
The VLDB Journal (1996) 5: 119–132 The VLDB Journal
c© Springer-Verlag 1996

Algebraic query optimisation for database programming languages

Alexandra Poulovassilis1, Carol Small2

1 Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK; e-mail: alex@dcs.kcl.ac.uk
2 Department of Computer Science, Birkbeck College, Malet St., London WC1E 7HX, UK; e-mail: carol@dcs.bbk.ac.uk

Edited by Matthias Jarke, Jorge Bocca, Carlo Zaniolo. Received September 15, 1994 / Accepted September 1, 1995

Abstract. A major challenge still facing the designers and
implementors of database programming languages (DBPLs)
is that of query optimisation. We investigate algebraic query
optimisation techniques for DBPLs in the context of a purely
declarative functional language that supports sets as first-
class objects. Since the language is computationally com-
plete issues such as non-termination of expressions and con-
struction of infinite data structures can be investigated, whilst
its declarative nature allows the issue of side effects to be
avoided and a richer set of equivalences to be developed.
The language has a well-defined semantics which permits
us to reason formally about the properties of expressions,
such as their equivalence with other expressions and their
termination. The support of a set bulk data type enables
much prior work on the optimisation of relational languages
to be utilised.

In the paper we first give the syntax of our archety-
pal DBPL and briefly discuss its semantics. We then de-
fine a small but powerful algebra of operators over the set
data type, provide some key equivalences for expressions in
these operators, and list transformation principles for opti-
mising expressions. Along the way, we identify some caveats
to well-known equivalences for non-deductive database lan-
guages. We next extend our language with two higher level
constructs commonly found in functional DBPLs: set com-
prehensions and functions with known inverses. Some key
equivalences for these constructs are provided, as are trans-
formation principles for expressions in them. Finally, we in-
vestigate extending our equivalences for the set operators to
the analogous operators over bags. Although developed and
formally proved in the context of a functional language, our
findings are directly applicable to other DBPLs of similar
expressiveness.

Key words: Query optimisation – Functional languages –
Database programming languages – Database management
– Algebraic manipulation

1 Introduction

Database programming languages (DBPLs) incorporate into
a single language, with a single semantics, all of the fea-
tures normally expected of both a data manipulation lan-
guage (DML) and a programming language. For example,
DBPLs have one computational model, one type system, and
bulk data types with associated access mechanisms. A major
challenge still facing DBPLs is that of query optimisation.
There are several reasons for limited progress in this area:

1. The possibility ofside-effectsrestricts the set of equiva-
lences that can be shown to hold.

2. Some bulk data types are inherently hard to optimise.
For example, lists only readily support the common re-
lational optimisations if the concept ofbag equalityis
used [Tri89] (i.e. lists are equal if they contain the same
elements, although possibly in different orders).

3. Since DBPLs are computationally complete, thetermi-
nation properties of expressions must be taken into ac-
count when investigating equivalences. For example, if
the boolean-valued functionf1 does not terminate for
some arguments, whilst the boolean-valued functionf2
returnsFalse for all arguments, then the ‘equivalence’
σf1(σf2(s)) = σf2(σf1(s)) does not hold since evaluation
of the left-hand side always terminates for finites (re-
turning {}), whereas evaluation of the right-hand side
may not terminate.

4. DBPLs may manipulateinfinite data structuresand hence
some bulk data operations cannot be implemented using
established methods. For example, ifA andB are in-
finite sets then a nested loop method cannot be used to
generateA×B (for, otherwise, all tuples of the resulting
product would have the same first coordinate).

5. DBPLs typically supportuser-defined data types, and
hence require mechanisms to prove equivalences over
these data types, too.

6. The computational completeness of DBPLs means that
a greater variety of optimisation techniques can be ap-
plied than for typical DMLs – ranging from peep-hole
optimisations to algebraic techniques and program trans-
formation – and integrating these techniques is an open
problem.

120

In this paper, we investigate optimisation techniques for
DBPLs by addressing some of the above issues. We under-
take our investigation in the context of a purely declara-
tive functional language. Since database algebras are func-
tional in nature, this is a particularly natural computational
paradigm to investigate query optimisation in DBPLs. It also
gives us a computationally complete formalism that can ex-
hibit non-termination of expressions (point 3 above) and that
can result in infinite data structures (point 4 above), whilst
avoiding the issue of side-effects (point 1 above). The lan-
guage supports a set bulk data type, enabling us to utilise
much prior work on the optimisation of relational languages,
including Datalog (point 2 above). The language has a well-
defined semantics which permits us to reason formally about
the properties of expressions, including those of user-defined
data types, such as their equivalence with other expressions
and their termination properties (point 5 above). Finally,
with respect to point 6 above, this paper addresses algebraic
optimisation techniques which are complementary to, and
can be used in conjunction with, existing peep-hole [Aug84,
Joh84] and program transformation [Bur77] techniques for
functional languages.

The structure of the paper is as follows. In Sect. 2 we
give the syntax of our language and discuss its semantics
and its provision for built-in and user-defined functions. In
Sect. 3 we define a small but powerful algebra of opera-
tors over the set data type, provide some key equivalences
for expressions in these operators, and list transformation
principles for optimising expressions. Along the way, we
identify some caveats to well-known equivalences for non-
deductive database languages. In Sect. 4 we examine two
higher level constructs commonly found in DBPLs – set
comprehensions and functions with inverses. We also pro-
vide some key equivalences for these constructs, and give
transformation principles for expressions in them. In Sect. 5
we investigate extending the equivalences for the set oper-
ators to the analogous operators over bags. In Sect. 6 we
briefly compare this work with related research. Finally, in
Sect. 7 we give our conclusions and indicate directions of
further work.

2 The language

The formal foundation of any functional language is theλ-
calculus [Hin86]. Expressions in this calculus have the fol-
lowing syntax:

expr = var | primitive | “λ”var“.” expr | expr1 expr2 |
“(” expr“)”

An occurrence of a variablex is bound in an expression
e if it occurs in a sub-expression ofe of the form λx.e′;
otherwise it isfree in e. FV (e) andBV (e) denote the set
of variables with at least one free and bound, respectively,
occurrence ine.

Computation in theλ calculus proceeds by syntactically
transforming terms usingβ- and η-reduction.β-reduction
rewrites a function application of the form (λx.e)e′ to the
expressione[e′/x] obtained by replacing all free occurrences
of x in e by e′. η-reduction rewrites an application (λx.e x)
to e, provided thatx 6∈ FV (e). The denotational semantics

of the λ-calculus (see [Sch86]) assigns to each expression
a value in a semantic domain – this is the meaning of the
expression.β- and η-reduction are semantically sound, in
that they do not alter the meaning of an expression.

The language that we will be optimising is theλ-calculus
extended with constructors,let expressions and pattern-
matchingλ-abstractions:

expr = var | constructor | primitive |
“λ”pattern“.” expr | expr1 expr2 |
“ let” var “=” expr1 “ in” expr2 | “(” expr “)”

pattern = var | constructor pattern1 . . . patternn

where tuples (e1, . . . , en) are regarded as applications of an
n-ary constructorTuplen to n argumentse1, . . . , en. We use
x, y, z for denoting variables,p, q, r for patterns, ande, e′ for
expressions. This extendedλ-calculus is straight-forwardly
mapped into the (ordinary)λ-calculus (see [Pey87]). In par-
ticular, let x = e′ in e translates into (λx.e)e′. The semantic
soundness ofβ reduction thus gives the first equivalence:

let/1 let x = e′ in e = e[e′/x]

This equivalence can be used to abstract common sub-
expressions when used in a right-to-left direction, and to
expand definitions in place when used in a left-to-right di-
rection. The former operation will typically be useful at the
end of the query transformation process, while the latter will
be useful at its outset in order to generate an overall expres-
sion to optimise.

Functions are defined by equations of the formf = e.
If f ∈ FV (e), i.e. if f is recursively defined, the mean-
ing (or value) off is given by the least fixed point of the
higher-order (and non-recursive) functionλf.e. This mean-
ing may just be non-termination for some arguments, so
the semantic domain contains for each typet an element
⊥t which denotes ‘no information’ and represents a non-
terminating computation (sometimes we omit the type sub-
script t when it can be inferred from context). For example,
the boolean type consists of the elements,True, False and
⊥Bool, where⊥Bool is less informative than bothTrue and
False (written ⊥Bool v True and⊥Bool v False) and
whereTrue andFalse are not information-wise compara-
ble. The meaning of the recursive functionf = λx.not(f x)
is then given by the least fixed point of the higher-order
function λf.λx.not(f x), and is just the function that maps
all its arguments to⊥Bool, i.e. λx.⊥Bool.

For the purposes of investigating query optimisation we
use several items of information about expressions:
Referential transparency. This is a property enjoyed by our
language and means that every occurrence of an expression
denotes the same value in a given environment (an environ-
ment being a mapping of free variables to expressions).
Termination. The evaluation of an expressione terminates
if the value of e contains no⊥ elements. In the sequel,
whenever we say that an expressione is infinite we mean
that its value contains⊥; otherwise, we say thate is finite.
Determining whethere is finite is of course undecidable
in general. There is, however, a wide class of expressions
whose evaluation is known to terminate, namely well-typed,
non-recursive expressions: this is thestrong normalisation
theorem[Hin86]. Furthermore, it is often possible to con-
struct a proof of the finiteness of an expression by using

121

structural induction(see below), and the user could be per-
mitted to annotate the expression as such.
Strictness of functions. The order in whichβ-reduction is ap-
plied inλ-expressions is significant. Lazy evaluation (which
we assume) ensures termination whenever possible by only
evaluating the arguments to a function if needed by the func-
tion to return a result. A function isstrict in an argument if
that argument must be evaluated for the function to return
a result. One way to characterise a strict function is to state
that f⊥ = ⊥ (i.e. given a non-terminating argument,f will
not terminate either). Information about the strictness prop-
erties of a function can be derived from the known strictness
properties of the built-in functions usingstrictness analysis
[Cla85].
Continuity of functions. Any function defined in theλ no-
tation is continuous(see, for example, [Sch86], Theorem
6.24). This has two important implications. Firstly, it guar-
antees that any recursive definition has a unique meaning.
Secondly, it means that when proving an equivalence of the
form ∀x.f x = g x, wheref andg are continuous functions,
induction over the structure ofx can be used to prove the
equivalence even ifx is infinite, i.e. contains⊥ elements.
In the terminology of [Sch86] an equivalence is aninclusive
predicatefor which fixpoint induction is valid. [Bir88] gives
an accessible discussion of structural induction and uses it
to prove equivalences over infinite lists and trees. It can
be similarly used to prove our equivalences over, possibly
infinite, sets and bags below.

Sets are important in our language, so we briefly recall
their semantics; further details are given in the Appendix.
Sets can be created from: (i) the empty set, (ii) singleton
sets, and (iii) unions of (i) and (ii). The least element of
the type consisting of sets of values of typet is the set
{⊥t}. For example, the value off = λx.(fx) ∪ (fx) is
λx.{⊥a}, wherea is type variable that can be substituted
by any type, while the value ofnats = λn.{n}∪(nats(n+1))
is λn.{n, n + 1, . . . ,⊥Num}, so withnats non-termination
arises from the construction of a set with an infinite number
of elements.

2.1 The type system

Our language is strongly, statically typed and supports a
number of primitive types such asBool, Str andNum. The
user can declare new enumerated types and introduce new
constants of such a type. For every user-defined enumerated
type T , a built-in zero argument functionallT returns all
constants of that type.

We will use as a running example a database that
records results for the Winter Olympic Games. The user-
defined enumerated types includeComp (competitor id),
Sex, Country, Category (category of events) andEvent,
where:

allComp = {C1, C2, C3,. . . }
allSex = {Male, Female}
allCountry = {Norway, Austria, France,. . . }
allCategory = {Alpine, Nordic, FigureSkating,. . . }
allEvent = {MensDownhill, WomensSlalom,. . . }

Also supported are polymorphic product, list, set and
function types. In particular, (t1, . . . , tn) is an n-product type
for any typest1, . . . , tn, [t] is a list type and{t} a set type
for any typet, andt1 → t2 the type of functions from a type
t1 to a typet2. Note that the function type constructor→ is
right associative, so thatt1 → t2 → t3 and t1 → (t2 → t3)
are synonymous.

We use the notatione :: t to indicate that an expressione
has typet. We also use letters from the start of the alphabet
to indicate type variables in type expressions. For example,
the infix ‘compose’ function,◦, defined by (f ◦g) x = f (g x)
is of type (b → c) → (a → b) → (a → c), where the type
variablesa, b andc can be instantiated to any type.

The user can also declare sum types and introduce new
constructors of such a type c.f. the list constructors (:) ::
a→ [a] → [a] and [] :: [a].

2.2 Built-in functions

The usual arithmetic (+,−, ∗, /) and comparison (==, ! =,<,
<=, >,>=) operators are built-in1. These operators may be
written either infix or prefix [in which case they are brack-
eted, e.g. (+) 1 2], and are of necessity strict in both their
arguments. For example, the value ofe == e′ will be ⊥ if
either e or e′ has value⊥: operationally, both operands of
== must be evaluated in order to determine if they are equal,
and if either yields ‘no information’, then so does the overall
evaluation of the equality test. With structured values, the
arguments to constructors are compared left-to-right. Thus,
for example, (1 :⊥) == (2 : []) returnsFalse, whereas
(1 : ⊥) == (1 : []) returns⊥. The other main comparison
operator,<, works in a similar fashion and hinges on an
alphanumeric ordering of constants and constructors where,
by convention, [] < (h : t) for any list (h : t). Thus, for
example, [] < (⊥ : ⊥) and (1 :⊥) < (2 : ⊥) both re-
turn True. Functions cannot be meaningfully compared by
these comparison operators, i.e.⊥ is returned. Lastly, sets
are converted to lists (by the operatorset to list below) for
comparison.

The three-argument conditional functionif is also built-
in and has the following semantics:

if ⊥Bool x y = ⊥
if True x y = x
if False x y = y

Thus,if is strict in its first argument, but not in its second
and third arguments. Logical operators can be defined in
terms ofif as follows:

and = λx.λy.if x y False
or = λx.λy.if x True y
not = λx.if x False True

Consequently these, too, are strict in their first argument. We
will also require on occasion counterparts toand andor that
are commutative and ‘⊥-avoiding’; operationally,∨ and∧
are implemented by evaluating their operands in parallel:

1 Note that == is the syntactic equality operator as opposed to equality,
=, in the semantic domain

122

True∨ y = True False∧ y = False
x ∨ True = True x∧ False = False
False∨ y = y True∧ y = y
x ∨ False = x x∧ True = x
⊥ ∨ ⊥ = ⊥ ⊥ ∧ ⊥ = ⊥

Two set-building functions are also built-in, the singleton-
forming operator and the union operator:

{ } :: a→ {a}
∪ :: {a} → {a} → {a}

A set can also be represented by enumerating its elements,
where{e1, . . . , en} is equivalent to{e1} ∪ . . . ∪ {en}.

Breazu-Tannen et al. [Bre91] propose a function,Φ, for
folding a binary operatorop into a finite set:

Φ f op e {} = e
Φ f op e {x} = f x
Φ f op e (s ∪ s′) = op (Φ f op e s) (Φ f op e s′)

As stated in [Bre91],e and op must form a commutative-
idempotent monoid on the return type off in order for this
definition to have a unique meaning, i.e. they must satisfy
the following conditions:

x op (y op z) = (x op y) op z
e op x = x op e = x
x op y = y op x
x op x = x

These conditions arise from the semantics of the set union
operator, i.e. its associativity, the fact that{} is the identity
element, its commutativity, and its idempotence.

In our case of possibly infinite sets, the second equation
for Φ has to be modified, givingφ below:

φ f op e {} = e
φ f op e {x} = if (x = ⊥) ⊥ (f x)
φ f op e (s ∪ s′) = op (φ f op e s) (φ f op e s′)

In operational terms,φ keeps distributingf to the elements
of an infinite set indefinitely. In semantic terms, the modified
definition ensures thatφ is monotonic.2 Thus, as one might
expect, we cannot useφ to devise terminating cardinality or
summation functions for infinite sets. Others have defined
similar functions toΦ, e.g. the ‘pump’ operator of FAD
[Ban87] and the ‘hom’ operator of Machiavelli [Oho89],
and [Bre91] gives a comparison of these.

We can now useφ to define a membership operator over
possibly infinite sets:

x in s = φ ((==) x) (∨) False s

in returnsTrue if any comparison ofx with an element ofs
returnsTrue, False if all comparisons ofx with elements of
s returnFalse, and⊥ otherwise. Soin only returnsFalse
for finite sets: in operational terms,in keeps on searching an
infinite set for a value that equalsx until it finds one. Also,
sincein depends on the results of equality tests, it will return
⊥ if applied to higher-order sets, i.e. sets of functions.

We can also useφ to define a conversion function from
sets to lists, where ++ is the usual list append operator:

2 For example,{⊥} v {} implies thatφ f op e {⊥} v φ f op e {}
must hold, which in turn implies thatf ⊥ v e must hold for all possible
e, and this can only be true iff ⊥ = ⊥

set to list s = φ (λx.[x]) (λl.λl′.remove duplicates
(sort (l + + l′))) [] s

Note that sinceset to list depends onsort it will return ⊥
if applied to higher-order or infinite sets. Givenset to list,
we can determine the cardinality of a finite set, the sum of its
elements, etc. We can also extend the comparison operators
(==, ! =, <,<=, >,>=) to sets by converting the sets to lists,
i.e.

s comparison op s′ = (set to list s) comparison op
(set to list s′)

2.3 User-defined functions

These can be specified using one or more equations rather
than a singleλ-abstraction, and can use pattern-matching to
deconstruct their arguments. For example, we can define a
function foldl which is similar toφ but which works over
lists:

foldl f op e [] = e
foldl f op e (x : xs) = op (f x) (foldl f op e xs)

This function can be used to convert a list to a set:

list to set xs = foldl (λx.{x}) (∪) {} xs
0-ary set-valued functions can be used to represent bulk

data, the assumption being that such functions are updatable
by the insertion and deletion of values of the appropriate
type. For our Winter Olympic Games database examples,
we will use functions which define the sponsors of each
country, the name, sex and country of each competitor, the
category of each event, the set of competitors registered for
each event, and the list of medalists in rank order for each
event:

sponsors :: {(Country, Sponsor)}
comps :: {(Comp,Name, Sex,Country)}
events :: {(Event, Category)}
registered :: {(Event, {Comp})}
results :: {(Event, [Comp])}

3 The algebra

Our algebra consists of three built-in operators. These are the
{ } and ∪ operators already introduced and an operator
setmap which has the following semantics:

setmap :: (a→ {b}) → {a} → {b}
setmap f {} = {}
setmap f {x} = if (x = ⊥) {⊥} (f x)
setmap f (s ∪ s′) = (setmap f s) ∪ (setmap f s′)

setmap thus distributes a function of type (a → {b}) over
a set of type{a} and returns the union of the results. A
consequence of the second equation above is that if a set
is infinite then so will be the result ofsetmap. Notice that
setmap f is justφ f (∪) {}; [Bre91] similarly gives a finite-
set version ofsetmap defined in terms ofΦ.

Two functions that frequently appear in algebras are
map :: (a→ b) → {a} → {b} andfilter :: (a→ Bool) →

123

{a} → {a} (e.g. in [Clu92, Bee92]). These functions gener-
alise relational projection and selection. Although they could
be built-in for efficiency purposes,map and filter can be
defined in terms ofsetmap as follows:

filter f s = setmap (λx.if (f x) {x} {}) s
map f s = setmap (λx.{f x}) s

A further operation that can be expressed usingsetmap
is the join of two relations according to a selection function
f and a projection functiong, join :: ((a, b) → Bool) →
((a, b) → c) → {a} → {b} → {c}:

join f g s s′ = setmap (λx.setmap (λy.if (f (x, y))
{g (x, y)} {}) s′) s

join subsumes the various flavours of join and product oper-
ations found in relational databases. It can also operate upon
infinite sets of structured tuples. In particular, for anyx ∈ s
andy ∈ s′, the value ofg(x, y) in (join f g s s′) is True
provided thatf (x, y) is True, regardless of the finiteness or
otherwise ofs ands′.

3.1 Other set-theoretic operators

Other set-theoretic operators can be defined in terms of the
operators above, although these too could be built-in for
efficiency purposes. We give definitions for two of these
operators, since they raise some interesting issues. Operators
such asnest, unnest andpowerset are also easily defined
in our language.

Set difference can be defined usingfilter and in:

minus :: {a} → {a} → {a}
s minus s′ = filter (λx.not (x in s′)) s

Thusminus will terminate if boths ands′ are finite, or if
s is finite and is a subset ofs′.

Intersection can also be defined usingfilter and in:

inter :: {a} → {a} → {a}
s inter s′ = filter (λx.x in s′) s

However, this definition is not in general commutative, e.g.
{3} inter {3,⊥} = {3} whereas{3,⊥} inter {3} = {3,⊥}.
Clearly it is desirable for intersection to be commutative for
optimisation purposes, and to achieve this we can use∧:

s inter s′ = filter (λx.(x in s) ∧ (x in s′)) (s ∪ s′)

This definition is both less efficient and has worse termi-
nation properties than the first (e.g.{3} inter {3,⊥} now
gives {3,⊥}), but is nevertheless the one we assume for
optimisation purposes. If, however, boths ands′ are known
to be finite, then the original definition can safely be used
in its place.

3.2 Equivalences

We now investigate some equivalences for the functions
defined above. Some of these are generalisations of well-
known equivalences for relational databases [Jar84, Ull89].
The first set of equivalences, with their stated provisos, fol-
low easily from the definitions of the logical operators in
Sect. 2.2:

if/1 if e1 (if e2 e3 e4) e4 = if (e1 and e2) e3 e4
if/2 if e1 e3(if e2 e3 e4) = if (e1 or e2) e3 e4
if/3 if (not e1) e2 e3 = if e1 e3 e2
if/4 f (if e1 e2 e3) = if e1 (f e2) (f e3)

providedf is strict
and/1 e1 and e2 = e2 and e1

providede1 = ⊥ iff e2 = ⊥
and/2 e1∧ e2 = e2∧ e1
or/1 e1 or e2 = e2 or e1

providede1 = ⊥ iff e2 = ⊥
or/2 e1∨ e2 = e2∨ e1
not/1 not (not e1) = e1
not/2 not (e1 or e2) = (not e1) and (not e2)

The∪ andinter operators obey the expected properties
of commutativity and associativity (in operational terms, this
means that the two branches of a∪ must be evaluated in
parallel), whileinter andminus distribute over∪:

∪/1 s ∪ s′ = s′ ∪ s
∪/2 s ∪ (s′ ∪ s′′) = (s ∪ s′) ∪ s′′
∪/3 s ∪ s′ = s if s′ ⊆ s
∩/1 s inter s′ = s′ inter s
∩/2 s inter (s′ inter s′′) = (s inter s′) inter s′′
∩/3 (s inter s′′) ∪ (s′ inter s′′) = (s ∪ s′) inter s′′
−/1 (s minus s′′) ∪ (s′ minus s′′) = (s ∪ s′) minus s′′

However, the following equivalences only hold subject to
the stated provisos:

∩/4 s inter s′ = s′ if s′ ⊆ s
provideds is finite

−/2 s minus s′ = s if s ∩ s′ = {}
provideds ands′ are finite

−/3 s minus s′ = {} if s ⊆ s′
provideds is finite

To illustrate the proviso associated with∩/4 consider the
cases = {1, 2,⊥} and s′ = {1}, whences′ ⊆ s, but
s inter s′ = {1,⊥} 6= s′. To illustrate the provisos associated
with −/2 consider the two casess = {1}, s′ = {2,⊥} and
s = {1,⊥}, s′ = {2}. For the proviso associated with−/3
consider the cases = s′ = {1,⊥}.

The reason for the above provisos is the definition of both
inter andminus in terms of the set membership operator,
in. In particular,x in s undertakes equality tests between
x and elements ofs which may result in the value⊥, as
discussed in Sect. 2.2. The set membership operator,in,
itself obeys the following properties subject to the stated
provisos:

in/1 e in {} = False
in/2 e in {e′} = e == e′
in/3 e in (s ∪ s′) = (e in s) ∨ (e in s′)
in/4 e in (s inter s′) = (e in s) ∧ (e in s′)

providede, s, s′ are finite
in/5 e in (s minus s′) = (e in s) ∧ not (e in s′)

providede, s, s′ are finite

To illustrate thate must be finite for in/4 and in/5 consider
the casee = ⊥, s = {1}, s′ = {2}, while to illustrate thats
ands′ must be finite consider the casee = 1, s = {⊥}, s′ =
{} for in/4 and the casee = 1, s = {⊥}, s′ = {1} for in/5.

124

∪/3, ∩/4 and−/3 allow us to simplify the following
expressions involving the built-in functionsallT , provided
s is finite:

all/1 s ∪ allT = allT ∪ s = allT
all/2 s inter allT = allT inter s = s
all/3 s minus allT = {}

A number of optimisations apply tosetmap, and hence
to operators defined in terms ofsetmap such asfilter and
map:

setmap/1 setmap f (s ∪ s′)
= (setmap f s) ∪ (setmap f s′)

setmap/2 setmap f (setmap g s)
= setmap (λx.setmap f (g x)) s

setmap/3 setmap (λx.if (x in s′) e e′) s
= (setmap (λx.e) (s inter s′))
∪ (setmap (λx.e′) (s minus s′))
provideds = {} ⇒ ⊥ 6∈ s′

setmap/4 setmap (λx.setmap (λy.e) s′) s
= setmap (λy.setmap (λx.e) s) s′
if x 6∈ FV (s′) andy 6∈ FV (s)
provideds = {} ⇒ ⊥ 6∈ s′

ands′ = {} ⇒ ⊥ 6∈ s
setmap/1 states thatsetmap distributes over∪. setmap/2
states that two successive applications ofsetmap can be
compressed into one application with a second one nested
within it. setmap/3 states when application of a set mem-
bership test can be replaced by a set union, while setmap/4
states when the nesting of onesetmap within another com-
mutes. To illustrate the provisos associated with these last
two equivalences consider the cases = {}, s′ = {⊥}.

The main optimisations formap are to combine succes-
sive applications into one. In particular map/2 below corre-
sponds to combining cascades of projections:

map/1 map f (map g s) = map (f ◦ g) s
map/2 map (λq.r) (map (λp.q) s) = map (λp.r) s

if FV (r) ⊆ FV (q) ⊆ FV (p)

For filter, filter/1 below is a generalised cascade of se-
lections, filter/2 and filter/3 combine successive applications
of filter and setmap into a singlesetmap, filter/4 states
when selection distributes over difference, and filter/5 states
when two selections commute:

filter/1 filter f (filter g s)
= filter (λx.(g x) and (f x)) s

filter/2 setmap f (filter g s)
= setmap (λx.if (g x) (f x) {}) s

filter/3 filter g (setmap f s)
= setmap (λx.filter g (f x)) s

filter/4 filter f (s minus s′)
= (filter f s) minus (filter f s′)
provideds ands′ are finite and (f x)

is finite for finitex
filter/5 filter f (filter g s)

= filter g (filter f s)
provided∀x.f x = ⊥ iff g x = ⊥

To illustrate the provisos for filter/4 consider the two cases
f = λx.False, s = {1}, s′ = {⊥} andf = λx.⊥, s = {1},

s′ = {1}. The proviso for filter/5 follows easily from the
equivalences filter/1 and and/1.

We have the expected equivalences regarding combining
selection with join (join/1 below) and distributing selection
over join (join/2):

join/1 filter f (join f ′ g s s′)
= join (λz.(f ′ z) and (f (g z))) g s s′

join/2 join (λ(x, y).(f x) and (f ′ y)) g s s′
= setmap (λx.if (f x) (setmap (λy.if (f ′ y)
{g(x, y)} {}) s′) {}) s

provideds′ is finite and (f x) is finite for finitex

To illustrate the provisos for join/2 consider the two cases
f = λx.False, s = {1}, s′ = {⊥} andf = λx.⊥, s = {1},
s′ = {}.

In summary, most of the expected equivalences for the
logical and set operators hold. In some cases, however, we
require a priori knowledge about the termination properties
of expressions. The provisos associated with many of the
equivalences arise from the semantics of the built-in func-
tions, and built-in functions with different semantics, e.g.
sequential∨, ∧ and∪, would give rise to different provisos.

The equivalences above can be proved by structural in-
duction over the set arguments. Since sets are constructed
by successive unions of singleton sets and the empty set,
structural induction over a sets has two base cases which
must first be proved:s = {} and s = {e}. The induction
hypothesis is then that the given proposition holds for sets
s1 and s2, from which it remains to show that it holds for
s = s1∪ s2. For equivalences involving two sets, structural
induction is employed for one set within each case of the
structural induction over the other set.

The main class of equivalences which do not have coun-
terparts in our language are the commutative laws for joins
and products. However, if records [Oho89] are used instead
of tuples these equivalences also apply, subject to the same
proviso as for setmap/4 above, since the definition ofjoin
consists of a nesting of onesetmap within another.

3.3 Transformation principles

Essentially the same principles apply to our language as to
relational algebra expressions [Ull89], except that they need
to be successively applied starting from the outermost level
of an expression and moving through to expressions nested
within aggregation functions:

1. Use filter/1 in a right-to-left direction, to split up complex
filter conditions.

2. Performfilter as early as possible by commuting it with
other applications offilter and setmap (setmap/4, fil-
ter/5), eliminating set membership tests (setmap/3), and
distributing filter over ∪ (setmap/1),minus (filter/4)
andjoin (join/2).

3. Performmap as early as possible by distributing it over
∪ (setmap/1).

4. Combine cascades ofsetmaps of various kinds into
a single setmap (setmap/2, map/1, map/2, filter/1-3,
join/1).

125

5. At any stage during the above steps, simplify set unions,
intersections and differences whenever possible by using
∪/3, ∩/4, −/*, all/*, in/*.

6. Apply setmap/4, using physical-level knowledge, such
as expected sizes of sets and availability of indexes.

The final step of the transformation process is to abstract
common sub-expressions using let/1 in a right-to-left direc-
tion.

Note that there is no general heuristic about which direc-
tion to apply setmap/1, since the size of the result returned
by setmap cannot be predicted in general. Note also that we
could derive an equivalence that movesmap throughjoin
in the special case that the former is a projection and the
latter a cartesian product, but this would be quite contrived.
In any case, such an equivalence would go into category 3
above.

4 Higher-level constructs

The algebraic equivalences discussed above are fine-grained
and low level. We now examine two additional sets of equiv-
alences at a higher conceptual level of modelling and query-
ing: those for set comprehensions and those for functions
with known inverses. Our reasons for doing so are two-
fold. Firstly, both these constructs are commonly found in
database languages and we wish to extend optimisations
identified by others (see Sect. 6) to our richer computational
environment. Secondly, optimising directly at this concep-
tual level is likely to be more efficient than first translating
into the syntax of the previous section and then applying the
optimisations.

4.1 Set comprehensions

The syntax of set comprehensions is as follows:

set comprehension = “{” expr “ |” qualifiers “}”
qualifiers = qualifier | qualifier “;”

qualifiers
qualifier = generator | filter
generator = pattern “∈” expr
filter = expr

For example, the following equations define a setfather,
given a setparent :: {(Person, Person)} and a setmother
:: {(Person, Person)}, and a recursive setanc:

father = {t | t ∈ parent; not (t in mother)}
anc = parent ∪ {(a, d) | (a, d′) ∈ anc;

(a′, d) ∈ anc; a′ == d′}
Optimisation of set comprehensions is important since

these provide a unifying query formalism for relational,
functional, and deductive languages. For example, the head
of a set comprehension corresponds to the SELECT clause
of an SQL query, the generators correspond to the FROM
clause, and the filters to the WHERE clause. Trinder [Tri89]
gives a translation of the relational calculus into list (as op-
posed to set) comprehensions, [Pat90] notes that DAPLEX
queries are easily translated into set comprehensions, and

in previous papers (e.g. [Pou93]), we have observed the
syntactic and semantic correspondence between set-valued
functions such asfather and anc and the analogous Dat-
alog predicates. However, set comprehensions are just syn-
tactic sugar for nested applications ofsetmap and if . In
the interest of simplicity we give the translation scheme,T
below, only for the case that the patterns in generators are
irrefutable, i.e. the pattern matches all the elements of the
generator set. The interested reader can find the translation
scheme for refutable patterns in [Pou93]. In the translation
equations belowQ denotes a sequence of zero or more qual-
ifiers:

T [[{e|}]] = {T [[e]]}
T [[{e1|e2;Q}]] = if (T [[e2]]) (T [[{e1|Q}]]) {}
T [[{e1|p ∈ e2;Q}]] = setmap (λp.T [[{e1|Q}]]) (T [[e2]])

For example, the definition offather above translates into
the following expression:

setmap (λt.if (not (t in mother)) {t} {}) parent

Three classes of equivalences can be identified for com-
prehensions: those for qualifier interchange, for qualifier in-
troduction/elimination, and for moving qualifiers into nested
set comprehensions. These equivalences can be proved by
translating expressions into the extendedλ-calculus of Sect. 2
and using structural induction. Alternatively, Wadler
[Wad90] explores the relationship between monads and com-
prehensions and derives most of the equivalences below.

The following equivalences for interchanging the qual-
ifiers in set comprehensions have well-known counterparts
for list comprehensions with bag equality [Tri89]:

cmp/1 {e | Q; p1∈ s1; p2∈ s2;Q′}
= {e | Q; p2∈ s2; p1∈ s1;Q′}

if FV(p1) ∩ FV(s2) = FV(p2) ∩ FV(s1) = {}
cmp/2 {e | Q; p ∈ s; f; Q′}

= {e | Q; f; p ∈ s; Q′}
if FV(p) ∩ FV(f) = {}

cmp/3 {e | Q; f; g; Q′}
= {e | Q; g; f; Q′}

cmp/1 states that generators can be interchanged. It follows
directly from setmap/4 and has the same proviso ons1 and
s2provided also thatp1 andp2 are irrefutable. In the case of
refutable patterns, the equivalence may fail to hold for non-
empty sets, too; e.g.{x |x ∈ {⊥}; (1, y) ∈ {(2, 3)}} = {⊥},
whereas{x | (1, y) ∈ {(2, 3)}; x ∈ {⊥}} = {}. cmp/2 states
that a generator and a filter can be interchanged, and it
requires both thats is finite and thatf terminates, other-
wise non-termination may be introduced. Of course, if we
do not mind improving the termination properties of an ex-
pression, the rule may be used in a right-to-left direction if
s is known to be finite, and in a left-to-right direction iff
is known to terminate. cmp/3 states that two filters can be
interchanged. Its proof requires if/1 and and/1, and conse-
quently this equivalence holds only iff fails to terminate
wheneverg does.

Numerous equivalences can be identified for eliminating
qualifiers, of which the following is a representative sample:

cmp/4 {e | Q; f ; g; Q′}
= {e | Q; f and g; Q′}

126

cmp/5 {e | Q; x ∈ {e′}; Q′}
= {e[e′/x] | Q; Q′[e′/x]}

if x 6∈ BV (Q′)
= {e | Q; Q′[e′/x]}

if x ∈ BV (Q′)
cmp/6 {e | Q; p ∈s1; p in s2; Q′}

= {e | Q; p ∈ (s1 inter s2); Q′}
if FV (p) ∩ FV (s2) = {}

cmp/4 states that two filters can be compressed into one; its
proof follows directly from if/1. cmp/5 states that a generator
over a singleton can be eliminated; its proof follows from
the semantic soundness ofβ-reduction. cmp/6 states that a
filter can be eliminated; its proof follows from the definition
of inter and only holds if boths1 ands2 are finite.

The third set of equivalences governs the moving of qual-
ifiers into and out of nested set comprehensions:

cmp/7 {e | Q; p ∈ s; Q′}
= {e | Q; p ∈ {p | p ∈ s}; Q′}

cmp/8 {e | Q; p ∈ {p | Q′}; f; Q′′}
= {e | Q; p ∈ {p | Q′; f}; Q′′}

if FV (f) ⊆ FV (p)

More sophisticated forms of these are:

{e | Q; p ∈ s; Q′} = {e | Q; p ∈ {p′ | p′ ∈ s}; Q′}
{e | Q; p ∈ {p′ | Q′}; f; Q′′}= {e | Q; p ∈ {p′ | Q′; f ′}; Q′′}
wherep′ is obtained fromp by a renaming of variables, and
f ′ is obtained fromf by the same renaming.

4.2 Transformation of set comprehensions

The following equivalences are added to steps 1–6 of
Sect. 3.3 in order to cater for set comprehensions:

1. Split up complex filter conditions using cmp/4.
2. Perform filters as early as possible using cmp/2 and

cmp/3.
3. None added.
4. Eliminate redundant qualifiers using cmp/4-6.
5. None added.
6. Interchange groups consisting of a generator and its de-

pendent filters using cmp/1-3 (based on physical-level
knowledge).

There is however an additional seventh step, which is illus-
trated in our second example below:

7. Pass filters into preceding, nested, set comprehensions
using cmp/8, where they can subsequently be incorpo-
rated into the optimisation of the nested expression.

We illustrate these equivalences via two queries. The first
requires the countries of women competitors who won alpine
events. A naive formulation iterates through all countries,
events, results and competitors, and then specifies the join
condition:

{c | c ∈ allCountry; (ev,cat)∈ events; (ev′,(n:ns))∈ results;
(num,name,sex,cc)∈ comps;ev′ == ev and cat== Alpine
and num== n and sex== Female and cc== c}

Applying cmp/4 in a right-to-left direction, followed by a
promotion of filters, gives:

{c | c ∈ allCountry; (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results;ev′ == ev;
(num,name,sex,cc)∈ comps; num== n; sex== Female;
cc== c}

Interchange of groups of generators and their dependent fil-
ters gives:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results;ev′ == ev;
(num,name,sex,cc)∈ comps; num== n; sex== Female;
c ∈ allCountry; cc== c}

or, alternatively:

{c | (num,name,sex,cc)∈ comps; sex== Female;
c ∈ allCountry; cc== c;
(ev′,(n:ns))∈ results; num== n;
(ev,cat)∈ events; cat== Alpine; ev′ == ev}

Compressing filters, and removingc∈ allCountry; cc== c by
using in/2, followed by cmp/6 and all/2, gives the following
for the first of these alternatives:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results;ev′ == ev;
(num,name,sex,cc)∈ comps;
num== n and sex== Female; c∈ {cc}}

Finally, using cmp/5 gives:

{cc | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results;ev′ == ev;
(num,name,sex,cc)∈ comps;
num== n and sex== Female}

A similar process for the second alternative gives:

{cc | (num,name,sex,cc)∈ comps; sex== Female;
(ev′,(n:ns))∈ results; num== n;
(ev,cat)∈ events; cat== Alpine andev′ == ev}
The second query requires the competitors sponsored by

Atomic who won alpine events. A naive formulation iterates
through all events, all results and all tuples of a join of
competitors with sponsors over country, and then specifies
a further join condition:

{c | (ev,cat)∈ events; (ev′,(n:ns))∈ results;
(c,spn)∈ {(c,spn)| (c,name,sex,cc)∈ comps;
(spc,spn)∈ sponsors; cc== spc};
spn== Atomic andev′ == ev and cat== Alpine and c== n}

Applying cmp/4 in a right to left direction, followed by filter
promotion, followed by interchange of groups of generators
and their dependent filters, gives two alternatives:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results; ev′ == ev;
(c,spn)∈ {(c,spn)| (c,name,sex,cc)∈ comps;
(spc,spn)∈ sponsors; cc== spc};
spn== Atomic; c== n}

or, alternatively:

127

{c | (c,spn)∈ {(c,spn)| (c,name,sex,cc)∈ comps;
(spc,spn)∈ sponsors; cc== spc}; spn== Atomic;
(ev′,(n:ns))∈ results; c== n;
(ev,cat)∈ events;ev′ == ev; cat== Alpine}

For the first of these alternatives, passing the last two filter
conditions into the preceding set comprehension using cmp/8
gives:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results; ev′ == ev;
(c,spn)∈ {(c,spn)| (c,name,sex,cc)∈ comps;
(spc,spn)∈ sponsors; cc== spc; spn== Atomic; c== n}}

Then performing filter promotion within the nested set ab-
straction followed by filter compression gives:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results; ev′ == ev;
(c,spn)∈ {(c,spn)| (c,name,sex,cc)∈ comps; c== n;

(spc,spn)∈ sponsors; cc== spc and spn== Atomic}}
or:

{c | (ev,cat)∈ events; cat== Alpine;
(ev′,(n:ns))∈ results; ev′ == ev;
(c,spn)∈ {(c,spn)| (spc,spn)∈ sponsors; spn== Atomic;

(c,name,sex,cc)∈ comps; cc== spc and c== n}}
The second alternative is optimised similarly.

4.3 Functions with known inverses

In this section we consider how use may be made of in-
formation about the inverse relationship between pairs of
functions. Such information may be readily available in lan-
guages which use a functional or object-oriented data model,
and may also be available from other sources, e.g. via proofs
supplied by the user [Har92]. In the case of extensional func-
tions, inverses typically correspond to fast access paths pro-
vided by indexes.

Given two one-to-one functionsf :: s → t and f−1 ::
t → s which are inverses of each other, i.e. equivalence
inv/1 below holds, then equivalence inv/2 also holds, by the
definition of in andmap:

inv/1 (f e) == e′ = e == (f−1 e′)
inv/2 (f e) in s = e in (map f−1 s)

For example, if no two competitors at the Winter Olympic
Games have the same name, then inv/1 holds forname of ::
Comp→ Name andcomp no :: Name→ Comp.

Given two functionsf :: s → t and f−1 :: t → {s}
such that inv/3 below holds, then inv/4 also holds, by the
definition of in andsetmap:

inv/3 (f e) == e′ = e in (f−1 e′)
inv/4 (f e) in s = e in (setmap f−1 s)

For example, inv/3 holds forcountry of :: Comp →
Country and team of :: Country → {Comp}.

Finally, given two functionsf :: s → {t} and f−1 ::
t→ {s}, it may be the case that inv/5 holds:

inv/5 e′ in (f e) = e in (f−1 e′)

For example, inv/5 holds forcompetes in :: Comp →
{Event} andcompetitors of :: Event→ {Comp}.

4.4 Transformation of functions with inverses

Equivalences inv/1-5 are applied between steps 1 and 2 of
Sect. 3.3 in order to generate tests for set-membership and
equality on variables, i.e. tests of the formv == e andv in e
wherev is a variable.

We again illustrate the use of these equivalences on our
Winter Olympic Games database, assuming the following
functions and inverses which can be defined in terms of the
base functions of Sect. 2.3:

country of :: Comp→ Country
team of :: Country → {Comp}

//= country of−1; inv/3 and inv/4 applicable
winner :: Event→ Comp
sex :: Comp→ Sex
sex−1 :: Sex→ {Comp}

// inv/3 and inv/4 applicable
category :: Event→ Category
events :: Category → {Event}

//= category−1; inv/3 and inv/4 applicable

The query is the same as the first query of Sect. 4.2, i.e.
‘Which countries have female Alpine gold medalists?’, and
can be expressed as follows:

{c | c ∈ allCountry; comp∈ allComp; e∈ allEvent;
Alpine== (category e) and Female== (sex comp)
and comp== (winner e) and c== (countryof comp)}

Firstly, cmp/4 is repeatedly applied to break up the filter
condition:

{c | c ∈ allCountry; comp∈ allComp; e∈ allEvent;
Alpine== (category e); Female== (sex comp);
comp== (winner e); c== (countryof comp)}

Next, inv/1-5 are applied, and we reach the point:

{c | c ∈ allCountry; comp∈ allComp; e∈ allEvent;
e in (events Alpine); comp in (sex−1 Female);
comp== (winner e); c== (countryof comp)}

at which we have a choice: whether or not to apply inv/1 to
c == (country of comp). If we do not do so, we move on
to the removal of filters using cmp/6:

{c | e∈ allEvent inter (events Alpine);
comp∈ allComp inter (sex−1 Female) inter{winner e};
c ∈ allCountry inter{countryof comp}}

The lower-level optimisations (in particular, all/2) reduce the
size of the sets over which we iterate, giving:

{c | e∈ events Alpine;
comp∈ (sex−1 Female) inter{winner e};
c ∈ {countryof comp}}

Finally, application of cmp/5 gives the first query plan:

{countryof comp| e∈ events Alpine;
comp∈ (sex−1 Female) inter{winner e}}

Alternatively, applying inv/1 again gives:

{c | c ∈ allCountry; comp∈ allComp; e∈ allEvent;
e in events Alpine; comp in (sex−1 Female);
comp== (winner e); comp in (teamof c)}

128

and removing the filters using cmp/6 gives:

{c | c ∈ allCountry; e∈ allEvent inter (events Alpine);
comp∈ allComp inter (sex−1 Female)
inter {winner e} inter (teamof c)}

Again, all/2 reduces the size of the sets over which we iter-
ate, giving a second query plan:

{c | c ∈ allCountry; e∈ events Alpine;
comp∈ (sex−1 Female) inter{winner e}
inter (teamof c)}
These two query plans differ only in that the extra use of

inv/1 during the construction of the second query plan did
not allow the iteration throughallCountry to be eliminated.
Thus, it is likely that the first plan would be chosen for
execution after applying some physical-level heuristics. We
finally observe that both query plans correspond to the first
plan of Sect. 4.2 for the same query. The second plan of
Sect. 4.2 is not generated here due to the non-availability of
an inverse for thewinner function.

5 Equivalences for the bag type

We now investigate extending the equivalences developed
above to the analogous operators over bags. Bags differ from
sets in that an occurrence count is associated with each mem-
ber of the bag. In this respect bags are similar to lists, but
with a list the order of its members is significant of course.
Analogously to sets, bags are created from: (i) the empty
bag, which we represent by〈〉, (ii) singleton bags, which we
represent by〈e〉, and (iii) unions of (i) and (ii).

We represent the type consisting of bags of elements of
type t by 〈t〉. We denote the least element of a type〈t〉 by
〈⊥〉. In contrast to set types, this isnot the same bag as the
singleton bag〈⊥t〉 consisting of one occurrence of the least
element of typet. There can only be one instance of⊥ within
a bag, but any number of instances of⊥t. The presence of
⊥ indicates that the cardinality of the bag is not defined
c.f. the length of a list with tail⊥. We formally define the
information-wise ordering over bags in the Appendix.

5.1 Operators over bags

By analogy to sets, the three fundamental operators over
bags are:

〈 〉 :: a→ 〈a〉
∪B :: 〈a〉 → 〈a〉 → 〈a〉
φB :: (a→ b) → (b→ b→ b) → b→ 〈a〉 → b

The first of these operators maps its argument,e, to the
singleton bag,〈e〉; bag union,∪B , is additive with respect
to the cardinalities of all elements other than⊥; andφB has
the following semantics:

φB f op e 〈〉 = e
φB f op e 〈x〉 = if (x = ⊥) ⊥ (f x)
φB f op e (b ∪B b′) = op (φB f op e b) (φB f op e b′)

In order for this definition to have a unique meaning,op and
e must satisfy the first three of the four conditions given for
φ in Sect. 2.2, but since∪B is not idempotent the fourth
condition forφ need not hold.

We can construct a bag consisting ofn occurrences of a
given valuee by:

mk bag :: Num→ a→ 〈a〉
mk bag n e= if (n > 0) (〈e〉 ∪B (mk bag (n− 1) e)) 〈〉

φB can be used to define cardinality and membership
operators over bags of arbitrary type, and a summation op-
erator over bags of numbers:

cardinality b = φB (λx.1) (+) 0 b
sum b = φB (λx.x) (+) 0 b
x in b = φB ((==) x) (∨) False b

We can convert between bags and lists as follows, but
note thatbag to list returns⊥ for infinite bags:

bag to list = φB (λx.[x]) (λl.λl′.(sort (l + + l′))) []
list to bag = foldl (λx.〈x〉) (∪B) 〈〉
We can usebag to list to extend the comparison operators
==, <, <=, etc., to work over bags. Sincebag to list de-
pends onsort these functions will return⊥ if applied to
higher-order or infinite bags. We can also define a function
unique which removes duplicates from a finite bag by con-
verting the bag to a list, removing duplicates, and converting
back to a bag:

unique = list to bag ◦ remove duplicates
◦ bag to list

Note that it is not in general possible to devise a function
that removes duplicates from an infinite bag.

We can convert between bags and sets as follows:

bag to set = φB (λx.{x}) (∪) {}
set to bag = φ (λx.〈x〉) (λb.λb′.unique (b ∪B b′)) 〈〉
Thus infinite bags can be converted to sets but only finite sets
to bags. Finally, the following equivalences can be shown
to hold over the various conversion operators, provided in
each case thatxs is finite:

conv/1 (list to set ◦ set to list) xs = xs
conv/2 (bag to set ◦ set to bag) xs = xs
conv/3 (list to bag ◦ bag to list) xs = xs

The analogue ofsetmap is bagmap, where

bagmap f = φB f (∪B) 〈〉
bagmap can be used to support bag comprehensions with
the following syntax, where the translation is analogous to
that for sets, but usingbagmap rather thansetmap:

bag comprehension = “〈” expr “ |” qualifiers “〉”
bagmap can also be used to define analogues formap,
filter andjoin that operate over possibly inifite bags:

map f b = bagmap (λx.〈f x〉) b
filter f b = bagmap (λx.if (f x) 〈x〉 〈〉) b
join f g s s′ = bagmap (λx.bagmap (λy.if (f (x, y))

〈g(x, y)〉 〈〉) s′) s

129

Given filter, we can determine the number of occurrences
of a given element in a bag:

count b e = cardinality (filter (λx.((==) e)) b)

Bag difference, i.e. themonus operator of [Lib93], can then
be defined as follows:

b monus b′ = 〈y | x ∈ unique (b ∪B b′);
y ∈ mk bag
((count b x) − (count b′ x)) x 〉

andsub bag and intersection are just:

b sub bag b′ = (b monus b′) == 〈〉
b inter b′ = b monus (b monus b′)

Note thatmonus, and by extensionsub bag andinter, will
return〈⊥〉 if either b or b′ is infinite.

5.2 Equivalences

∪B and inter are both commutative and associative, i.e.
they satisfy the analogues of∪/1, ∪/2, ∩/1 and∩/2. Clearly,
∪/3 does not hold for bag union. Neither do∩/3 and−/1,
e.g. puts = s′ = s′′ = 〈1〉.

Interpretingminus asmonus and⊆ as bag containment,
equivalences∩/4, −/2 and−/3 hold subject to the same
provisos. Equivalences in/1, in/2 and in/3 also hold as does
in/4 with the same provisos. However, in/5 does not hold
e.g. pute = 1, s = 〈1, 1〉 ands′ = 〈1〉.

Interpretingsetmap asbagmap, setmap/1 and setmap/2
hold as does setmap/4 subject to the same provisos. How-
ever, setmap/3 does not hold e.g. puts = 〈1, 1〉, s′ = 〈1〉,
e = 〈True〉, e′ = 〈False〉.

The analogues of map/*, filter/* and join/* hold, sub-
ject to the same provisos. Finally, of the equivalences for
comprehensions, only cmp/6 does not hold for bag compre-
hensions e.g.〈x | x ∈ 〈1, 1〉; x in 〈1〉〉 = 〈1, 1〉, whereas
〈x | x ∈ 〈1, 1〉 inter 〈1〉〉 = 〈1〉.

6 Related work

Our framework draws considerably from Breazu-Tannen et
al. (1991) who proposed a programming paradigm based
upon structural recursion over sets. A major motivating fac-
tor behind this paradigm is that it facilitates the optimi-
sation of database programs. Indeed, several optimisations
are stated, including filter/2, filter/3 and join/2 above, while
structural induction is used as a proof technique. However,
this research is in the context of terminating functions over
finite sets. In contrast, we have richer semantic domains
which include⊥, and can thus address termination issues;
we also allow for the possibility that sets may be infinite.
We have also investigated equivalences expressed at several
levels of abstraction.

Cluet and Delobel (1992) propose a query optimisation
formalism forO2 based upon classes and algebraic query
rewriting. One assumption made is that methods have no
side-effects, although it would seem difficult in practice to
guarantee that this condition holds. A select-project-join al-
gebra is discussed, and the introduction of types into alge-
braic expressions facilitates its optimisation by allowing the

introduction of functions that enumerate the constants of a
type. Our use of the functionsallT and the equivalences
inv/1-5 is analogous. The approach of [Clu92] retains a sep-
aration of DML and programming language; thus, the pos-
sibility of non-termination or infinite data structures are not
considered.

Several others have introduced object algebras and strate-
gies for their optimisation [Dem94, Lie92, Sha89, Sto91,
Van91] with analogous equivalences to those we propose
here. In general, these algebras are either computationally
incomplete, or support optimisations for only a subset of
their operators. Also, some provide only limited facilities
for optimising user-defined data types, while others allow
few algebraic transformations to be applied to an expression
without changing its value.

The optimisation of functional database languages has
been examined by several other researchers (e.g. [Tri89,
Bee90, Erw91, Pat90, Hey91]). Trinder [Tri89] advocates
analogues of cmp/1-3 for list (as opposed to set) compre-
hensions. These equivalences are justified by assuming bag
equality over lists. Implicit assumptions made are that lists
are finite (otherwise, the equivalent of cmp/1 would not hold,
for example) and that functions over their elements are ter-
minating (otherwise cmp/3 would not hold). Trinder also
proposesfilter hiding, which corresponds to a combination
of our cmp/7 and cmp/8. [Hey91], too, is concerned with
the optimisation of list-valued expressions, and in this con-
text proposes combining unary expressions (analogous to our
map/1 and filter/1-3), eliminating iteration over functions of
the form allT , and using information regarding indexes to
select preferred query paths. [Pat90] discusses the optimi-
sation of DAPLEX queries, essentially using cmp/1-3 and
inv/1-5. [Bee90, Erw91] discuss the optimisation of FP-like
functional database languages, also highlighting the suitabil-
ity of using functional languages for DBPL optimisation. In
particular, [Erw91] develops equivalences over map, filter
and aΦ-like aggregation operator in the context of strict
functions over finite sets; a set of equivalences over inverse
functions are also given, including inv/1, and others that we
have not discussed here.

With respect to previous work on bags, Albert (1991)
defines two bag operators,∪ and ∩, which reduce to set-
theoretic union and intersection when restricted to bags with-
out duplicates. He explores the relationship between∪, ∩
and two further operators,t and\, which correspond to our
∪B and monus, respectively. A number of equivalences
are developed for applications offilter over bags, some of
which generalise to our language but others of which re-
quire caveats on the finiteness of the bags and/or the filter
conditions.

Libkin and Wong (1993) investigate the power of query
languages over bags and give comprehensive references to
other work on the expressiveness of bag query languages.
However, they do not consider termination issues, and thus
define an information-wise ordering over bags which does
not explicitly take into account the presence or absence of
the element⊥ in a bag.

Finally, the optimisation of agggregation functions is a
topic of recent interest (e.g. [Cha94]). For example, it is
possible to push a maximise or minimise operation into a
set comprehesion:

130

max {x | Q; x ∈ s} = max {max s | Q}
min {x | Q; x ∈ s} = min {min s | Q}
As we would expect, the bag data type is more amenable
to aggregation optimisations than the set data type. In par-
ticular, it is interesting to note that by defining bag aggre-
gation operations (such ascardinality andsum in Sect. 5
above) in terms ofφB we automatically obtain several of the
equivalences given in [Cha94]. For example, we can push
summation through bag union since:

sum (b ∪B b′) = φB (λx.x) (+) 0 (b ∪B b′)
= (φB (λx.x) (+) 0 b)

+ (φB (λx.x) (+) 0 b′)
= (sum b) + (sum b′)

We can similarly push cardinality through bag union.

7 Conclusion

We have investigated algebraic query optimisation tech-
niques in the context of a functional DBPL furnished with
a set bulk data type. We have examined the extent to which
prior work on the optimisation of relational languages can
be utilised. The declarative nature of our language has en-
abled us to avoid the problems associated with side-effects,
whilst its well-defined semantics provides a framework in
which to show formally termination properties of expres-
sions and equivalences between expressions. We have identi-
fied caveats to several well-known equivalences in this richer
computational paradigm. For processing tasks such as aggre-
gation and transitive closure, our optimisations can be fully
exploited for all sub-expressions of a query, since there is
no dichotomy between the optimisation of ‘programs’ and
‘DML statements’.

Although developed in the context of a functional lan-
guage, our findings are directly applicable to other DBPLs
operating over sets and/or bags. Conversely, we can incor-
porate equivalences discovered by others into our formal-
ism. Finally, although we have concentrated upon showing
equivalences relevant to the set and bag data types, the same
approach can be used for other, possibly user-defined, data
types – see for example the equivalences shown in [Bir88]
for list and tree data types.

From our findings in Sects. 3.2 and 4.1, it is clear that the
user must be provided with sophisticated tools if they are to
aid the optimisation process. Such tools have already been
developed for functional languages; examples being strict-
ness analysis [Cla85] and Cambridge LCF [Pau87], which
can be used to prove properties of expressions such as equiv-
alence and termination. It is also clear that further work re-
mains to be done into physical-level heuristics for reducing
the query search space.

Another important issue is the optimisation of retrieval
from recursively defined sets. For example, consider the
functionsparent andanc given in Sect. 4.1. There are sev-
eral ways in which the functionanc can be used, depending
upon whether we are searching for specified values of the
first and/or the second component of its tuples. For example,
we can pose queries which find Janet’s descendants and the
ancestors of Republican presidents, respectively:

{d | (a, d) ∈ anc; a == Janet}
{a | (a, d) ∈ anc; (president d) and (republican d)}
In [Pou93], we proposed the use of a class of functions
calledselectors which generalise the inverse functions of a
functional data model by allowing associative look-up into
n-ary, as opposed to just binary, relations. We proposed a
magic-sets-like rewriting of set-valued functions given spe-
cific binding patterns, or adornments. For example, for the
parent andanc functions the possible adornments are (φ, φ),
(φ, β), (β, φ) and (β, β), whereβ denotes ‘bound’ andφ de-
notes ‘free’. When rewritten,anc gives rise to the following
selectors for the (β, φ)- and (φ, β)-adornments, where the
argumentp is a predicate corresponding to theβ-adornment
which tuples must satisfy:

anc(β,φ) :: (Person→ Bool) → {Person}
anc(β,φ) p = parent(β,φ) p ∪

{z | y ∈ anc(β,φ) p; z ∈ anc(β,φ) ((==) y)}

anc(φ,β) :: (Person→ Bool) → {Person}
anc(φ,β) p = parent(φ,β) p ∪

{x | y ∈ anc(φ,β) p; x ∈ anc(φ,β) ((==) y)}
Often the predicatep will simply be a test for equality with
a given value, but more generally it can beany boolean-
valued function. In particular, the two queries above rewrite
to:

anc(β,φ) ((==) Janet)
anc(φ,β) (λx.(president x) and (republican x))

It remains to be shown formally that our rewriting scheme
for pushing selection through recursion can only improve
the termination properties of expressions. Finally, it also re-
mains to be seen how much of the work that has been done
on combining optimisation methods for recursion and aggre-
gation [Gan91] we can adopt.

Acknowledgements.We are grateful to the anonymous referees for their
pertinent remarks on a previous version of this paper. The work described
here has been supported by the U.K. Engineering and Physical Sciences
Research Council (grant no. GR/J 48818).

Appendix

In our language the computation of a set commences with
no information about the set. The set becomes successively
better-defined through the introduction of new elements or
through the better approximation of existing elements. The
computation terminates when no more elements can be
added and existing elements can be refined no further.

The Plotkin powerdomain[Plo76, Sch86] is commonly
used to model this kind of computation. Specifically, the
Plotkin powerdomain,P (t), over a typet consists of sub-
sets of t that represent all the possible results of a non-
deterministic or parallel computation with a finite number of
alternative paths at each branch point. The information-wise
ordering on two setsA ,B ∈ P (t) is defined as follows:

A vP (t) B iff ∀a ∈ A.∃b ∈ B.a vt b and
∀b ∈ B.∃a ∈ A.a vt b

131

If t is an enumerated type, the members ofP (t) are
non-empty subsets oft that are either finite or contain⊥t.
Thus, the least element ofP (t) is {⊥t}. The empty set is not
an element ofP (t) since all non-deterministic computations
must havesomeresult, even if this is just non-termination,
⊥t. Also, infinite sets contain⊥t because if a computation
returns infinitely many results it executes for ever.

If t is a structured type, non-equal subsets oft may con-
vey the same information, in which case they become iden-
tified in P (t). For example,{{True,⊥}, {True, False,⊥},
{True, False}} v {{True,⊥}, {True, False}} and
{{True,⊥}, {True, False}} v {{True,⊥}, {True,
False,⊥}, {True, False}}, so these two sets are indistin-
guishable inP (P (Bool)). Generally, onlyconvex closures
of subsets oft are distinct elements ofP (t) i.e. a subset
containing two elementsx v z is equivalent to one also
containing ally such thatx v y v z. A formal treatment of
this concept can be found in Plotkin’s original paper [Plo76].

The Plotkin powerdomain is clearly indicated to model
our computation of sets. However, we also allow the pos-
sibility of a set-valued function returning an empty set,
and so the structure of a set type over a typet is a co-
alesced sum[Sch86] of P (t) with a two-element domain
Empty(t) = {⊥, {}} representing the empty set of typet.
The coalesced sum is so called because the least elements
of its summands (in this case{⊥t} from P (t) and⊥ from
Empty(t)) coalesce to form the least element of the sum.
We use the least element ofP (t), {⊥t}, to denote the least
element of the overall set type{t}. Figure 1 shows the struc-
ture of the{Bool} domain.

Analogously to sets, the computation of a bag com-
mences with no information about the bag i.e. the element
〈⊥〉. The bag becomes successively better defined through
the introduction of new elements or through the better ap-
proximation of existing elements. The computation termi-
nates when no more elements can be added and existing
elements can be refined no further.

The partial ordering on bags is simpler than that on sets
since duplicate elements are allowed and so convex closures
are not needed. Given two bagsA ,B ∈ 〈t〉, we say that a
mappingψ : A→ B is information-preservingif a vt ψ(a)
for all a ∈ A. The ordering on bags is then defined as
follows:

A v〈t〉 B iff ⊥ 6∈ A,⊥ 6∈ B and ∃ an
information-preserving bijection
ψ : A→ B

or ⊥ ∈ A and ∃ an
information-preserving injection
ψ : (A \ {⊥}) → (B \ {⊥})

The first clause of this definition deals with bags that have
a defined number of elements: such a bag,A, can become
better-defined only by making its individual elements better-
defined. The second clause of the definition deals with the
case that the number of elements inA is undefined, in which
caseA can become better-defined by (a) defining the number
of elements (in which case there is no⊥ in B), (b) adding
more elements, (c) making existing elements better-defined,
or (d) combinations of (a), (b) and (c).

As a consequence of this definition, for any two bags
A, B such that⊥ 6∈ A and⊥ ∈ B we haveA 6v B. Also,

Fig. 1. Structure of the{ Bool } domain

Fig. 2. Structure of the〈 Bool 〉 domain

the only other bag that the empty bag,〈〉, is comparable with
is the least bag〈⊥〉 (where〈⊥〉 v 〈〉). Figure 2 shows the
structure of the〈Bool〉 domain.

References

1. Albert J (1991) Algebraic properties of bag data types. In: Proc 17th
VLDB, Barcelona, September, pp 211-219

2. Augustsson L (1984) A compiler for lazy ML. In: Proceedings of
the ACM Symposium on Lisp and Functional Programming, Austin,
August, pp 218-27

3. Bancilhon F, Briggs T, Khoshafian S, Valduriez P (1987) FAD, a pow-
erful and simple database language. In: Proc 13th VLDB, Brighton,
September, pp 97-106

4. Beeri C, Kornatzky Y (1990) Algebraic optimization of object-oriented
query languages. In: Abiteboul S, Kanellakis PC (eds) ICDT ’90. (Lec-
ture notes in computer science, vol 470) Springer, Berlin Heidelberg
New York, pp 72-88

5. Beeri C, Milo T (1992) Functional and predicative programming in
OODBs. In: Proc ACM PODS, San Diego, June, pp 176-190

6. Bird R, Wadler P (1988) Introduction to functional programming,
Prentice-Hall, Englewood Cliffs, NJ

7. Breazu-Tannen V, Buneman P, Naqvi S (1991) Structural recursion as
a query language. In: Proc 3rd DBPL, Nafplion, August, pp 9-19

8. Burstall RM, Darlington J (1977) A transformation system for devel-
oping recursive programs. JACM 24:44-67

9. Chaudhuri S, Shim K (1994) Including group-by in query optimisation.
In: Proc 20th VLDB, Santiago, September, pp 354-366

10. Clack C, Peyton-Jones S (1985) Strictness analysis – a practical ap-
proach. In: Jouannaud J-P (ed) Functional Programming Languages
and Computer Architecture: proceedings. (Lecture notes in computer
science, vol 201) Springer, Berlin Heidelberg New York, pp 33-49

11. Cluet S, Delobel C (1992) A general framework for the optimization
of object-oriented queries. In: Proc ACM SIGMOD, San Diego, June,
pp 383-392

132

12. Demuth B, Geppert A, Gorchs T (1994) Algebraic query optimisation
in the CoOMS structurally object-oriented database system. In: Query
processing for Advanced Database Systems. Freytag JC, Maier D,
Vossen G (eds) Morgan Kaufman, San Mateo, Calif

13. Erwig M, Lipeck U (1991) A functional DBPL revealing high level
optimizations. In: Proc 3rd DBPL, Nafplion, August, pp 306-321

14. Freytag JC, Goodman N (1989) On the translation of relational queries
into iterative programs. ACM Trans Database Syst 14:1-27

15. Ganguly S, Greco S, Zaniolo C (1991) Mininum and maximum pred-
icates in logic programming. In: Proc ACM PODS, Denver, May, pp
154-163

16. Harrison P, Khoshnevisan H (1992) The mechanical transformation of
data types. Comput J 35:138-147

17. Heytens ML, Nikhil RS (1991) List comprehensions in Agna, a parallel
persistent object system. In: Hughes J (ed) Functional Programming
Languages and Computer Architecture: Proceedings. (Lecture notes in
computer science, vol 523) Springer, Berlin Heidelberg New York, pp
569-591

18. Hindley JR, Seldin JP (1986) Introduction to combinators andλ-
calculus. Cambridge University Press, Cambridge, UK

19. Jarke M, Koch J (1984) Query optimisation in database systems. ACM
Comput Surv 16:111-152

20. Johnsson T (1984) Efficient compilation of lazy evaluation. In: Pro-
ceedings of the ACM Conference on Compiler Construction, Montreal,
June, pp 58-69

21. Libkin L, Wong L (1993) Some properties of query languages for bags.
In: Beeri C, Ohori A, Shasha D (eds) Proceedings of the 4th DBPL,
New York. (Workshops in Computing) Springer, Berlin Heidelberg
New York, pp 97-114

22. Lieuwin D, Dewitt D (1992) A transformation-based approach to op-
timizing loops in database programming languages. In: Proc ACM
SIGMOD, San Diego, June, pp 91-100

23. Ohori A, Buneman P, Breazu-Tannen, V (1989) Database programming
in Machiavelli – a polymorphic language with static type inference. In:
Proc ACM SIGMOD, Portland, June, pp 46-57

24. Paton NW, Gray PMD (1990) Optimising and executing DAPLEX
queries using Prolog. Comput J 33:547-555

25. Paulson LC (1986) Logic and computation: interactive proof with Cam-
bridge LCF. Cambridge University Press, Cambridge, UK

26. Peyton-Jones SL (1987) The implementation of functional program-
ming languages, Prentice-Hall, Englewood Cliffs, NJ

27. Plotkin G (1976) A power-domain construction. SIAM J Comput
5:452-487

28. Poulovassilis A, Small C (1993) A domain-theoretic approach to inte-
grating logic and functional database languages. In: Proc 19th VLDB,
Dublin, August, pp 416-428

29. Schmidt DA (1986) Denotational semantics. Allyn and Bacon, Need-
ham Heights, Mass

30. Shaw GB, Zdonik SB (1989) An object-oriented query algebra. In:
Proc 2nd DBPL, Oregon, June, pp 103-112

31. Stonebraker M (1991) Managing persistent objects in a multi-level
store. In: Proc ACM SIGMOD, Denver, May, pp 2-11

32. Trinder P (1989) A functional database. DPhil thesis, Oxford Univer-
sity

33. Ullman JD (1989) Principles of database and knowledge-base systems,
vol 2. Computer Science Press, New York

34. Vandenburg SL, DeWitt DJ (1991) Algebraic support for complex ob-
jects with arrays, identity and inheritance. In: Proc ACM SIGMOD,
Denver, May pp 158-167

35. Wadler P (1990) Comprehending monads. In: Proc ACM Conference
on Lisp and Functional Programming, Nice, June, pp 61-78

