# Algebraic query optimisation for database programming languages 

Alexandra Poulovassilis ${ }^{1}$, Carol Small ${ }^{2}$<br>1 Department of Computer Science, King's College London, Strand, London WC2R 2LS, UK; e-mail: alex@dcs.kcl.ac.uk<br>${ }^{2}$ Department of Computer Science, Birkbeck College, Malet St., London WC1E 7HX, UK; e-mail: carol@dcs.bbk.ac.uk

Edited by Matthias Jarke, Jorge Bocca, Carlo Zaniolo. Received September 15, 1994 / Accepted September 1, 1995


#### Abstract

A major challenge still facing the designers and implementors of database programming languages (DBPLs) is that of query optimisation. We investigate algebraic query optimisation techniques for DBPLs in the context of a purely declarative functional language that supports sets as firstclass objects. Since the language is computationally complete issues such as non-termination of expressions and construction of infinite data structures can be investigated, whilst its declarative nature allows the issue of side effects to be avoided and a richer set of equivalences to be developed. The language has a well-defined semantics which permits us to reason formally about the properties of expressions, such as their equivalence with other expressions and their termination. The support of a set bulk data type enables much prior work on the optimisation of relational languages to be utilised.


In the paper we first give the syntax of our archetypal DBPL and briefly discuss its semantics. We then define a small but powerful algebra of operators over the set data type, provide some key equivalences for expressions in these operators, and list transformation principles for optimising expressions. Along the way, we identify some caveats to well-known equivalences for non-deductive database languages. We next extend our language with two higher level constructs commonly found in functional DBPLs: set comprehensions and functions with known inverses. Some key equivalences for these constructs are provided, as are transformation principles for expressions in them. Finally, we investigate extending our equivalences for the set operators to the analogous operators over bags. Although developed and formally proved in the context of a functional language, our findings are directly applicable to other DBPLs of similar expressiveness.

Key words: Query optimisation - Functional languages Database programming languages - Database management - Algebraic manipulation

## 1 Introduction

Database programming languages (DBPLs) incorporate into a single language, with a single semantics, all of the features normally expected of both a data manipulation language (DML) and a programming language. For example, DBPLs have one computational model, one type system, and bulk data types with associated access mechanisms. A major challenge still facing DBPLs is that of query optimisation. There are several reasons for limited progress in this area:

1. The possibility of side-effects restricts the set of equivalences that can be shown to hold.
2. Some bulk data types are inherently hard to optimise. For example, lists only readily support the common relational optimisations if the concept of bag equality is used [Tri89] (i.e. lists are equal if they contain the same elements, although possibly in different orders).
3. Since DBPLs are computationally complete, the termination properties of expressions must be taken into account when investigating equivalences. For example, if the boolean-valued function $f_{1}$ does not terminate for some arguments, whilst the boolean-valued function $f_{2}$ returns False for all arguments, then the 'equivalence' $\sigma_{f_{1}}\left(\sigma_{f_{2}}(s)\right)=\sigma_{f_{2}}\left(\sigma_{f_{1}}(s)\right)$ does not hold since evaluation of the left-hand side always terminates for finite $s$ (returning $\}$ ), whereas evaluation of the right-hand side may not terminate.
4. DBPLs may manipulate infinite data structures and hence some bulk data operations cannot be implemented using established methods. For example, if $A$ and $B$ are infinite sets then a nested loop method cannot be used to generate $A \times B$ (for, otherwise, all tuples of the resulting product would have the same first coordinate).
5. DBPLs typically support user-defined data types, and hence require mechanisms to prove equivalences over these data types, too.
6. The computational completeness of DBPLs means that a greater variety of optimisation techniques can be applied than for typical DMLs - ranging from peep-hole optimisations to algebraic techniques and program transformation - and integrating these techniques is an open problem.

In this paper, we investigate optimisation techniques for DBPLs by addressing some of the above issues. We undertake our investigation in the context of a purely declarative functional language. Since database algebras are functional in nature, this is a particularly natural computational paradigm to investigate query optimisation in DBPLs. It also gives us a computationally complete formalism that can exhibit non-termination of expressions (point 3 above) and that can result in infinite data structures (point 4 above), whilst avoiding the issue of side-effects (point 1 above). The language supports a set bulk data type, enabling us to utilise much prior work on the optimisation of relational languages, including Datalog (point 2 above). The language has a welldefined semantics which permits us to reason formally about the properties of expressions, including those of user-defined data types, such as their equivalence with other expressions and their termination properties (point 5 above). Finally, with respect to point 6 above, this paper addresses algebraic optimisation techniques which are complementary to, and can be used in conjunction with, existing peep-hole [Aug84, Joh84] and program transformation [Bur77] techniques for functional languages.

The structure of the paper is as follows. In Sect. 2 we give the syntax of our language and discuss its semantics and its provision for built-in and user-defined functions. In Sect. 3 we define a small but powerful algebra of operators over the set data type, provide some key equivalences for expressions in these operators, and list transformation principles for optimising expressions. Along the way, we identify some caveats to well-known equivalences for nondeductive database languages. In Sect. 4 we examine two higher level constructs commonly found in DBPLs - set comprehensions and functions with inverses. We also provide some key equivalences for these constructs, and give transformation principles for expressions in them. In Sect. 5 we investigate extending the equivalences for the set operators to the analogous operators over bags. In Sect. 6 we briefly compare this work with related research. Finally, in Sect. 7 we give our conclusions and indicate directions of further work.

## 2 The language

The formal foundation of any functional language is the $\lambda$ calculus [Hin86]. Expressions in this calculus have the following syntax:

```
expr \(=\) var \(\mid\) primitive \(\mid\) " \(\lambda\) "var"."expr \(\mid\) expr \(_{1}\) expr \(_{2} \mid\)
    "("expr")"
```

An occurrence of a variable $x$ is bound in an expression $e$ if it occurs in a sub-expression of $e$ of the form $\lambda x . e^{\prime}$; otherwise it is free in $e . F V(e)$ and $B V(e)$ denote the set of variables with at least one free and bound, respectively, occurrence in $e$.

Computation in the $\lambda$ calculus proceeds by syntactically transforming terms using $\beta$ - and $\eta$-reduction. $\beta$-reduction rewrites a function application of the form $(\lambda x . e) e^{\prime}$ to the expression $e\left[e^{\prime} / x\right]$ obtained by replacing all free occurrences of $x$ in $e$ by $e^{\prime} . \eta$-reduction rewrites an application ( $\lambda x . e x$ ) to $e$, provided that $x \notin F V(e)$. The denotational semantics
of the $\lambda$-calculus (see [Sch86]) assigns to each expression a value in a semantic domain - this is the meaning of the expression. $\beta$ - and $\eta$-reduction are semantically sound, in that they do not alter the meaning of an expression.

The language that we will be optimising is the $\lambda$-calculus extended with constructors, let expressions and patternmatching $\lambda$-abstractions:

```
expr \(=v a r \mid\) constructor \(\mid\) primitive \(\mid\)
    " \(\lambda\) "pattern"."expr | expr \({ }_{1}\) expr \(_{2} \mid\)
    "let"var "=" expr \({ }_{1}\) "in" expr \({ }_{2} \mid\) "("expr ")"
pattern \(=\) var \(\mid\) constructor pattern \(_{1} \ldots\) pattern \(n_{n}\)
```

where tuples $\left(e_{1}, \ldots, e_{n}\right)$ are regarded as applications of an n -ary constructor Tuple $e_{n}$ to $n$ arguments $e_{1}, \ldots, e_{n}$. We use $x, y, z$ for denoting variables, $p, q, r$ for patterns, and $e, e^{\prime}$ for expressions. This extended $\lambda$-calculus is straight-forwardly mapped into the (ordinary) $\lambda$-calculus (see [Pey87]). In particular, let $x=e^{\prime}$ in e translates into ( $\left.\lambda x . e\right) e^{\prime}$. The semantic soundness of $\beta$ reduction thus gives the first equivalence:
let $/ 1 \quad$ let $x=e^{\prime}$ ine $=e\left[e^{\prime} / x\right]$
This equivalence can be used to abstract common subexpressions when used in a right-to-left direction, and to expand definitions in place when used in a left-to-right direction. The former operation will typically be useful at the end of the query transformation process, while the latter will be useful at its outset in order to generate an overall expression to optimise.

Functions are defined by equations of the form $f=e$. If $f \in F V(e)$, i.e. if $f$ is recursively defined, the meaning (or value) of $f$ is given by the least fixed point of the higher-order (and non-recursive) function $\lambda$ f.e. This meaning may just be non-termination for some arguments, so the semantic domain contains for each type $t$ an element $\perp_{t}$ which denotes 'no information' and represents a nonterminating computation (sometimes we omit the type subscript $t$ when it can be inferred from context). For example, the boolean type consists of the elements, True, False and $\perp_{\text {Bool }}$, where $\perp_{\text {Bool }}$ is less informative than both True and False (written $\perp_{\text {Bool }} \sqsubseteq$ True and $\perp_{\text {Bool }} \sqsubseteq$ False) and where True and False are not information-wise comparable. The meaning of the recursive function $f=\lambda x$.not $(f x)$ is then given by the least fixed point of the higher-order function $\lambda f . \lambda x \cdot \operatorname{not}(f x)$, and is just the function that maps all its arguments to $\perp_{\text {Bool }}$, i.e. $\lambda x$. $\perp_{\text {Bool }}$.

For the purposes of investigating query optimisation we use several items of information about expressions:
Referential transparency. This is a property enjoyed by our language and means that every occurrence of an expression denotes the same value in a given environment (an environment being a mapping of free variables to expressions).
Termination. The evaluation of an expression $e$ terminates if the value of $e$ contains no $\perp$ elements. In the sequel, whenever we say that an expression $e$ is infinite we mean that its value contains $\perp$; otherwise, we say that $e$ is finite. Determining whether $e$ is finite is of course undecidable in general. There is, however, a wide class of expressions whose evaluation is known to terminate, namely well-typed, non-recursive expressions: this is the strong normalisation theorem [Hin86]. Furthermore, it is often possible to construct a proof of the finiteness of an expression by using
structural induction (see below), and the user could be permitted to annotate the expression as such.
Strictness offunctions. The order in which $\beta$-reduction is applied in $\lambda$-expressions is significant. Lazy evaluation (which we assume) ensures termination whenever possible by only evaluating the arguments to a function if needed by the function to return a result. A function is strict in an argument if that argument must be evaluated for the function to return a result. One way to characterise a strict function is to state that $f \perp=\perp$ (i.e. given a non-terminating argument, $f$ will not terminate either). Information about the strictness properties of a function can be derived from the known strictness properties of the built-in functions using strictness analysis [Cla85].
Continuity of functions. Any function defined in the $\lambda$ notation is continuous (see, for example, [Sch86], Theorem 6.24). This has two important implications. Firstly, it guarantees that any recursive definition has a unique meaning. Secondly, it means that when proving an equivalence of the form $\forall x . f x=g x$, where $f$ and $g$ are continuous functions, induction over the structure of $x$ can be used to prove the equivalence even if $x$ is infinite, i.e. contains $\perp$ elements. In the terminology of [Sch86] an equivalence is an inclusive predicate for which fixpoint induction is valid. [Bir88] gives an accessible discussion of structural induction and uses it to prove equivalences over infinite lists and trees. It can be similarly used to prove our equivalences over, possibly infinite, sets and bags below.

Sets are important in our language, so we briefly recall their semantics; further details are given in the Appendix. Sets can be created from: (i) the empty set, (ii) singleton sets, and (iii) unions of (i) and (ii). The least element of the type consisting of sets of values of type $t$ is the set $\left\{\perp_{t}\right\}$. For example, the value of $f=\lambda x .(f x) \cup(f x)$ is $\lambda x .\left\{\perp_{a}\right\}$, where $a$ is type variable that can be substituted by any type, while the value of nats $=\lambda n .\{n\} \cup($ nats $(n+1))$ is $\lambda n .\left\{n, n+1, \ldots, \perp_{N u m}\right\}$, so with nats non-termination arises from the construction of a set with an infinite number of elements.

### 2.1 The type system

Our language is strongly, statically typed and supports a number of primitive types such as Bool, Str and Num. The user can declare new enumerated types and introduce new constants of such a type. For every user-defined enumerated type $T$, a built-in zero argument function allT returns all constants of that type.

We will use as a running example a database that records results for the Winter Olympic Games. The userdefined enumerated types include $\operatorname{Comp}$ (competitor id), Sex, Country, Category (category of events) and Event, where:

$$
\begin{array}{ll}
\text { allComp } & =\{C 1, C 2, C 3, \ldots\} \\
\text { allSex } & =\{\text { Male, Female }\} \\
\text { allCountry } & =\{\text { Norway, Austria, France, ... }\} \\
\text { allCategory } & =\{\text { Alpine, Nordic, FigureSkating, } \ldots\} \\
\text { allEvent } & =\{\text { MensDownhill, WomensSlalom, ... }\}
\end{array}
$$

Also supported are polymorphic product, list, set and function types. In particular, $\left(t_{1}, \ldots, t_{n}\right)$ is an n-product type for any types $t_{1}, \ldots, t_{n},[t]$ is a list type and $\{t\}$ a set type for any type $t$, and $t_{1} \rightarrow t_{2}$ the type of functions from a type $t_{1}$ to a type $t_{2}$. Note that the function type constructor $\rightarrow$ is right associative, so that $t_{1} \rightarrow t_{2} \rightarrow t_{3}$ and $t_{1} \rightarrow\left(t_{2} \rightarrow t_{3}\right)$ are synonymous.

We use the notation $e:: t$ to indicate that an expression $e$ has type $t$. We also use letters from the start of the alphabet to indicate type variables in type expressions. For example, the infix 'compose' function, $\circ$, defined by $(f \circ g) x=f(g x)$ is of type $(b \rightarrow c) \rightarrow(a \rightarrow b) \rightarrow(a \rightarrow c)$, where the type variables $a, b$ and $c$ can be instantiated to any type.

The user can also declare sum types and introduce new constructors of such a type c.f. the list constructors (:) :: $a \rightarrow[a] \rightarrow[a]$ and []$::[a]$.

### 2.2 Built-in functions

The usual arithmetic $(+,-, *, /)$ and comparison $(==,!=,<$, $<=,>,>=$ ) operators are built-in ${ }^{1}$. These operators may be written either infix or prefix [in which case they are bracketed, e.g. (+) 12], and are of necessity strict in both their arguments. For example, the value of $e==e^{\prime}$ will be $\perp$ if either $e$ or $e^{\prime}$ has value $\perp$ : operationally, both operands of $==$ must be evaluated in order to determine if they are equal, and if either yields 'no information', then so does the overall evaluation of the equality test. With structured values, the arguments to constructors are compared left-to-right. Thus, for example, $(1: \perp)==(2:[])$ returns False, whereas $(1: \perp)==(1:[])$ returns $\perp$. The other main comparison operator, $<$, works in a similar fashion and hinges on an alphanumeric ordering of constants and constructors where, by convention, []$<(h: t)$ for any list $(h: t)$. Thus, for example, []$<(\perp: \perp)$ and $(1: \perp)<(2: \perp)$ both return True. Functions cannot be meaningfully compared by these comparison operators, i.e. $\perp$ is returned. Lastly, sets are converted to lists (by the operator set to list below) for comparison.

The three-argument conditional function if is also builtin and has the following semantics:

$$
\begin{aligned}
& \text { if } \perp_{\text {Bool }} x y=\perp \\
& \text { if True } x y=x \\
& \text { if False } x y=y
\end{aligned}
$$

Thus, if is strict in its first argument, but not in its second and third arguments. Logical operators can be defined in terms of if as follows:

$$
\begin{aligned}
\text { and } & =\lambda x . \lambda y . i f \quad x \quad y \text { False } \\
\text { or } & =\lambda x . \lambda y . i f \quad x \text { True } y \\
\text { not } & =\lambda x . i f \quad x \quad \text { False True }
\end{aligned}
$$

Consequently these, too, are strict in their first argument. We will also require on occasion counterparts to and and or that are commutative and ' $\perp$-avoiding'; operationally, $\vee$ and $\wedge$ are implemented by evaluating their operands in parallel:

[^0]| True $\vee$ y | $=$ True | False $\wedge$ y | $=$ False |
| :---: | :---: | :---: | :---: |
| $x \vee$ True | = True | $x \wedge$ False | = False |
| False $\vee$ y | $=y$ | True $\wedge y$ | $y$ |
| $x \vee$ False | $=x$ | $x \wedge$ True | = $x$ |
| $\perp \vee \perp$ | $=\perp$ | $\perp \wedge \perp$ | $=\perp$ |

Two set-building functions are also built-in, the singletonforming operator and the union operator:

$$
\begin{aligned}
\} & :: a \rightarrow\{a\} \\
\cup & ::\{a\} \rightarrow\{a\} \rightarrow\{a\}
\end{aligned}
$$

A set can also be represented by enumerating its elements, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is equivalent to $\left\{e_{1}\right\} \cup \ldots \cup\left\{e_{n}\right\}$.

Breazu-Tannen et al. [Bre91] propose a function, $\Phi$, for folding a binary operator op into a finite set:

```
\(\Phi f\) op \(e\} \quad=e\)
\(\Phi f\) op \(e\{x\}=f x\)
\(\Phi f\) ope \(\left(s \cup s^{\prime}\right)=o p(\Phi f\) op e \(s)\left(\Phi f\right.\) op e \(\left.s^{\prime}\right)\)
```

As stated in [Bre91], $e$ and op must form a commutativeidempotent monoid on the return type of $f$ in order for this definition to have a unique meaning, i.e. they must satisfy the following conditions:

```
\(x\) op \((y\) op \(z) \quad=(x\) op \(y)\) op \(z\)
e op \(x=x\) op \(e=x\)
\(x\) op \(y=y\) op \(x\)
\(x\) op \(x=x\)
```

These conditions arise from the semantics of the set union operator, i.e. its associativity, the fact that $\}$ is the identity element, its commutativity, and its idempotence.

In our case of possibly infinite sets, the second equation for $\Phi$ has to be modified, giving $\phi$ below:

```
\phi f op e {} =e
\phi f op e{x} =if (x= \perp) \perp(fx)
\phi fope(s\cup s')=op(\phifopes)(\phifope s')
```

In operational terms, $\phi$ keeps distributing $f$ to the elements of an infinite set indefinitely. In semantic terms, the modified definition ensures that $\phi$ is monotonic. ${ }^{2}$ Thus, as one might expect, we cannot use $\phi$ to devise terminating cardinality or summation functions for infinite sets. Others have defined similar functions to $\Phi$, e.g. the 'pump' operator of FAD [Ban87] and the 'hom' operator of Machiavelli [Oho89], and [Bre91] gives a comparison of these.

We can now use $\phi$ to define a membership operator over possibly infinite sets:

```
x in s=\phi((==) x)(V) False s
```

in returns True if any comparison of $x$ with an element of $s$ returns True, False if all comparisons of $x$ with elements of $s$ return False, and $\perp$ otherwise. So in only returns False for finite sets: in operational terms, in keeps on searching an infinite set for a value that equals $x$ until it finds one. Also, since in depends on the results of equality tests, it will return $\perp$ if applied to higher-order sets, i.e. sets of functions.

We can also use $\phi$ to define a conversion function from sets to lists, where ++ is the usual list append operator:

[^1]```
set to list s = \phi (\lambdax.[x])(\lambdal.\lambdal'.remove duplicates
    (sort (l + + l'))) [] s
```

Note that since set to list depends on sort it will return $\perp$ if applied to higher-order or infinite sets. Given set to list, we can determine the cardinality of a finite set, the sum of its elements, etc. We can also extend the comparison operators ( $==,!=,<,<=,>,>=$ ) to sets by converting the sets to lists, i.e.
$s$ comparison op $s^{\prime}=($ set to list $s)$ comparison op ( set to list $s^{\prime}$ )

### 2.3 User-defined functions

These can be specified using one or more equations rather than a single $\lambda$-abstraction, and can use pattern-matching to deconstruct their arguments. For example, we can define a function foldl which is similar to $\phi$ but which works over lists:

```
foldl \(f\) op \(e[]=e\)
foldl \(f\) op \(e(x: x s)=o p(f x)(\) foldl \(f\) op exs)
```

This function can be used to convert a list to a set:
list to set $x s=$ foldl $(\lambda x .\{x\})(\cup)\} x s$
0 -ary set-valued functions can be used to represent bulk data, the assumption being that such functions are updatable by the insertion and deletion of values of the appropriate type. For our Winter Olympic Games database examples, we will use functions which define the sponsors of each country, the name, sex and country of each competitor, the category of each event, the set of competitors registered for each event, and the list of medalists in rank order for each event:

```
sponsors :: {(Country,Sponsor )}
comps :: {(Comp,Name,Sex,Country)}
events :: {(Event,Category )}
registered :: {(Event,{Comp })}
results :: {(Event,[Comp])}
```


## 3 The algebra

Our algebra consists of three built-in operators. These are the $\}$ and $\cup$ operators already introduced and an operator setmap which has the following semantics:

$$
\begin{array}{ll}
\text { setmap } & ::(a \rightarrow\{b\}) \rightarrow\{a\} \rightarrow\{b\} \\
\text { setmap } f\} & =\{ \} \\
\text { setmap } f\{x\} & =\text { if }(x=\perp)\{\perp\}(f x) \\
\text { setmap } f\left(s \cup s^{\prime}\right) & =(\text { setmap } f s) \cup\left(\text { setmap } f s^{\prime}\right)
\end{array}
$$

setmap thus distributes a function of type $(a \rightarrow\{b\})$ over a set of type $\{a\}$ and returns the union of the results. A consequence of the second equation above is that if a set is infinite then so will be the result of setmap. Notice that setmap $f$ is just $\phi f(\cup)\}$; [Bre91] similarly gives a finiteset version of setmap defined in terms of $\Phi$.

Two functions that frequently appear in algebras are map $::(a \rightarrow b) \rightarrow\{a\} \rightarrow\{b\}$ and filter $::(a \rightarrow$ Bool $) \rightarrow$
$\{a\} \rightarrow\{a\}$ (e.g. in [Clu92, Bee92]). These functions generalise relational projection and selection. Although they could be built-in for efficiency purposes, map and filter can be defined in terms of setmap as follows:

```
filter \(f s=\operatorname{setmap}(\lambda x . i f(f x)\{x\}\{ \}) s\)
\(\operatorname{map} f s=\operatorname{setmap}(\lambda x .\{f x\}) s\)
```

A further operation that can be expressed using setmap is the join of two relations according to a selection function $f$ and a projection function $g$, join $::((a, b) \rightarrow$ Bool $) \rightarrow$ $((a, b) \rightarrow c) \rightarrow\{a\} \rightarrow\{b\} \rightarrow\{c\}:$
join $f g s s^{\prime}=\operatorname{setmap}(\lambda x . s e t m a p(\lambda y . i f(f(x, y))$ $\left.\{g(x, y)\}\}) s^{\prime}\right) s$
join subsumes the various flavours of join and product operations found in relational databases. It can also operate upon infinite sets of structured tuples. In particular, for any $x \in s$ and $y \in s^{\prime}$, the value of $g(x, y)$ in (join $f g s s^{\prime}$ ) is True provided that $f(x, y)$ is True, regardless of the finiteness or otherwise of $s$ and $s^{\prime}$.

### 3.1 Other set-theoretic operators

Other set-theoretic operators can be defined in terms of the operators above, although these too could be built-in for efficiency purposes. We give definitions for two of these operators, since they raise some interesting issues. Operators such as nest, unnest and powerset are also easily defined in our language.

Set difference can be defined using filter and in:
minus $\quad::\{a\} \rightarrow\{a\} \rightarrow\{a\}$
$s$ minus $s^{\prime}=$ filter $\left(\lambda x \cdot n o t\left(x\right.\right.$ in $\left.\left.s^{\prime}\right)\right) s$
Thus minus will terminate if both $s$ and $s^{\prime}$ are finite, or if $s$ is finite and is a subset of $s^{\prime}$.

Intersection can also be defined using filter and $i n$ :

$$
\begin{array}{ll}
\text { inter } & ::\{a\} \rightarrow\{a\} \rightarrow\{a\} \\
s \text { inter } s^{\prime} & =\text { filter }\left(\lambda x . x \text { in } s^{\prime}\right) s
\end{array}
$$

However, this definition is not in general commutative, e.g. $\{3\}$ inter $\{3, \perp\}=\{3\}$ whereas $\{3, \perp\}$ inter $\{3\}=\{3, \perp\}$. Clearly it is desirable for intersection to be commutative for optimisation purposes, and to achieve this we can use $\wedge$ :
$s$ inter $s^{\prime}=$ filter $\left(\lambda x .(x\right.$ in $s) \wedge\left(x\right.$ in $\left.\left.s^{\prime}\right)\right)\left(s \cup s^{\prime}\right)$
This definition is both less efficient and has worse termination properties than the first (e.g. $\{3\}$ inter $\{3, \perp\}$ now gives $\{3, \perp\}$ ), but is nevertheless the one we assume for optimisation purposes. If, however, both $s$ and $s^{\prime}$ are known to be finite, then the original definition can safely be used in its place.

### 3.2 Equivalences

We now investigate some equivalences for the functions defined above. Some of these are generalisations of wellknown equivalences for relational databases [Jar84, Ull89]. The first set of equivalences, with their stated provisos, follow easily from the definitions of the logical operators in Sect. 2.2:
if el (if e2e3e4) e4 = if (e1 and e2) e3e4
if/2
if el e3 (if e2 e3 e4)
if (not el) e2e3 $\quad=$ if el e3e2
$f$ (if el e2e3) $\quad=$ if el $(f e 2)(f e 3)$
provided $f$ is strict
and/1 el and e2 $=e 2$ and e1
provided $e 1=\perp$ iff $e 2=\perp$
and/2
$e 1 \wedge e 2$
$=e 2 \wedge e 1$
and/2
e1 or e2 $=$ e2 or e1
provided $e 1=\perp$ iff $e 2=\perp$
or/2 el $\vee e 2 \quad=e 2 \vee e 1$
not/1 not (not el) $=$ el
not/2 not (e1 or e2) $\quad=($ not e1) and (not e2)

The $\cup$ and inter operators obey the expected properties of commutativity and associativity (in operational terms, this means that the two branches of a $\cup$ must be evaluated in parallel), while inter and minus distribute over $\cup$ :

```
\(\cup / 1 s \cup s^{\prime} \quad=s^{\prime} \cup s\)
\(\cup / 2 s \cup\left(s^{\prime} \cup s^{\prime \prime}\right) \quad=\left(s \cup s^{\prime}\right) \cup s^{\prime \prime}\)
\(\cup / 3 s \cup s^{\prime} \quad=s \quad\) if \(s^{\prime} \subseteq s\)
\(\cap / 1 s\) inter \(s^{\prime} \quad=s^{\prime}\) inter \(s\)
\(\cap / 2 s\) inter \(\left(s^{\prime}\right.\) inter \(\left.s^{\prime \prime}\right) \quad=\left(s\right.\) inter \(\left.s^{\prime}\right)\) inter \(s^{\prime \prime}\)
\(\cap / 3\left(s\right.\) inter \(\left.s^{\prime \prime}\right) \cup\left(s^{\prime}\right.\) inter \(\left.s^{\prime \prime}\right)=\left(s \cup s^{\prime}\right)\) inter \(s^{\prime \prime}\)
\(-/ 1\) (s minus \(\left.s^{\prime \prime}\right) \cup\left(s^{\prime}\right.\) minus \(\left.s^{\prime \prime}\right)=\left(s \cup s^{\prime}\right)\) minus \(s^{\prime \prime}\)
```

However, the following equivalences only hold subject to the stated provisos:

```
\(\cap / 4 \quad s\) inter \(s^{\prime}=s^{\prime} \quad\) if \(s^{\prime} \subseteq s\)
    provided \(s\) is finite
\(-/ 2 \quad s\) minus \(s^{\prime}=s \quad\) if \(s \cap s^{\prime}=\{ \}\)
    provided \(s\) and \(s^{\prime}\) are finite
\(-/ 3 \quad s\) minus \(s^{\prime}=\{ \} \quad\) if \(s \subseteq s^{\prime}\)
    provided \(s\) is finite
```

To illustrate the proviso associated with $\cap / 4$ consider the case $s=\{1,2, \perp\}$ and $s^{\prime}=\{1\}$, whence $s^{\prime} \subseteq s$, but $s$ inter $s^{\prime}=\{1, \perp\} \neq s^{\prime}$. To illustrate the provisos associated with $-/ 2$ consider the two cases $s=\{1\}, s^{\prime}=\{2, \perp\}$ and $s=\{1, \perp\}, s^{\prime}=\{2\}$. For the proviso associated with $-/ 3$ consider the case $s=s^{\prime}=\{1, \perp\}$.

The reason for the above provisos is the definition of both inter and minus in terms of the set membership operator, in. In particular, xins undertakes equality tests between $x$ and elements of $s$ which may result in the value $\perp$, as discussed in Sect. 2.2. The set membership operator, in, itself obeys the following properties subject to the stated provisos:

| in/1 | $e$ in $\}$ | $=$ False |
| :---: | :---: | :---: |
| /2 | $e$ in $\left\{e^{\prime}\right\}$ | $=e==e^{\prime}$ |
| /3 | $e$ in $\left(s \cup s^{\prime}\right)$ | $=(e$ in $s) \vee\left(e\right.$ in $\left.s^{\prime}\right)$ |
| /4 | $e$ in ( $s$ inter $s^{\prime}$ ) provided $e, s$, | $\begin{aligned} & =(e \text { in } s) \wedge\left(e \text { in } s^{\prime}\right) \\ & \text { e finite } \end{aligned}$ |
| /5 | $e$ in ( $s$ minus $s^{\prime}$ ) provided $e, s, s^{\prime}$ | $\begin{aligned} & =(e \text { in } s) \wedge n o t\left(e \text { in } s^{\prime}\right) \\ & \text { e finite } \end{aligned}$ |

To illustrate that $e$ must be finite for $\mathrm{in} / 4$ and $\mathrm{in} / 5$ consider the case $e=\perp, s=\{1\}, s^{\prime}=\{2\}$, while to illustrate that $s$ and $s^{\prime}$ must be finite consider the case $e=1, s=\{\perp\}, s^{\prime}=$ $\left\}\right.$ for in/4 and the case $e=1, s=\{\perp\}, s^{\prime}=\{1\}$ for in/5.
$\cup / 3, \cap / 4$ and $-/ 3$ allow us to simplify the following expressions involving the built-in functions allT, provided $s$ is finite:

```
all/1 \(s \cup\) allT \(=\) all \(T \cup s \quad=\) all \(T\)
all/2 \(s\) inter allT \(=\) allT inter \(s=s\)
all/3 s minus allT \(=\{ \}\)
```

A number of optimisations apply to setmap, and hence to operators defined in terms of setmap such as filter and map:

```
setmap/1 setmap \(f\left(s \cup s^{\prime}\right)\)
    \(=(\) setmap \(f s) \cup\left(\right.\) setmap \(\left.f s^{\prime}\right)\)
setmap/2 setmap \(f\) (setmap \(g s\) )
    \(=\operatorname{setmap}(\lambda x . s e t m a p f(g x)) s\)
setmap/3 \(\operatorname{setmap}\left(\lambda x . i f\left(x\right.\right.\) in \(\left.\left.s^{\prime}\right) e e^{\prime}\right) s\)
    \(=\left(\operatorname{setmap}(\lambda x . e)\left(s\right.\right.\) inter \(\left.\left.s^{\prime}\right)\right)\)
    \(\cup\left(\right.\) setmap \(\left(\lambda x . e^{\prime}\right)\left(s\right.\) minus \(\left.\left.s^{\prime}\right)\right)\)
    provided \(s=\{ \} \Rightarrow \perp \notin s^{\prime}\)
setmap/4 setmap ( \(\lambda x\).setmap ( \(\lambda y . e\) ) \(s^{\prime}\) ) \(s\)
    \(=\operatorname{setmap}(\lambda y . \operatorname{setmap}(\lambda x . e) s) s^{\prime}\)
    if \(x \notin F V\left(s^{\prime}\right)\) and \(y \notin F V(s)\)
    provided \(s=\{ \} \Rightarrow \perp \notin s^{\prime}\)
        and \(s^{\prime}=\{ \} \Rightarrow \perp \notin s\)
```

setmap/1 states that setmap distributes over U. setmap/2 states that two successive applications of setmap can be compressed into one application with a second one nested within it. setmap/3 states when application of a set membership test can be replaced by a set union, while setmap/4 states when the nesting of one setmap within another commutes. To illustrate the provisos associated with these last two equivalences consider the case $s=\{ \}, s^{\prime}=\{\perp\}$.

The main optimisations for map are to combine successive applications into one. In particular map/2 below corresponds to combining cascades of projections:

```
\(\operatorname{map} / 1 \quad \operatorname{map} f(\operatorname{map} g s) \quad=\operatorname{map}(f \circ g) s\)
\(\operatorname{map} / 2 \operatorname{map}(\lambda q . r)(\operatorname{map}(\lambda p . q) s)=\operatorname{map}(\lambda p . r) s\)
    if \(F V(r) \subseteq F V(q) \subseteq F V(p)\)
```

For filter, filter/1 below is a generalised cascade of selections, filter $/ 2$ and filter $/ 3$ combine successive applications of filter and setmap into a single setmap, filter/4 states when selection distributes over difference, and filter/5 states when two selections commute:
filter/1 filter $f$ (filter $g s$ )
$=$ filter $(\lambda x .(g x)$ and $(f x)) s$
filter/2 setmap $f$ (filter $g s$ )
$=\operatorname{setmap}(\lambda x . i f(g x)(f x)\{ \}) s$
filter/3 filter $g$ (setmap $f s$ )
$=\operatorname{setmap}(\lambda x$.filter $g(f x)) s$
filter/4 filter $f$ ( $s$ minus $s^{\prime}$ )
$=\left(\right.$ filter $f$ s) minus (filter $\left.f s^{\prime}\right)$
provided $s$ and $s^{\prime}$ are finite and $(f x)$
is finite for finite $x$
filter/5 filter $f$ (filter $g$ s)
$=$ filter $g($ filter $f s)$
provided $\forall x . f x=\perp$ iff $g x=\perp$
To illustrate the provisos for filter/4 consider the two cases $f=\lambda x$.False, $s=\{1\}, s^{\prime}=\{\perp\}$ and $f=\lambda x . \perp, s=\{1\}$,
$s^{\prime}=\{1\}$. The proviso for filter/5 follows easily from the equivalences filter/1 and and/1.

We have the expected equivalences regarding combining selection with join (join/1 below) and distributing selection over join (join/2):

```
join/1 filter f(join f'gs s ')
    = join (\lambdaz.(f}z)\mathrm{ and (f(gz))) gs s
join/2 join }(\lambda(x,y).(fx)\mathrm{ and (f}\mp@subsup{f}{}{\prime}y))gs\mp@subsup{s}{}{\prime
    = setmap (\lambdax.if (fx) (setmap (\lambday.if ( f' y)
        {g(x,y)} {}) s') {})s
        provided s}\mp@subsup{s}{}{\prime}\mathrm{ is finite and (fx) is finite for finite }
```

To illustrate the provisos for join/2 consider the two cases $f=\lambda$ x.False, $s=\{1\}, s^{\prime}=\{\perp\}$ and $f=\lambda x . \perp, s=\{1\}$, $s^{\prime}=\{ \}$.

In summary, most of the expected equivalences for the logical and set operators hold. In some cases, however, we require a priori knowledge about the termination properties of expressions. The provisos associated with many of the equivalences arise from the semantics of the built-in functions, and built-in functions with different semantics, e.g. sequential $\vee, \wedge$ and $\cup$, would give rise to different provisos.

The equivalences above can be proved by structural induction over the set arguments. Since sets are constructed by successive unions of singleton sets and the empty set, structural induction over a set $s$ has two base cases which must first be proved: $s=\{ \}$ and $s=\{e\}$. The induction hypothesis is then that the given proposition holds for sets $s 1$ and $s 2$, from which it remains to show that it holds for $s=s l \cup s 2$. For equivalences involving two sets, structural induction is employed for one set within each case of the structural induction over the other set.

The main class of equivalences which do not have counterparts in our language are the commutative laws for joins and products. However, if records [Oho89] are used instead of tuples these equivalences also apply, subject to the same proviso as for setmap/4 above, since the definition of join consists of a nesting of one setmap within another.

### 3.3 Transformation principles

Essentially the same principles apply to our language as to relational algebra expressions [U1189], except that they need to be successively applied starting from the outermost level of an expression and moving through to expressions nested within aggregation functions:

1. Use filter/1 in a right-to-left direction, to split up complex filter conditions.
2. Perform filter as early as possible by commuting it with other applications of filter and setmap (setmap/4, filter/5), eliminating set membership tests (setmap/3), and distributing filter over $\cup$ (setmap/1), minus (filter/4) and join (join/2).
3. Perform map as early as possible by distributing it over $\cup($ setmap/1).
4. Combine cascades of setmaps of various kinds into a single setmap (setmap/2, map/1, map/2, filter/1-3, join/1).
5. At any stage during the above steps, simplify set unions, intersections and differences whenever possible by using $\cup / 3, \cap / 4,-/^{*}$, all/*, in/*.
6. Apply setmap/4, using physical-level knowledge, such as expected sizes of sets and availability of indexes.

The final step of the transformation process is to abstract common sub-expressions using let/1 in a right-to-left direction.

Note that there is no general heuristic about which direction to apply setmap/1, since the size of the result returned by setmap cannot be predicted in general. Note also that we could derive an equivalence that moves map through join in the special case that the former is a projection and the latter a cartesian product, but this would be quite contrived. In any case, such an equivalence would go into category 3 above.

## 4 Higher-level constructs

The algebraic equivalences discussed above are fine-grained and low level. We now examine two additional sets of equivalences at a higher conceptual level of modelling and querying: those for set comprehensions and those for functions with known inverses. Our reasons for doing so are twofold. Firstly, both these constructs are commonly found in database languages and we wish to extend optimisations identified by others (see Sect. 6) to our richer computational environment. Secondly, optimising directly at this conceptual level is likely to be more efficient than first translating into the syntax of the previous section and then applying the optimisations.

### 4.1 Set comprehensions

The syntax of set comprehensions is as follows:

```
set comprehension = "{" expr "|" qualifiers"}"
qualifiers = qualifier | qualifier ";"
qualifiers
qualifier = generator |ilter
generator = pattern " }\in\mathrm{ " expr
filter = expr
```

For example, the following equations define a set father, given a set parent $::\{($ Person, Person $)\}$ and a set mother $::\{($ Person, Person $)\}$, and a recursive set anc:

$$
\begin{aligned}
\text { father }= & \{t \mid t \in \text { parent } ; \text { not }(t \text { in mother })\} \\
\text { anc }= & \text { parent } \cup\left\{(a, d) \mid\left(a, d^{\prime}\right) \in \text { anc } ;\right. \\
& \left.\left(a^{\prime}, d\right) \in \text { anc } ; a^{\prime}==d^{\prime}\right\}
\end{aligned}
$$

Optimisation of set comprehensions is important since these provide a unifying query formalism for relational, functional, and deductive languages. For example, the head of a set comprehension corresponds to the SELECT clause of an SQL query, the generators correspond to the FROM clause, and the filters to the WHERE clause. Trinder [Tri89] gives a translation of the relational calculus into list (as opposed to set) comprehensions, [Pat90] notes that DAPLEX queries are easily translated into set comprehensions, and
in previous papers (e.g. [Pou93]), we have observed the syntactic and semantic correspondence between set-valued functions such as father and anc and the analogous Datalog predicates. However, set comprehensions are just syntactic sugar for nested applications of setmap and if. In the interest of simplicity we give the translation scheme, $T$ below, only for the case that the patterns in generators are irrefutable, i.e. the pattern matches all the elements of the generator set. The interested reader can find the translation scheme for refutable patterns in [Pou93]. In the translation equations below $Q$ denotes a sequence of zero or more qualifiers:

```
T\llbracket{e|}\rrbracket|}={T\llbrackete\rrbracket
T\llbracket{\mp@subsup{e}{1}{}|\mp@subsup{e}{2}{};Q}\rrbracket= if (T\llbracket\mp@subsup{e}{2}{}\rrbracket)(T\llbracket{\mp@subsup{e}{1}{}|Q}\rrbracket){}
T\llbracket{\mp@subsup{e}{1}{}|p\in\mp@subsup{e}{2}{};Q}\rrbracket= setmap (\lambdap.T\llbracket{\mp@subsup{e}{1}{}|Q}\rrbracket)(T\llbracket\mp@subsup{e}{2}{}\rrbracket)
```

For example, the definition of father above translates into the following expression:
setmap ( $\lambda$ t.if (not ( $t$ in mother)) $\{t\}\}$ ) parent
Three classes of equivalences can be identified for comprehensions: those for qualifier interchange, for qualifier introduction/elimination, and for moving qualifiers into nested set comprehensions. These equivalences can be proved by translating expressions into the extended $\lambda$-calculus of Sect. 2 and using structural induction. Alternatively, Wadler [Wad90] explores the relationship between monads and comprehensions and derives most of the equivalences below.

The following equivalences for interchanging the qualifiers in set comprehensions have well-known counterparts for list comprehensions with bag equality [Tri89]:

$$
\begin{array}{ll}
\mathrm{cmp} / 1 & \left\{e \mid Q ; p 1 \in s 1 ; p 2 \in s 2 ; Q^{\prime}\right\} \\
& =\left\{e \mid Q ; p 2 \in s 2 ; p 1 \in s 1 ; Q^{\prime}\right\} \\
& \text { if } F V(p 1) \cap F V(s 2)=F V(p 2) \cap F V(s 1)=\{ \} \\
\mathrm{cmp} / 2 & \left\{e \mid Q ; p \in s ; f ; Q^{\prime}\right\} \\
& =\left\{e \mid Q ; f ; p \in s ; Q^{\prime}\right\} \\
& \text { if } F V(p) \cap F V(f)=\{ \} \\
\mathrm{cmp} / 3 & \left\{e \mid Q ; f ; g ; Q^{\prime}\right\} \\
& =\left\{e \mid Q ; g ; f ; Q^{\prime}\right\}
\end{array}
$$

$\mathrm{cmp} / 1$ states that generators can be interchanged. It follows directly from setmap/4 and has the same proviso on $s l$ and $s 2$ provided also that $p 1$ and $p 2$ are irrefutable. In the case of refutable patterns, the equivalence may fail to hold for nonempty sets, too; e.g. $\{x \mid x \in\{\perp\} ;(1, y) \in\{(2,3)\}\}=\{\perp\}$, whereas $\{x \mid(1, y) \in\{(2,3)\} ; x \in\{\perp\}\}=\{ \}$. cmp/2 states that a generator and a filter can be interchanged, and it requires both that $s$ is finite and that $f$ terminates, otherwise non-termination may be introduced. Of course, if we do not mind improving the termination properties of an expression, the rule may be used in a right-to-left direction if $s$ is known to be finite, and in a left-to-right direction if $f$ is known to terminate. $\mathrm{cmp} / 3$ states that two filters can be interchanged. Its proof requires if/ 1 and and $/ 1$, and consequently this equivalence holds only if $f$ fails to terminate whenever $g$ does.

Numerous equivalences can be identified for eliminating qualifiers, of which the following is a representative sample:

```
cmp/4 {e|Q;f;g;\mp@subsup{Q}{}{\prime}}
    = {e|Q;f and g; Q'}
```

```
cmp/5 \(\quad\left\{e \mid Q ; x \in\left\{e^{\prime}\right\} ; Q^{\prime}\right\}\)
    \(=\left\{e\left[e^{\prime} / x\right] \mid Q ; Q^{\prime}\left[e^{\prime} / x\right]\right\}\)
        if \(x \notin B V\left(Q^{\prime}\right)\)
    \(=\left\{e \mid Q ; Q^{\prime}\left[e^{\prime} / x\right]\right\}\)
        if \(x \in B V\left(Q^{\prime}\right)\)
cmp/6 \(\quad\left\{e \mid Q ; p \in s 1 ; p\right.\) in \(\left.s 2 ; Q^{\prime}\right\}\)
    \(=\left\{e \mid Q ; p \in(s 1\right.\) inter \(\left.s 2) ; Q^{\prime}\right\}\)
        if \(F V(p) \cap F V(s 2)=\{ \}\)
```

cmp/4 states that two filters can be compressed into one; its proof follows directly from if $/ 1 . \mathrm{cmp} / 5$ states that a generator over a singleton can be eliminated; its proof follows from the semantic soundness of $\beta$-reduction. cmp/6 states that a filter can be eliminated; its proof follows from the definition of inter and only holds if both $s 1$ and $s 2$ are finite.

The third set of equivalences governs the moving of qualifiers into and out of nested set comprehensions:

```
cmp/7 {e|Q;p\ins;Q'}
    = {e|Q;p\in{p|p\ins};\mp@subsup{Q}{}{\prime}}
```



```
    = {e|Q;p\in{p|\mp@subsup{Q}{}{\prime};f};\mp@subsup{Q}{}{\prime\prime}}
    if FV(f)\subseteqFV(p)
```

More sophisticated forms of these are:
$\begin{array}{ll}\left\{e \mid Q ; p \in s ; Q^{\prime}\right\} & =\left\{e \mid Q ; p \in\left\{p^{\prime} \mid p^{\prime} \in s\right\} ; Q^{\prime}\right\} \\ \left\{e \mid Q ; p \in\left\{p^{\prime} \mid Q^{\prime}\right\} ; f: Q^{\prime \prime}\right\}=\left\{e \mid Q ; p \in\left\{p^{\prime} \mid Q^{\prime} ; f^{\prime}\right\} ; Q^{\prime \prime}\right\}\end{array}$
where $p^{\prime}$ is obtained from $p$ by a renaming of variables, and $f^{\prime}$ is obtained from $f$ by the same renaming.

### 4.2 Transformation of set comprehensions

The following equivalences are added to steps $1-6$ of Sect. 3.3 in order to cater for set comprehensions:

1. Split up complex filter conditions using cmp/4.
2. Perform filters as early as possible using $\mathrm{cmp} / 2$ and $\mathrm{cmp} / 3$.
3. None added.
4. Eliminate redundant qualifiers using cmp/4-6.
5. None added.
6. Interchange groups consisting of a generator and its dependent filters using cmp/1-3 (based on physical-level knowledge).

There is however an additional seventh step, which is illustrated in our second example below:
7. Pass filters into preceding, nested, set comprehensions using cmp/8, where they can subsequently be incorporated into the optimisation of the nested expression.

We illustrate these equivalences via two queries. The first requires the countries of women competitors who won alpine events. A naive formulation iterates through all countries, events, results and competitors, and then specifies the join condition:
$\left\{c \mid c \in\right.$ allCountry; $(e v, c a t) \in$ events; $\left(e v^{\prime},(n: n s)\right) \in$ results; (num,name,sex,cc) $\in$ comps; ev $v^{\prime}==e v$ and cat $==$ Alpine and num $==n$ and sex $==$ Female and $c c==c\}$

Applying cmp/4 in a right-to-left direction, followed by a promotion of filters, gives:

```
\(\{c \mid c \in\) allCountry; (ev,cat \() \in\) events; cat \(==\) Alpine;
    (ev',(n:ns)) \(\in\) results; \(e v^{\prime}==e v\);
    (num,name,sex,cc) \(\in\) comps; num \(==n ;\) sex \(==\) Female;
    \(c c==c\}\)
```

Interchange of groups of generators and their dependent filters gives:

```
{c|(ev,cat) \in events; cat===Alpine;
    (ev',(n:ns)) \in results; ev'==ev;
    (num,name,sex,cc) \in comps; num == n; sex == Female;
    c\in allCountry; cc== c}
```

or, alternatively:

```
{c|(num,name,sex,cc) \in comps; sex == Female;
    c\in allCountry; cc== c;
    (ev',(n:ns)) \in results; num == n;
    (ev,cat) \in events; cat ==Alpine; ev' ==ev}
```

Compressing filters, and removing $c \in$ allCountry; $c c==c$ by using in $/ 2$, followed by $\mathrm{cmp} / 6$ and all/2, gives the following for the first of these alternatives:

```
\(\{c \mid(e v, c a t) \in\) events; cat \(==\) Alpine;
    (ev',(n:ns)) \(\in\) results; \(e v^{\prime}==e v\);
    (num,name,sex,cc) \(\in\) comps;
    num \(==n\) and sex \(==\) Female \(; c \in\{c c\}\}\)
```

Finally, using cmp/5 gives:

```
\(\{c c \mid(e v, c a t) \in\) events; cat \(==\) Alpine;
    \(\left(e v^{\prime},(n: n s)\right) \in\) results; \(e v^{\prime}==e v\);
    (num,name,sex,cc) \(\in\) comps;
    num \(==n\) and sex \(==\) Female \(\}\)
```

A similar process for the second alternative gives:

```
{cc|(num,name,sex,cc)\in comps; sex== Female;
    (ev',(n:ns)) \in results; num == n;
    (ev,cat) \in events; cat == Alpine and ev' ==ev}
```

The second query requires the competitors sponsored by Atomic who won alpine events. A naive formulation iterates through all events, all results and all tuples of a join of competitors with sponsors over country, and then specifies a further join condition:

```
\(\left\{c \mid(e v, c a t) \in\right.\) events; \(\left(e v^{\prime},(n: n s)\right) \in\) results;
    \((c, s p n) \in\{(c, s p n) \mid(c\), name,sex, cc \() \in\) comps \(;\)
    \((s p c, s p n) \in\) sponsors; \(c c==s p c\} ;\)
    spn \(==\) Atomic and \(e v^{\prime}=e v\) and cat \(==\) Alpine and \(\left.c==n\right\}\)
```

Applying cmp/4 in a right to left direction, followed by filter promotion, followed by interchange of groups of generators and their dependent filters, gives two alternatives:

```
\(\{c \mid(e v, c a t) \in\) events; cat \(==\) Alpine \(;\)
    \(\left(e v^{\prime},(n: n s)\right) \in\) results; \(e v^{\prime}==e v\);
    \((c, s p n) \in\{(c\), spn \() \mid(c\), name,sex, cc \() \in\) comps;
    \((s p c, s p n) \in\) sponsors; \(c c==s p c\}\);
    spn \(==\) Atomic \(; c==n\}\)
```

or, alternatively:

```
\(\{c \mid(c, s p n) \in\{(c, s p n) \mid(c\), name,sex, \(c c) \in\) comps;
    (spc,spn) \(\in\) sponsors; \(c c==s p c\} ;\) spn \(==\) Atomic;
    \(\left(e v^{\prime},(n: n s)\right) \in\) results; \(c==n\),
    \((e v, c a t) \in\) events; \(e v^{\prime}==e v ;\) cat \(==\) Alpine \(\}\)
```

For the first of these alternatives, passing the last two filter conditions into the preceding set comprehension using $\mathrm{cmp} / 8$ gives:

```
\(\{c \mid(e v, c a t) \in\) events; cat \(==\) Alpine;
    (ev \(\left.{ }^{\prime},(n: n s)\right) \in\) results; \(e v^{\prime}==e v ;\)
    \((c, s p n) \in\{(c, s p n) \mid(c\), name,sex, cc \() \in\) comps;
    \((s p c, s p n) \in\) sponsors; \(c c==s p c ;\) spn \(==\) Atomic \(; c==n\}\}\)
```

Then performing filter promotion within the nested set abstraction followed by filter compression gives:

```
\(\{c \mid(e v\), cat \() \in\) events; cat \(==\) Alpine \(;\)
    \(\left(e v^{\prime},(n: n s)\right) \in\) results; \(e v^{\prime}==e v\);
    \((c, s p n) \in\{(c, s p n) \mid(c\), name,sex, cc \() \in\) comps; \(c==n\);
        \((s p c, s p n) \in\) sponsors; \(c c==s p c\) and \(s p n==\) Atomic \(\}\}\)
or:
\(\{c \mid(e v\), cat \() \in\) events; cat \(==\) Alpine \(;\)
    \(\left(e v^{\prime},(n: n s)\right) \in\) results; \(e v^{\prime}==e v\);
    \((c, s p n) \in\{(c, s p n) \mid(s p c, s p n) \in\) sponsors; spn \(==\) Atomic \(;\)
        \((c\), name, sex,\(c c) \in\) comps; \(c c==s p c\) and \(c==n\}\}\)
```

The second alternative is optimised similarly.

### 4.3 Functions with known inverses

In this section we consider how use may be made of information about the inverse relationship between pairs of functions. Such information may be readily available in languages which use a functional or object-oriented data model, and may also be available from other sources, e.g. via proofs supplied by the user [Har92]. In the case of extensional functions, inverses typically correspond to fast access paths provided by indexes.

Given two one-to-one functions $f:: s \rightarrow t$ and $f^{-1}::$ $t \rightarrow s$ which are inverses of each other, i.e. equivalence inv/1 below holds, then equivalence inv/2 also holds, by the definition of in and map:
$\mathrm{inv} / 1 \quad(f e)==e^{\prime} \quad=\quad e==\left(f^{-1} e^{\prime}\right)$
inv/2 $(f e) \operatorname{ins}=e \operatorname{in}\left(\operatorname{map} f^{-1} s\right)$
For example, if no two competitors at the Winter Olympic Games have the same name, then inv/1 holds for name of $::$ Comp $\rightarrow$ Name and comp no $::$ Name $\rightarrow$ Comp.

Given two functions $f:: s \rightarrow t$ and $f^{-1}:: t \rightarrow\{s\}$ such that inv $/ 3$ below holds, then inv $/ 4$ also holds, by the definition of in and setmap:
$\operatorname{inv} / 3 \quad(f e)==e^{\prime}=e \operatorname{in}\left(f^{-1} e^{\prime}\right)$
inv/4 $(f e)$ ins $=\quad e \operatorname{in}\left(\operatorname{setmap} f^{-1} s\right)$
For example, inv/3 holds for country of $::$ Comp $\rightarrow$ Country and team of $::$ Country $\rightarrow\{$ Comp $\}$.

Finally, given two functions $f:: s \rightarrow\{t\}$ and $f^{-1}::$ $t \rightarrow\{s\}$, it may be the case that inv/5 holds:
$\operatorname{inv} / 5 \quad e^{\prime}$ in $(f e)=e \operatorname{in}\left(f^{-1} e^{\prime}\right)$
For example, inv/5 holds for competes in $::$ Comp $\rightarrow$ $\{$ Event $\}$ and competitors of $::$ Event $\rightarrow\{$ Comp $\}$.

### 4.4 Transformation of functions with inverses

Equivalences inv/1-5 are applied between steps 1 and 2 of Sect. 3.3 in order to generate tests for set-membership and equality on variables, i.e. tests of the form $v==e$ and $v$ ine where $v$ is a variable.

We again illustrate the use of these equivalences on our Winter Olympic Games database, assuming the following functions and inverses which can be defined in terms of the base functions of Sect. 2.3:

| country of | $::$ Comp $\rightarrow$ Country |
| :--- | :--- |
| team of | $::$ Country $\rightarrow\{$ Comp $\}$ |
|  | $/ /=$ country of ${ }^{-1} ;$ inv/3 and inv/4 applicable |
| winner | $::$ Event $\rightarrow$ Comp |
| sex | $::$ Comp $\rightarrow$ Sex |
| sex $^{-1}$ | $::$ Sex $\rightarrow\{$ Comp $\}$ |
|  | I/ inv 3 and inv/4 applicable |
| category | $::$ Event $\rightarrow$ Category |
| events | $::$ Category $\rightarrow\{$ Event $\}$ |
|  | $/ /=$ category $^{-1} ;$ inv/3 and inv/4 applicable |

The query is the same as the first query of Sect. 4.2, i.e. 'Which countries have female Alpine gold medalists?', and can be expressed as follows:

```
\(\{c \mid c \in\) allCountry; comp \(\in\) allComp; \(e \in\) allEvent;
Alpine \(==(\) category e) and Female \(==(\) sex comp \()\)
and comp \(==(\) winner \(e)\) and \(c==(\) country of comp \()\}\)
```

Firstly, cmp/4 is repeatedly applied to break up the filter condition:
$\{c \mid c \in$ allCountry; comp $\in$ allComp $; e \in$ allEvent; Alpine $==($ category e); Female $==($ sex comp $)$; comp $==($ winner $e) ; c==($ country of comp $)\}$
Next, inv/1-5 are applied, and we reach the point:

```
\(\{c \mid c \in\) allCountry; comp \(\in\) allComp; \(e \in\) allEvent;
    \(e\) in (events Alpine); comp in (sex \({ }^{-1}\) Female);
    comp \(==(\) winner \(e) ; c==(\) country of comp \()\}\)
```

at which we have a choice: whether or not to apply inv/1 to $c==$ (country of comp). If we do not do so, we move on to the removal of filters using cmp/6:
$\{c \mid e \in$ allEvent inter (events Alpine);
comp $\in$ allComp inter (sex ${ }^{-1}$ Female) inter $\{$ winner e $\}$; $c \in$ allCountry inter $\{$ country of comp $\}$ \}
The lower-level optimisations (in particular, all/2) reduce the size of the sets over which we iterate, giving:
$\{c \mid e \in$ events Alpine;
comp $\in\left(\right.$ sex $^{-1}$ Female) inter $\{$ winner e $\}$; $c \in\{$ country of comp $\}\}$
Finally, application of $\mathrm{cmp} / 5$ gives the first query plan:
\{country of comp $\mid e \in$ events Alpine;
comp $\in\left(\right.$ sex $^{-1}$ Female) inter $\{$ winner e $\left.\}\right\}$
Alternatively, applying inv/1 again gives:
$\{c \mid c \in$ allCountry; comp $\in$ allComp; $e \in$ allEvent; $e$ in events Alpine; comp in (sex ${ }^{-1}$ Female); comp $==($ winner e); comp in (team of $c)\}$
and removing the filters using $\mathrm{cmp} / 6$ gives：

```
{c| c\in allCountry; e\in allEvent inter (events Alpine);
    comp }\in\mathrm{ allComp inter (sex -1 Female)
    inter {winner e} inter (team of c)}
```

Again，all／2 reduces the size of the sets over which we iter－ ate，giving a second query plan：

```
\(\{c \mid c \in\) allCountry; \(e \in\) events Alpine;
    comp \(\in\left(\right.\) sex \(^{-1}\) Female) inter \(\{\) winner \(e\}\)
    inter (team of \(c\) ) \(\}\)
```

These two query plans differ only in that the extra use of inv／1 during the construction of the second query plan did not allow the iteration through allCountry to be eliminated． Thus，it is likely that the first plan would be chosen for execution after applying some physical－level heuristics．We finally observe that both query plans correspond to the first plan of Sect． 4.2 for the same query．The second plan of Sect． 4.2 is not generated here due to the non－availability of an inverse for the winner function．

## 5 Equivalences for the bag type

We now investigate extending the equivalences developed above to the analogous operators over bags．Bags differ from sets in that an occurrence count is associated with each mem－ ber of the bag．In this respect bags are similar to lists，but with a list the order of its members is significant of course． Analogously to sets，bags are created from：（i）the empty bag，which we represent by $\rangle$ ，（ii）singleton bags，which we represent by $\langle e\rangle$ ，and（iii）unions of（i）and（ii）．

We represent the type consisting of bags of elements of type $t$ by $\langle t\rangle$ ．We denote the least element of a type $\langle t\rangle$ by $\langle\perp\rangle$ ．In contrast to set types，this is not the same bag as the singleton bag $\left\langle\perp_{t}\right\rangle$ consisting of one occurrence of the least element of type $t$ ．There can only be one instance of $\perp$ within a bag，but any number of instances of $\perp_{t}$ ．The presence of $\perp$ indicates that the cardinality of the bag is not defined c．f．the length of a list with tail $\perp$ ．We formally define the information－wise ordering over bags in the Appendix．

## 5．1 Operators over bags

By analogy to sets，the three fundamental operators over bags are：

$$
\begin{array}{ll}
\rangle & :: a \rightarrow\langle a\rangle \\
\cup_{B} & ::\langle a\rangle \rightarrow\langle a\rangle \rightarrow\langle a\rangle \\
\phi_{B} & ::(a \rightarrow b) \rightarrow(b \rightarrow b \rightarrow b) \rightarrow b \rightarrow\langle a\rangle \rightarrow b
\end{array}
$$

The first of these operators maps its argument，$e$ ，to the singleton bag，$\langle e\rangle$ ；bag union，$\cup_{B}$ ，is additive with respect to the cardinalities of all elements other than $\perp$ ；and $\phi_{B}$ has the following semantics：

$$
\begin{array}{ll}
\phi_{B} f \text { op } e\rangle & =e \\
\phi_{B} f \text { op } e\langle x\rangle & =i f(x=\perp) \perp(f x) \\
\phi_{B} f \text { op e }\left(b \cup_{B} b^{\prime}\right) & =o p\left(\phi_{B} f \text { op eb) }\left(\phi_{B} f \text { op e } b^{\prime}\right)\right.
\end{array}
$$

In order for this definition to have a unique meaning，$o p$ and $e$ must satisfy the first three of the four conditions given for $\phi$ in Sect．2．2，but since $\cup_{B}$ is not idempotent the fourth condition for $\phi$ need not hold．

We can construct a bag consisting of $n$ occurrences of a given value $e$ by：

$$
\begin{aligned}
& m k \text { bag } \quad:: N u m \rightarrow a \rightarrow\langle a\rangle \\
& m k \text { bag } n e=i f(n>0)\left(\langle e\rangle \cup_{B}(m k b a g(n-1) e)\right)\langle \rangle
\end{aligned}
$$

$\phi_{B}$ can be used to define cardinality and membership operators over bags of arbitrary type，and a summation op－ erator over bags of numbers：

```
cardinality b = 施 (\lambdax.1) (+) 0 b
sum b = 施 (\lambdax.x)(+) 0 b
x in b = 胡 ((==) x)(V) False b
```

We can convert between bags and lists as follows，but note that bag to list returns $\perp$ for infinite bags：

$$
\begin{aligned}
\text { bag to list } & =\phi_{B}(\lambda x .[x])\left(\lambda l . \lambda l^{\prime} .\left(\operatorname{sort}\left(l++l^{\prime}\right)\right)\right)[] \\
\text { list to bag } & =\text { foldl }(\lambda x .\langle x\rangle)\left(\cup_{B}\right)\rangle
\end{aligned}
$$

We can use bag to list to extend the comparison operators $==,<,<=$ ，etc．，to work over bags．Since bag to list de－ pends on sort these functions will return $\perp$ if applied to higher－order or infinite bags．We can also define a function unique which removes duplicates from a finite bag by con－ verting the bag to a list，removing duplicates，and converting back to a bag：
unique $\quad=$ list to bag $\circ$ remove duplicates －bag to list

Note that it is not in general possible to devise a function that removes duplicates from an infinite bag．

We can convert between bags and sets as follows：

$$
\begin{aligned}
\text { bag to set } & =\phi_{B}(\lambda x \cdot\{x\})(\cup)\{ \} \\
\text { set to bag } & =\phi(\lambda x \cdot\langle x\rangle)\left(\lambda b \cdot \lambda b^{\prime} . \text { unique }\left(b \cup_{B} b^{\prime}\right)\right)\langle \rangle
\end{aligned}
$$

Thus infinite bags can be converted to sets but only finite sets to bags．Finally，the following equivalences can be shown to hold over the various conversion operators，provided in each case that $x s$ is finite：
$\begin{array}{lll}\text { conv／1 } & \text {（list to set } \circ \text { set to list）} x s=x s \\ \text { conv／2 } & \text {（bag to set } \circ \text { set to bag）} x s=x s \\ \text { conv／3 } & \text {（list to bag ○ bag to list）} x s=x s\end{array}$
The analogue of setmap is bagmap，where
bagmap $f=\phi_{B} f\left(\cup_{B}\right)\langle \rangle$
bagmap can be used to support bag comprehensions with the following syntax，where the translation is analogous to that for sets，but using bagmap rather than setmap：
bag comprehension $=$＂$\langle "$ expr＂｜＂qualifiers＂$\rangle "$
bagmap can also be used to define analogues for map， filter and join that operate over possibly inifite bags：
$\operatorname{map} f b=\operatorname{bagmap}(\lambda x .\langle f x\rangle) b$
filter $f b=\operatorname{bagmap}(\lambda x . i f(f x)\langle x\rangle\langle \rangle) b$
join $f g s s^{\prime}=$ bagmap $(\lambda x$ ．bagmap $(\lambda y . i f(f(x, y))$

$$
\left.\langle g(x, y)\rangle\rangle) s^{\prime}\right) s
$$

Given filter, we can determine the number of occurrences of a given element in a bag:
count $b e=$ cardinality $($ filter $(\lambda x .((==) e)) b)$
Bag difference, i.e. the monus operator of [Lib93], can then be defined as follows:

$$
\begin{aligned}
b \text { monus } b^{\prime} \quad=\langle y| & x \in \text { unique }\left(b \cup_{B} b^{\prime}\right) ; \\
& y \in m k \text { bag } \\
& \left.\left((\text { count } b x)-\left(\text { count } b^{\prime} x\right)\right) x\right\rangle
\end{aligned}
$$

and sub bag and intersection are just:

$$
\begin{aligned}
b \text { sub bag } b^{\prime} & =\left(\text { b monus } b^{\prime}\right)==\langle \rangle \\
b \text { inter } b^{\prime} & =b \text { monus }\left(b \text { monus } b^{\prime}\right)
\end{aligned}
$$

Note that monus, and by extension sub bag and inter, will return $\langle\perp\rangle$ if either $b$ or $b^{\prime}$ is infinite.

### 5.2 Equivalences

$\cup_{B}$ and inter are both commutative and associative, i.e. they satisfy the analogues of $\cup / 1, \cup / 2, \cap / 1$ and $\cap / 2$. Clearly, $\cup / 3$ does not hold for bag union. Neither do $\cap / 3$ and $-/ 1$, e.g. put $s=s^{\prime}=s^{\prime \prime}=\langle 1\rangle$.

Interpreting minus as monus and $\subseteq$ as bag containment, equivalences $\cap / 4,-/ 2$ and $-/ 3$ hold subject to the same provisos. Equivalences in/1, in/2 and in/3 also hold as does in/4 with the same provisos. However, in/5 does not hold e.g. put $e=1, s=\langle 1,1\rangle$ and $s^{\prime}=\langle 1\rangle$.

Interpreting setmap as bagmap, setmap/1 and setmap/2 hold as does setmap/4 subject to the same provisos. However, setmap $/ 3$ does not hold e.g. put $s=\langle 1,1\rangle, s^{\prime}=\langle 1\rangle$, $e=\langle$ True $\rangle, e^{\prime}=\langle$ False $\rangle$.

The analogues of map/*, filter/* and join/* hold, subject to the same provisos. Finally, of the equivalences for comprehensions, only $\mathrm{cmp} / 6$ does not hold for bag comprehensions e.g. $\langle x| x \in\langle 1,1\rangle ; x$ in $\langle 1\rangle\rangle=\langle 1,1\rangle$, whereas $\langle x| x \in\langle 1,1\rangle$ inter $\langle 1\rangle\rangle=\langle 1\rangle$.

## 6 Related work

Our framework draws considerably from Breazu-Tannen et al. (1991) who proposed a programming paradigm based upon structural recursion over sets. A major motivating factor behind this paradigm is that it facilitates the optimisation of database programs. Indeed, several optimisations are stated, including filter/2, filter/3 and join/2 above, while structural induction is used as a proof technique. However, this research is in the context of terminating functions over finite sets. In contrast, we have richer semantic domains which include $\perp$, and can thus address termination issues; we also allow for the possibility that sets may be infinite. We have also investigated equivalences expressed at several levels of abstraction.

Cluet and Delobel (1992) propose a query optimisation formalism for $\mathrm{O}_{2}$ based upon classes and algebraic query rewriting. One assumption made is that methods have no side-effects, although it would seem difficult in practice to guarantee that this condition holds. A select-project-join algebra is discussed, and the introduction of types into algebraic expressions facilitates its optimisation by allowing the
introduction of functions that enumerate the constants of a type. Our use of the functions allT and the equivalences inv/1-5 is analogous. The approach of [Clu92] retains a separation of DML and programming language; thus, the possibility of non-termination or infinite data structures are not considered.

Several others have introduced object algebras and strategies for their optimisation [Dem94, Lie92, Sha89, Sto91, Van91] with analogous equivalences to those we propose here. In general, these algebras are either computationally incomplete, or support optimisations for only a subset of their operators. Also, some provide only limited facilities for optimising user-defined data types, while others allow few algebraic transformations to be applied to an expression without changing its value.

The optimisation of functional database languages has been examined by several other researchers (e.g. [Tri89, Bee90, Erw91, Pat90, Hey91]). Trinder [Tri89] advocates analogues of cmp/1-3 for list (as opposed to set) comprehensions. These equivalences are justified by assuming bag equality over lists. Implicit assumptions made are that lists are finite (otherwise, the equivalent of $\mathrm{cmp} / 1$ would not hold, for example) and that functions over their elements are terminating (otherwise $\mathrm{cmp} / 3$ would not hold). Trinder also proposes filter hiding, which corresponds to a combination of our $\mathrm{cmp} / 7$ and $\mathrm{cmp} / 8$. [Hey91], too, is concerned with the optimisation of list-valued expressions, and in this context proposes combining unary expressions (analogous to our map/1 and filter/1-3), eliminating iteration over functions of the form allT, and using information regarding indexes to select preferred query paths. [Pat90] discusses the optimisation of DAPLEX queries, essentially using $\mathrm{cmp} / 1-3$ and inv/1-5. [Bee90, Erw91] discuss the optimisation of FP-like functional database languages, also highlighting the suitability of using functional languages for DBPL optimisation. In particular, [Erw91] develops equivalences over map, filter and a $\Phi$-like aggregation operator in the context of strict functions over finite sets; a set of equivalences over inverse functions are also given, including inv $/ 1$, and others that we have not discussed here.

With respect to previous work on bags, Albert (1991) defines two bag operators, $\cup$ and $\cap$, which reduce to settheoretic union and intersection when restricted to bags without duplicates. He explores the relationship between $\cup, \cap$ and two further operators, $\sqcup$ and $\backslash$, which correspond to our $\cup_{B}$ and monus, respectively. A number of equivalences are developed for applications of filter over bags, some of which generalise to our language but others of which require caveats on the finiteness of the bags and/or the filter conditions.

Libkin and Wong (1993) investigate the power of query languages over bags and give comprehensive references to other work on the expressiveness of bag query languages. However, they do not consider termination issues, and thus define an information-wise ordering over bags which does not explicitly take into account the presence or absence of the element $\perp$ in a bag.

Finally, the optimisation of agggregation functions is a topic of recent interest (e.g. [Cha94]). For example, it is possible to push a maximise or minimise operation into a set comprehesion:
$\max \{x \mid Q ; x \in s\}=\max \{\max s \mid Q\}$ $\min \{x \mid Q ; x \in s\}=\min \{\min s \mid Q\}$

As we would expect, the bag data type is more amenable to aggregation optimisations than the set data type. In particular, it is interesting to note that by defining bag aggregation operations (such as cardinality and sum in Sect. 5 above) in terms of $\phi_{B}$ we automatically obtain several of the equivalences given in [Cha94]. For example, we can push summation through bag union since:

$$
\begin{aligned}
\operatorname{sum}\left(b \cup_{B} b^{\prime}\right)= & \phi_{B}(\lambda x . x)(+) 0\left(b \cup_{B} b^{\prime}\right) \\
= & \left(\phi_{B}(\lambda x . x)(+) 0 b\right) \\
& +\left(\phi_{B}(\lambda x . x)(+) 0 b^{\prime}\right) \\
= & (\operatorname{sum} b)+\left(\operatorname{sum} b^{\prime}\right)
\end{aligned}
$$

We can similarly push cardinality through bag union.

## 7 Conclusion

We have investigated algebraic query optimisation techniques in the context of a functional DBPL furnished with a set bulk data type. We have examined the extent to which prior work on the optimisation of relational languages can be utilised. The declarative nature of our language has enabled us to avoid the problems associated with side-effects, whilst its well-defined semantics provides a framework in which to show formally termination properties of expressions and equivalences between expressions. We have identified caveats to several well-known equivalences in this richer computational paradigm. For processing tasks such as aggregation and transitive closure, our optimisations can be fully exploited for all sub-expressions of a query, since there is no dichotomy between the optimisation of 'programs' and 'DML statements'.

Although developed in the context of a functional language, our findings are directly applicable to other DBPLs operating over sets and/or bags. Conversely, we can incorporate equivalences discovered by others into our formalism. Finally, although we have concentrated upon showing equivalences relevant to the set and bag data types, the same approach can be used for other, possibly user-defined, data types - see for example the equivalences shown in [Bir88] for list and tree data types.

From our findings in Sects. 3.2 and 4.1, it is clear that the user must be provided with sophisticated tools if they are to aid the optimisation process. Such tools have already been developed for functional languages; examples being strictness analysis [Cla85] and Cambridge LCF [Pau87], which can be used to prove properties of expressions such as equivalence and termination. It is also clear that further work remains to be done into physical-level heuristics for reducing the query search space.

Another important issue is the optimisation of retrieval from recursively defined sets. For example, consider the functions parent and anc given in Sect. 4.1. There are several ways in which the function anc can be used, depending upon whether we are searching for specified values of the first and/or the second component of its tuples. For example, we can pose queries which find Janet's descendants and the ancestors of Republican presidents, respectively:

```
\(\{d \mid(a, d) \in a n c ; a==\) Janet \(\}\)
\(\{a \mid(a, d) \in a n c ;(\) president \(d)\) and (republican \(d)\}\)
```

In [Pou93], we proposed the use of a class of functions called selectors which generalise the inverse functions of a functional data model by allowing associative look-up into n-ary, as opposed to just binary, relations. We proposed a magic-sets-like rewriting of set-valued functions given specific binding patterns, or adornments. For example, for the parent and anc functions the possible adornments are ( $\phi, \phi$ ), $(\phi, \beta),(\beta, \phi)$ and $(\beta, \beta)$, where $\beta$ denotes 'bound' and $\phi$ denotes 'free'. When rewritten, anc gives rise to the following selectors for the $(\beta, \phi)$ - and $(\phi, \beta)$-adornments, where the argument $p$ is a predicate corresponding to the $\beta$-adornment which tuples must satisfy:

$$
\begin{aligned}
& \text { anc }{ }^{(\beta, \phi)} \quad::(\text { Person } \rightarrow \text { Bool }) \rightarrow\{\text { Person }\} \\
& \operatorname{anc}^{(\beta, \phi)} p=\operatorname{parent}^{(\beta, \phi)} p \cup \\
& \left\{z \mid y \in a n c^{(\beta, \phi)} p ; z \in \operatorname{anc} c^{(\beta, \phi)}((==) y)\right\} \\
& \text { anc }{ }^{(\phi, \beta)} \quad::(\text { Person } \rightarrow \text { Bool }) \rightarrow\{\text { Person }\} \\
& \operatorname{anc}^{(\phi, \beta)} p=\text { parent }^{(\phi, \beta)} p \cup \\
& \left\{x \mid y \in a n c^{(\phi, \beta)} p ; \quad x \in a n c^{(\phi, \beta)}((==) y)\right\}
\end{aligned}
$$

Often the predicate $p$ will simply be a test for equality with a given value, but more generally it can be any booleanvalued function. In particular, the two queries above rewrite to:

```
\(a n c^{(\beta, \phi)}((==)\) Janet \()\)
anc \({ }^{(\phi, \beta)}(\lambda x\).(president \(x)\) and (republican \(\left.\left.x\right)\right)\)
```

It remains to be shown formally that our rewriting scheme for pushing selection through recursion can only improve the termination properties of expressions. Finally, it also remains to be seen how much of the work that has been done on combining optimisation methods for recursion and aggregation [Gan91] we can adopt.

Acknowledgements. We are grateful to the anonymous referees for their pertinent remarks on a previous version of this paper. The work described here has been supported by the U.K. Engineering and Physical Sciences Research Council (grant no. GR/J 48818).

## Appendix

In our language the computation of a set commences with no information about the set. The set becomes successively better-defined through the introduction of new elements or through the better approximation of existing elements. The computation terminates when no more elements can be added and existing elements can be refined no further.

The Plotkin powerdomain [Plo76, Sch86] is commonly used to model this kind of computation. Specifically, the Plotkin powerdomain, $P(t)$, over a type $t$ consists of subsets of $t$ that represent all the possible results of a nondeterministic or parallel computation with a finite number of alternative paths at each branch point. The information-wise ordering on two sets $A, B \in P(t)$ is defined as follows:

```
A\sqsubseteq}\mp@subsup{\sqsubseteq}{P(t)}{}B\quad\mathrm{ iff }\quad\foralla\inA.\existsb\inB.a\mp@subsup{\sqsubseteq}{t}{}b\quad\mathrm{ and
    \forallb\inB.\existsa\inA.a\sqsubseteq}\mp@subsup{}{t}{}
```

If $t$ is an enumerated type, the members of $P(t)$ are non-empty subsets of $t$ that are either finite or contain $\perp_{t}$. Thus, the least element of $P(t)$ is $\left\{\perp_{t}\right\}$. The empty set is not an element of $P(t)$ since all non-deterministic computations must have some result, even if this is just non-termination, $\perp_{t}$. Also, infinite sets contain $\perp_{t}$ because if a computation returns infinitely many results it executes for ever.

If $t$ is a structured type, non-equal subsets of $t$ may convey the same information, in which case they become identified in $P(t)$. For example, $\{\{$ True,$\perp\}$, $\{$ True, False, $\perp\}$, $\{$ True, False $\}\} \sqsubseteq\{\{$ True,$\perp\}, \quad\{$ True, False $\}\}$ and $\{\{$ True,$\perp\}, \quad\{$ True, False $\}\} \sqsubseteq\{\{$ True,$\perp\}, \quad\{$ True, False,$\perp\},\{$ True, False $\}\}$, so these two sets are indistinguishable in $P(P($ Bool $)$ ). Generally, only convex closures of subsets of $t$ are distinct elements of $P(t)$ i.e. a subset containing two elements $x \sqsubseteq z$ is equivalent to one also containing all $y$ such that $x \sqsubseteq y \sqsubseteq z$. A formal treatment of this concept can be found in Plotkin's original paper [Plo76].

The Plotkin powerdomain is clearly indicated to model our computation of sets. However, we also allow the possibility of a set-valued function returning an empty set, and so the structure of a set type over a type $t$ is a coalesced sum [Sch86] of $P(t)$ with a two-element domain $\operatorname{Empty}(t)=\{\perp,\{ \}\}$ representing the empty set of type $t$. The coalesced sum is so called because the least elements of its summands (in this case $\left\{\perp_{t}\right\}$ from $P(t)$ and $\perp$ from $\operatorname{Empty}(t))$ coalesce to form the least element of the sum. We use the least element of $P(t),\left\{\perp_{t}\right\}$, to denote the least element of the overall set type $\{t\}$. Figure 1 shows the structure of the $\{$ Bool $\}$ domain.

Analogously to sets, the computation of a bag commences with no information about the bag i.e. the element $\langle\perp\rangle$. The bag becomes successively better defined through the introduction of new elements or through the better approximation of existing elements. The computation terminates when no more elements can be added and existing elements can be refined no further.

The partial ordering on bags is simpler than that on sets since duplicate elements are allowed and so convex closures are not needed. Given two bags $A, B \in\langle t\rangle$, we say that a mapping $\psi: A \rightarrow B$ is information-preserving if $a \sqsubseteq_{t} \psi(a)$ for all $a \in A$. The ordering on bags is then defined as follows:

$$
\begin{gathered}
A \sqsubseteq\langle t\rangle B \text { iff } \perp \notin A, \perp \notin B \text { and } \exists \text { an } \\
\text { information-preserving bijection } \\
\psi: A \rightarrow B \\
\text { or } \quad \perp \in A \text { and } \exists \text { an } \\
\text { information-preserving injection } \\
\\
\psi:(A \backslash\{\perp\}) \rightarrow(B \backslash\{\perp\})
\end{gathered}
$$

The first clause of this definition deals with bags that have a defined number of elements: such a bag, $A$, can become better-defined only by making its individual elements betterdefined. The second clause of the definition deals with the case that the number of elements in $A$ is undefined, in which case $A$ can become better-defined by (a) defining the number of elements (in which case there is no $\perp$ in $B$ ), (b) adding more elements, (c) making existing elements better-defined, or (d) combinations of (a), (b) and (c).

As a consequence of this definition, for any two bags $A, B$ such that $\perp \notin A$ and $\perp \in B$ we have $A \nsubseteq B$. Also,


Fig. 1. Structure of the $\{$ Bool $\}$ domain


Fig. 2. Structure of the $\langle$ Bool $\rangle$ domain
the only other bag that the empty bag, $\rangle$, is comparable with is the least bag $\langle\perp\rangle$ (where $\langle\perp\rangle \sqsubseteq\rangle$ ). Figure 2 shows the structure of the $\langle\mathrm{Bool}\rangle$ domain.

## References

1. Albert J (1991) Algebraic properties of bag data types. In: Proc 17 th VLDB, Barcelona, September, pp 211-219
2. Augustsson L (1984) A compiler for lazy ML. In: Proceedings of the ACM Symposium on Lisp and Functional Programming, Austin, August, pp 218-27
3. Bancilhon F, Briggs T, Khoshafian S, Valduriez P (1987) FAD, a powerful and simple database language. In: Proc 13th VLDB, Brighton, September, pp 97-106
4. Beeri C, Kornatzky Y (1990) Algebraic optimization of object-oriented query languages. In: Abiteboul S, Kanellakis PC (eds) ICDT '90. (Lecture notes in computer science, vol 470) Springer, Berlin Heidelberg New York, pp 72-88
5. Beeri C, Milo T (1992) Functional and predicative programming in OODBs. In: Proc ACM PODS, San Diego, June, pp 176-190
6. Bird R, Wadler P (1988) Introduction to functional programming, Prentice-Hall, Englewood Cliffs, NJ
7. Breazu-Tannen V, Buneman P, Naqvi S (1991) Structural recursion as a query language. In: Proc 3rd DBPL, Nafplion, August, pp 9-19
8. Burstall RM, Darlington J (1977) A transformation system for developing recursive programs. JACM 24:44-67
9. Chaudhuri S, Shim K (1994) Including group-by in query optimisation. In: Proc 20th VLDB, Santiago, September, pp 354-366
10. Clack C, Peyton-Jones S (1985) Strictness analysis - a practical approach. In: Jouannaud J-P (ed) Functional Programming Languages and Computer Architecture: proceedings. (Lecture notes in computer science, vol 201) Springer, Berlin Heidelberg New York, pp 33-49
11. Cluet S, Delobel C (1992) A general framework for the optimization of object-oriented queries. In: Proc ACM SIGMOD, San Diego, June, pp 383-392
12. Demuth B, Geppert A, Gorchs T (1994) Algebraic query optimisation in the CoOMS structurally object-oriented database system. In: Query processing for Advanced Database Systems. Freytag JC, Maier D, Vossen G (eds) Morgan Kaufman, San Mateo, Calif
13. Erwig M, Lipeck $U$ (1991) A functional DBPL revealing high level optimizations. In: Proc 3rd DBPL, Nafplion, August, pp 306-321
14. Freytag JC, Goodman $N$ (1989) On the translation of relational queries into iterative programs. ACM Trans Database Syst 14:1-27
15. Ganguly S, Greco S, Zaniolo C (1991) Mininum and maximum predicates in logic programming. In: Proc ACM PODS, Denver, May, pp 154-163
16. Harrison P, Khoshnevisan H (1992) The mechanical transformation of data types. Comput J 35:138-147
17. Heytens ML, Nikhil RS (1991) List comprehensions in Agna, a parallel persistent object system. In: Hughes J (ed) Functional Programming Languages and Computer Architecture: Proceedings. (Lecture notes in computer science, vol 523) Springer, Berlin Heidelberg New York, pp 569-591
18. Hindley JR, Seldin JP (1986) Introduction to combinators and $\lambda$ calculus. Cambridge University Press, Cambridge, UK
19. Jarke M, Koch J (1984) Query optimisation in database systems. ACM Comput Surv 16:111-152
20. Johnsson T (1984) Efficient compilation of lazy evaluation. In: Proceedings of the ACM Conference on Compiler Construction, Montreal, June, pp 58-69
21. Libkin L, Wong L (1993) Some properties of query languages for bags. In: Beeri C, Ohori A, Shasha D (eds) Proceedings of the 4th DBPL, New York. (Workshops in Computing) Springer, Berlin Heidelberg New York, pp 97-114
22. Lieuwin D, Dewitt D (1992) A transformation-based approach to optimizing loops in database programming languages. In: Proc ACM SIGMOD, San Diego, June, pp 91-100
23. Ohori A, Buneman P, Breazu-Tannen, V (1989) Database programming in Machiavelli - a polymorphic language with static type inference. In: Proc ACM SIGMOD, Portland, June, pp 46-57
24. Paton NW, Gray PMD (1990) Optimising and executing DAPLEX queries using Prolog. Comput J 33:547-555
25. Paulson LC (1986) Logic and computation: interactive proof with Cambridge LCF. Cambridge University Press, Cambridge, UK
26. Peyton-Jones SL (1987) The implementation of functional programming languages, Prentice-Hall, Englewood Cliffs, NJ
27. Plotkin G (1976) A power-domain construction. SIAM J Comput 5:452-487
28. Poulovassilis A, Small C (1993) A domain-theoretic approach to integrating logic and functional database languages. In: Proc 19th VLDB, Dublin, August, pp 416-428
29. Schmidt DA (1986) Denotational semantics. Allyn and Bacon, Needham Heights, Mass
30. Shaw GB, Zdonik SB (1989) An object-oriented query algebra. In: Proc 2nd DBPL, Oregon, June, pp 103-112
31. Stonebraker M (1991) Managing persistent objects in a multi-level store. In: Proc ACM SIGMOD, Denver, May, pp 2-11
32. Trinder P (1989) A functional database. DPhil thesis, Oxford University
33. Ullman JD (1989) Principles of database and knowledge-base systems, vol 2. Computer Science Press, New York
34. Vandenburg SL, DeWitt DJ (1991) Algebraic support for complex objects with arrays, identity and inheritance. In: Proc ACM SIGMOD, Denver, May pp 158-167
35. Wadler P (1990) Comprehending monads. In: Proc ACM Conference on Lisp and Functional Programming, Nice, June, pp 61-78

[^0]:    ${ }^{1}$ Note that $==$ is the syntactic equality operator as opposed to equality, $=$, in the semantic domain

[^1]:    ${ }^{2}$ For example, $\{\perp\} \sqsubseteq\}$ implies that $\phi f$ op $e\{\perp\} \sqsubseteq \phi f$ op $e\}$ must hold, which in turn implies that $f \perp \sqsubseteq e$ must hold for all possible $e$, and this can only be true if $f \perp=\perp$

