The VLDB Journal (1996) 5: 133-150 The VLDB Journal
© Springer-Verlag 1996

Type-safe relaxing of schema consistency rules
for flexible modelling in OODBMS

Eric Amiel3, Marie-Jo Bellost&?, Eric Dujardin %, Eric Simon?

1 INRIA Rocquencourt, projet RODIN, BP 105, F-78153 Le Chesnay Cedex, France; e-mail: lastname@rodin.inria.fr
2 Lamsade, Universgit Paris Dauphine, F-75775 Paris Cedex 16, France; e-mail: bellosta@lamsade.dauphine.fr
3 NatSoft, Air Center, CH-1214 Geneva, Switzerland

Edited by Matthias Jarke, Jorge Bocca, Carlo Zaniolo. Received September 15, 1994 / Accepted September 1, 1995

Abstract. Object-oriented databases enforce behavioralThese rules arsufficientconditions that guarantee that no
schema consistency rules to guarantee type safety, i.e., thatpe error can occur during the execution of a method code.
no run-time type error can occur. When the schema mustThe substitutabilityrule says that if a typd? is a subtype
evolve, some schema updates may violate these rules. In oof a typeT; then whenever an instance @i is expected
der to maintain behavioral schema consistency, traditionain a variable assignment or a function invocation, it must
solutions require significant changes to the types, the typde allowed to pass an instance ‘Bf. The covarianceand
hierarchy and the code of existing methods. Such operationsontravariancerules impose constraints when a method is
are very expensive in a database context. To ease schemadefined for more specialized types. The covariance rule
evolution, we propose to support exceptions to the behavsays that the return type must also be specialized. The con-
ioral consistency rules without sacrificing type safety. Thetravariance rule says that the types of arguments that are not
basic idea is to detect unsafe statements in a method codesed for late binding must be more general. If a database
at compile-time and check them at run-time. The run-timeschema satisfies these rules, it is said tobe&aviorally
check is performed by a specific clause that is automaticallyconsistent
inserted around unsafe statements. This check clause warns However, from a database modelling perspective, the
the programmer of the safety problem and lets him provideschema must evolve in order to accommodate evolutions
exception-handling code. Schema updates can therefore ld the real world. As argued by Borgida (1988), this is par-
performed with only minor changes to the code of methodsticularly important in databases “where it is in general im-
possible or undesirable to anticipate all possible states of
Key words: Object-oriented databases — Schema evolutiorthe world during schema design”. The problem is that some
— Type safety — Covariance — Contravariance schema updates may violate the behavioral consistency rules.
For example, consider a database schema that contains a type
Patient having an attributdoctor of type Physician. Sup-
pose that we define a new type, calldétoholic, as a sub-
type of Patient, and that the attributéoctor inherited from
1 Introduction Patient is redefined to be of typésychologist. Since a
Psychologist is (usually) not aPhysician, the method that

An object-oriented database schema contains the descriﬁetrieves theloctor attribute value of an alcoholic violates
tion of the types, type hierarchy, and methods used by all "€ covariance rule and the method that updatesidaor
application programs. Types and method interfaces allowittribute value of an alcoholic violates the contravariance
modelling of the complex objects coming from conceptual "*'®: e
design, while method code and type representation define | N€re are also specific situations that are part of the (real-
the implementation of objects. As a consequence objectil'fe) application that constitute violations of the behavioral
oriented databases must meet requirements arising from boﬁpnsstencr)]/ rules. Flor instance, in an hosp|te}I dl.e:(tabasg, one
a conceptual data modelling and a programming perspectivén@ Say that ambulatory patlengs are gjxaqty Ike patients
From a programming point of view, it is highly desirable (;;e., ﬁmbﬁlatory pﬁme”_t IIS a S(lj" %?_e IO gtzent)hexc_ef)t .
to guarantee type safety, for instance in order to protect th&1at they have no hospital ward. This leads to the violation
database against data corruption caused by type errors. -lcg the subsptutabnlty ruI.e because.the method that retrieves
ensure type safety, object-oriented systems typically ensur8 ward attribute value is not applicable to an instance of

that a schema satisfies threehavioral consistencyules.  “mbulatory patient. . . .
Existing systems have two attitudes with respect to this

Correspondence tcE. Simon problem. One is to encourage the programmer to follow the

1 We intentionally avoid talking about classes, which are viewed as typesrules, but not actually force him to do so (e.g., C++, or
in some systems and as type extensions in others
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O, for the contravariance rule). Inconsistent schemas are person equaly(Person, Person)

allowed and it is the programmer’s r_espons]blllty to control A equaly(Student,Student)

what the program does and to avoid run-time type errors.

The second attitude is to prevent the user from violating theStu dent

rules. In this case there are several well-known solutions that

lead to either changing the type hierarchy and introducingrig. 1. A simple schema

“fake” types, or breaking the type hierarchy and losing the

advantages of polymorphism. These solutions may require

significant changes to the code of methods. Both attitude$1991). Then, we define the behavioral consistency rules and

are clearly not satisfactory since they result in either unsafdow they impact on structural consistency through encapsu-

code or substantial and artificial revisions to the schema. lation. Note that our notion of consistency is only concerned
The starting point of our research is thatceptionso with typing, and not with semantics. It does not include is-

the behavioral consistency rules should be supported to easeies such as integrity constraints [e.g., as in Formica and

schema evolution and modelling. However, they should beMissikoff (1994)] or business rules.

checked at run-time to avoid type errors. In this paper, we

propose to process every method source code and (1) de-

termine whether a statement is unsafe, i.e., may result in 8 1 Notations

run-time type error, (2) automatically insert a “check” clause

around every unsafe statement in the source code, and (3) |

the user provide exception-handling code. The check claus

is merely an if-then-else statement where the if-part perform

a safety run-time check, the then-part contains the original'1 : \ : .

statemé/nt, and the else-part contaiF;ls the exception-hargl]dli dTiis a sup(_artype Ofr. A.S in other studies (Zdonik

codé. The insertion of check clauses warns the user aboufnd Maler 1989; Bruce 1993,'Danf'orth and Simon 1992.)'

possible run-time type errors. The safety condition in the if-SUPtYPINg is a declared a relationship between types, which

part of the “check” clause is expressed intensionally, thereb;}s decoupled from implementation decisions, and used solely

avoiding the reformulation of the condition when the schemal© reflect operational similarities between different types.
To eachgeneric functionm corresponds a set of meth-

changes. Our tool can also automatically generate some de- 1 n s
fault exception-handling code. However, if the programmersPdS 7 (L, ... TY)  — Ry, whereTy is the type of the

provide their own exception-handling code then it has to be”" formal argument, and whet®, is the type of the result.
inspected by our tool. We call the list of argumentsI};, ..., T}') of methodmy
Our proposed approach facilitates schema evolution byh€ signatureof m,.. An invocation of a generic function
supporting exceptions, while guaranteeing that no run-time” iS denotedn(7y, ..., T,,), where (3, ..., T,,) is the signa-
type error will occur. We focus on the motivations for such ture of the invocation, and the;s represent the types of the
an approach and the type checking of statements in th&XPressions passed as arguments. We shall use uppercase
presence of exceptions to behavioral consistency. Our re/€tters to denote type names, and lowercase letters to de-
sults apply to object-oriented databases that support run-timgote type instances, generic functions, methods, and method
method selection using either a single method’s argumenf1vocations. _ _ _
(mono-methods) or all method’s arguments (multi-methods) I traditional object-oriented systems, functions have a
as in recent systems like CLOS (Bobrow et al. 1988), Poly-SPecially designated argument, tterget whose run-time
glot (Agrawal et al. 1991), and Cecil (Chambers 1992). type is used to select th_e mgthod to execute (method res-
The paper is organized as follows. Section 2 introduceLlution). Multi-methods, first introduced in CommonLoops
preliminary definitions about single- and multi-targeted meth{Bobrow et al. 1986) and CLOS (Bobrow et al. 1988), pro-
ods, and defines the notion of consistent schema. Section \§de @ generalization of single-targeted methods by making
gives an overview of the problem, while Sect. 4 sketches théll arguments targets. Multi-methods are now a key feature
proposed solution. Section 5 introduces the material neces2f several systems such as Polyglot (DeMichiel et al. 1993),
sary to present our type system. Section 6 describes the tygéea (Mugridge et al. 1991), Cecil (Chambers 1992), Dylan
checking process allowing to distinguish between safe andAPple Computer 1994) and SQL3 (Melton 1994). Hence-
unsafe statements. Section 7 describes how this process cith. we consider that methods are targeted on either one
be optimized. Section 8 establishes the relationships betwee?f all arguments. For the sake of uniformity, we shall as-
the notions of consistency and safety. Section 9 relates oufume that the first arguments of a function (whege= 1
work with existing work, and Sect. 10 concludes the paper.Of P = 1) are the target arguments. In the examples, we
underline the target arguments in the signatures.
_ Example 2.1Consider the type hierarchy of Fig. 1, and sup-
2 Schema consistency pose we wish to define a generic functiequal for peo-
] ) ) ) le and students. Since equality is defined differently for
In this section, we introduce our notations for the types an eople and students, two methogigial(Person,Person)
methods of a schema, mostly as defined by Agrawal et algng cquai(Student, Student) are needed to implement the
2 We do not focus on the issue of designing specific language primitivesgenerlc funCt'O_n and we reSPeCt'\{eW_ denote themal;
for handling exceptions that can be harmoniously integrated with existing@Ndequal,. Their signatures, given in Fig. 1, show that these
0O programming languages methods have a single target argument. On invocatj@ial

g\t/e assume the existence of a partial ordering between types,
alled subtypingordering, denoted by. Given two types
and Ty, if T, < Ty, we say thatT; is a subtype ofl;
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Representation of typ@ Update Access

T =tuple(...,a; : T;,...) set a;(T,T;) ai(T) — T;

T = set(11) insert element(T, T1) empty?(I") — Boolean
remove element(T',Ty)

T = list(T1) insert element(T, T1) empty?(I") — Boolean

remove element(T,T1) retrieve element at(T, Integer) — T}

Fig. 2. Signatures of representation methods

Person : tuple(name : String, Student : tuple(name : String,
onBankAccount . Float, onBankAccount . Float,
inLifelnsurance : Float, inLifelnsurance : Float,
resources : List(Resources)) resources : List(Resources),

cardID : String)

Fig. 3. Representation of types

(Person, Student), the run-time method dispatcher will se- divided between a bank account and a life insurance. Addi-

lect methodequal; based on the first target argument. tionally, Students have acardID. The following invocation
Given a generic function invocation, the selection of allows the insertion of a new resoureen the resources list

the corresponding method follows a two-step process: firstof a persorp: insert element(resources(p),r).

based on the types of the target arguments, a set of applica-

ble methods is found and, second, a precedence relationship

between applicable methods is used to select what is calle@.2 Behavioral consistency rules

the Most Specific ApplicabléMSA) method. Intuitively, a

precedence relationship determines which applicable methogpject-oriented typing theory defines three consistency rules
most closely matches a function invocation. Given a signato guarantee that no type error can occur during the execution
tures = (T1,...,T;) and a function invocatiom(s), if m;  of a method code. The first two rules impose constraints on
andm; are applicable ton(s) and, according to a partic- the types returned by methods and the types of methods ar-
ular method precedence ordering, is more specific than guments. The third rule relaxes the condition of type equality
m; for s, notedm; < m;, thenm; is a closer match for  on substitution operations (variable assignment or parameter

the invocation. When the method precedence ordering doegassing) to take into account the subtyping relationship. The
not depend on signatures, i.&s m; <s mj, We just write three rules are:

m; < m;. . . |
In the remainder of this paper, we assume that for anycovarance rlule.legn two methodsn,(T},...,T/") —
function invocationm(Ty, . .., T,,), if there is an applicable 1% andm; (17, ..., Ij") — R;, where, for some signature

method, then there always exists an MSA method and thi§: ™ <s M, thenk; < R;.
method is unique. We call this the unique most specific ap-Contravariance rule.Given two single-targeted methods
plicable (UMSA) property. Agrawal et al. (1991) examine (p = 1), m;(T},...,T7) — R; and my(T}, ..., T
different possible method precedence orderings and focus- R;, where, for some signature, m; <, m;, then
on global type precedence and inheritance order precedencegy, > 2 , 7% < Tk,
which enforce the UMSA property in case of multiple in- N ! ’
heritance and multiple targets. However, we insist that ou ; i : .
results do not depend on the means by which the UMS of 7> can be s_ubsUty_ted to an instanceTafif and only if
property is enforced. » = T1 (substitutability conditioh

Types can be represented using different data structures The covariance rule is called consistency by Agrawal et
such as set, tuple and list. We assume that the system ead. (1991). The contravariance rule was originally developed
forces theencapsulatiorof the representation of types. Each for subtyping of functions (Cardelli 1984), and has been
type has a set of built-inlepresentatioroperations that en- extended to subtyping on partially targeted methods (Mc
able to manipulate (i.e., access and update) the state of ifMenzie 1992; Danforth 1990). The substitutability rule is
stances of that type. For our purpose, we consider a subset #ie basis of inclusion polymorphism (Cardelli and Wegner
the operations defined in the ODMG object model (Cattell1985).
1994). Representatioimethods perform built-in operations
on each type. The table in Fig. 2 summarizes the signatures
of their representation methods. Moreover, it is possible ta2.3 Structural consistency rules
iterate over the elements of a collection, i.e. a set or a list,
by using aforeach statement. As shown by Kemper and Moerkotte (1994), the behavioral

consistency rules on representation methods imply structural

Example 2.2.As shown in Fig.3, both aPerson and a  consistency rules on the representation because of encapsu-
Student have several income resources used to computdation. These rules state that the representation of the super-
taxes. The total amount of their financial resources is alsdypes must be included in the representation of their sub-

Substitutability rule Given two typesl; and7>, an instance
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Person Document retrievey(Person,String) — Survey
. / \ retrievey(Student,String) — CourseBook
Student  CourseBook Paper build abstract(Paper) — Abstract
A
Survey

Fig. 4. Document hierarchy

types, and disallow the redefinition of attribute types of tu- substitutability condition is violated during assignment or
ples and element types of collections. [fgtandT; be two  parameter passing. These exceptions are calisallowed
types, such thal; < 7}, we have: signatureandillegal substitution respectively.

In the following, we only consider return-exceptions,

i i i 1.
Tuple subtyping rulelf the representation df; is tuple(a; - 40/ iment-exceptions, and disallowed signatures as possible

1 ng . 5 . H 1. . . . .

15,...,a;” 1 T;7), thenthe repregentatlon@‘|stuple(ai © exceptions to the behavioral consistency rules. Indeed, il-
Tt ...oap 1), with {af, ..., a;"} C {a},...,ai"},and  legal substitutions have more far-reaching consequences on
for all k; < ny, all k; < n., a;?j =aki = T]kj =Tk, static type checking than the three other kinds of exceptions.

Set subtyping rulelf the representation of; is set(le),
then the representation @f is set(T}'), with T} = T}. 3.1.1 Return-exceptions

List subtyping rulelf the representation ofj is list(le), Methodm; is a return-exception to methoab; iff m,; <,
then the representation @t is list(T?), with T} = le. m; for some signature, and the return type ofz; is not a

These rules restrict the rules of structural subtyping de-Subtype of the return type of;,.
fined by Cardelli and Wegner (1985), that also appear in the ~ Imposing covariance on the result ensures that whatever
work of Baneerje et al. (1987). The rules of Baneerje et al.method is selected at run-time, its result is a subtype of the
(1987) state that a tuple-structured tyPeis a subtype of type expected by the context of the invocation.

Ty iff T> has all the attributes of1, and if the types of  Eyample 3.1Consider the schema in Fig. 4, which respects
common attributes iff, are subtypes of those ify. Thus, . . .
the structural consistency rules. Consider the generic func-

representation methods available ®h instances are also tion retr that ch document datab din
available on75 instances. However, as noted by Kemper 10N retricve that Searches a document database according

et al. (1994), the update operations do not respect the corf® the profile of the library user and his topic of interest.

travariance rule. Zdonik and Maier (1989) generalizes thig: PErSOn receives a survey, while a student is presented

problem to the redefinition of method parameters with subhe course book relevant to his level. Thus, the method

types, calledspecialization via constraintsThey show that T.etl’g.wezt IS a return-'fxcgptlton toreiricvey, ct?]pztable of
specialization via constraints leads to run-time type errorg/'€'¢IN9 typ€ €Irors. For instance, suppose that a generic

that cannot be handled by tvpe checking at compile-time. unctionbuild abstract uses pattern matching to extract the
yyp 9 P abstract of a paper and course books have no abstract. The

statement  build abstract(retrieve(aPerson,”database
systems”)) leads to a run-time error ifi Person refers to a
student at run-time, as there is no applicahléd abstract

In this section, we first define exceptions to behavioral con-methOd' . . _—
Return-exceptions can also cause illegal substitutions

sistency and give several examples of each kind of excep- , . i
tion. Next, we relate the violations of structural consistencyWMch can then lead to run-time type errors.
rules to behavioral exceptions. We then summarize the typ&xample 3.2Consider the following assignment of a vari-
errors possibly induced by these exceptions. Finally, weable mySurvey of type Survey: mySurvey « retrie-
present solutions recommended by object-oriented designe(myPerson, “database systems”). If myPerson refers
methods to avoid exception to consistency. to a student at run-time, a course book is assigned to
mySurvey, which constitutes an illegal substitution. The
invocation build abstract( mySurvey) has no applicable
3.1 Exceptions to behavioral consistency method, thereby causing a run-time type error.

3 Problem overview

We define aehavioral exceptioms the violation of one of

the three behavioral consistency rules. The non-respect ¢}.1.2 Argument-exceptions

the covariance rule yieldeturn-exceptionswhile the non-

respect of the contravariance rule yieldgument-exceptions Methodm; is an argument-exception to methed iff m; <
Violations of the substitutability rule yields two kinds of ex- m; for some signature, and there exists a non-target argu-
ceptions. The first one is when a signature is disallowed formentT} of m, which is not a supertype dl’f.

a generic function, although the substitutability condition for ~ Argument-exceptions only occur in systems with single-
parameter passing is satisfied. The second one is when thargeted functions where run-time method selection does
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Person Resource Salary). A prqfessor receive_s a salary and some grants are
R allocated for his research projects. A student can also receive
a salary and/or a grant. A teaching-assistant can only receive
a salary. Thus, the methadiocate;, is not applicable to sig-
Professor  Student Salary nature {"eaching-Assistant, Grant), which is disallowed.
i Finally, the specialization of the second argument induces
two implicitly disallowed signatures{ro fessor, Resource)
and (l'eaching-Assistant,Resource). All other signatures

Teaching-Assistant Grant are allowed.

Fig. 5. Disallowed signature

3.2 Exceptions to structural consistency

not check that the non-target arguments of an invocation ) . .
are subtypes of the non-target formal arguments of the seBecause of encapsulation, exceptions to structural consis-

lected method. This may result in illegal substitutions when!€NCY €ntail exceptions to the behavioral consistency rules.
the actual arguments are assigned to the formal argument&N€re are two kinds of exceptions to structural consistency:
However, the possibility of specializing any argument of adata structure mismatcandcomponent type redefinitiod
method is clearly needed in practice, and for this reasond@t@ structure mismatch arises in two cases: (1) when differ-
most object oriented systems do not actually enforce th&nt data structures are used to build the representation, and
contravariance constraint [see Cattaneo et al. (1993), Meye?) In the case oinapplicable attributesi.e., attributes of

(1992), Connor and Morrison (1992) and Gechnology the supertype that do not appear in the subtype (see, e.g.,
(1992)]. Borgida (1988)). A component type redefinition arises when

a subtype has the same data structure as its supertype. This
redefinition focuses on the types of tuples’ attributes and
collections’ elements.

Example 3.3Consider the schema of Fig. 1 wheSeéudent

is a subtype ofPerson. The invocatiorequal(myPersony,
myPersony) leads to the selection efjual; if the target ar-
gument,my Persons, refers to a student at run-time. But if
the type ofmy Person, refers to a person, an illegal substi- 3 5 1 pata structure mismatch
tution occurs between the formal argument of tyfiedent

andrmy Persony. Then, in the body otquals, applying on | the case of a data structure mismatch, some or all of the
this argument a function that is only defined fStudent  representation methods of the supertype cannot be applied
(e.g., to access thewrd D attribute) causes a run-time error to objects of the subtypes. This corresponds to explicitly
as there is no applicable method. Note that the representajisallowed signatures. Figure 6 summarizes these disallowed
tion of typesStudent and Person conform to the structural  signatures in the case of different data structures between a
subtyping rules. type 71 and its subtypel. Finally, disallowed signatures

due to an inapplicable attribute; : 7} of a typeT; with

respect to its subtyp&>, are ([%) and ([»,17) for a; and
3.1.3 Disallowed signatures set a;, respectively.

Example 3.5Consider the schema of Fig. 7, borrowed from

Signatures is a disallowed signature of. iff invokingm on - panforth and Simon (1992). A data structure mismatch oc-
s Is forbidden, although an MSA method fa(s) existss. curs betweenPolygon and Square, because a square is

Example 3.3 shows that some signatures should be disabbviously a kind of polygon, but the data structure of these
lowed because they imply illegal substitutions between nontypes differ. Hence the representation methodsofygon
target actual and formal arguments. We refer to these sigare not applicable to squares.
natures asmplicitly disallowed signatures, as they can be Example 3.6Suppose we are given a schema whére-
inferred from argument-exceptions. However, some disal-bulatm,y P.atient < Patient and we want to update the
lowed signatures cannot be inferred and must be eXp”Citlyschema by adding_an attributenrd for Patient. This at-
given by the user as part of the semantics of the applicationy;y, e js jrrelevant to subtypdmbulatory Patient. Thus
We call these signaturexplicitly disallowed signatures. Fol- S ’

. ) X accessing or updating the ward of dmbulatory Patient
lowing Borgida (1988), they are defined as excuses on thgy i o S ThenAgnbulatory Pa?ient) and
generic functionexcuse m on s1,...,8,.

(Ambulatory Patient, Ward) are disallowed signatures
Example 3.4.Consider the schema of Fig.5 whefero- for methodsward(Patient) — Ward and set ward(Pa-
fessor and Teaching-Assistant have the same struc- tient, Ward) — Ward, respectively.

ture asPerson with an additional attributeDept. More-

over, Teaching-Assistant also has acardID attribute,

like Student. Suppose we update the schema by adding3.2.2 Component type redefinition

a function allocate that updates theesources attribute

and manages the financial resources by distributing moneys shown in by Kemper and Moerkotte (1994), Cook (1989),
between the bank account and the life insurance, dependzonnor et al. (1991), Danforth and Simon (1992), a compo-
ing on a complex criterion. This function has two methodsnent type redefinition between a tyfig¢ and its subtypé?
allocater(Person, Resource) and allocatey(Professor, leads to one of the following exceptions:
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Representation of superty(ig built-in methods

explicitly disallowed signatures

T1 = tuple(...,a; : Tli, oY) set a; (T, Tf)
a; (T2)
T = set(T) insert element (T2, T)
remove element (T2, T)
empty? (T2)
T1 = list(T) insert element (12,T)
remove element (12,T)
empty? (12)

retrieve element at

Fig. 6. Explicitly disallowed signatures for tuples, sets and lists

(13, Integer)

Point Polygon Point = tuple(x : Integer,y : Integer)
: Polygon = list(Point)
Square = tuple( upper left corner : Point,
Square

Fig. 7. Data structure mismatch

side length : Integer)

A return-exception of the access methods if the type appearenly consider exceptions to behavioral consistency, as they

ing in 1% is not a subtype of the corresponding typ€elin
An argument-exception of the update methods if the typ

appearing ifil; is not a supertype of the corresponding type

in Ti.

Example 3.7 Suppose thatPatient is a type with an at-
tribute doctor of type Physician. Suppose we want to
add a new typedicoholic to the schema as a subtype of
Patient, where attributedoctor is of type Psychologist.
The updated schema is shown on Fig. 8. Asychologist

is not a subtype ofPhysician, the methoddoctor, is

a return-exception to methodoctor;. This exception can

€

also capture exceptions to structural consistency. We define
a database schema to tensisteniff every method satisfies
the behavioral consistency rules.

3.3 Exceptions to consistency and type safety

A program is type safe if, during the execution of every
statement, no error can occur due to the absence of an MSA
method for invocation. The purpose of static type checking
is to verify at compile-time that a program is type safe. To

cause type errors as shown below. Consider the methoH"iS end, for each statement of a method code, the declared
re fund(Hospital,Dollar) that refunds the expenses of a YPeS are used to check that (1) every invocation has an

patient to the hospital he was treated in, and the funcMSA method and (2) no illegal substitution may occur. If
tion re funding that refunds a set of patients using method the above two conditions are satisfied, a statement is correct;

otherwise, it is incorrect and there is a type error.

The central problem introduced by exceptions to behav-
ioral consistency is that a correct statement may be unsafe,
refund(hospital(doctor(p)).bill(p)): ie., yield a type error at run-time. Thus, in presence of ex-
end do;} ceptions to behavioral consistency, type checking must fur-

As psychologists are not affiliated to a hospital, unlike ther partition correct statements insafe and unsafestate-

physicians, the invocatiohospital (doctor( myPatient)) ments. . . )
causes an error ifnyPatient refers to an alcoholic at Figure 11 summarizes the relationships between the three

run-time as there is no applicable method for invocationdifferent kinds of exceptions to behavioral consistency (bot-
hospital(Psychologist). tom of Figure) and the three kinds of type errors at run-time

X - (top of Figure); an arrow from: to y means that an excep-
Example 3.8Consider the types in Fig.9. The two repre- .. ; ; >
sentation methodsnsert elementi(PersonlList,Person) tion of kind > may lead to a type error of kinglat run-time.

and insert elementy(StudentList,Student) constitute an
argument-exception.

refund.
refunding(patients : PatientSet)
{ foreach p in patients do

3.4 Solutions to avoid exceptions to consistency

3.2.3 Structural consistency and behavioral consistency  Object-oriented design offers several solutions to the prob-
lems of consistency set by some schema updates. They mod-
Figure 10 summarizes the relationships between the twdfy the type hierarchy and the code of methods or introduce
kinds of exceptions to structural consistency and the thremew methods. These solutions avoid return-exceptions and
kinds of exceptions to behavioral consistency. An arrowexplicitly disallowed signatures, but not argument-exceptions.
from the structural exceptionto the behavioral exception ~ However, they involve important modifications of the type
means that leads toy. For the remainder of the paper, we hierarchy or the code of methods. In a database context, this
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doctory(Patient)— Physician
Doctor PatAient doctory(Alcoholic)— Psychologist

/ \ set doctori(Patient,Physician)

Physician  Psychologist Alcoholic set doctora(Alcoholic,Psychologist)
hospitaly(Physician)— Hospital

Fig. 8. Doctor and patient hierarchy

Person PersonlList PersonList = list(Person)
. : StudentList = list(Student)
Student StudentList

Fig. 9. Argument-exception in component type redefinition

' Argument- Explicitly Disallowed methods using this_difference_, patients_ and alcoholics can be
Return-Exception Exception Signature manipulated as being of the intermediate type.
A R The first problem with this solution is the multiplication
of artificial intermediate types, lik€atient0, which is com-
binatorial in nature [see Borgida (1988)] as they represent
objects with a subset of the attributes Bitient. The sec-
- _ ond problem is that retaining polymorphism through the use
Type Redefinition Data Structure Mismatch of an intermediate type only works for some methods. In our
previous example, every method that caltsunding can-
not pass a heterogeneous set containing both regular patients
and alcoholics. This is a major disadvantage in a database
context, where applications are collection-oriented. In this

Fig. 10. Subtyping rules violations and exceptions

Absence lllegal Invqgation_ with an . : . .
of MSA = Substitution Explicitly Disallowed case, solution (2) is preferable because it only requires mod-
N K Signature ification of methods but not existing instances.
. The third solution involves re-conciliating physicians and
psychologists by declaring a meth@dspital on Doctor.
This method is defined as simply returning a NULL refer-
ence to indicate that doctors who are psychologists are not
Return-Exception Argument- Explicitly Disallowed affiliated to hospitals. In this way, invocatidtspital(doc-
Exception Signature tor(p)) is not an error even ip refers to an alcoholic at

run-time. The problem with this solution is the definition of
artificial methods, likehospital(Doctor), which seems to
indicate that a function is available on a certain type while

can be expensive since chandes to the tvoes must be pro ié_is actually not. Moreover, it is. the respo_nsibility of the pro-
P 9 yb prop rammer to know thakospital invoked with a doctor may

ated to the persistent instances. Most importantly, the bur9

gen of impler%enting these solutions is Ieftpto the%rogram-r.etum a NULL reference and that the res_ult of the func-

mer. We examine four of these solutions on Example 3.7. 10N must be tested. In our example; funding must be
The first solution eludes the problem by renouncing torewrmen a_s' )

make Alcoholic a subtype oPatient. Thus, the advantages "¢fundind(patients:PatientSet)

of polymorphism are lost; alcoholics and patients must bel foréach p in patients do

stored in different sets and they must be handled separately ifhospital(doctor(p)) <> NULL

by different methods, despite their similarities. refund(hospital(doctor(p)),
The second solution retains the advantages of polymor- bill(p)):

hism for the methods that use only the similarities be- "4 4 } . . .
F\Neen Alcoholic and Patient. This s)c/JIution involves a A last solution involves defining two intermediate meth-

new intermediate type to represent the common part, | ds foo(Patient) and foo(Alcoholics). The first encapsu-

our casePatient without attribute doctor. This can be ates the o_riginal statement of refun_ding the hospital, the
achieved in two ways, illustrated in Fig.12: (1) modify second defines what must be done in the case of an alco-

Patient by removing attributeloctor and create a subtype holic. M.ethodref unding is then rewritten to callfoo on
Patient treated by Physician, or (2) createPatientO as patients:

a supertype oPatient, to represent patient without attribute

doctor. In both casesAlcoholic is made a subtype of the

intermediate type. In methods that do not use the difference

between alcoholics and regular patients and that do not call

Fig. 11. Exceptions to consistency and type errors
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Patient PatientO
Alcoholic Patient treated by Physician Patient Alcoholic

doctori(Patient treated by Physician)— Physician  doctori(Patient)— Physician
doctory(Alcoholic)— Psychologist doctory(Alcoholic)— Psychologist

Fig. 12. Intermediate supertype creation

refunding(patients : PatientSet) CHECK <condition >
{ foreach p in patients do <unsafe statement >

foo(p); FLSE . .
end do; } <exception-handling code >

' END
foo(p:Patient) Fig. 13. Check statements
{ refund(hospital(doctor(p)),bill(p)); }
statement ::= assignment | invocation

foo(p:Alcoholic) aissignmgnt = varial{lehexpression A
{/* handles the case of alcoholics */ } invocation ::= function name(expression™)

expression = variable | constant | invocation
The problem with this solution is the multiplication of arti-
ficial switching methods Fig. 14. Pseudo-EBNF grammar of statements

In conclusion, painful aspects of these solutions are ei-

ther the creation of new intermediate types, the addition Ofarguments can be bound to variables local to the CHECK.

e eruilon o OO ) These variaies are unyped (a5 void variables n Ker:
vention of tr?e ?:)p rammer toytr(Jast the result of ninethods thap. and Moerkotte (1994) or "dynamics” in Abadi et al
prog 1989)], and can be used both in the unsafe statement part

may return NULL. values. These modifications are costly in f the CHECK and its exceptional-handling code instead of
a schema evolution context. Furthermore, they are define e original invocations with side-effects, so that these invo-

by the user on an ad hoc basis. cations are not evaluated twice

The condition part isintensionally mentioned, in the
sense that the types for which the exception occurs are
not explicitly given. Evaluating the correctness condition

Our solution aims at allowing subtyping with exceptions to involves taking the run-time type of the expressions com-
consistency, while enforcing type safety. In this section, weP0Sing the statement and _verlfymg that the statement is cor-
introduce thecheck statementthat allow acceptance of un- "€ct with these types, which amounts to query the schema
safe statements due to exceptions while guaranteeing that i run-time. Depending on the statement, two expressions of
type error can occur at run-time. We then show the impacthe condition are defined, as shown in Fig. 15.
of schema evolution on these check statements. We finallfgxample 4.1In Example 3.1 invocatiobuild abstract(re-
sketch the steps of the type-checking process. trieve(myPerson,“database systems”)) is unsafe because
myPerson may contain a student. Thus, this statement must
be surrounded by a CHECK. Let us assume that the generic
4.1 Check statements function retrieve has a side-effect, e.g., it increments a
) N counter of users. In order to prevent the increment from
Check statements embed every statement identified as unsaigppening twice, we shall usefao variable that stores the
at compile-time — as shown in Fig.13. The condition partresylt of retrieve in the CHECK condition. Then, variable

checks that the unsafe statement is correct at run-time, angl,, is used in both the unsafe statement and the exception-
if it is, the statement is executed. Otherwise, an exceptionhandling code, as shown in Fig. 16.

to be warned about the possibility of run-time failure, let the existing programs, which possibly leads to add or delete

user provide exception handling code, and perform dynamiGHECK statements. Additions are due to newly unsafe state-

type checking of the unsafe statement. ments, and deletions are due to previously unsafe statements
Throughout this paper, we consider statements that argecoming safe. The intensional form saves one from refor-

either function invocations or variable assignments, as showgyy|ating existing CHECK statements retained by the new
in Fig. 14. Dynamic type checking involves evaluating their gyaluation.

arguments, which may be invocations of functions. Veri- Example 4.21n Example 3.7. suppose that a new tvpe of
fying the correctness leads to execution of these functions pe 2. pie o.7, Supp yp

. . i hysician, Family Practiti , Is introduced, for which
twice, in the condition and unsafe statement parts. In cas8Y amuyractitioner
O_f functions with Slde'eﬁ¢0t§, _the. second exeCUUPn is unde- 3 |n the following sections, we assume that only functions without side-
sirable. To overcome this limitation, subexpressions of theeffects are used as the invocation’s arguments of unsafe statements

4 The proposed solution
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CHECKhospital 1S CORRECT ONdoctor(p))

Unsafe Statement Condition Part re fund(hospital(doctor (p)), bill(p))
ELSE
Invocationm(es,...,en) m IS CORRECT ON [* exceptional statement to be provided
(e1,---,en) by the user */
Assignmentv «— e e MAY BE ASSIGNED T@ END

Fig. 17. Schema evolution without generation of a new Check
Fig. 15. Expression of CHECK conditions
CHECKhospital 1S CORRECT ONdoctor(p))

CHECK build abstract IS CORRECT CHECKrefund 1S CORRECT ONhospital(doctor(p)), bill(p))
ON foo:=retrieve(myPerson,"database systems") re fund(hospital(doctor(p)), bill(p))

build  abstract(foo) ; ELSE
ELSE /* user-provided exceptional statement */

introduction(foo) ; END
END ELSE

/* user-provided exceptional statement */

Fig. 16. CHECK of an invocation END

Fig. 18. Schema evolution with generation of a new check
hospital is not applicable (i.e., an explicitly disallowed sig-
nature). As our correction test is intensional, the check does o ) _ )
not need to be reformulated as shown in Fig. 17. of space limitations, we only describe the first step of this

Example 4.3Suppose that a new type of patieftubercu- process.

lar, is introduced, whose expenses are expressed in Swiss

francs GF). As bill(p) may return Swiss francs, and hospi- 5 Basic definitions
tals may only be refunded Dollars, there exists a signature

(Hospital, SF) for which nore fund method is applicable. | this section, we introduce the notions of method applica-

Thus re fund(hospital(doctor(p)), bill(p)) is unsafe, even piir exact type, cover of a signature, and range and disal-
when hospital(doctor(p)) is safe. As shown in Fig.18, a |qwed signature of a method.

nested check statement must be generated.

Total match and target match.Let my (7%, ..., T}) and
m(T1,...,T,) be a method and a function invocation, re-
4.2 Type checking process spectively for a generic functiom. Then,my is said to be a

total matchfor the invocation iffvi € {1,...,n}, T; < T},
For every statement, the proposed type checking procesandmy is said to be aarget matchfor the invocation iff

works as follows: Vie {1,...,p}, T; X T} (pis the number of target argu-
ments).
1. Determine whether the statement is incorrect, unsafe or By extension, we talk about a method as being a total
safe. o or target match for a signature. Note that in multi-targeted
2. If the statement is incorrect, report the type error. systems, the two notions merge, i.e., every target match is a
3. If the statement is unsafe, generate the appropriate chegltal match.
statements.

4. Prompt the user for exception-handling code. Method applicability. A methodrmy (T}, . .., T}?) is applica-

5. Type check the statements of the exception-handlind’let0 a function invocationn(T1, . .., T;,) if my is a target
code. match for the invocation.

Consider again Fig. 1 and suppose thatal is invoked

In the first step, determining if a statement is correct useswith equal(Student, Person). Both methodsequal; and
the types known at compile-time, while determining if it is equal, are applicable because they are both target match to
safe relies on the potential types at run-time. In the thirdthis invocation. Howeverequali(Person,Person) is a to-
step, the generation of the check statement must consideal match for the invocation aneyual,(Student,Student)
that several subexpressions of a statement may be unsafis.not a total match.
In such cases, check statements must be nested. The main In the following, we use a functiofi/ S A which, given
problem with nested checks is to avoid unnecessary checksn invocationm(Ty, . .., T;,), returns the MSA methodh
indeed, when unsafe subexpressions share some variablesfor this invocation — if any — and a specific methoa,+”
some subexpressions, checks may become redundant. Théherwise. The methodn+ uses a specific “impossible”
basic idea to minimize the number of checks is to havetype, noted7+, as the type of its arguments and result.
the type checker infer the possible run-time types of sub-Tr is in strict supertype relation with all other types, i.e.,
expressions along a chain of nested checks (equivalent todl’, T' < T+. This special method is defined for every
chain of conditionals). The fourth step is deferred until thegeneric function.M SA is used at run-time as the method
whole program has been type-checked, so that the user calispatcher.
give, at the same time, the exception-handling code for all We now introduce the notion @xact typeof an expres-
unsafe statements. In the fifth step, the types inferred alongion. The type of a constantdeclared of typél’ is exactly
the checks are used to type-check the exception-handling and not any typel” < T'. Similarly, the object result-
code in place of the types known at compile time. Becauséng from an explicit “new” creation instruction is exactly
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m;, hotedrange(m;), is the set of signatures for whiah,

A B my(4,4) is the MSA method:
my(B,B)
\ / rangetn;) = {(T1, ..., T)
. ma < my € well-typed(n)|MSA(m(Ty, . . ., T,,)) = m;}

Fig. 19. Example schema Example 5.3Considering the example of Fig. 19, we have:

range(ml) = {(A7 A)7 (Aa C)}
the type given as argument to “new”. Thus, a variable thatmnge(mz) ={(B, B),(B,C),(C, A),(C,C),(C, B)}
gets assigned the result of a “new” instruction is also of an U R

exact type. Exact typing applies to expressions that appear

as actual arguments of invocations or as right-hand side of ~AS the applicability of a method relies on a target match,

assignments.

Exact typing. At compile-time, an expressianis said to be
of anexact typel’, denotede : T, iff any object referenced
by e at run-time is of typel’ and not of any typ&l” such
thatT’ < T.

Note that, by default, any expressieris of free typeT’,
denotece : T, i.e.,e may yield at run-time an object of any
type T’ < T. We shall use letter to indifferently refer to
T andT when typing an expression.

Signature of expressiong.he signature of a tuple of expres-
sions €1 : T1,..., e, . Ty) IS the tuple f1,..., 7,). The
signature of a methoeh(7%,...,T}") — Ry is the signa-
ture of its formal arguments, i.e.T§,...,T}*). The signa-
ture of an invocatiomn(ey, ...,e,)Withey : m1,..., e, 1 Ty

is the signature of its actual arguments, i.eq, (.., 7,).
Abusively, we shall calsignatureany tuple of free or exact
types ¢, ..., 7,), and omit their associated expressions.

Cover of a signature.Let s be a signaturerq, ..., 7,). The
coverof s, denoted bycover(s) is defined as:
cover(s) = {(Ux,...,Uy) | Vie{,...,n}
{Ul <T; ifrn=T (Ti is free)
U, =T; if 7 =T; (7‘7; is exact)
By extension, we also define the cover of a method

as the cover of its signature. Note thaver(m;) is the set
of signatures for whichn; is a total match.

Example 5.1Using the type hierarchy in Fig. 19, we have:
cover(A, A) = {(4, A), (C, A)}

cover(my) =cover(4, A) ={(A4, A), (4, C),(C, A),(C,C)}
cover(my) =cover(B, B) ={(B, B), (B, C), (C, B), (C,C)}
Well-typed signaturesThe well-typed signatures of a generic

functionm, denotedwell-typed(m), is the union of the cov-
ers of all the methods associated with

well-typed(m) = U cover(m;)
Example 5.2Considering the example of Fig. 19, we have:
well-typed(m)

={(4,4),(4,0),(C, 4),(C,0),(C, B),(B, B), (B,()}

Intuitively, well-typed(m) represents the set of the in-
vocation’s signatures af: for which there exists a method
m; that is a total match.

Range of a methodLet m; be a method for a generic func-
tion of arity n, andm a function invocation. Theange of

we take form;, (or my), all signatures T,T") in well-
typed(m) such thatT" < A (or T < B). Observe that for
signatures @, A), (C,C), and (, B), m1 andmy are both
applicable but sincen, < mj, these signatures belong to
the range ofm,. Finally, note that ¢, A) € range(my)
but (C, A) ¢ cover(my). This is a consequence of single-
targeting.

Explicitly disallowed signatures of a methodhe set of ex-
plicitly disallowed signatures of a method,, notedexpli-
cit(m;), is the set of explicitly disallowed signatures of
that belong to the range ofh,.

These signatures are both in the raegel the cover of
m;, as they correspond to the user's wish to forbid some
otherwise type correct invocations. Thus,

explicit(m;) C cover(m;).

Example 5.4Let us reconsider the schema introduced in Ex-
ample 3.4, but for brevity, let the types b&for Person,

Pr for Professor, S for Student, T A for Teaching —
Assistant, R for Resource, Sa for Salary and G for
Grant. Consider the methodllocate,. We haverange(al-
locate;) = {(Pr, R), (Pr,SA), (Pr,G),(S,R), (S,Sa),
(S,@), (T,R), (T,Sa), (T,@)} and cover(allocatey) =
{(Pr, Sa), (Pr, G),(T, Sa), (T, G)}.

Finally, we can see thatzplicit(allocatey) = {(T,G)} is
included incover(allocatey).

Implicitly disallowed signatures of a metho@he set of im-
plicitly disallowed signatures of a method;, notedimpli-
cit(m;) is given by:
implicit(m;) =
{(Tx,...,Ty) € range(m;)|Tpe1, ..., T £ Tfﬂ, LT}
The implicitly disallowed signatures belong to the range
of the method but are not covered by it. For invocations with
such signatures, the MS; is not a total match. Thus, we
also have:
implicit(m;)= range(m;) — cover(my)
={(Ty,...,T,) € well-typed(M) | m;
= MSA(m(1y,...,T,)) andm; is not
a total match fom(Tx,...,T,)}
When all arguments are targetted (ie5 n), the range

of a methodmn; is a subset of the signatures coverednby
Thus, we have:

Fact 5.1. If a functionn is targetted on all arguments, then
implicit(m;) = () for all of its methods.
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Example 5.5Consider again the methediocate,. We have: 6.1 Static type checking of assignments
implicit(allocatey) = {(Pr, R), (T, R)} and we can see that
it is equal torange(allocatey) — cover(allocatey) To type check an assignment— e, the first step replaces
As the explicitly disallowed signatures of a method are inv ande by their static types which are computed by func-
its cover, contrary to its implicitly disallowed signatures, we tion static. The resulting reduced statement is then checked
have the following fact: using functioncheckg. If it is incorrect or unsafe, i.e., not
safe, themv « e is incorrect or unsafe, respectively. Oth-
erwise, its safety must be further probed using the dynamic
Disallowed signatures of a methodlhe set ofdisallowed types of the right-hand side, An assignment can be unsafe
signaturesnfa methodn;, noteddisallowed(mi), is defined for two reasons: (1)3 is not safe, or (2% may return, at
as: run-time, a type that is not a subtype of the typevofThe

set of most general types thaimay evaluate to at run-time

is computed using functiodynamics.

Fact 5.2.Ym;, implicit(m;) N explicit(m;) =0

Vmy;, disallowed(m;) = explicit(m;) U implicit(m;)
check(v < e) I* check for assignments */
input: an assignment «— e

Example 5.6 Applying the above definition tallocatey, output:incorrect, safe or unsafe

we havedisallowed(allocateg) = {(T, G), (P7“> R)7 (T, R)} Step 1: /* Safety with respect to static types:

One can verify in the same way thétsallowed(allocate) = replacev ande by their static type usingtatic */
0 reducedAssignment- ( static(v) <« static(e) ) ;

result«— checkr( reducedAssignment ) ;
if result is not safe
return result ;
Step 2: /* Safety with respect to dynamic types */
6 Type checking with exceptions if check(e) is not safe
return unsafe ;
/* Replace the right-hand side by each
In this section, we consider the type checking of statements  of its most general dynamic types usidgnamics*/
in the presence of exceptions to consistency. To specify type for eachT € dynamics(e) do
checking we use a generic function callétck. It has four reducedAssignment- ( static(v) — T ) ;
methods that handles constants, variables, assignments of ! checkr( reducedAssignment) is not safe
. . return unsafe ;
the form¢ < e; and invocations of the forrm(ey, ..., e,),

: . end do ;
where eache; is an expression. The result of eacheck return safe :
method is eitheincorrect, safeor unsafe For trivial cases, end check

the result for constants and variablessisfe.

The last two methods (i.e., for assignments and invoca-
tions) proceed in two steps. The first step evaluates the safe®.2 Static type checking of invocations
of the statement using the types of the expressigkmown
at compile-time; also called trgtatic typeslf the statement  To type check an invocatiom(es, ..., e,), the first step
is found to be safe, then its safety is further evaluated in theeplaces its arguments which are computed by their static
second step. This step uses the potential types, at run-timgypes. The resulting reduced invocation is then checked us-
of the expressions; composing the statement. These typesing function checkg. If it is incorrect or unsafe, i.e., not
are called thelynamic types safe, thenn(ey, . .., e,) is incorrect or unsafe, respectively.

The distinction between the static and dynamic types isOtherwise, the invocation is statically correct and its safety
required in the presence of return-exceptions. When covarimust be further evaluated in the second step. At this step,
ance of the result types is respected, the type of an invocahe invocation may be unsafe for two reasons: (1) an unsafe
tion known at compile-time is the unique most general typeargumente; exists or (2) for some signature at run-time,
that the invocation may have at run-time. This is not truethe invocation is not safe. Otherwise, the invocation is safe.
when a method is allowed to return a type that is not a subfunctionsignatures computes the set of most general sig-
type of the types returned by more general methods. Looknatures that may appear as arguments of a method invocation
ing back at Example 3.7, the invocatidoctor(my Patient) at run-time.
has Physician for its static return type. However, due to
the return-exceptiomoctor,, its possible types at run-time ~check(m(es, . .., en)) /* check for invocations */

: : . . input: an invocationn(ey, .. ., en)
are not only the subtypes of its static typysician, but o
. f . output:incorrect, safe or unsafe

also the subtypes dPsychologist. Thus, its dynamic types Step 1: /* Safety with respect to static types:
are cover(Physician) U cover(Psychologist). replace arguments by their static type usitgtic */

This section is organized as follows. First we detail the reducedinvocatior— ( m(static(er), . . . , static(en))) ;
type checking algorithms for assignments and invocations. result— checkr(reducedinvocation) ;
They are based on the type checkingeducedstatements, if result is not safe
. . : return result ;
i.e. statements where the expressien®f the input state- Step 2 /* Saf . . .

. - . p2: afety with respect to dynamic types */

ments are replaced by their static or dynamic types. We then 7, cach argument; do
specify the type checking of a reduced statement. Finally, if check(e;) is not safe
we define the static and dynamic types of expressions. return unsafe ;
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end do ;
/* Using signatures, replace the arguments by each

of the most general signatures at run-time */

for eachs € signatures(mf(es, .. .,ey)) do
reducedInvocatior— m(s) ;
if checkgr (reducedinvocation) is not safe

return unsafe ;

end do ;

return safe ;

end check

6.3 Type checking reduced statements

A reduced assignment is an expression of the f@ina— 7,
while a reduced invocation is an expression of the form
m(s) = m(r, ..., T,). The type checking of reduced assign-
ments is defined as follows.

safe if, <711
unsafe if (1) € cover(r)
incorrect otherwise

CheCkR(T]_ — ’7'2) =

checkg(m(s))

MSA(m(s)) =m~ or

M S A(m(s)) is not a total match for
m(s), or

s is explicitly disallowed form

incorrect if

used in Example 3.7 to refund the expenses of patients
to hospitals. The first step in the type-checking of invo-
cation re fund(hospital( doctor(p)), amount), wherep is

a variable of typePatient and amount a variable of type
Dollar, consists of computing the static types of the argu-
mentshospital(doctor(p)) and amount as follows:

static(hospital(doctor(p)))=
static(hospital(static(doctor(p))))=
static(hospital(static(doctor(static(p)))))=
static(hospital(static(doctor(Patient))))=
static(hospital(Physician))=H ospital

and static(amount)=Dollar

As check(refund(Hospital, Dollar)) # incorrect, in-
vocationre fund(hospital(doctor(p)), amount) is correct.

We now formally define the dynamic types of an ex-
pression as shown in Fig. 21. The set of dynamic types of a
reduced invocation contains only the highest types that can
be returned by the invocation at run-time. By highest, we
mean types that are not subtypes of any other type in the set
(we use the operatonaz< to obtain the highest types in a
set of types).

The definition of the dynamic types of a reduced invoca-
tion m(s) relies on the notion ofun-time correctmethods.
They represent the methods that can be selected at run-time
for correctinvocations covered byn(s).

Note that we allow assignments where the static type ofRyn-time correct methodsLet m(s) be a reduced invoca-

the right-hand side is a supertype of the type of the left-

tion.

hand side variable. Such unsafe assignments are similar to

the reverse assignment of Eiffel (Meyer 1992) or the dy-
namic downward cast of C++ (Lajoie 1993). The safety of
a reduced invocation is defined as follows:

safe iff Vs’ € cover(s) checkgr(m(s’))
# incorrect
unsafe otherwise

checkg(m(s)) =

We now give the algorithm to type-check reduced invoca-
tions:

check g(m(s))
input: a reduced invocatiom(s)
output:incorrect, safe or unsafe
msa «— MSA(m(s)) ;
Step 1: /* Check the correctness */
if msa =m+ or msa is not a total match og € explicit(msa)
returnincorrect ;
Step 2: /* Check the safety */
for eachs’ € cover(s) do
msa’ «— MSA(m(s")) ;
if msa’ = mT or msa’ is not a total match os’c explicit(msa’)
returnunsafe;
end do ;
returnsafe;
end check

6.4 Static and dynamic types of an expression

The static type of an expression can now be defined as shown

on Fig. 20.

Example 6.1Consider again the types and methods of Fig. 8
of Sect. 3. Letrefund(Hospital, Dollar) be the method

RTC(m(s))={MSA(m(s"))]
s’ € cover(s) andcheck(m(s")) # incorrect

The definition of the dynamic types of an invocation
m(es, ..., e,) relies on the set of signatures that may appear
at run-time as arguments of the invocation. As usual, this
set contains only the highest signatures; all the signatures
in their cover being implicitly included. This set is denoted
signature¢m(es, - . ., e,)) and consists of the cross product
of the dynamic types of the invocation’s arguments:

Signatures of an invocationThe set of highest signatures
that may appear at run-time for an invocation is:

n
signatures(m(es, ..., en)) = H dynamics(e;)
i=1

Example 6.2.The second step in the type checking of
the invocationr-e fund(hospital(doctor(p)), amount) starts

by type checkinghospital(doctor(p)) and amount. First,
hospital(static(doctor(p))) = hospital(Physician) is nei-
ther incorrect or unsafe. Thus the safety fafspital(doc-
tor(p)) must be checked. To this end, the algorithm deter-
mines the signatures @fospital(doctor(p)).

signatures(hospital(doctor(p)))
={(T) | T € dynamics(doctor(p))}
= {(Physician), (Psychologist)}
One of the signatures dlospital(doctor(p)), namely

Psychologist, makes the invocation incorrect as there is
no MSA method. Thushospital(doctor(p)) is unsafe. So
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Constantc static(c) =T
Variablev static(v) =T
. T if check(m(s)) = incorrect
Reduced Invocatiom(s) static(m(s)) =
return type ofm;, = M SA(m(s)) otherwise

Invocationm(ey, . .., en) static(m(es,...,en)) = static(m(static(er), . . ., static(en)))

Fig. 20. Static type of expressions

Constantc dynamics(c) = {T}
Variablev dynamics(v) = {T}
Reduced Invocatiomn(s) dynamics(m(s)) = max<{R; | m; € RT'C(m(s))}

Invocationm(ey, .. .,en) dynamics(m(ey,...,en)) = maz<( U dynamics(m(s)))

s€signatures(m(ey,..., en))

Fig. 21. Dynamic types of an expression

finally, as one of its arguments is unsafe,fund(hospi- checkr(m(s))

tal(doctor(p)), amount) is unsafe. input: a reduced invocatiom(s)
output:incorrect, safe orunsafe
msa «— MSA(m(s)) ;

Step 1:
7 Optimizing the type checking of reduced invocations if msa =mT or msa is not a total match os € explicit(msa)
returnincorrect ;
Step 2:

In this_, section, we propose an optimizatipn of the type-~"% . ctatic safe
checking of reduced invocations. The algorithm fbeckr returnsafe:

presented in Sect.6.3 is expensive because it requires teep 3:

compute the MSA method for every signature in the cover if no signature incover(m(s))

of the reduced invocation. Optimizingieck is particularly is a potential disallowed signature ofsa
important, as it is called several times &yeck to type check reu:f;‘:]r::;feef

a general invocation. The idea of the optimization is the fol-
lowing. Given a reduced invocation, if no signature in its
cover, i.e., the run-time signatures, is a disallowed signature
of some method, then the invocation is safe. To evaluate thig.2 Safety and potential disallowed signatures

condition, one computes the set of disallowed signatures of ] ] ) N

the methods that are more specific than the MSA method he third step of the algorithm relies on Proposition 1 be-
of the reduced invocation. This set is called fhetential low, which gives a necessary and sufficient condition for the
disallowed signaturesf the MSA method. If a method has safety of a correct reduced invocation.

no potential disallowed signatures, then all invocations, forpotential disallowed signatures of a methatihe set of po-

which it is the MSA method are safe. Such a property of atential disallowed signatures of a method, notedpoten-
method is calledstatic safetyand constitutes a cheap suffi- ¢ial disallowed(m;), is defined as:

cient condition for the safety of a reduced invocation.
In this section, we first give the optimized algorithm, and
then present the two safety conditions that it uses.

end check

potential disallowed(m;) = U disallowed(m;)

mj<sm;

s€cover(m;)
7.1 Optimized algorithm for the static type checking Proposition 1. A correct reduced invocatiom(s) is safe iff
of reduced invocations ) )
potential disallowed(MSA(m(s))) N cover(s) =0

The first step of the optimized algorithm checks the correct-

ness of a reduced invocation, following th_e same criteria argof. see Appendix 11.

in Sect.6.3 on the MSA method of the invocation. Steps

2 and 3 check the safety. Step 2 checks whether the MSAxample 7.1Consider the hierarchy and methods of Fig. 22.
method of the invocation is static safe. If it is not, Step 3 The potential disallowed signature of, is (C, A), and
verifies that no run-time signature, i.e., no signature coveredhere is no potential disallowed signature fos. Invocation

by the invocation, is a potential disallowed signature of them(A, A) is declared unsafe, because the signatared) is
MSA method. covered by it.
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A B m1(A,A) My < my A B mi(A,A)
\ / mg(B,B) \ / ma(B,B)
c explicit(m1)=(C, A) o mp < my

Fig. 22. Safety conditions . .
Fig. 24. Trespassing

A b ZA) my(A,D) — E mp < mg
mg iS consistent with respect t; andm,. Thus, the in-
\ / me(B,E) — D M3 < M2 consistency ofm, with respect tom; cannot lead to any
c B ms(C, D) — E ma < my safety problem, because, never trespasses an;.

We first give the definition of a trespassing method, then
a proposition that states the relationship between trespassing,

Fig. 23. Consistent schema |
consistency and safety.

Trespassing. A method m; trespassedn methodm; iff
range(m;) N cover(m;) # 0

The second step of the algorithm relies on Proposition 2Example 8.2In the example of Fig. 24({, A) and (C, C) are
below, which gives a sufficient condition for the safety of a both in range(ms) and in cover(mi). Thus,m, trespasses
correct reduced invocation. It uses the notiorstatic safety  on methodm;.

of a method. This property is invocation-independent and

may be computed once for each method, at compile-time. Proposition 3. If m; is a return- and/or argument-exception
to m;, then a run-time type error may occur onlyrif; tres-
passes omn;.

7.3 Static safety of a method

Static safety of methodsA methodm; is static safeiff
potential disallowed(m;) N cover(m;) =0
As Vs, cover(s) C cover(MSA(m(s))), we have:

Proposition 2. M S A(m(s)) is static safe= m(s) is safe. Example 8.3.Looking back at Fig.23, we see that there
is no methodm; that is both an argument-exception to
Proof. As cover(s) C cover(MSA(m(s))), we havepo-  some methodn; and trespasses on itz is an argument-

Proof. see Appendix 11.

tential disallowed(MSA(m(s))) N cover(MSA(m(s))) = exception tom,, but does not trespass on it, whiles
0 = potential disallowed(MSA(m(s))) N cover(s) =0, trespasses on botmy and my, but is not an argument-
which implies the safety from Proposition 1. exception to them. Thusimplicit(m;) = 0, for all m,.

. . Note that removin makes trespassing onni, SO
Example 7.2In Fig. 22, the methodn, has no potential that implicit(ms) :(‘:ﬁlg D). me P g !

disallowe_d signature, thus it i; static safe. The invocation Moreover, there is no method; that is both a return-
m(4, C) is safe even though its MSA methoghy, is N0t gyception to some methad,; and trespasses on i is a
static safe, andn(B, C) is safe. return-exception tans, but does not trespass on it, white;
trespasses on both; andms,, but is not a return-exception
to them. Thus, the type returned at run-time by any well-
typed invocationm(s) is guaranteed to be a subtype of the

. . . . static type ofm(s).
In this section, we establish the relation between safety . st be noted that although the covariance and con-

and consistency, introducing the notion of tespassing  yayariance rules are too pessimistic, they are adopted in

method. A methodn; trespasses on methed;, if m; may ost systems because they are simpler to check and they
be selected at run-time for invocations whose MSA methoGyger 4 hetter support for schema evolution. Indeed, adding
at compile-time ism;. We show that argument-exceptions - remaving a method that abides by the covariance and
and return-exceptions cause safety problems only if they arg,ayariance rules with respect to all other methods, has

couplepl with trespassing. Hs; is an argument- or return- consequences on safety. As we showed in the above ex-
exception tom;, but may not be selected for invocations 5nhjes  this is not the case when trespassing is taken into
whose MSA method at compile-time is;, then no run- .0 ¢

time type error may occur.

Example 8.1 Consider the schema of Fig. 23 with method

foo1(E) — E. The MSA method of invocationn(a, d) _

is m1. As methodm, is both a return-exception and an 9 Final steps

argument-exception teu;, a run-time type error could oc-

cur if my, was selected at run-time. For exampie(a, d) The last two steps of the type checking process are the gen-
could return aD and there would not be anfoo method eration of check statements and the type checking of the
applicable to the invocatiotfoo(m(a, d)). However, all in-  exception-handling code provided by the user. These two
vocations for which bothn, andm; are applicable, namely issues are out of the scope of this paper. In this section, we
m(C, D) andm(C, E), havems as their MSA method . And just give an idea of the problems and sketch the solution.

8 Safety and consistency
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9.1 Generation of check statements However, note that the ELSE statement is not correct accord-
ing to standard static type checking, &atic(doctor(p)) =

As invocations may appear as arguments of other invocaPhysician andpractice is not applicable taPhysician.

tions,_a singlg statement may contain several unsafe subex- As for the generation of check statements, the solution

pressions. This naturally leads to nest the check statements, , provide the type checker with the ability to infer the

Example 9.1We re-use the methods and types of Fig.8 run-time types of subexpressions likector(p) based on the

and assume the following methods exigtgi(Patient) — previously generated checks.

Dollar, to get the expenses of a patient argund(H os-

pital, Dollar) to refund hospitals for the expenses of their

patients. Moreover, we assume that alcoholics are not billed0 Related work

for their treatment, i.e.Alcoholic is an explicitly disallowed o )

signature obill(Patient). Consider statement fund(hos- ~ 1he problems due to maintaining consistency rules have

pital(doctor(p)), bill(p)). A naive approach to check gen- been recognized by many researchers, each focusing on a

eration examines each subexpressions of a statement in Rarticular rule, but to our knowledge, considering these prob-

left-to-right, depth-first order and generates a check statelems in a single framework has never been proposed.

ment whenever an unsafe subexpression is encountered. C0ok (1989), Mc Kenzie (1992), and Danforth and Si-

Thus, after type checking,doctor(p), hospital(doctor(p)), ~ Mon (1992) forbid argument-exceptions. Hence, subtyping

p, bill(p), the following nested check statements are generbetween generic collections (list aPerson and list of

ated: Student) and attribute type redefinition are also disallowed.
) Esse (Coen-Porsini et al. 1991; Cattaneo et al. 1993) and
CHECK hospital 1S CORRECT ONdoctor(p)) Eiffel (Meyer 1992) use data flow analysis to detect unsafe
CHECKUWill IS CORRECT ONp invocations due to argument-exceptions: the set of types to
ELSE which a variable may refer (callegipe setby Coen-Porsini
END etal. (1991) and Cattaneo et al. (1993) anddjneamic class
ELSE setin Meyer (1992)) are maintained during type checking
END and evaluated after every statement. Using this “type flow”
However, the check owill(p) is redundant. Indeed, if technique, a slightly larger class of programs are statically
hospital(doctor(p)) is correct, thendoctor(p) is a Physi- determined to be safe, as exact types may be used to replace
cian andp is not anAlcoholic. Thus,bill(p) is safe. constant objects or variables that have just been assigned a

To correctly generate check statements, the idea is t@mewly-created object. Although this approach provides more
provide the type checker with the ability to infer the run- accurate type checking, two problems remain. First, state-
time types of subexpressions likector(p) andp, based on  ments that cannot be proved to be safe are rejected (pes-
the previously generated checks. The inferred types are thesimistic option). Second, this approach is less applicable to
used to bind the remaining subexpressions, using what caa database context where applications use collections. In-
be calledtype closuresThese bindings are then used by the deed, a variable iterating over a collection Bfmay refer
type checker. to objects of any subtype &f with no way of knowing the

exact subset of types present in the collection. Our approach
can be used as a complement to “type flow” techniques,
9.2 Type checking the exception-handling code taking over when they have failed to prove the safety of a
statement.
Type checking the exception-handling code provided by the  Using a special construct calleeverse assignmeriif-
user differs from the type checking we defined in the twofel (Meyer 1992) allows a certain kind of illegal substitu-
previous sections. To give an idea of the problem, considetion: the assignment of an expression with static type

the following example: to a variable of typ€l,, althoughTi is a supertype off%.
Example 9.2Going back to the doctor and patient hierar- 1he assignment is checked at run-time to ensure that the dy-
chy of Fig. 8, assume there exists a methodctice(Psy- namic type of the expression is actually or a subtype of

chologist) — Of fice to access the practice of psycholo- 12: Otherwise, a NULL reference is assigned to the variable.
gists and two methodsddress(Hospital) — Address and It iS the responsibility of the programmer to check that the
address(Of fice) — Address to get the addresses. Con- variable is not NULL after the reverse assignment. A similar

sider the exception-handling code of the following checkconstruct, thelynamic cas{Lajoie 1993), is being incorpo-
rated into C++ to check, at run-time, the correctness of a

statement: g :
down-ward casfassertion by the programmer that an object
addr : Address; of static typeT; is actually of typel with T3 supertype of
CHECKhospital IS CORRECT ONdoctor(p)) T).
addr — address(hospital(doctor(p))); Bounded type quantification, first introduced by Cardelli
ELSE _ and Wegner (1985), appears in several proposals (Connor
addr — address(practice(doctor(p))); and Morrison (1992); Canning et al. 1989; Kemper and Mo-
END erkotte 1994) to extend the flexibility of statically typed

In the ELSE part, one can infer thdibctor(p) is of type  object-languages. As explained by Kemper and Moerkotte
Psychologist. This allows to write a modified version of (1994), it enables “polymorphic operations [] to deal with
the original statement usingractice instead ofhospital. objects of different types that do not necessarily lie on the
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same branch of the super/subtype relationship”. Connor antbral schema consistency, while at the same time guarantee-
Morrison (1992) uses bounded type quantification, restricting type safety. After presenting the three consistency rules
ing the application of subtyping to enforce the compositionof covariance, contravariance and substitutability, we defined
integrity constraint on constructed types. Bounded universah typology of exceptions. We gave examples of schema up-
quantification allows substitutability only when passing pa-dates that naturally yield exceptions to the consistency rules,
rameters to a function. All other assignments must involveand we showed that existing solutions that seek preserv-
objects of the same type. Bounded existential quantificatioring schema consistency lead to expensive modifications of
extends substitutability to assignments in the called functionthe type hierarchy and method codes. We then proposed a
In all cases, bounded quantification requires the exact typesew type checking process whereby exceptions to consis-
of actual parameters to be known statically. It is this knowl-tency can be safely tolerated. To guarantee type safety, ev-
edge that allows static type checking of covariant code. Inery statement is first analyzed to determine whether it is

particular, this prevents passing bounded parameters to amorrect, and then further analyzed to determine whether it
other function. Finally, F-bounded quantification (Canningis safe. Then, every unsafe statement is surrounded by a
et al. 1989) allows support of recursively defined types, likecheck clause. This clause is merely an if-then-else state-
Person and Student in Fig. 1. ment where the if-part performs a run-time type checking,

In the works onrmethod schema®biteboul et al. 1990; the then-part contains the original statement, and the else-
Walter 1991), no consistency rules are imposed on thepart contains some exception-handling code (user-defined or
schema and the return type of user-defined methods is natystem-generated).
specified. Consistency is defined as type safety, i.e., absence Unlike traditional solutions offered by object-oriented
of run-time type errors. Proving type safety involves simu-design, our approach enables the handling of schema updates
lating the execution of methods from a typing point of view. that do not preserve schema consistency without creating ar-
This is shown to be impossible in the general case, i.e., withtificial types and methods, or modifying the type hierarchy.
multi-targeted methods and recursion. Covariant updates ar8chema updates can only yield the additions of check clauses
shown to maintain consistency. in the code of existing methods. Another advantage of our

Madsen et al. (1990) recognize the conflict that arisessolution is that conditions in the check are specified inten-
from the use of the type system both “as a means for represionally, thereby avoiding their reformulation when the type
senting concepts in the application domain and for detectindnierarchy is modified, or when exceptions are introduced or
[...] type errors”. They show that the subtyping of “vir- removed. We believe our approach provides a useful com-
tual classes” (i.e., classes with a type parameter) introduceslement to existing sophisticated techniques for static type
type holes, similar to component type redefinition. They con-checking. Indeed, our proposed system relieves these tech-
clude that a combination of compile-time and run-time typeniques when they fail to prove the safety of a statement.
checks, as implemented in Beta, gives a good balance dfinally, we are not aware of any other work in the field
flexibility and type safety. All operations on virtual classes of object-oriented systems and languages that consider ex-
involve run-time type checking. Furthermore, an error occursceptions to schema consistency in the general framework of
if a statement in a Beta program is not correct at run-time. mono- and multi-targeted functions.

Our approach is very similar to Borgida’s (1988) in that  All the steps of the proposed type checking process have
it aims at detecting unsafety at compile-time, using dynamicnow been specified (see Amiel 1994). Future work involves
type checking when necessary and allowing the user to writgroviding the user with means to express explicitly disal-
exception handling code. Borgida (1988) addresses the probewed signatures, and developing efficient algorithms to im-
lem of inapplicable attributes and return-exceptions due tglement our type checking. Finally, an environment to help
attribute domain redefinition. The notion ekcuseserves  programming with exceptions is being designed. Such an
to distinguish between desired exceptions and errors. A typenvironment addresses important issues, such as providing
system that supports these excuses is formally defined bthe user with explanations about why some statements are
Borgida (1989), along with an efficient algorithm to stati- unsafe and assistance in writing exception-handling code.
cally detect unsafe statements. Check clauses are provided
by the USer. The user fo_rmUIateS the correction CondItIO_n InAcknowledgementWe would like to thank Frayais Bancilhon and Guy
an extensional way, testing the run-time type of expressionSzerran for their interest in this work. Special thanks go to Catriel Beeri,
The type system verifies that the correction condition impliesrranmise Fabret, Claude Delobel and Patrick Valduriez for their insightful
the safety of the checked statement and of the exceptionsomments on an earlier version of this paper. We also would like to thank
handling code. We extend this work in two directions. First, the three referees for their extremely careful reviews and helpful comments.
we address the problem of exceptions on single- and multi-
targeted methods. Second, we provide an intensional form
lation of the correction condition, allowing this condition to
remain inva'riant Whgn the type hierarchy is modified and/orp proof of Proposition 1
new exceptions are introduced.

YAppendices

We first introduce the following lemma:
Lemma 1. Vs,s’, s’ € cover(s) = MSA(m(s")) <y
MSA(m(s))

In this paper, we proposed to facilitate schema evolution inProof. As s < s, MSA(m(s)) is applicable tos’. As
object-oriented databases by supporting exceptions to behaw S A(m(s’)) is the most specific method applicable 40

11 Conclusion



with respect to the ordering of , M SA(m(s’)) is more
specific or equal ta\/ S A(m(s)).

We prove that a necessary and sufficient condition Ofbei

safety onm(s) is thatpotential disallowed(M S A(m(s)))
Necover(s) = (). This amounts to the following equivalence:

m(s) is correct and

( U

my SS// M S A(m(s))
5" €cover(M S A(m(s)))

disallowed(m;)) N cover(s) =0

1)
equivalent to
Vs' € cover(s), MSA(m(s)) #mt and
M S A(m(s")) is a total match forn(s’) and
s & explicit(M S A(m(s"))) (2)

Using the definition of the correctness of a reduced in-
vocation, (1) can be written:

MSA(m(s)) #mT and
M S A(m(s)) is a total match formn(s) and
Vs' € cover(s), Vs" € cover(MSA(m(s))),
Vm; <g0 MSA(m(s)), s’ & disallowed(m;) (3)

To rewrite (2), we use the following equivalence, that
comes from the definition afmplicit(m;):

M S A(m(s")) is a total match
for s’ & &' & implicit(M S A(m(s")))
Thus (2) can be written:
Vs’ € cover(s), MSA(m(s")) # mT and
s' & disallowed(M S A(m(s"))) 4)

Let us prove now that (3} (4). We assume that (3)
is true form and s. MSA(m(s)) # mt implies Vs’ €
cover(s), MSA(m(s')) # mt. Thus the first conjunct of
(4) is established.

We also prove that/'s’ € cover(s), s’ & disallowed(
MSA(m(s"))), applying the second conjunct of (3). From
Lemma 1, we haveM SA(m(s")) <, MSA(m(s)), and
s’ € cover(s) implies s’ € cover(MSA(m(s))). Thus
s' & disallowed(M S A(m(s"))). This concludes the first part
of our proof.

Let us prove now that (4= (3). We assume that
(4) is true form and s. As s € cover(s), we have that
MSA(m(s)) # mT. As s & implicit(MSA(m(s))),
M S A(m(s)) is a total match formn(s).

Now let s € cover(s), s” € cover(MSA(m(s))), and
m; <gr MSA(m(s)). If m; = MSA(m(s')), from (4) we
haves’ ¢ disallowed(m;). If m; # MSA(m(s")), from the
definition ofimplicit(m;) andexplicit(m;), disallowed(m;)
€ range(m;), thuss’ & disallowed(m;). This concludes the
proof of proposition 1.

B. Proof of Proposition 3

We prove that a run-time type error due to a method
being a return- or an argument-exception to a methgd
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may occur only ifm, trespasses om;. We first consider
the case of return-exceptions, then of argument-exceptions.
A run-time type error may occur due to a method
ng a return-exception to a method;, iff for some
static signatures € well-typed(m), m; € RTC(m(s)) and
m; = MSA(m(s)). We have to prove that in this case,
trespasses om;.

As m; € RTC(m(s)), there existss’ € cover(s) such
that m; = MSA(m(s)). As s € cover(m;), we have
s’ € cover(m;), ands’ € range(m;), thus range(m;) N
cover(m;) # 0. This concludes the first part of our proof.

Let us now consider the case of argument-exceptions.
The general static safety condition is:

potential exceptions(m;)) N cover(m;) = ()

Using the decomposition of exceptions into implicit and
explicit exceptions, we can rewrite the condition as:

( J implicit(my))

m;<m;

u( U explicit(m;))) N cover(m;) =0 <

m;<m;

( U implicit(m;)) N cover(m;) =0, and

m;<m;

( U explicit(m;)) N cover(m;) =0

m;<m;

Static safety with respect to implicit exception corre-
sponds to the first part of the conjunction. As the implicit
exceptions of methods are due to argument exceptions, let
us see what conditions must hold ety and them; < m;.

As implicit(m;)Ncover(m;) = (range(m;)—cover(m;))
Necover(m;) = (), the first conjunctive term can be written
as:

U implicit(m;) N cover(m;) =0

m;<m;

Let us prove that if (5) is false, thefm; < m; such
that m; is an argument-exception te; and trespasses on

For this, we show that if either (&) is not an argument-
exception tom;, or (b)m; does not trespass an;, then (c)
implicit(m;) N cover(m;) = 0.

Let us first prove (A= (C). (A) means that:

®)

T T = TP T (6)
For all T,...,T™ in implicit(m;), we have:

TP T AT T (7)
(6) and (7) imply:

TP T AT T (8)
And thus:

m;not argument-exception ta;

= implicit(m;) N cover(m;) =0 9)

Let us now prove (b)> (c). We have thaimplicit(m;) =
range(m;) — cover(m;) and (b) means thatange(m;) N
cover(m;) = (. Thus,implicit(m;) N cover(m;) = 0. This
concludes the proof of Proposition 3.
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