captures databases consistency requirements and
transaction correctness properties via a single notion: (1) the
state of the database at the end of a set of concurrent trans-
actions is the same as the one resulting from some serial
execution of the same set of transactions; (2) the results of
transactions and the interactions among the set of transac-
tions are the same as the results and interactions, had the
transactions executed one after another in this serial order.
As applications using databases become more complex, the
correctness criteriathat areacceptableto the application
become more complex and hence harder to capture using a
single correctness notion.

Recent research has attempted to come up with correct-
ness criteria that view these two types of requirements in-
dependently. An early example is nested transactions (Moss
1981), in which the database consistency requirements are
captured by requiring the serializability of independent (sub)-
transactions; additional transaction structural properties spec-
ify the correctness of subtransactions of individual nested
transactions. The search for more flexible correctness re-
quirements is further motivated by the introduction of other
transaction models that extend the traditional atomic transac-
tion model (see Elmagarmid 1992 for a description of some
extended transaction models). These extensions came about
because the atomic transaction model in conjunction with se-
rializability is found to be very constraining when applied in
advanced applications such as design databases that function
in distributed, cooperative, and heterogeneous environments
(Barghouti and Kaiser 1991; Korth and Speegle 1988).

Proposed correctness criteria range from the standard
serializability notion to eventual consistency (Sheth and
Rusinkiewicz 1990). Quasiserializability (Du and Elmagar-
mid 1989), predicatewise serializability (Korth and Speegle
1988), etc., are points that lie within this range.Eventual
consistencycan be viewed as a “catch-all” term with dif-
ferent connotations: for example, requiring consistency “at
a specific real-time”, “within some time” or “after a certain
amount of change to some data”, or enforcing consistency
“after a certain value of the data is reached”, etc. Whereas
serializability and its relaxations are, in general, application
and transaction model independent criteria, eventual con-
sistency, as the examples above show, is application and
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transaction model specific. It is not difficult to see that these
relaxed correctness requirements are usful within a single
database, as well as in multidatabase environments.

Whereas serializability works under the simple assump-
tion that individual transactions maintain the consistency of
the database, proposed correctness criteria require more from
the transaction developers. In particular, a transaction may
have to be aware of the functionality of other transactions
and the potential interactions among transactions, especially
in a cooperative environment. This makes transaction de-
velopment as well as management more difficult. Our goal
in this article is to understand the conceptual similarities
and differences between different correctness criteria with-
out getting into the practical implications of adopting them.

We examine database consistency constraints and trans-
action correctness properties from the viewpoint ofwhat the
different dimensions of these two types of correctness are.
This taxonomy allows us to categorize existing proposals,
thereby shedding some light on the similarities and differ-
ences between the proposals and to place them in perspec-
tive. The categorization also helps us determine whether or
not a correctness notion is transaction model specific or ap-
plication specific. We will see that even though some of the
correctness notions were motivated by specific transaction
models or specific applications, they have broader applica-
bility.

To help in this categorization, we apply a uniform spec-
ification technique to express the various correctness cri-
teria that have been proposed. The technique is based on
the ACTA formalism (Chrysanthis and Ramamritham 1990,
1991) which heretofore has been used for the specification
of and for reasoning about extended transactions. One of
the key ingredients of ACTA is the idea of constraining the
occurrence ofsignificant eventsassociated with transactions,
e.g.,Begin, Abort, andSplit. These constraints are expressed
in terms of necessary and sufficient conditions for events to
occur. These, in turn, relate to the ordering of events and
the validity of relevant conditions. Such constraints can also
facilitate the specification of database consistency require-
ments and transaction correctness properties. The ACTA for-
malism is introduced in Sect. 3.

The rest of the article is structured as follows: Sub-
sect. 2.1 provides a taxonomy of database consistency re-
quirements, while Subsect. 2.2 provides a taxonomy of trans-
action correctness properties. A specification of existing pro-
posal as well as their categorization (based on the taxonomy)
is the subject of Sect. 4. Section 5 concludes the article with
some discussions of the next step in this work.

2 A taxonomy of correctness criteria

In this section we study the different dimensions of the two
aspects of correctness – namely, consistency of database
state and correctness of transactions – in order to develop a
taxonomy of correctness criteria. For concreteness, we give
examples as the taxonomy is developed.

Fig. 1. Dimensions of database consistency

2.1 Database consistency requirements

Database consistency requirements can be examined with
respect to two issues with further divisions of each as dis-
cussed below (see Fig. 1.)

2.1.1 Consistency unit

This is related to the data items involved in a consistency
requirement.

Complete database.
All the objects in the database have to be consistent locally
as well as mutually consistent, i.e., they should satisfy all the
database integrity constraints typically specified in the form
of predicates on the state of the objects. Semantics of the ob-
jects can be taken into account to improve concurrent access
to the objects while maintaining consistency (Chrysanthis et
al. 1991).

Example: traditional serializability (SR) applied to atomic
transactions (Bernstein 1987).

Subsets of the objects in the database

– Location-independent subsets.The database is viewed as
being made up of subsets of objects. The subsets are not
necessarily disjoint and may be statically or dynamically
defined. Each object in the database is expected to be con-
sistent locally, but mutual consistency is required only for
objects that are within the same subset.
Example:setwise serializability (SSR) applied tocompound
transactions (Sha 1985) and predicatewise serializability
(PSR) applied to cooperative transactions (Korth et al. 1988).

– Location-dependent subsets.Each subset corresponds to
one of the sites of a (distributed/heterogeneous) database.
In addition to mutual consistency among objects in a sub-
set (i.e., site), consistency among subsets is also required
depending on which parts of a database are accessed by a
transaction.
Example:Quasi-serializability (QSR) (Du and Elmagarmid
1989) and its generalization (Mehrotra 1991) applied to dis-
tributed transactions.

Individual objects
Each object in the database is expected to be consistent lo-
cally.
Example:linearizability (Herlihy and Wing 1987) applied to
objects accessed by concurrentprocesses.
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2.1.2 Consistency maintenance

This is related to the issue ofwhena consistency requirement
is expected to hold.

At activity boundaries

An activity denotes a unit of work. The activity is allowed
to complete only if the requirement holds, i.e., comple-
tion is delayed until consistency holds. If an activity cannot
complete successfully while maintaining consistency, it is
aborted or compensated.

Example: SR, PSR, QSR, and cooperative serializability
(CoSR), applied to atomic, nested, and distributed transac-
tions.

Depending on what the activity is, we can further develop
the taxonomy.

– When an operation completes.When an operation com-
pletes, the necessary consistency specifications must hold.

Example:Concurrent processes accessing shared objects.

– When a set of operations completes.When a set of op-
erations performed by transaction completes, the necessary
consistency is expected to hold.

Example:semantic atomicity (Garcia-Molina 1983; Farrag
and Ozsu 1989) and multilevel atomicity (Lynch 1983).

– When a transaction completes.Consistency is expected to
hold upon a transaction’s completion.

Example:atomic transactions.

– When a set of transactions completes.Consistency is ex-
pected to hold not when individual transactions complete,
but when a set of transactions completes.

Example:cooperative transactions (Korth and Speegle 1988b),
sagas (Garcia-Molina and Salem 1987).

At specific points of time

Consistency between related objects is maintained in a de-
ferred manner only at/after specific points in time. This is
an example iftemporal consistency(Sheth and Rusinkiewicz
1990).

Example:A bank account is expected to be made consistent,
with respect to the debits and credits that occur on a given
day, upon closing of business.

In specific states

Objects may be required to be mutually consistent only when
a certain number of updates have been made to one of the
objects, or a state satisfying a certain predicate is reached.
Thus, in this case also, consistency between related objects
is maintained in a deferred manner.

Example:a centralized database of a department store chain
may require updates only upon the completion of 100 sales
at a particular store. Such requirements are referred to as
spatial consistencyin Sheth and Rusinkiewicz (1990).

Fig. 2. Dimensions of transaction correctness

2.2 Transaction correctness properties

As was mentioned in the introduction, serializability suffices
as a correctness criterion for traditional atomic transactions,
since, onceindividual transactions are guaranteed to take
one consistent database state to another consistent state, se-
rializability guarantees that a set of concurrent transactions
when started in a consistent state take the database to an-
other consistent state. So the only transaction correctness
property of interest is: Each transaction when executed by
itself must maintain database consistency. From this it fol-
lows that, under serializability, the output of a transaction
reflects a consistent database state. However, more elabo-
rate correctness properties have been proposed in the context
of additional application requirements and newer transaction
models. These transaction correctness properties can be dis-
cussed with respect to four criteria (Fig. 2):

Correctness of transaction results

– Absolute.The output of transactions must reflect a consis-
tent database state.

Example:SR applied to atomic transactions, QSR applied to
distributed transactions.

– Relative. Outputs of transaction are considered correct
even if they do not reflect a consistent state of the object,
as long as they are within a certain bound of the result that
corresponds to the consistent state.

Example:epsilon-serializability (ESR) (Pu and Leff 1991)
applied to epsilon-transactions, approximate query process-
ing (Hou et al. 1989).

Correctness of transaction structure

Correctness depends on the (structural) relationship between
transations. This is typically specified in terms of prescribed
and/or proscribedCommit, Abort, Begin, and other types
of dependencies (Chrysanthis and Ramamritham 1991) be-
tween transactions. Since structural properties are governed
by a particular transaction model, the specifications of the
model express these requirements.

Example:sagas (Garcia-Molina and Salem 1987), multilevel
serializability (Korth and Speegle 1990).

Correctness of data access-related transaction behavior

Transactions are required to perform operations on objects
in a certain manner to be considered correct. That is, these
requirements are constraints on the history of concurrent op-
erations.

Example:To satisfy serializability, conflict relationship be-
tween transactions – as they access data concurrently – must
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be acyclic. Patterns (Skarra 1991) are more application-
specific correctness requirements that reflect the (semantics
of) usage of the object.

Correctness of temporal behavior of transactions

Transactions have start time and completion time (deadline)
constraints.

Example:transactions in real-time systems.

The taxonomy just presented shows how the various cor-
rectness requirements can be viewed from the perspectives
of database consistency and transaction correctness. It is per-
haps clear that, from the perspective of a database applica-
tion designer, what is required is to specify which leaves
of the taxonomy correspond to his/her application, and then
provide additional specifications required by the individual
leaves. For instance, if correctness depends on transactions’
structural properties, additional specifications will be needed
to specify what these properties are. For example, if transac-
tions in an application behave according to the nested trans-
action model, an axiomatic specification of the nested trans-
action model (Chrysanthis and Ramamritham 1991) will sup-
plement the identification of the fact that transactions have
structure-related correctness requirements.

We revisit the correctness notions in Sect. 4.1 where
serializability-related correctness notions are formally spec-
ified and categorized along the different dimensions of the
taxonomy. Sections 4.2 and 4.3 deal with the formal spec-
ification of more general correctness criteria that are not
directly related to serializability, but deal, for example, with
transaction structure and behavior, specific states of objects,
or specific times.

3 A quick introduction to the ACTA formalism

ACTA is a first-order logic-based formalism. As mentioned
earlier, the idea of significant events underlies ACTA’s spec-
ifications. Section 3.1 discusses these events. Specifications
involve constraints on the occurrence of individual signif-
icant events, as well as on the history of occurrence of
these events. Hence the notion of history and the necessary
and sufficient conditions for the occurrence of significant
events are introduced in Sect. 3.2. Finally, Sect. 3.3 shows
how sharing of objects leads to transaction inter-relationships
which in turn induces certain dependencies between concur-
rent transactions.

3.1 Significant events associated with transactions

During the course of their execution, transactions invoke
operations on objects. They also invoke transaction man-
agement primitives. For example, atomic transactions are as-
sociated with three transaction management primitives:Be-
gin, Commit and Abort. The specific primitives and their
semantics depend on the specifics of a transaction model
(Chrysanthis and Ramamritham 1991). For instance, whereas
theCommitby an atomic transaction implies that it is termi-
nating successfully and that all of its effects on the objects
should be made permanent in the database, theCommitof a

subtransaction of a nested transaction implies that all of its
effects on the objects should be made persistent and visible
with respect to its parent and sibling subtransactions. Other
transaction management primitives includeSpawn, found in
the nested transaction model (Moss 1981),Split, found in the
split transaction model (Pu et al. 1988), andJoin, a trans-
action termination event also found in the split transaction
model.

Definition 3.1 Invocation of a transaction management prim-
itive is termed asignificant event. A transaction model de-
fines the significant events that transactions adhering to that
model can invoke.

The set of events invoked by a transactiont is a partial order
with ordering relation→, where→ denotes the temporal
order in which the related events occur.

ts(ε) gives the time of occurrence of eventε according to
a globally synchronized clock1. Clearly,ts(β) will be larger
thants(α) if α appears earlier in the partial order (α→ β).
Further, no two significant eventsthat relate to the same
transaction can occur with the samets value.

3.2 History, projection of the history,
and constraints on event occurrences

The concurrent execution of a set of transactionsT is rep-
resented by thehistory (Bernstein et al. 1987) of the events
invoked by the transactions in the setT and indicates the
(partial) order in which these events occur. The partial order
of the operations in a history is consistent with the partial
order of the events of each individual transactiont in T .

Theprojectionof a historyH is a subhistory that satisfies
a given criterion. For instance:

– The projection of a historyH with respect to a specific
transactiont yields a subhistory with just the events in-
voked byt. This is denoted byHt.

– The projection of a historyH with respect to a specific
time interval [i, j] yields the subhistory with the events
which occurred betweeni and j (inclusive) and is de-
noted byH [i,j] .
Wheni = system initiation time, we drop the first element
of the pair. ThusHj = H [system init time,j] denotes all
the events that occur until timej.

Consistency requirements imposed on concurrent transac-
tions executing on a database can be expressed in terms of
the properties of the resulting histories.

The occurrence of an event in a history can be con-
strained in one of three ways: (1) an eventε can be con-
strained to occuronly after another eventε′, (2) an eventε
can occuronly if a conditionc is true, and (3) a conditionc
can require the occurrence of an eventε.

Definition 3.2 The predicateε → ε′ is true if eventε pre-
cedesevent ε′ in history H. It is false, otherwise. (Thus,
ε→ ε′ implies thatε ∈ H andε′ ∈ H.)

1 This is obviously an abstraction – the effects of realizing this by a set
of closely synchronized clocks on individual nodes in a distributed system
will not be discussed here
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Definition 3.3 ε ∈ H ⇒ ConditionH , where⇒ denotes
implication, specifies that the eventε can belong to historyH
only ifConditionH is satisfied. In other words,ConditionH
is necessary forε to be inH. ConditionH is a predicate
involving the events inH.

Considerε′ ∈ H ⇒ (ε → ε′). This states that the eventε′
can belong to the historyH only if eventε occurs beforeε′.

Definition 3.4 ConditionH ⇒ ε ∈ H specifies that if
ConditionH holds, ε should be in the historyH. In other
words,ConditionH is sufficientfor ε to be inH.

We now describe some common types of constraints

1. Committj ∈ H ⇒ (Committi ∈ H ⇒ (Committi →
Committj )). This says that if both transactionsti andtj
commit, then the commitment ofti precedes the commit-
ment of tj . This Commit Dependencyis indicated by
(tjCD ti). In general, (Committj ∈ H ⇒ condition)
specifies thatcondition should hold fortj to commit.

2. Abortti ∈ H ⇒ Aborttj ∈ H, i.e., if ti aborts then
tj aborts, states theAbort Dependency of tj on ti
(tjAD ti). In general, (condition ⇒ Aborttj ∈ H)
specifies that ifcondition holds,tj aborts.

3. Begintj ∈ H ⇒ (Beginti → Begintj ) states that trans-
actiontj cannot begin executing until transactionti has
begun. This is aBeginDependingof tj on ti.

3.3 Objects, operations, and conflicts

A transaction accesses and manipulates the objects in the
database by invoking operations specific to individual ob-
jects. It is assumed that an operation always produces an
output (return value), that is, it has an outcome (condition
code) or a result. The result of an operation on an object
depends on the current state of the object. For a given state
s of an object, we usereturn(s, p) to denote the output
produced by operationp, andstate(s, p) to denote the state
produced after the execution ofp.

Definition 3.5 Invocation of an operation on an object is
termed anobject event. The type of an object defines the
object events that pertain to it. We usept[ob] to denote the
object event corresponding to the invocation of the operation
p on objectob by transactiont. Object events are also part
of the historyH.

Definition 3.6 Let H (ob) denote the projection ofH with re-
spect to the operations onob. Two operationsp andq conflict
in a state produced byH (ob), denoted byconflict(H (ob), p, q),
iff

state(H (ob) ◦ p, q) /= state(H (ob) ◦ q, p) ∨
return(H (ob), q) /= return(H (ob) ◦ p, q) ∨
return(H (ob), p) /= return(H (ob) ◦ q, p)

where◦ denotes the composition of operations;H ◦ p ap-
pendsp to historyH. Two operations that do not conflict are
compatible. Thus, two operations conflict if their effects on
the state of an object are not independent of their execution
order (first clause) or their return values are not independent
of their execution order (second and third clauses). From
now on, we drop the first parameter of conflict, namely,
H (ob).

4 Specification and categorization of correctness criteria

In this section, we study various database consistency re-
quirements and transaction correctness properties that have
been proposed and place them in perspective, given the tax-
onomy of the previous section. Broadly speaking, Sect. 4.1
deals with transaction-model and application-independent
correctness criteria (even though, as we will see, those who
proposed them may have had a specific transaction model or
application in mind), Sect. 4.2 discusses transaction-model-
dependent but application-independent criteria, and Sect. 4.3
examines transaction- and application-dependent consistency
requirements. [For a complete axiomatic semantics of the
various extended transaction models, the reader is referred
to Chrysanthis and Ramamritham (1991).]

4.1 Transaction- and application-independent criteria

In general, transaction- and application-independent correct-
ness criteria are extensions to serializability. In this section,
we first specify some of these extensions using the formalism
described in the previous section and then use the specifi-
cations to show how the different extensions relate to each
other. All of these criteria are based on the notion ofconflicts
and their preservation in equivalent histories. Thus, we do
not discuss correctness criteria such asview serializability
(Yannakakis 1984) that are not as easy to realize.

Definition 4.7 Let R be a binary relation on a set of trans-
actionsT , ti, tk ∈ T , ti /= tk. R∗ is the transitive-closure
of R, i.e.,

(tiR∗tk) if [( tiR tk) ∨ ∃tj ∈ T ((tiR tj) ∧ (tjR∗tk))] .

4.1.1 Serializability

In traditional databases, serializability, in particularconflict
serializability, is the well-accepted criterion for concurrencty
control.

Let C be a binary relation on transactions inT .
Let H be the history of events relating to committed

transactions inT . That is,H is the projection of the system’s
history with respect to committed transactions inT .

Definition 4.8 ∀ti, tj ∈ T , ti /= tj ,

(tiC tj) if ∃ob∃p, q(conflict(pti [ob], qtj [ob])

∧(pti [ob] → qtj [ob])) .

Definition 4.9H is (conflict) serializableiff ∀t ∈ T¬(tC ∗t).

To illustrate the practical implications of these definitions,
note that the conflict relationC captures the fact that two
transactions have invoked conflicting operations on the same
object and the order in which they have invoked the con-
flicting operations. Consequently, theC relation captures
direct conflicts between transactions in a history, as well as
their serialization order. The fact that a serialization order is
acyclic is stated by requiring that there be no cycles in the
C relation.
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Note also that the above definitions do not involve any
significant events. This reflects the fact that serializability per
se does not constrain the occurrence of any significant event,
e.g., aCommit event to happen only after anotherCommit
event. (If theC relationship between transactions is acyclic,
transactions inH can commit in any order.) That is, thecom-
mit order of transactions is not necessarily the same as their
serialization order and hence, the commit order cannot be
used to induce the serialization order. However, a commit
oder induced by aC relation is consistent with the serializa-
tion order. For example, consider the case ofrigorous histo-
ries (Breitbart et al. 1991) such as the ones produced by the
strict two-phase locking protocol (Eswaran et al. 1976). In
this case, if transactionsti andtj have aC relationship, i.e.,
they have invoked conflicting operations, a commit depen-
dency (Chrysanthis and Ramamritham 1991) forms between
ti andtj . (Conflicting operations may also produce abort de-
pendencies between the invoking transactions; but an abort
dependency implies a commit dependency.) By requiring
that theC relation be acyclic, commit dependencies must
also be acyclic. By inducing a commit dependency between
every pair of transactions invoking conflicting operations,
the commit order specified by the commit dependencies is
the same as the serialization order.

With respect to the taxonomy of Sect. 2 for serializabil-
ity, the consistency unit is the complete database and con-
sistency is required at transaction boundaries. Absolute cor-
rectness of transaction results is expected. Atomic transac-
tions and top-level transactions of nested transactions, for
example, behave according to the serializability correctness
criterion.

The semantics of the operations on the objects [for exam-
ple, see O’Neil (1986), Herlihy and Weihl 1988), Badrinath
and Ramamritham 1990)] can be used to define thecon-
flict relationship between operations. Furthermore, different
degreesof consistency (Gray et al. 1975) can be ensured
by ignoring some of the conflicts. The resulting inconsis-
tencies can be accommodated in applications that can cope
with such inconsistencies, or when these are masked by the
structuring of the objects used by the applications. The for-
mer is the case in (Gray et al. 1975) and with ESR (Pu
and Leff 1991) [see Ramaritham and Pu (1995) for a formal
characterization of ESR]. The latter is the case with abstract
serializability – used in the context of multilevel transactions
(Weikum and Schek 1984; Moss et al. 1986; Martin 1988;
Beeri et al. 1989; Badrinath and Ramamritham 1990).

4.1.2 Predicatewise serializability

Predicatewise serializability(PSR) has been proposed by
Korth and Speegle (1988) and Korth et al. (1988) as the
correctness criterion for concurrency control in databases in
which consistency constraints are in a conjunctive normal
form. In such cases, consistency constraints can be main-
tained by requiring serializability only with respect to objects
which relate to a disjunctive clause.

Let P = (P1 ∧ P2 . . . ∧ Pn) be the database consistency
constraint. Suppose the disjunctive clausePk relates to ob-
jects inDk ⊆ DB, whereDB is the database.

∀k ∈ {1 . . . n}, let Ck be a binary relation on transac-
tions inT .

Let H be the history of events relating to committed
transactions inT .

Definition 4.10 ∀k ∈ {1 . . . n}∀ti, tj ∈ T , ti /= tj

(tiCktj) if ∃ob ∈ Dk∃p, q(conflict(pti [ob]qtj [ob])

∧(pti [ob] → qtj [ob])) .

Definition 4.11 H is predicatewise serializableiff ∀t ∈ T
∀Dk; 1≤ k ≤ n¬(tC ∗

k t).

In (Sha 1985) eachDk is said to be anatomic data
set. With respect to the taxonomy, for PSR, an atomic data
set (Sha 1985) forms a consistency unit, and consistency is
required at transaction boundaries. Absolute correctness of
transaction results is expected. Compound transactions (Sha
1985) behave according to the PSR correctness criterion.

4.1.3 Cooperative serializability

We definecooperative serializability(CoSR) with respect
to a set of transactions which maintain some consistency
properties. Transactions form cooperative transaction sets.
A cooperative transaction set could be formed by the com-
ponents of an extended transaction or transactions collabo-
rating over some objects while maintaining the consistency
of the objects. In such cases, consistency can be maintained
if other transactions which do not belong to the set are seri-
alized with respect to all the transactions in the set. In other
words, a set of cooperative transactions becomes the unit of
concurrency with respect to serializability.

Let Tc be a set of cooperative transactions,Tc ⊆ T .
Let Cc be a binary relation on transactions inT .
Let H be the history of events relating to committed

transactions inT .

Definition 4.12 ∀ti, tj , tk ∈ T , ti /= tj , ti /= tk, tj /= tk
∀Tc ⊆ T

(tiCctj), if

∃ob∃p, q(((ti 6∈ Tc ∨ tj 6∈ Tc) ∧ (conflict(pti [ob], qtj [ob])

∧(pti [ob] → qtj [ob]))) ∨
(ti 6∈ Tc, tj ∈ Tc, tk ∈ Tc(conflict(pti [ob], qtk [ob])

∧(Pti [op] → qtk [ob]))) ∨
ti ∈ Tc, tj 6∈ Tc, tk ∈ Tc(conflict(ptk [ob], qtj [ob])

∧(ptk [ob] → qtj [ob]))))

In this definition, the first clause expresses how a depen-
dency between two transactions which do not belong to the
same set is directly established when they invoke conflicting
operations on a shared object. This is similar to the clause in
the classical definition of (conflict) serializability (Definition
4.8). The other two clauses reflect the fact that when a trans-
action establishes a dependency with another transaction, the
same dependency is established between all the transactions
in their corresponding cooperative transactions sets. These
clauses can be viewed as expressions of the development of
dependencies between transaction sets.

Definition 4.13 H is cooperative serializableiff ∀t ∈
T¬(tC ∗

c t).
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With respect to the taxonomy of the previous section,
for CoSR, the consistency unit is the complete database,
and consistency is required when an ordinary transaction
(not a member of aTc) completes or a set of cooperating
transactions complete. Absolute correctness of transaction
results is expected. The correctness requirement expressed
informally by Martin and Pedersen (1992) corresponds to
CoSR.

Note that if eachTc is a singleton set, then no cooper-
ation occurs andCs is equivalent toC . In addition, coop-
erative serializability does not imply that all transactions in
a cooperative set must commit or none. For example, let us
consider the notion ofmultidatabase serializability(MSR)
(Mehrotra et al. 1991, 1992) which has been proposed to deal
with correctness of transactions in multidatabase systems,
e.g. heterogeneous distributed databases. In these systems,
transactions can either execute on a single site (calledlocal
transactions), or can execute on multiple sites (calledglobal
transactions). Specifically, MSR is defined in the context
of emulating two-phase commit protocols in multidatabases
using redo transactions. The idea is that the commitment of
a global transaction can be decided using the 2PC proto-
col between the multidatabase agents that interface the local
DBMS without the participation of the local DMBS and
hence, a subtransaction is not required to enter the prepare
to commit state during the decision phase. If the subtrans-
action is aborted but the final decision is to commit the
global transaction, the updates of the aborted subtransaction
are performed subsequently by a redo transaction. This im-
plies that (1) the state of the database against which the
redo transaction executes, should be the same as the one
seen by the aborted subtransaction, and (2) the redo trans-
action should not invalidate any other active or committed
(sub)transaction. In a MSR local schedule, although a sub-
transactiongi and its redo transactionRedo(gi) execute as
independent transactions, they are considered together as a
pair. That is, database consistency is preserved by serializ-
ing all other transactions executing on the same node with
respect to the pair{gi, Redo(gi}. Such a pair is an instance
of cooperative transactions and the historyH of interest in-
cludes events asociated with all transactions, i.e., both com-
mitted and aborted transactions. MSR then corresponds to
CoSR if all conflicts in this history are considered with re-
spect to two types of cooperative transaction sets:{gj} in
case{gj} commits, and{giRedo(gi)} in case{gi} aborts.

4.1.4 Quasiserializability

Quasiserializability(QSR) has been proposed in Du and El-
magarmid (1989) as a correctness criterion for maintaining
transaction consistency in multidatabases. As mentioned ear-
lier, transactions in these systems are either local, i.e., ex-
ecute on a single site, or global, i.e., execute on multiples
sites. QSR assumes that at most one (sub)transaction of a
global transaction executes on a particular site.

In QSR, the correctness of the execution of a set of global
and local transactions is based on the notion of aquasise-
rial history which, unlike a serial history, specifies that only
global transactions are executed serially. A history isquasis-
erial if (1) all local histories are (conflict) serializable, and

(2) there exists a total order of all global transactionsgm and
gn wheregm precedesgn in the order, and allgm’s opera-
tions precedegn’s operations in all local histories in which
they both appear. A quasi serializable history is equivalent
to a quasi serial history.

Let G be the set of global transactions andgsn be a (sub)-
transaction of a global transactiongn (gn ∈ G) executing all
the operations ofgn on sites.

Let Ts be the set of transactions, both local trans-
actions and global (sub)transactions, executing on sites.
T = (∪sTs).

Let H be the history of events relating to committed
transactions inT .

Let R be a binary relation on a set of global transactions
G.

Definition 4.14 ∀gm, gn ∈ G, gm /= gn
(gmR gn) if

∃k, gkm, gkn(gkmC gkn)q ∨ ∃l, t0 = gkm, tl = gkn
∀i, 1≤ i ≤ l − 1 ti ∈ Tk

∃ob∃p, q((conflict(pti−1[ob], qti [ob])

∧(pti−1[ob] → qti [ob])) ∧
∃ob′∃p′, q′(conflict(p′ti [ob′], q′ti+1

[ob′])

∧(p′ti [ob
′] → q′ti+1

[ob′])) ∧
qti [ob] → p′ti [ob

′]))

whereC is the binary relation defined in Definition 4.8.
The C relation captures the fact that two global trans-

actionsdirectly conflictin a local history when they invoke
conflicting operations on a share object. Two global trans-
actions might alsoindirectly conflictin a local history even
if they do not access any shared objects. Indirect conflicts
are introduced by other transactions that directly conflict
with each other and with the global transactions. These in-
direct conflicts between two transactions, particularly those
introduced by local transactions, are captured by the second
clause of the definition ofR. Note that this clause, and
consequentlyR, is not equivalent to the transitive-closure
of C which does not place any restriction on the execution
ordering of the conflicting operations, butR ⊂ C ∗.

Definition 4.15H is quasiserializableiff

1. ∀s∀t ∈ Ts¬(tC ∗t), and
2. ∀g ∈ G¬(gR∗g).

It should be pointed that since theR relation captures
both direct and indirect conflicts between two global transac-
tions in a history, the serializable execution of global transac-
tions is in terms of both direct and indirect conflicts. Indirect
conflicts between local transactions induced by conflicts of
global transactions that execute on multiple sites are not cap-
tured by either clause; the reason being that QSR assumes
no data dependency across sites.

It is also appropriate to view QSR in terms of CoSR.
Specifically, transactions executing in each sites form a
cooperative transaction set, with conflict relationC applied
to them. The global transactions form another cooperative
transaction set withR being the conflict relation applied to
them.
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With respect to the taxonomy of the previous section,
for QSR, (sitebased) subsets of the database objects form
the consistency units (i.e., objects in each site form a subset)
and consistency should hold when a transaction completes.
Absolute correctness of transactions’ results is expected.

4.1.5 Relationship between serializability-based
correctness criteria

Thus far in this section, we have specified four serializability-
based correctness criteria using the ACTA formalism and
classified them with respect to our taxonomy in Sect. 2. Here,
we will use the formal definitions to relate them to each
other. In the next subsection, we will provide a consolidated
notion of correctness from which the different serializability
criteria can be seen as special cases.

According to PSR, eachDk is associated with aCk and
hence conflicting transactions can be serialized differently
with respect to differentDk. This is contrary to serializabil-
ity which permits only a single system-wide serialization
order involving conflicting transactions based onC . How-
ever, if Dk is the complete database, thenC = Ck, and
consequently, PSR is equivalent to serializability.

In the case of CoSR transactions in different cooperative
transaction sets may be related by theCc relation (individ-
ual transactions not belonging to any cooperative set can be
viewed as singleton cooperative transaction sets). Hence, if
each cooperative transaction set has just one member, then
Cc = C and, in this case, CoSR is equivalent to serializabil-
ity.

In the case of QSR, there are two distinct conditions un-
der which QSR is equivalent to serializability. These corre-
spond to the situations in which one of the two clauses of the
definition of QSR is trivially true: (1) in the absence of global
transactions, transactions inTi are serialized based only on
C ; (2) in the absence of local transactions, transactions inTi
are serialized based only onR, i.e., hereR = C . Indirect
conflicts due to local transactions are not possible, whereas
indirect conflicts due to global transactions are considered
by C ∗.

Finally, we would like to point out that these different
correctness criteria can be combined and/or adopted within a
single database. For instance, it is easy to picture how CoSR
can be used in conjunction with even QSR.

For such combinations of correctness criteria, their spec-
ification can be derived from the specification of the individ-
ual correctness criteria. As an example, let us examine one
way that CoSR can be combined with QSR in order to sup-
port a multidatabase system in which component databases
allow local transactions to form cooperative groups. In this
case, according to CoSR, global (sub)transactions as well as
other local transactions that do not belong to a cooperative
set, are serialized with respect to all the transactions in the
set. The formal definition of this combined criterion is de-
rived from the definition of QSR (Definitions 4.14. and 4.15)
by replacing the binary relationC with a binary relation
similar to Cc defined in the context of CoSR. Specifically:

Let Ti be the set of transactions, both local transactions
and global (sub)transactions, executing on sitei. T = (∪iTi).

Let Tci be a set of local cooperative transactions on site
i, Tci ⊆ Ti.

Let Cci be a binary relation on transactions inTi.
Let H be the history of events relating to transactions in

T .

Definition 4.16 ∀ti, tj , tk ∈ Ti, ti /= tj , ti /= tk, tj /= tk∀Tci
(tiCcitj), if

∃ob∃p, q((ti 6∈ Tci , tj 6∈ Tci (conflict(pti [ob], qtj [ob])

∧(pti [ob] → qtj [ob]))) ∨
(ti 6∈ Tci , tj ∈ Tci , tk ∈ Tci (conflict(pti [ob], qtk [ob])

∧(pti [ob] → qtk [ob]))) ∨
(ti ∈ Tci , tj 6∈ Tci , tk ∈ Tci (conflict(ptk [ob], qtj [ob])

∧(ptk [ob] → qtj [ob])))))

Definition 4.17H is local cooperative quasiserializableiff

1. ∀i∀t ∈ Ti¬(tC ∗
ci t), and

2. ∀g ∈ G¬(gR∗g).

4.1.6 Consolidation of the different types of serializability

In this section, we give a single definition of a serializability-
based correctness criterion from which the different types of
serializability can be derived as special cases.

LetCoopTr Set(T, ob) denote the sets of transactions in
T where the transactions in each set cooperate in their access
to ob. The sets are disjoint with respect to individual objects.
Thus, each element ofCoopTr Set(T, ob) is a cooperative
transaction set where each such set is a subset ofT .

Definition 4.18CoopTr Set(T, ob) = {TrSet| transactions
in TrSet cooperate overob, TrSet ⊆ T}
For example, letT = {t1, t2, t3, t4} andDB = {ob1, ob2, ob3}.
Let t1 andt2 cooperate overob3, t1, t2, andt3 cooperate over
ob2, andt3 and t4 cooperate overob3. Then

CoopTr Set(T, ob1) = {{t1}, {t2}, {t3}, {t4}} .
CoopTr Set(T, ob2) = {{t1, t2, t3}, {t4}} .
CoopTr Set(T, ob3) = {{t1, t2}, {t3, t4}} .
Thus, if no cooperation occurs between transactions, such
as in the case ofob1, each cooperative transaction set
is a singleton set. On the other end of the spectrum, if
CoopTr Set(T, ob1) = T , then we have concurrent process
behavior.

Let Cc(T, Tc, ob) be a binary relation on transactions inT
whereTc ∈ CoopTr Set(T, ob). It defines conflict relations
that form when transactions accessob given that transactions
in Tc cooperate overob.

Definition 4.19 ∀ti, tj , tk ∈ T , ti /= tj , ti /= tk, tj /= tk
(tiCc(T, Tc, ob)tj) if

∃p, q(((ti 6∈ Tc ∨ tj 6∈ Tc) ∧ (conflict(Pti [ob], qtj [ob])

∧(pti [ob] → qtk [ob]))) ∨
(ti 6∈ Tc, tj ∈ Tc, tk ∈ Tc(conflict(pti [ob], qtk [ob])

∧(pti [ob] → qtk [ob]))) ∨
(ti ∈ Tc, tj 6∈ Tc, tk ∈ Tc(conflict(ptk [ob], qtj [ob])

∧(ptk [ob] → qtj [ob])))))
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This is similar to our definition ofCc except that it considers
a specific objectob and a specific set of transactionsTc ⊆ T
cooperating overob.

Let Dc(T,OB) stand for the union of allCc(T, Tc, ob)
relations considering all objectsob in the setOB and con-
sidering all transactions in the setT .

Definition 4.20 tiDc(T,OB)tj) iff
∃ob ∈ OB ∃Tc ∈ CoopTr Set(T, ob) (tiCc(T, Tc, ob)tj).

That is, Dc(T,OB) contains all the conflicts formed by
transactions, after considering cooperation over accesses to
objects inOB.

Let H be the history of events relating to the set of
committed transactionsT .

Definition 4.21 H is Coop serializabel(OB) iff ∀t ∈
T¬(tD ∗

c (T,OB)t).
H is cooperative serializableiff Coop serializable(DB)

whereDB stands for the set of objects in the database.

Let ADS Set be the set of atomic data sets in the database,
as defined in Sect. 4.1.2.

Definition 4.22 H is Setwise serialized(OB) if ∀OB ∈
ADS Set, Coop serializable(OB) and ∀ob ∈ OB, ∀s ∈
CoopTr Set(T, ob), |s| = 1.

H is setwise serializableiff Setwise serializable(DB).

Setwise serializability only considers serializability over in-
dividual ADSs and does not allow for cooperation. Hence
the need for each element ofCoopTr Set(T, ob) to be a
singleton set. In this case, setwiseserializability(DB) corre-
sponds to setwise serializability.

For example assumeDB = {ob1, ob2, ob3}, T = {T1, T2,
T3}, andADS Set = {{ob1, ob2}, {ob3}}. If each coopera-
tive set is a singleton, i.e., there is no cooperation among
transactions, cyclic ordering relationships over{ob1, ob2}
will be determined based onDc(T, {ob1, ob2}) and over
{ob3} basedDc(T, {ob3}).

In the case that atomic sets inADS set are singleton
sets, we have independent objects – no consistency con-
straints exist across objects.

Definition 4.23H is serializableif H is Setwise serial−
izable (DB) and |ADS Set| = 1.

This follows from the fact that if we have just one ADS,
namely theDB, and we allow no cooperation, then we get
serializability if no cycles occur in theC ∗

c relationship.
In Sect. 4.1.4 we discussed how one could view QSR in

terms of CoSR with two different conflict relationshipsC
andR. If we expanded the above definitions to parameter-
ize them with respect to the conflict relationship of interest
(instead of justCc as assumed above), we can see how QSR
can also be consolidated with the above generalized defini-
tion of serializability. We do not do it here in the interest of
brevity.

These definitions in conjunction with our discussions in
the previous section show that it is possible to combine a
number of correctness criteria within a single application.

4.2 Transaction-model-dependent and
application-independent criteria

Transaction-model-dependent but application-independent
correctness criteria are typically related to the structure of
transactions that conform to a particular model. (Note that
specific transaction models may be more suited to specific
applications.)

Thus, this section elaborates on the different structure
related properties of transactions (Fig. 2). As was mentioned
earlier, different transaction models produce different trans-
action structures where the structure of an extended trans-
action defines its component transactions and the relation-
ships between them. Dependencies can express these rela-
tionships and thus, can specify the links in the structure. For
example, in hierarchically-structured nested transactions, the
parent/child relationship is established at the time the child
is spawned. This is expressed by a child transactiontc es-
tablishing a weak-abort dependency (defined below) on its
parenttp (tcWD tp) and by a parent establishing a commit
dependency on its child (tpCD tc). The weak-abort depen-
dency guarantees the abortion of an uncommitted child if
its parent aborts, whereas the commit dependency prevents
a child from committing after its parent has committed.

In Chrysanthis and Ramamritham (1991) we gave ax-
iomatic definitions of different transaction models in terms
of dependencies that occur between transactions that con-
form to a particular model. So we now formally specify
some of the dependencies that can occur in addition to the
Commit Dependency, Abort Dependency, andBegin De-
pendencyspecified in Sect. 3.2.

Let ti andtj be two transactions andH be a finite history
which contains all the events pertaining toti and tj .

Weak-Abort Dependency (tjWD ti): if ti aborts andtj
has not yet committed, thentj aborts. In other words, if
tj commits andti aborts, then the commitment oftj pre-
cedes the abortion ofti in a history, i.e.Abortti ∈ H ⇒
(¬(Committj → Abortti ) ⇒ Aborttj ∈ H).

Strong-Commit Dependency(tjS C D ti): if transaction
ti commits, thentj commits, i.e.,Committi ∈ H ⇒
Committj ∈ H.

Termination Dependency (tjTD ti): tj cannot commit or
abort until ti either commits or aborts, i.e.ε′ ∈ H ⇒
(ε → ε′), where ε ∈ {Committi , Abortti}, and ε′ ∈
{Committj , Aborttj}.

Exclusion Dependency(tjED ti): if ti commits andtj has
begun executing, thentj aborts (bothti andtj cannot com-
mit), i.e.,Committi ∈ H ⇒ (Begintj ∈ H ⇒ Aborttj ∈
H).

Force-Commit-on-Abort Dependency (tjCAD ti): if ti
aborts,tj commits, i.e.,Abortti ∈ H ⇒ Committj ∈ H.

Serial Dependency(tjSD ti): transactiontj cannot begin
executing untilti either commits or aborts, i.e.,Begintj ∈
H ⇒ (ε→ Begintj ), whereε ∈ {Committi , Abortti}.

Begin-on-Commit Dependency(tjB C D ti): transaction
tj cannot begin executin guntilti commits, i.e.,Begintj ∈
H ⇒ (Committi → Begintj ).
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Begin-on-Abort Dependency(tjBAD ti): transactiontj
cannot begin executing untilti aborts, i.e.,Begintj ∈ H ⇒
(Abortti → Begintj ).

Weak-Begin-on-Commit Dependency(tjWCD ti):
if ti commits,tj can begin executing afterti commits, i.e.
Begintj ∈ H ⇒ (Committi ∈ H ⇒ (Committi →
Begintj )).

With respect to the taxonomy, an application that uses
an extended transaction model will have correctness require-
ments related to transactions’ structure, where these require-
ments are specified via axioms that express the dependencies
that are formed when transactions execute according to the
given model.

We first look at some simple examples of structure-
related transaction correctness properties. In the transaction
model proposed by Buchmann et al. (1990) and Garcia-
Molina et al. (1991), a parent can commit only if itsvital
children commit, i.e., a parent transaction has an abort de-
pendency on itsvital children tv(tpAD tv). Child transac-
tions may also have different dependencies with their parents
if the transaction model supports various spawning or cou-
pling modes (Dayal et al. 1990). Sibling transactions may
also be interrelated in several ways. For example, compo-
nents of asaga (Garcia-Molina and Salem 1987) can be
paired according to a compensated-for/compensating rela-
tionship (Korth et al. 1990a). Relations between a compen-
sated-for and compensating transactions, as well as those
between them and the saga, can be specified via begin-on-
commit dependencyB C D , begin-on-abort dependency
BAD , force-commit-on-abort dependencyCAD and
strong-commit dependencyS C D (Chrysanthis and Ra-
mamritham 1992). In a similar fashion, dependencies that
occur in the presence of alternative transactions and con-
tingency transactions (Buchmann et al. 1990) can also be
specified (Chrysanthis and Ramamritham 1992).

We now provide a complete example of the structural
properties of an open nested transaction model. In an open
nested transaction model, component transactions may de-
cide to commit or abort unilaterally.

Assume that we need an open nested transaction model
that supports two-level transactions with special compo-
nents. Lets be a two-level transaction that hasn compo-
nent transactions,t1, . . . , tn. Some of the components are
compensatable; each suchti has a compensating transaction
comp ti that semantically undoes the effects ofti.

Component transactions can commit without waiting for
any other component ors to commit. However, ifs aborts,
a component transaction that has not yet comitted will be
aborted. We can capture this requirement using a weak-abort
dependency:

∀0≤ i ≤ n(tiWD s) .

Suppose some of the components ofs are considered
vital in that s is allowed to commit only if itsvital com-
ponents commit. These components are members of the set
V italTrs. We can capture this requirement as follows:

∀0≤ i ≤ n(ti ∈ V italTrs⇒ (sAD ti)) .

If a vital transaction aborts,s will be aborted. Transactions
can commit even if one of its non-vital components aborts,

but s has to wait for them to commit or abort. This is ex-
pressed using a commit dependency.

∀0≤ i ≤ n(ti 6∈ V italTrs⇒ (sCD ti)) .

Assume that acompensatable componentof s is a com-
ponent ofs which can commit its operations even before
s commits, but ifs subsequently aborts, the compensating
transactioncomp ti of the committed componentti must
commit. Compensatable components are members of the set
Comp Trs.

Aborts ∈ H ⇒ ∀0 ≤ i ≤ n(ti ∈ Comp Trs ⇒
(comp tiS C D ti)).

Recall thatS C D stands for strong-commit depen-
dency, whereby ift′ commits,t′′ must commit.

Compensating transactions need to observe a state con-
sistent with the effects of their corresponding components
and hence, compensating transactions must execute (and
commit) in the reverse order of the commitment of their
corresponding components. We can capture this requirement
by imposing abegin-on-commitdependencyB C D on
compensating transactions.

∀titj ∈ Comp Trs((Committi → Committj )

⇒ (comp tiB C D comp tj)) .

It is possible to continue the development of our simple
hierarchical transaction model but at this point we have al-
ready considered all the basic interactions among the various
special component transactions. For instance, it is possible to
require that some component transactions execute in a pre-
defined order as in the case of the Saga transaction model.

4.3 Transaction- and application-dependent criteria

We now focus on the requiredbehaviorof a transaction and
hence on the requirements imposed by the application that
employs that specific transaction. We distinguish between
two types of behavior-related properties:

1. Those that relate to constraints on a transaction’s access
to objects. Some of these are mandated by the concur-
rency properties of the objects. For instance, as discussed
in Sect. 4.1, serializability demands acyclicC relation-
ships. Here we will discuss additional access require-
ments.

2. Those that relate to properties that deal with its other be-
havioral properties, such as,whena transaction can/must
begin andwhenit can/must end. Spatial and temporal re-
quirements are related to this type.

Thus, this section corresponds to the data-access-related be-
havior and the temporal behavior of transactions (see Fig. 2).

We elaborate upon the first type through an example.
Consider apageobject with the standardreadandwrite op-
erations, where read and write operations conflict. A read’s
return-value is dependent on a previous write, whereas a
write’s return-value is independent of a read or another write.
In addition, consider transactions which have the ability to
reconcile potential read-write conflicts: when a transaction
ti reads a pagex and another transactiontj subsequently
writes x, ti and tj can commit in any order. However, if
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tj commits beforeti commits,ti must rereadx in order to
commit. This is captured by the following requirement:

(readti [x] → writetj [x]) ⇒ ((Commitj → Committi )

⇒ (Committj → readti [x])) .

In this example,ti has to reread the pagex when, subsequent
to the first read, the page is written and committed bytj . In
general,ti may need to invoke an operation on the same or
a different object. For instance, instead ofx, ti may have to
read ascratch-padobject whichti and tj use to determine
and reconcile potential conflicts. In general, the specification
of correct transaction behavior can include the specification
of operations that need to be controlled to produce correct
histories, as well as the specification of operations thathave
to occur in correct histories. These correspond toconflicts
andpatternsin Skarra (1991).

Let us now turn to other behavioral specifications, for
example, those that concern the beginning and termination
of transactions. Consider the following simple requirement,
which states that ifcondition is true, then transactiontj
must begin:

condition⇒ Begintj ∈ H

condition can depend on the occurrence of an event, on
the state of the database, and on time. As we will see, the
above requirement can be used for the flexible enforcement
of consistency, to trigger the propagation of changes, to react
to consistency violations, and to notify changes. Thus, the
above specification can be considered to be a specification
for the automatic triggering of situation-dependent actions,
e.g., for expressing the rules that govern the triggering of
actions in an active database (Dittrich and Dayal 1991).

Supposecondition is related to the occurrence of some
significant event within a transactionti. In this case, the
additional structural relationships (for instance, the different
coupling modes(Dayal et al. 1990) betweenti and tj can
be specified via the dependencies discussed in Sect. 4.2.

If condition relates to the state of the database, what
we have is related tospatial consistencydiscussed by Sheth
and Rusinkiewicz (1990). For instance, consider the follow-
ing condition: “One hundred sales have occurred at this
store since the master database at the store’s headquarters
was last updated.” Ifcondition relates to time, for instance,
if condition is “time > 8 p.m.”, we have atemporal consis-
tencyrequirement.

Now let us consider situations whereconstraints are
placed on the beginning of transactions. For example, a
transactionti to compute daily interest can start after mid-
night but only after the day’s withdrawals and deposits have
been reflected in the account (say by a transactiontj). This
can be specified as

(ts(Beginti ) ≥ 12 a.m.) ∧ (tiB C D tj) .

This is an example where a transaction has a time-based
start dependency, as well as a begin-on-commit dependency
on another transaction.

Let us consider another example. If a deposit is made
by timex, then the transaction that reflects it in the account
should not be started until timey. This is specified by

(Committi ∈ H ∧ (ts(Committi ) < x))

⇒ (Begintj ∈ H ⇒ (ts(Begintj ) > y)) .

Through several examples, we now consider requirements
and constraints associated with the termination of transac-
tions.

Sometimes, we may want to specify that some specific
change of state (by one transaction) triggers (Dayal et al.
1990) another transaction (that perhaps fixes the inconsis-
tency resulting from the first transaction). Clearly, this type
of constraint is related to deferred consistency restoration.
This can occur, for example, if we had two versions of a
database, one which was complete and another (at perhaps
a different site) which only contained data required at that
site. The two are not required to be consistent at all times,
but changes done to the complete database are required to
percolate to the other within a specified delay. If the changes
should be reflected withind units of time, we have the fol-
lowing “temporal commit dependency”:

(Committi ∈ H ∧ (ts(Committi ) = t))

⇒ Committj ∈ Ht+d .

This says that ifti commits at timet, tj should commitby
time t + d. For another example, consider the following:

(temperature ≥ threshold ∧ time = t)

⇒ Committj ∈ Ht+function(temperature) .

Here tj could be a transaction that opens a valve to pass
more coolant into the reactor whose temperature is above
threshold. The length of time available to complete this
transaction is a function of the current temperature. This
is a form of triggered transaction, but with specific time
constraints imposed on its completion (Korth et al. 1990c).
Such time constrained activities occur in real-time databases
(Ramamritham 1993).

In some situations, it may be desirable to specify an
interval [l, u] such thattj does not commit beforel (the
lower bound), but definitely commits beforeu (the upper
bound). For example, consider deposits into a bank account.
During the day, if a deposit is made before 3 p.m., it is just
“logged” into a file but is reflected in the appropriate account
between 10 p.m. and 4 a.m. that night. Such constraints take
the form

(Committi ∈ H ∧ (ts(Committi ) < t))

⇒ Committj ∈ H [l,u] .

The above conditions imposed on the initiation and termi-
nation of transactions can be viewed as generalizations of
the preconditions and postconditions associated with specific
transactions (Korth and Speegle 1988).

For a final example of behavior-related specifications,
consider the situation in which it may be desirable to prevent
a transactionti from aborting after a timet. This correponds
to the assumption that a transaction is implicitly committed
if it has not aborted by a certain time (Rusinkiewicz et al.
1990). For example, no bets can be canceled after a race is
started, and a lottery ticket cannot be refunded after a given
time:

Abortti 6∈ Ht ⇒ Committi ∈ Ht+1 .
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5 Conclusions

In this article, we have examined different types of correct-
ness criteria and have attempted to provide a taxonomy with
respect todatabase consistency requirementsandtransaction
correctness properties. Given space limitations, we could ex-
amine, in detail, only a subset of the proposals that have been
made to capture the correctness properties applicable to ex-
tended transaction models, as well as those demanded by the
newer database applications.

We have approached the problem of categorizing the
different proposals by formally specifying them using the
framework of ACTA. This allows us to clearly see where
one proposal differs from another and what its relationship
with serializability is.

It is important to point out that even though we have
used the word “transaction” in this article to refer to compu-
tations that have transaction-like properties, as we have seen,
such computations can have interrelated components. In the
literature, such computations have also been termedactivity
models orworkflowmodels. Dependencies such as the ones
defined in Sect. 4.2, as well as more general requirements
such as the ones exemplified in Sect. 4.3, allow us to cap-
ture relationships between components of these activities or
workflows and thus to specify the correctness requirements
of these computations.

We believe this taxonomy to be a good starting point in
our endeavor to classify proposed correctness criteria, and to
compare and contrast them. It can be viewed as a common
framework with respect to which one can study where a
new correctness criterion fits and how it relates to existing
criteria. In this regard, we expect the taxonomy to evolve, as
better understanding is gained about the correctness needs
of emerging database applications.

Let us now examine some of the other implications of
this work. In a recent survey (Breitbart et al. 1992) the au-
thors present a hierarchy of serializable schedules for mul-
tidatabases, each placing different types of restrictions on
transaction management within individual databases and the
global database. In the conclusion of that paper they point
out the need to consider alternatives to the “standard” no-
tions of consistency. One of the intended contributions of
our work has been to review various alternatives that have
been proposed and to place them in perspective. In multi-
database systems, the specifications of database consistency
and transaction correctness can be viewed as requirements
on the coordinator of the blackboxes (Breitbart et al. 1990)
that control individual databases.

In terms of future work, we would like to see the reason-
ing capabilities of the formalisms, such as ACTA, being used
to study the properties of mechanisms, such as in Sheth et
al. (1991), for maintaining relaxed correctness properties of
interdependent data. In the same context, it will be useful to
investigate ways in which the formal primitives themselves
can be used as part of these mechanisms (Rusinkiewicz et
al. 1991; Sheth et al. 1992). This is in line with the work on
the ConTract Model (Ẅachter and Reuter 1991) and CACS
(Stemple and Morrison 1992). Here, transactions are made
up of multiple steps, with explicit dependency relationships
specified between the steps. The system ensures that such
dependencies hold when the steps execute.
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Öszu T, Dayal U, Valduries P (eds) Distributed object management.
Morgan Kaufmann, San Mateo, CA

35. Mehrotra S, Rastogi R, Korth H, Silberschatz A (1991) Non-
serializable executions in heterogeneous distributed database systems.
In: Proceedings of the 1st International Conference on Parallel and
Distributed Information Systems, Florida

36. Mehrotra S, Rastogi R, Breitbart Y, Korth H, Silberschatz A (1992) En-
suring transaction atomicity in multidatabase systems. In: Proceedings
of the 11th Symposium on Principles of Database Systems, Denver,
Colorado, pp 164–175

37. Moss JEB (1981) Nested transactions: an approach to reliable dis-
trubuted computing. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Mass

38. Moss JEB, Griffeth N, Graham M (1986) Abstraction in recovery man-
agement. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Washington DC, pp 72–83

39. O’Neil PE (1986) The escrow transactional method. ACM Trans
Database Syst 11:405–430

40. Pu C, Leff A (1991) Replica control in distributed systems: an asyn-
chronous approach. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Denver, Colorado, pp 377–
386

41. Pu C, Kaiser G, Hutchinson N (1988) Split-transactions for open-end
activities. In: Proceedings of the 14th International Conference on Very
Large Databases, pp 36–37

42. Ramamritham K (1993) Real-time databases. Int J Distrib Parallel
Databases 1:199–226

43. Ramamritham K, Pu C (1995) A formal characterization of epsilon
serializability. IEEE Trans Knowl Data Eng, December

44. Rusinkiewicz M, Elmagarmid A, Leu Y, Litwin W (1990) Extending
the transaction model to capture more meaning. ACM Sigmod Rec
19:3–7

45. Rusinkiewicz M, Sheth A, Karabatis G (1991) Specification of de-
pendencies for the management of interdependent data. IEEE Comp
12:46–54

46. Sha L (1985) Modular concurrency control and failure recovery – con-
sistency, correctness and optimality. PhD thesis, Department of Com-
puter and Electrical Engineering, Carnegie-Mellon University, Pitts-
burgh

47. Sheth A, Rusinkiewicz M (1990) Management of interdependent data:
specifying dependency and consistency requirements. In: Proceedings
of the Workshop on the Management of Replicated Data, November,
pp 133–136

48. Sheth A, Leu Y, Elmagarmid A (1991) Maintaining consistency of
interdependent data in multidatabase systems. (Technical report CSD-
TR-91-016) Computer Science Department, Purdue University, West
Lafayette, Ind

49. Sheth A, Rusinkiewicz M, Karabatis G (1992) Polytransactions: a
mechanism for management of interdependent data. In: Elmagarmid A
(ed) Transaction models for advanced database applications. Morgan-
Kaufman, San Mateo, Calif

50. Skarra A (1991) Localized correctness specifications for cooperating
transactions in an object-oriented database. IEEE Bull Off Knowl Eng
4:79–106

51. Stemple DW, Morrison R (1992) Specifying flexible concurrency con-
trol schemes: an abstract operational approach. In: Annual Australian
Computer Science Conference
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