
The VLDB Journal (1996) 5: 133–150 The VLDB Journal
c© Springer-Verlag 1996

Type-safe relaxing of schema consistency rules
for flexible modelling in OODBMS

Eric Amiel 3, Marie-Jo Bellosta2, Eric Dujardin 1, Eric Simon1

1 INRIA Rocquencourt, projet RODIN, BP 105, F-78153 Le Chesnay Cedex, France; e-mail: lastname@rodin.inria.fr
2 Lamsade, Université Paris Dauphine, F-75775 Paris Cedex 16, France; e-mail: bellosta@lamsade.dauphine.fr
3 NatSoft, Air Center, CH-1214 Geneva, Switzerland

Edited by Matthias Jarke, Jorge Bocca, Carlo Zaniolo. Received September 15, 1994 / Accepted September 1, 1995

Abstract. Object-oriented databases enforce behavioral
schema consistency rules to guarantee type safety, i.e., that
no run-time type error can occur. When the schema must
evolve, some schema updates may violate these rules. In or-
der to maintain behavioral schema consistency, traditional
solutions require significant changes to the types, the type
hierarchy and the code of existing methods. Such operations
are very expensive in a database context. To ease schema
evolution, we propose to support exceptions to the behav-
ioral consistency rules without sacrificing type safety. The
basic idea is to detect unsafe statements in a method code
at compile-time and check them at run-time. The run-time
check is performed by a specific clause that is automatically
inserted around unsafe statements. This check clause warns
the programmer of the safety problem and lets him provide
exception-handling code. Schema updates can therefore be
performed with only minor changes to the code of methods.

Key words: Object-oriented databases – Schema evolution
– Type safety – Covariance – Contravariance

1 Introduction

An object-oriented database schema contains the descrip-
tion of the types1, type hierarchy, and methods used by all
application programs. Types and method interfaces allow
modelling of the complex objects coming from conceptual
design, while method code and type representation define
the implementation of objects. As a consequence, object-
oriented databases must meet requirements arising from both
a conceptual data modelling and a programming perspective.

From a programming point of view, it is highly desirable
to guarantee type safety, for instance in order to protect the
database against data corruption caused by type errors. To
ensure type safety, object-oriented systems typically ensure
that a schema satisfies threebehavioral consistencyrules.

Correspondence to:E. Simon
1 We intentionally avoid talking about classes, which are viewed as types

in some systems and as type extensions in others

These rules aresufficientconditions that guarantee that no
type error can occur during the execution of a method code.
The substitutabilityrule says that if a typeT2 is a subtype
of a typeT1 then whenever an instance ofT1 is expected
in a variable assignment or a function invocation, it must
be allowed to pass an instance ofT2. The covarianceand
contravariancerules impose constraints when a method is
redefined for more specialized types. The covariance rule
says that the return type must also be specialized. The con-
travariance rule says that the types of arguments that are not
used for late binding must be more general. If a database
schema satisfies these rules, it is said to bebehaviorally
consistent.

However, from a database modelling perspective, the
schema must evolve in order to accommodate evolutions
of the real world. As argued by Borgida (1988), this is par-
ticularly important in databases “where it is in general im-
possible or undesirable to anticipate all possible states of
the world during schema design”. The problem is that some
schema updates may violate the behavioral consistency rules.
For example, consider a database schema that contains a type
Patient having an attributedoctor of typePhysician. Sup-
pose that we define a new type, calledAlcoholic, as a sub-
type ofPatient, and that the attributedoctor inherited from
Patient is redefined to be of typePsychologist. Since a
Psychologist is (usually) not aPhysician, the method that
retrieves thedoctor attribute value of an alcoholic violates
the covariance rule and the method that updates thedoctor
attribute value of an alcoholic violates the contravariance
rule.

There are also specific situations that are part of the (real-
-life) application that constitute violations of the behavioral
consistency rules. For instance, in an hospital database, one
may say that ambulatory patients are exactly like patients
(i.e.,Ambulatory patient is a subtype ofPatient) except
that they have no hospital ward. This leads to the violation
of the substitutability rule because the method that retrieves
a ward attribute value is not applicable to an instance of
Ambulatory patient.

Existing systems have two attitudes with respect to this
problem. One is to encourage the programmer to follow the
rules, but not actually force him to do so (e.g., C++, or

134

O2 for the contravariance rule). Inconsistent schemas are
allowed and it is the programmer’s responsibility to control
what the program does and to avoid run-time type errors.
The second attitude is to prevent the user from violating the
rules. In this case there are several well-known solutions that
lead to either changing the type hierarchy and introducing
“fake” types, or breaking the type hierarchy and losing the
advantages of polymorphism. These solutions may require
significant changes to the code of methods. Both attitudes
are clearly not satisfactory since they result in either unsafe
code or substantial and artificial revisions to the schema.

The starting point of our research is thatexceptionsto
the behavioral consistency rules should be supported to ease
schema evolution and modelling. However, they should be
checked at run-time to avoid type errors. In this paper, we
propose to process every method source code and (1) de-
termine whether a statement is unsafe, i.e., may result in a
run-time type error, (2) automatically insert a “check” clause
around every unsafe statement in the source code, and (3) let
the user provide exception-handling code. The check clause
is merely an if-then-else statement where the if-part performs
a safety run-time check, the then-part contains the original
statement, and the else-part contains the exception-handling
code2. The insertion of check clauses warns the user about
possible run-time type errors. The safety condition in the if-
part of the “check” clause is expressed intensionally, thereby
avoiding the reformulation of the condition when the schema
changes. Our tool can also automatically generate some de-
fault exception-handling code. However, if the programmers
provide their own exception-handling code then it has to be
inspected by our tool.

Our proposed approach facilitates schema evolution by
supporting exceptions, while guaranteeing that no run-time
type error will occur. We focus on the motivations for such
an approach and the type checking of statements in the
presence of exceptions to behavioral consistency. Our re-
sults apply to object-oriented databases that support run-time
method selection using either a single method’s argument
(mono-methods) or all method’s arguments (multi-methods)
as in recent systems like CLOS (Bobrow et al. 1988), Poly-
glot (Agrawal et al. 1991), and Cecil (Chambers 1992).

The paper is organized as follows. Section 2 introduces
preliminary definitions about single- and multi-targeted meth-
ods, and defines the notion of consistent schema. Section 3
gives an overview of the problem, while Sect. 4 sketches the
proposed solution. Section 5 introduces the material neces-
sary to present our type system. Section 6 describes the type
checking process allowing to distinguish between safe and
unsafe statements. Section 7 describes how this process can
be optimized. Section 8 establishes the relationships between
the notions of consistency and safety. Section 9 relates our
work with existing work, and Sect. 10 concludes the paper.

2 Schema consistency

In this section, we introduce our notations for the types and
methods of a schema, mostly as defined by Agrawal et al.

2 We do not focus on the issue of designing specific language primitives
for handling exceptions that can be harmoniously integrated with existing
OO programming languages

6
Person equal1(Person, Person)

Student

equal2(Student,Student)

Fig. 1. A simple schema

(1991). Then, we define the behavioral consistency rules and
how they impact on structural consistency through encapsu-
lation. Note that our notion of consistency is only concerned
with typing, and not with semantics. It does not include is-
sues such as integrity constraints [e.g., as in Formica and
Missikoff (1994)] or business rules.

2.1 Notations

We assume the existence of a partial ordering between types,
called subtypingordering, denoted by�. Given two types
T1 and T2, if T2 � T1, we say thatT2 is a subtype ofT1
and T1 is a supertype ofT2. As in other studies (Zdonik
and Maier 1989; Bruce 1993; Danforth and Simon 1992),
subtyping is a declared a relationship between types, which
is decoupled from implementation decisions, and used solely
to reflect operational similarities between different types.

To eachgeneric functionm corresponds a set of meth-
odsmk(T 1

k , . . . , T
n
k) → Rk, whereT ik is the type of the

ith formal argument, and whereRk is the type of the result.
We call the list of arguments (T 1

k , . . . , T
n
k) of methodmk

the signatureof mk. An invocation of a generic function
m is denotedm(T1, ..., Tn), where (T1, . . . , Tn) is the signa-
ture of the invocation, and theTis represent the types of the
expressions passed as arguments. We shall use uppercase
letters to denote type names, and lowercase letters to de-
note type instances, generic functions, methods, and method
invocations.

In traditional object-oriented systems, functions have a
specially designated argument, thetarget, whose run-time
type is used to select the method to execute (method res-
olution). Multi-methods, first introduced in CommonLoops
(Bobrow et al. 1986) and CLOS (Bobrow et al. 1988), pro-
vide a generalization of single-targeted methods by making
all arguments targets. Multi-methods are now a key feature
of several systems such as Polyglot (DeMichiel et al. 1993),
Kea (Mugridge et al. 1991), Cecil (Chambers 1992), Dylan
(Apple Computer 1994) and SQL3 (Melton 1994). Hence-
forth, we consider that methods are targeted on either one
or all arguments. For the sake of uniformity, we shall as-
sume that thep first arguments of a function (wherep = 1
or p = n) are the target arguments. In the examples, we
underline the target arguments in the signatures.

Example 2.1.Consider the type hierarchy of Fig. 1, and sup-
pose we wish to define a generic functionequal for peo-
ple and students. Since equality is defined differently for
people and students, two methodsequal(Person,Person)
andequal(Student, Student) are needed to implement the
generic function and we respectively denote themequal1
andequal2. Their signatures, given in Fig. 1, show that these
methods have a single target argument. On invocationequal

135

Representation of typeT Update Access
T = tuple(. . . , ai : Ti, . . .) set ai(T , Ti) ai(T)→ Ti
T = set(T1) insert element(T , T1) empty?(T)→ Boolean

remove element(T , T1)
T = list(T1) insert element(T , T1) empty?(T)→ Boolean

remove element(T , T1) retrieve element at(T , Integer)→ T1

Fig. 2. Signatures of representation methods

Person : tuple(name : String, Student : tuple(name : String,
onBankAccount : Float, onBankAccount : Float,
inLifeInsurance : Float, inLifeInsurance : Float,
resources : List(Resources)) resources : List(Resources),

cardID : String)

Fig. 3. Representation of types

(Person, Student), the run-time method dispatcher will se-
lect methodequal1 based on the first target argument.

Given a generic function invocation, the selection of
the corresponding method follows a two-step process: first,
based on the types of the target arguments, a set of applica-
ble methods is found and, second, a precedence relationship
between applicable methods is used to select what is called
the Most Specific Applicable(MSA) method. Intuitively, a
precedence relationship determines which applicable method
most closely matches a function invocation. Given a signa-
ture s = (T1, . . . , Tn) and a function invocationm(s), if mi

andmj are applicable tom(s) and, according to a partic-
ular method precedence ordering,mi is more specific than
mj for s, notedmi <s mj , thenmi is a closer match for
the invocation. When the method precedence ordering does
not depend on signatures, i.e.,∀s mi <s mj , we just write
mi < mj .

In the remainder of this paper, we assume that for any
function invocationm(T1, . . . , Tn), if there is an applicable
method, then there always exists an MSA method and this
method is unique. We call this the unique most specific ap-
plicable (UMSA) property. Agrawal et al. (1991) examine
different possible method precedence orderings and focus
on global type precedence and inheritance order precedence,
which enforce the UMSA property in case of multiple in-
heritance and multiple targets. However, we insist that our
results do not depend on the means by which the UMSA
property is enforced.

Types can be represented using different data structures
such as set, tuple and list. We assume that the system en-
forces theencapsulationof the representation of types. Each
type has a set of built-inrepresentationoperations that en-
able to manipulate (i.e., access and update) the state of in-
stances of that type. For our purpose, we consider a subset of
the operations defined in the ODMG object model (Cattell
1994). Representationmethods perform built-in operations
on each type. The table in Fig. 2 summarizes the signatures
of their representation methods. Moreover, it is possible to
iterate over the elements of a collection, i.e. a set or a list,
by using aforeach statement.

Example 2.2.As shown in Fig. 3, both aPerson and a
Student have several income resources used to compute
taxes. The total amount of their financial resources is also

divided between a bank account and a life insurance. Addi-
tionally, Students have acardID. The following invocation
allows the insertion of a new resourcer in the resources list
of a personp: insert element(resources(p), r).

2.2 Behavioral consistency rules

Object-oriented typing theory defines three consistency rules
to guarantee that no type error can occur during the execution
of a method code. The first two rules impose constraints on
the types returned by methods and the types of methods ar-
guments. The third rule relaxes the condition of type equality
on substitution operations (variable assignment or parameter
passing) to take into account the subtyping relationship. The
three rules are:

Covariance rule.Given two methodsmi(T 1
i , . . . , T

n
i) →

Ri andmj(T 1
j , . . . , T

n
j) → Rj , where, for some signature

s, mi <s mj , thenRi � Rj .

Contravariance rule.Given two single-targeted methods
(p = 1), mi(T 1

i , . . . , T
n
i) → Ri and mj(T 1

j , . . . , T
n
j)

→ Rj , where, for some signatures, mi <s mj , then
∀k ≥ 2 , T kj � T ki .

Substitutability rule.Given two typesT1 andT2, an instance
of T2 can be substituted to an instance ofT1 if and only if
T2 � T1 (substitutability condition).

The covariance rule is called consistency by Agrawal et
al. (1991). The contravariance rule was originally developed
for subtyping of functions (Cardelli 1984), and has been
extended to subtyping on partially targeted methods (Mc
Menzie 1992; Danforth 1990). The substitutability rule is
the basis of inclusion polymorphism (Cardelli and Wegner
1985).

2.3 Structural consistency rules

As shown by Kemper and Moerkotte (1994), the behavioral
consistency rules on representation methods imply structural
consistency rules on the representation because of encapsu-
lation. These rules state that the representation of the super-
types must be included in the representation of their sub-

136

��
�*

6

HH
HY

Paper

Document

Survey

CourseBook

6
Student

Person retrieve1(Person,String)→ Survey

retrieve2(Student,String)→ CourseBook

build abstract(Paper)→ Abstract

Fig. 4. Document hierarchy

types, and disallow the redefinition of attribute types of tu-
ples and element types of collections. LetTi andTj be two
types, such thatTi � Tj , we have:

Tuple subtyping rule.If the representation ofTj is tuple(a1
j :

T 1
j , . . . , a

nj
j : Tnjj), then the representation ofTi is tuple(a1

i :
T 1
i , . . . , a

ni
i : Tnii), with {a1

j , . . . , a
nj
j } ⊆ {a1

i , . . . , a
ni
i }, and

for all kj ≤ nj , all ki ≤ ni, a
kj
j = akii ⇒ T

kj
j = T kii .

Set subtyping rule.If the representation ofTj is set(T 1
j),

then the representation ofTi is set(T 1
i), with T 1

i = T 1
j .

List subtyping rule.If the representation ofTj is list(T 1
j),

then the representation ofTi is list(T 1
i), with T 1

i = T 1
j .

These rules restrict the rules of structural subtyping de-
fined by Cardelli and Wegner (1985), that also appear in the
work of Baneerje et al. (1987). The rules of Baneerje et al.
(1987) state that a tuple-structured typeT2 is a subtype of
T1 iff T2 has all the attributes ofT1, and if the types of
common attributes inT2 are subtypes of those inT1. Thus,
representation methods available onT1 instances are also
available onT2 instances. However, as noted by Kemper
et al. (1994), the update operations do not respect the con-
travariance rule. Zdonik and Maier (1989) generalizes this
problem to the redefinition of method parameters with sub-
types, calledspecialization via constraints. They show that
specialization via constraints leads to run-time type errors
that cannot be handled by type checking at compile-time.

3 Problem overview

In this section, we first define exceptions to behavioral con-
sistency and give several examples of each kind of excep-
tion. Next, we relate the violations of structural consistency
rules to behavioral exceptions. We then summarize the type
errors possibly induced by these exceptions. Finally, we
present solutions recommended by object-oriented design
methods to avoid exception to consistency.

3.1 Exceptions to behavioral consistency

We define abehavioral exceptionas the violation of one of
the three behavioral consistency rules. The non-respect of
the covariance rule yieldsreturn-exceptions, while the non-
respect of the contravariance rule yieldsargument-exceptions.
Violations of the substitutability rule yields two kinds of ex-
ceptions. The first one is when a signature is disallowed for
a generic function, although the substitutability condition for
parameter passing is satisfied. The second one is when the

substitutability condition is violated during assignment or
parameter passing. These exceptions are calleddisallowed
signatureand illegal substitution, respectively.

In the following, we only consider return-exceptions,
argument-exceptions, and disallowed signatures as possible
exceptions to the behavioral consistency rules. Indeed, il-
legal substitutions have more far-reaching consequences on
static type checking than the three other kinds of exceptions.

3.1.1 Return-exceptions

Methodmi is a return-exception to methodmj iff mi <s

mj for some signatures, and the return type ofmi is not a
subtype of the return type ofmj .

Imposing covariance on the result ensures that whatever
method is selected at run-time, its result is a subtype of the
type expected by the context of the invocation.

Example 3.1.Consider the schema in Fig. 4, which respects

the structural consistency rules. Consider the generic func-
tion retrieve that searches a document database according
to the profile of the library user and his topic of interest.
A person receives a survey, while a student is presented
the course book relevant to his level. Thus, the method
retrieve2 is a return-exception toretrieve1, capable of
yielding type errors. For instance, suppose that a generic
functionbuild abstract uses pattern matching to extract the
abstract of a paper and course books have no abstract. The
statement build abstract(retrieve(aPerson,“database
systems”)) leads to a run-time error ifaPerson refers to a
student at run-time, as there is no applicablebuild abstract
method.

Return-exceptions can also cause illegal substitutions
which can then lead to run-time type errors.

Example 3.2.Consider the following assignment of a vari-
able mySurvey of type Survey: mySurvey ← retrie-
ve(myPerson, “database systems′′). If myPerson refers
to a student at run-time, a course book is assigned to
mySurvey, which constitutes an illegal substitution. The
invocation build abstract(mySurvey) has no applicable
method, thereby causing a run-time type error.

3.1.2 Argument-exceptions

Methodmi is an argument-exception to methodmj iff mi <s

mj for some signatures, and there exists a non-target argu-
mentT ki of mi which is not a supertype ofT kj .

Argument-exceptions only occur in systems with single-
targeted functions where run-time method selection does

137

6

6

�
�
��

A
A
AK

A
A
AK

�
�
��
Student Salary

Resource

Professor

Person

Teaching-Assistant Grant

Fig. 5. Disallowed signature

not check that the non-target arguments of an invocation
are subtypes of the non-target formal arguments of the se-
lected method. This may result in illegal substitutions when
the actual arguments are assigned to the formal arguments.
However, the possibility of specializing any argument of a
method is clearly needed in practice, and for this reason,
most object oriented systems do not actually enforce the
contravariance constraint [see Cattaneo et al. (1993), Meyer
(1992), Connor and Morrison (1992) and O2 Technology
(1992)].

Example 3.3.Consider the schema of Fig. 1 whereStudent
is a subtype ofPerson. The invocationequal(myPerson1,
myPerson2) leads to the selection ofequal2 if the target ar-
gument,myPerson1, refers to a student at run-time. But if
the type ofmyPerson2 refers to a person, an illegal substi-
tution occurs between the formal argument of typeStudent
andmyPerson2. Then, in the body ofequal2, applying on
this argument a function that is only defined forStudent
(e.g., to access thecardID attribute) causes a run-time error
as there is no applicable method. Note that the representa-
tion of typesStudent andPerson conform to the structural
subtyping rules.

3.1.3 Disallowed signatures

Signatures is a disallowed signature ofm iff invokingm on
s is forbidden, although an MSA method form(s) existss.

Example 3.3 shows that some signatures should be disal-
lowed because they imply illegal substitutions between non-
target actual and formal arguments. We refer to these sig-
natures asimplicitly disallowed signatures, as they can be
inferred from argument-exceptions. However, some disal-
lowed signatures cannot be inferred and must be explicitly
given by the user as part of the semantics of the application.
We call these signaturesexplicitlydisallowed signatures. Fol-
lowing Borgida (1988), they are defined as excuses on the
generic function:excuse m on s1,...,sx.

Example 3.4.Consider the schema of Fig. 5 wherePro-
fessor and Teaching-Assistant have the same struc-
ture asPerson with an additional attributeDept. More-
over, Teaching-Assistant also has acardID attribute,
like Student. Suppose we update the schema by adding
a function allocate that updates theresources attribute
and manages the financial resources by distributing money
between the bank account and the life insurance, depend-
ing on a complex criterion. This function has two methods
allocate1(Person, Resource) and allocate2(Professor,

Salary). A professor receives a salary and some grants are
allocated for his research projects. A student can also receive
a salary and/or a grant. A teaching-assistant can only receive
a salary. Thus, the methodallocate2 is not applicable to sig-
nature (Teaching-Assistant, Grant), which is disallowed.
Finally, the specialization of the second argument induces
two implicitly disallowed signatures (Professor,Resource)
and (Teaching-Assistant,Resource). All other signatures
are allowed.

3.2 Exceptions to structural consistency

Because of encapsulation, exceptions to structural consis-
tency entail exceptions to the behavioral consistency rules.
There are two kinds of exceptions to structural consistency:
data structure mismatchandcomponent type redefinition. A
data structure mismatch arises in two cases: (1) when differ-
ent data structures are used to build the representation, and
(2) in the case ofinapplicable attributes, i.e., attributes of
the supertype that do not appear in the subtype (see, e.g.,
Borgida (1988)). A component type redefinition arises when
a subtype has the same data structure as its supertype. This
redefinition focuses on the types of tuples’ attributes and
collections’ elements.

3.2.1 Data structure mismatch

In the case of a data structure mismatch, some or all of the
representation methods of the supertype cannot be applied
to objects of the subtypes. This corresponds to explicitly
disallowed signatures. Figure 6 summarizes these disallowed
signatures in the case of different data structures between a
type T1 and its subtypeT2. Finally, disallowed signatures
due to an inapplicable attributeai : T i

1 of a typeT1 with
respect to its subtypeT2 are (T2) and (T2, T

i
1) for ai and

set ai, respectively.

Example 3.5.Consider the schema of Fig. 7, borrowed from
Danforth and Simon (1992). A data structure mismatch oc-
curs betweenPolygon and Square, because a square is
obviously a kind of polygon, but the data structure of these
types differ. Hence the representation methods ofPolygon
are not applicable to squares.

Example 3.6.Suppose we are given a schema whereAm-
bulatory Patient � Patient and we want to update the
schema by adding an attributeward for Patient. This at-
tribute is irrelevant to subtypeAmbulatory Patient. Thus,
accessing or updating the ward of anAmbulatory Patient
should not be allowed. Then, (Ambulatory Patient) and
(Ambulatory Patient, Ward) are disallowed signatures
for methodsward(Patient) → Ward and set ward(Pa-
tient,Ward)→Ward, respectively.

3.2.2 Component type redefinition

As shown in by Kemper and Moerkotte (1994), Cook (1989),
Connor et al. (1991), Danforth and Simon (1992), a compo-
nent type redefinition between a typeT1 and its subtypeT2
leads to one of the following exceptions:

138

Representation of supertypeT1 built-in methods explicitly disallowed signatures

T1 = tuple(. . . , ai : T i
1 , . . .) set ai (T2, T

i
1)

ai (T2)

T1 = set(T) insert element (T2, T)

remove element (T2, T)

empty? (T2)

T1 = list(T) insert element (T2, T)

remove element (T2, T)

empty? (T2)

retrieve element at (T2, Integer)

Fig. 6. Explicitly disallowed signatures for tuples, sets and lists

6
Polygon

Square

Point

Polygon = list(Point)
Square = tuple(

Point = tuple(x : Integer, y : Integer)

upper left corner : Point,
side length : Integer)

Fig. 7. Data structure mismatch

A return-exception of the access methods if the type appear-
ing in T2 is not a subtype of the corresponding type inT1.

An argument-exception of the update methods if the type
appearing inT2 is not a supertype of the corresponding type
in T1.

Example 3.7.Suppose thatPatient is a type with an at-
tribute doctor of type Physician. Suppose we want to
add a new typeAlcoholic to the schema as a subtype of
Patient, where attributedoctor is of type Psychologist.
The updated schema is shown on Fig. 8. AsPsychologist
is not a subtype ofPhysician, the methoddoctor2 is
a return-exception to methoddoctor1. This exception can
cause type errors as shown below. Consider the method
refund(Hospital,Dollar) that refunds the expenses of a
patient to the hospital he was treated in, and the func-
tion refunding that refunds a set of patients using method
refund.
refunding(patients : PatientSet)

{ foreach p in patients do

refund(hospital(doctor(p)),bill(p));

end do;}
As psychologists are not affiliated to a hospital, unlike

physicians, the invocationhospital (doctor(myPatient))
causes an error ifmyPatient refers to an alcoholic at
run-time as there is no applicable method for invocation
hospital(Psychologist).

Example 3.8.Consider the types in Fig. 9. The two repre-
sentation methodsinsert element1(PersonList,Person)
and insert element2(StudentList,Student) constitute an
argument-exception.

3.2.3 Structural consistency and behavioral consistency

Figure 10 summarizes the relationships between the two
kinds of exceptions to structural consistency and the three
kinds of exceptions to behavioral consistency. An arrow
from the structural exceptionx to the behavioral exceptiony
means thatx leads toy. For the remainder of the paper, we

only consider exceptions to behavioral consistency, as they
also capture exceptions to structural consistency. We define
a database schema to beconsistentiff every method satisfies
the behavioral consistency rules.

3.3 Exceptions to consistency and type safety

A program is type safe if, during the execution of every
statement, no error can occur due to the absence of an MSA
method for invocation. The purpose of static type checking
is to verify at compile-time that a program is type safe. To
this end, for each statement of a method code, the declared
types are used to check that (1) every invocation has an
MSA method and (2) no illegal substitution may occur. If
the above two conditions are satisfied, a statement is correct;
otherwise, it is incorrect and there is a type error.

The central problem introduced by exceptions to behav-
ioral consistency is that a correct statement may be unsafe,
i.e., yield a type error at run-time. Thus, in presence of ex-
ceptions to behavioral consistency, type checking must fur-
ther partition correct statements intosafeand unsafestate-
ments.

Figure 11 summarizes the relationships between the three
different kinds of exceptions to behavioral consistency (bot-
tom of Figure) and the three kinds of type errors at run-time
(top of Figure); an arrow fromx to y means that an excep-
tion of kindx may lead to a type error of kindy at run-time.

3.4 Solutions to avoid exceptions to consistency

Object-oriented design offers several solutions to the prob-
lems of consistency set by some schema updates. They mod-
ify the type hierarchy and the code of methods or introduce
new methods. These solutions avoid return-exceptions and
explicitly disallowed signatures, but not argument-exceptions.
However, they involve important modifications of the type
hierarchy or the code of methods. In a database context, this

139

hospital1(Physician)→ Hospital
set doctor2(Alcoholic,Psychologist)

doctor2(Alcoholic)→ Psychologist

doctor1(Patient)→ Physician

set doctor1(Patient,Physician)HH
HY

��
�* 6

Physician Psychologist Alcoholic

Doctor Patient

Fig. 8. Doctor and patient hierarchy

6 6
Person

Student

PersonList

StudentList

PersonList = list(Person)
StudentList = list(Student)

Fig. 9. Argument-exception in component type redefinition

Exception
Argument-

6

�
�
�
�
�
�> 6

Return-Exception

Type Redefinition Data Structure Mismatch

Explicitly Disallowed
Signature

Fig. 10. Subtyping rules violations and exceptions

Absence
of MSA

Invocation with an
Explicitly Disallowed

Signature

Signature
Explicitly Disallowed

6

�

66

�
�
�
�
�
��>

Argument-
Exception

Return-Exception

Illegal
Substitution

Fig. 11. Exceptions to consistency and type errors

can be expensive since changes to the types must be propa-
gated to the persistent instances. Most importantly, the bur-
den of implementing these solutions is left to the program-
mer. We examine four of these solutions on Example 3.7.

The first solution eludes the problem by renouncing to
makeAlcoholic a subtype ofPatient. Thus, the advantages
of polymorphism are lost; alcoholics and patients must be
stored in different sets and they must be handled separately
by different methods, despite their similarities.

The second solution retains the advantages of polymor-
phism for the methods that use only the similarities be-
tween Alcoholic and Patient. This solution involves a
new intermediate type to represent the common part, in
our casePatient without attributedoctor. This can be
achieved in two ways, illustrated in Fig. 12: (1) modify
Patient by removing attributedoctor and create a subtype
Patient treated by Physician, or (2) createPatient0 as
a supertype ofPatient, to represent patient without attribute
doctor. In both cases,Alcoholic is made a subtype of the
intermediate type. In methods that do not use the difference
between alcoholics and regular patients and that do not call

methods using this difference, patients and alcoholics can be
manipulated as being of the intermediate type.

The first problem with this solution is the multiplication
of artificial intermediate types, likePatient0, which is com-
binatorial in nature [see Borgida (1988)] as they represent
objects with a subset of the attributes ofPatient. The sec-
ond problem is that retaining polymorphism through the use
of an intermediate type only works for some methods. In our
previous example, every method that callsrefunding can-
not pass a heterogeneous set containing both regular patients
and alcoholics. This is a major disadvantage in a database
context, where applications are collection-oriented. In this
case, solution (2) is preferable because it only requires mod-
ification of methods but not existing instances.

The third solution involves re-conciliating physicians and
psychologists by declaring a methodhospital on Doctor.
This method is defined as simply returning a NULL refer-
ence to indicate that doctors who are psychologists are not
affiliated to hospitals. In this way, invocationhospital(doc-
tor(p)) is not an error even ifp refers to an alcoholic at
run-time. The problem with this solution is the definition of
artificial methods, likehospital(Doctor), which seems to
indicate that a function is available on a certain type while
it is actually not. Moreover, it is the responsibility of the pro-
grammer to know thathospital invoked with a doctor may
return a NULL reference and that the result of the func-
tion must be tested. In our example,refunding must be
rewritten as:
refunding(patients:PatientSet)

{ foreach p in patients do

if hospital(doctor(p)) <> NULL

refund(hospital(doctor(p)),

bill(p));

end do; }
A last solution involves defining two intermediate meth-

odsfoo(Patient) andfoo(Alcoholics). The first encapsu-
lates the original statement of refunding the hospital, the
second defines what must be done in the case of an alco-
holic. Methodrefunding is then rewritten to callfoo on
patients:

140

HH
HY

��
�*

Patient treated by Physician

Patient

Alcoholic

��
�*

HH
HY

Patient0

AlcoholicPatient

doctor1(Patient treated by Physician)→ Physician

doctor2(Alcoholic)→ Psychologist doctor2(Alcoholic)→ Psychologist

doctor1(Patient)→ Physician

Fig. 12. Intermediate supertype creation

refunding(patients : PatientSet)

{ foreach p in patients do

foo(p);

end do; }

foo(p:Patient)

{ refund(hospital(doctor(p)),bill(p)); }

foo(p:Alcoholic)

{/* handles the case of alcoholics */ }
The problem with this solution is the multiplication of arti-
ficial switching methods.

In conclusion, painful aspects of these solutions are ei-
ther the creation of new intermediate types, the addition of
new artificial methods, the renunciation of polymorphism by
not declaring a type as a subtype of another one, or the inter-
vention of the programmer to test the result of methods that
may return NULL values. These modifications are costly in
a schema evolution context. Furthermore, they are defined
by the user on an ad hoc basis.

4 The proposed solution

Our solution aims at allowing subtyping with exceptions to
consistency, while enforcing type safety. In this section, we
introduce thecheck statements, that allow acceptance of un-
safe statements due to exceptions while guaranteeing that no
type error can occur at run-time. We then show the impact
of schema evolution on these check statements. We finally
sketch the steps of the type-checking process.

4.1 Check statements

Check statements embed every statement identified as unsafe
at compile-time – as shown in Fig. 13. The condition part
checks that the unsafe statement is correct at run-time, and
if it is, the statement is executed. Otherwise, an exception-
handling code is executed. Check statements enable the user
to be warned about the possibility of run-time failure, let the
user provide exception handling code, and perform dynamic
type checking of the unsafe statement.

Throughout this paper, we consider statements that are
either function invocations or variable assignments, as shown
in Fig. 14. Dynamic type checking involves evaluating their
arguments, which may be invocations of functions. Veri-
fying the correctness leads to execution of these functions
twice, in the condition and unsafe statement parts. In case
of functions with side-effects, the second execution is unde-
sirable. To overcome this limitation, subexpressions of the

CHECK<condition >
<unsafe statement >

ELSE
<exception-handling code >

END

Fig. 13. Check statements

statement ::= assignment | invocation
assignment ::= variable←expression
invocation ::= function name(expression∗)
expression ::= variable | constant | invocation

Fig. 14. Pseudo-EBNF grammar of statements

arguments can be bound to variables local to the CHECK.
These variables are untyped [as “void” variables in Kem-
per and Moerkotte (1994) or “dynamics” in Abadi et al.
(1989)], and can be used both in the unsafe statement part
of the CHECK and its exceptional-handling code instead of
the original invocations with side-effects, so that these invo-
cations are not evaluated twice3.

The condition part isintensionally mentioned, in the
sense that the types for which the exception occurs are
not explicitly given. Evaluating the correctness condition
involves taking the run-time type of the expressions com-
posing the statement and verifying that the statement is cor-
rect with these types, which amounts to query the schema
at run-time. Depending on the statement, two expressions of
the condition are defined, as shown in Fig. 15.

Example 4.1.In Example 3.1 invocationbuild abstract(re-
trieve(myPerson, “database systems”)) is unsafe because
myPerson may contain a student. Thus, this statement must
be surrounded by a CHECK. Let us assume that the generic
function retrieve has a side-effect, e.g., it increments a
counter of users. In order to prevent the increment from
happening twice, we shall use afoo variable that stores the
result ofretrieve in the CHECK condition. Then, variable
foo is used in both the unsafe statement and the exception-
handling code, as shown in Fig. 16.

Some schema evolution operations require to re-evaluate
existing programs, which possibly leads to add or delete
CHECK statements. Additions are due to newly unsafe state-
ments, and deletions are due to previously unsafe statements
becoming safe. The intensional form saves one from refor-
mulating existing CHECK statements retained by the new
evaluation.

Example 4.2.In Example 3.7, suppose that a new type of
physician,FamilyPractitioner, is introduced, for which

3 In the following sections, we assume that only functions without side-
effects are used as the invocation’s arguments of unsafe statements

141

Unsafe Statement Condition Part

Invocationm(e1, . . . , en) m IS CORRECT ON
(e1, . . . , en)

Assignmentv ← e e MAY BE ASSIGNED TOv

Fig. 15. Expression of CHECK conditions

CHECK build abstract IS CORRECT
ON foo:=retrieve(myPerson,"database systems")

build abstract(foo) ;
ELSE

introduction(foo) ;
END

Fig. 16. CHECK of an invocation

hospital is not applicable (i.e., an explicitly disallowed sig-
nature). As our correction test is intensional, the check does
not need to be reformulated as shown in Fig. 17.

Example 4.3.Suppose that a new type of patient,Tubercu-
lar, is introduced, whose expenses are expressed in Swiss
francs (SF). As bill(p) may return Swiss francs, and hospi-
tals may only be refunded Dollars, there exists a signature
(Hospital, SF) for which norefund method is applicable.
Thus refund(hospital(doctor(p)), bill(p)) is unsafe, even
when hospital(doctor(p)) is safe. As shown in Fig. 18, a
nested check statement must be generated.

4.2 Type checking process

For every statement, the proposed type checking process
works as follows:

1. Determine whether the statement is incorrect, unsafe or
safe.

2. If the statement is incorrect, report the type error.
3. If the statement is unsafe, generate the appropriate check

statements.
4. Prompt the user for exception-handling code.
5. Type check the statements of the exception-handling

code.

In the first step, determining if a statement is correct uses
the types known at compile-time, while determining if it is
safe relies on the potential types at run-time. In the third
step, the generation of the check statement must consider
that several subexpressions of a statement may be unsafe.
In such cases, check statements must be nested. The main
problem with nested checks is to avoid unnecessary checks:
indeed, when unsafe subexpressions share some variables or
some subexpressions, checks may become redundant. The
basic idea to minimize the number of checks is to have
the type checker infer the possible run-time types of sub-
expressions along a chain of nested checks (equivalent to a
chain of conditionals). The fourth step is deferred until the
whole program has been type-checked, so that the user can
give, at the same time, the exception-handling code for all
unsafe statements. In the fifth step, the types inferred along
the checks are used to type-check the exception-handling
code in place of the types known at compile time. Because

CHECKhospital IS CORRECT ON(doctor(p))
refund(hospital(doctor(p)), bill(p))

ELSE
/* exceptional statement to be provided

by the user */
END

Fig. 17. Schema evolution without generation of a new Check

CHECKhospital IS CORRECT ON(doctor(p))
CHECKrefund IS CORRECT ON(hospital(doctor(p)), bill(p))

refund(hospital(doctor(p)), bill(p))
ELSE

/* user-provided exceptional statement */
END

ELSE
/* user-provided exceptional statement */

END

Fig. 18. Schema evolution with generation of a new check

of space limitations, we only describe the first step of this
process.

5 Basic definitions

In this section, we introduce the notions of method applica-
bility, exact type, cover of a signature, and range and disal-
lowed signature of a method.

Total match and target match.Let mk(T 1
k , . . . , T

n
k) and

m(T1, . . . , Tn) be a method and a function invocation, re-
spectively for a generic functionm. Then,mk is said to be a
total matchfor the invocation iff∀i ∈ {1, . . . , n}, Ti � T i

k,
andmk is said to be atarget matchfor the invocation iff
∀i ∈ {1, . . . , p}, Ti � T ik (p is the number of target argu-
ments).

By extension, we talk about a method as being a total
or target match for a signature. Note that in multi-targeted
systems, the two notions merge, i.e., every target match is a
total match.

Method applicability.A methodmk(T 1
k , . . . , T

n
k) is applica-

ble to a function invocationm(T1, . . . , Tn) if mk is a target
match for the invocation.

Consider again Fig. 1 and suppose thatequal is invoked
with equal(Student, Person). Both methodsequal1 and
equal2 are applicable because they are both target match to
this invocation. However,equal1(Person,Person) is a to-
tal match for the invocation andequal2(Student,Student)
is not a total match.

In the following, we use a functionMSA which, given
an invocationm(T1, . . . , Tn), returns the MSA methodmk

for this invocation – if any – and a specific method “m>”
otherwise. The methodm> uses a specific “impossible”
type, notedT>, as the type of its arguments and result.
T> is in strict supertype relation with all other types, i.e.,
∀T, T ≺ T>. This special method is defined for every
generic function.MSA is used at run-time as the method
dispatcher.

We now introduce the notion ofexact typeof an expres-
sion. The type of a constantc declared of typeT is exactly
T and not any typeT ′ � T . Similarly, the object result-
ing from an explicit “new” creation instruction is exactly

142

@
@@I

�
���

A

C

B m1(A,A)

m2(B,B)

m2 < m1

Fig. 19. Example schema

the type given as argument to “new”. Thus, a variable that
gets assigned the result of a “new” instruction is also of an
exact type. Exact typing applies to expressions that appear
as actual arguments of invocations or as right-hand side of
assignments.

Exact typing.At compile-time, an expressione is said to be
of an exact typeT , denotede : T , iff any object referenced
by e at run-time is of typeT and not of any typeT ′ such
thatT ′ ≺ T .

Note that, by default, any expressione is of free typeT ,
denotede : T , i.e.,e may yield at run-time an object of any
type T ′ � T . We shall use letterτ to indifferently refer to
T andT when typing an expression.

Signature of expressions.The signature of a tuple of expres-
sions (e1 : τ1, . . . , en : τn) is the tuple (τ1, . . . , τn). The
signature of a methodmk(T 1

k , . . . , T
n
k) → Rk is the signa-

ture of its formal arguments, i.e., (T 1
k , . . . , T

n
k). The signa-

ture of an invocationm(e1, . . . , en) with e1 : τ1, . . . , en : τn
is the signature of its actual arguments, i.e., (τ1, . . . , τn).
Abusively, we shall callsignatureany tuple of free or exact
types (τ1, . . . , τn), and omit their associated expressions.

Cover of a signature.Let s be a signature (τ1, ..., τn). The
coverof s, denoted bycover(s) is defined as:

cover(s) = {(U1, . . . , Un) | ∀i ∈ {1, . . . , n}{
Ui � Ti if τi = Ti (τi is free)
Ui = Ti if τi = T i (τi is exact)

By extension, we also define the cover of a methodmi

as the cover of its signature. Note thatcover(mi) is the set
of signatures for whichmi is a total match.
Example 5.1.Using the type hierarchy in Fig. 19, we have:

cover(A,A) = {(A,A), (C,A)}
cover(m1) =cover(A,A) ={(A,A), (A,C), (C,A), (C,C)}
cover(m2) =cover(B,B) ={(B,B), (B,C), (C,B), (C,C)}
Well-typed signatures.The well-typed signatures of a generic
functionm, denotedwell-typed(m), is the union of the cov-
ers of all the methods associated withm:

well-typed(m) =
⋃
mi

cover(mi)

Example 5.2.Considering the example of Fig. 19, we have:

well-typed(m)

= {(A,A), (A,C), (C,A), (C,C), (C,B), (B,B), (B,C)}
Intuitively, well-typed(m) represents the set of the in-

vocation’s signatures ofm for which there exists a method
mi that is a total match.

Range of a method.Let mi be a method for a generic func-
tion of arity n, andm a function invocation. Therange of

mi, notedrange(mi), is the set of signatures for whichmi

is the MSA method:

range(mi) = {(T1, . . . , Tn)

∈ well-typed(m)|MSA(m(T1, . . . , Tn)) = mi}
Example 5.3.Considering the example of Fig. 19, we have:

range(m1) = {(A,A), (A,C)}
range(m2) = {(B,B), (B,C), (C,A), (C,C), (C,B)}

As the applicability of a method relies on a target match,
we take form1 (or m2), all signatures (T, T ′) in well-
typed(m) such thatT � A (or T � B). Observe that for
signatures (C,A), (C,C), and (C,B), m1 andm2 are both
applicable but sincem2 < m1, these signatures belong to
the range ofm2. Finally, note that (C,A) ∈ range(m2)
but (C,A) 6∈ cover(m2). This is a consequence of single-
targeting.

Explicitly disallowed signatures of a method.The set of ex-
plicitly disallowed signatures of a methodmi, notedexpli-
cit(mi), is the set of explicitly disallowed signatures ofm
that belong to the range ofmi.

These signatures are both in the rangeand the cover of
mi, as they correspond to the user’s wish to forbid some
otherwise type correct invocations. Thus,

explicit(mi) ⊆ cover(mi).

Example 5.4.Let us reconsider the schema introduced in Ex-
ample 3.4, but for brevity, let the types beP for Person,
Pr for Professor, S for Student, TA for Teaching −
Assistant, R for Resource, Sa for Salary and G for
Grant. Consider the methodallocate2. We have:range(al-
locate2) = {(Pr,R), (Pr, SA), (Pr,G), (S,R), (S, Sa),
(S,G), (T,R), (T, Sa), (T,G)} and cover(allocate2) =
{(Pr, Sa), (Pr,G), (T, Sa), (T,G)}.
Finally, we can see thatexplicit(allocate2) = {(T,G)} is
included incover(allocate2).

Implicitly disallowed signatures of a method.The set of im-
plicitly disallowed signatures of a methodmi, notedimpli-
cit(mi) is given by:

implicit(mi) =

{(T1, . . . , Tn) ∈ range(mi)|Tp+1, . . . , Tn 6≺ T p+1
i , . . . , Tn

i }
The implicitly disallowed signatures belong to the range

of the method but are not covered by it. For invocations with
such signatures, the MSAmi is not a total match. Thus, we
also have:

implicit(mi)= range(mi)− cover(mi)

= {(T1, . . . , Tn) ∈ well-typed(M) | mi

= MSA(m(T1, . . . , Tn)) andmi is not

a total match form(T1, . . . , Tn)}
When all arguments are targetted (i.e.,p = n), the range

of a methodmi is a subset of the signatures covered bymi.
Thus, we have:

Fact 5.1. If a functionm is targetted on all arguments, then
implicit(mi) = ∅ for all of its methods.

143

Example 5.5.Consider again the methodallocate2. We have:
implicit(allocate2) = {(Pr,R), (T,R)} and we can see that
it is equal torange(allocate2)− cover(allocate2)
As the explicitly disallowed signatures of a method are in
its cover, contrary to its implicitly disallowed signatures, we
have the following fact:

Fact 5.2.∀mi, implicit(mi) ∩ explicit(mi) = ∅
Disallowed signatures of a method.The set ofdisallowed
signaturesof a methodmi, noteddisallowed(mi), is defined
as:

∀mi, disallowed(mi) = explicit(mi) ∪ implicit(mi)

Example 5.6.Applying the above definition toallocate2,
we havedisallowed(allocate2) = {(T,G), (Pr,R), (T,R)}.
One can verify in the same way thatdisallowed(allocate1) =
∅.

6 Type checking with exceptions

In this section, we consider the type checking of statements
in the presence of exceptions to consistency. To specify type
checking we use a generic function calledcheck. It has four
methods that handles constants, variables, assignments of
the formt← e1 and invocations of the formm(e1, . . . , en),
where eachei is an expression. The result of eachcheck
method is eitherincorrect, safeor unsafe. For trivial cases,
the result for constants and variables issafe.

The last two methods (i.e., for assignments and invoca-
tions) proceed in two steps. The first step evaluates the safety
of the statement using the types of the expressionsei known
at compile-time; also called thestatic types. If the statement
is found to be safe, then its safety is further evaluated in the
second step. This step uses the potential types, at run-time,
of the expressionsei composing the statement. These types
are called thedynamic types.

The distinction between the static and dynamic types is
required in the presence of return-exceptions. When covari-
ance of the result types is respected, the type of an invoca-
tion known at compile-time is the unique most general type
that the invocation may have at run-time. This is not true
when a method is allowed to return a type that is not a sub-
type of the types returned by more general methods. Look-
ing back at Example 3.7, the invocationdoctor(myPatient)
hasPhysician for its static return type. However, due to
the return-exceptiondoctor2, its possible types at run-time
are not only the subtypes of its static typePhysician, but
also the subtypes ofPsychologist. Thus, its dynamic types
arecover(Physician) ∪ cover(Psychologist).

This section is organized as follows. First we detail the
type checking algorithms for assignments and invocations.
They are based on the type checking ofreducedstatements,
i.e. statements where the expressionsei of the input state-
ments are replaced by their static or dynamic types. We then
specify the type checking of a reduced statement. Finally,
we define the static and dynamic types of expressions.

6.1 Static type checking of assignments

To type check an assignmentv ← e, the first step replaces
v and e by their static types which are computed by func-
tion static. The resulting reduced statement is then checked
using functioncheckR. If it is incorrect or unsafe, i.e., not
safe, thenv ← e is incorrect or unsafe, respectively. Oth-
erwise, its safety must be further probed using the dynamic
types of the right-hand side,e. An assignment can be unsafe
for two reasons: (1)e is not safe, or (2)e may return, at
run-time, a type that is not a subtype of the type ofv. The
set of most general types thate may evaluate to at run-time
is computed using functiondynamics.

check(v ← e) /* check for assignments */
input: an assignmentv ← e
output: incorrect, safe or unsafe
Step 1: /* Safety with respect to static types:

replacev ande by their static type usingstatic */
reducedAssignment← (static(v)← static(e)) ;
result← checkR(reducedAssignment) ;
if result is not safe

return result ;
Step 2: /* Safety with respect to dynamic types */

if check(e) is not safe
return unsafe ;

/* Replace the right-hand side by each
of its most general dynamic types usingdynamics */

for eachT ∈ dynamics(e) do
reducedAssignment← (static(v)← T) ;
if checkR(reducedAssignment) is not safe

return unsafe ;
end do ;
return safe ;
end check

6.2 Static type checking of invocations

To type check an invocationm(e1, . . . , en), the first step
replaces its arguments which are computed by their static
types. The resulting reduced invocation is then checked us-
ing function checkR. If it is incorrect or unsafe, i.e., not
safe, thenm(e1, . . . , en) is incorrect or unsafe, respectively.
Otherwise, the invocation is statically correct and its safety
must be further evaluated in the second step. At this step,
the invocation may be unsafe for two reasons: (1) an unsafe
argumentei exists or (2) for some signature at run-time,
the invocation is not safe. Otherwise, the invocation is safe.
Functionsignatures computes the set of most general sig-
natures that may appear as arguments of a method invocation
at run-time.

check(m(e1, . . . , en)) /* check for invocations */
input: an invocationm(e1, . . . , en)
output: incorrect, safe or unsafe
Step 1: /* Safety with respect to static types:

replace arguments by their static type usingstatic */
reducedInvocation← (m(static(e1), . . . , static(en))) ;
result← checkR(reducedInvocation) ;
if result is not safe

return result ;
Step 2: /* Safety with respect to dynamic types */

for each argumentei do
if check(ei) is not safe

return unsafe ;

144

end do ;
/* Using signatures, replace the arguments by each

of the most general signatures at run-time */
for eachs ∈ signatures(m(e1, . . . , en)) do

reducedInvocation← m(s) ;
if checkR (reducedInvocation) is not safe

return unsafe ;
end do ;
return safe ;
end check

6.3 Type checking reduced statements

A reduced assignment is an expression of the formT1← τ2,
while a reduced invocation is an expression of the form
m(s) = m(τ1, . . . , τn). The type checking of reduced assign-
ments is defined as follows.

checkR(T1← τ2) =

safe if τ2 � T1
unsafe if (T1) ∈ cover(τ2)
incorrect otherwise

checkR(m(s))

= incorrect if


MSA(m(s)) = m> or
MSA(m(s)) is not a total match for
m(s), or

s is explicitly disallowed form

Note that we allow assignments where the static type of
the right-hand side is a supertype of the type of the left-
hand side variable. Such unsafe assignments are similar to
the reverse assignment of Eiffel (Meyer 1992) or the dy-
namic downward cast of C++ (Lajoie 1993). The safety of
a reduced invocation is defined as follows:

checkR(m(s)) =

safe iff ∀s′ ∈ cover(s) checkR(m(s′))
/= incorrect

unsafe otherwise

We now give the algorithm to type-check reduced invoca-
tions:

checkR(m(s))
input: a reduced invocationm(s)
output: incorrect, safe or unsafe

msa←MSA(m(s)) ;
Step 1: /* Check the correctness */

if msa = m> or msa is not a total match ors ∈ explicit(msa)
return incorrect ;

Step 2: /* Check the safety */
for eachs′ ∈ cover(s) do

msa′ ←MSA(m(s′)) ;
if msa′ = m> or msa′ is not a total match ors′∈ explicit(msa′)

returnunsafe ;
end do ;
returnsafe ;
end check

6.4 Static and dynamic types of an expression

The static type of an expression can now be defined as shown
on Fig. 20.

Example 6.1.Consider again the types and methods of Fig. 8
of Sect. 3. Letrefund(Hospital, Dollar) be the method

used in Example 3.7 to refund the expenses of patients
to hospitals. The first step in the type-checking of invo-
cation refund(hospital(doctor(p)), amount), wherep is
a variable of typePatient andamount a variable of type
Dollar, consists of computing the static types of the argu-
mentshospital(doctor(p)) andamount as follows:

static(hospital(doctor(p)))=

static(hospital(static(doctor(p))))=

static(hospital(static(doctor(static(p)))))=

static(hospital(static(doctor(Patient))))=

static(hospital(Physician))=Hospital

and static(amount)=Dollar

As check(refund(Hospital,Dollar)) /= incorrect, in-
vocationrefund(hospital(doctor(p)), amount) is correct.

We now formally define the dynamic types of an ex-
pression as shown in Fig. 21. The set of dynamic types of a
reduced invocation contains only the highest types that can
be returned by the invocation at run-time. By highest, we
mean types that are not subtypes of any other type in the set
(we use the operatormax� to obtain the highest types in a
set of types).

The definition of the dynamic types of a reduced invoca-
tion m(s) relies on the notion ofrun-time correctmethods.
They represent the methods that can be selected at run-time
for correct invocations covered bym(s).

Run-time correct methods.Let m(s) be a reduced invoca-
tion.

RTC(m(s))={MSA(m(s′))|
s′ ∈ cover(s) andcheck(m(s′)) /= incorrect}

The definition of the dynamic types of an invocation
m(e1, . . . , en) relies on the set of signatures that may appear
at run-time as arguments of the invocation. As usual, this
set contains only the highest signatures; all the signatures
in their cover being implicitly included. This set is denoted
signatures(m(e1, . . . , en)) and consists of the cross product
of the dynamic types of the invocation’s arguments:

Signatures of an invocation.The set of highest signatures
that may appear at run-time for an invocation is:

signatures(m(e1, . . . , en)) =
n∏
i=1

dynamics(ei)

Example 6.2.The second step in the type checking of
the invocationrefund(hospital(doctor(p)), amount) starts
by type checkinghospital(doctor(p)) and amount. First,
hospital(static(doctor(p))) = hospital(Physician) is nei-
ther incorrect or unsafe. Thus the safety ofhospital(doc-
tor(p)) must be checked. To this end, the algorithm deter-
mines the signatures ofhospital(doctor(p)).

signatures(hospital(doctor(p)))

= {(T) | T ∈ dynamics(doctor(p))}
= {(Physician), (Psychologist)}

One of the signatures ofhospital(doctor(p)), namely
Psychologist, makes the invocation incorrect as there is
no MSA method. Thushospital(doctor(p)) is unsafe. So

145

Constantc static(c) = T

Variablev static(v) = T

Reduced Invocationm(s) static(m(s)) =

 T> if check(m(s)) = incorrect

return type ofmk = MSA(m(s)) otherwise

Invocationm(e1, . . . , en) static(m(e1, . . . , en)) = static(m(static(e1), . . . , static(en)))

Fig. 20. Static type of expressions

Constantc dynamics(c) = {T}

Variablev dynamics(v) = {T}

Reduced Invocationm(s) dynamics(m(s)) = max�{Ri | mi ∈ RTC(m(s))}

Invocationm(e1, . . . , en) dynamics(m(e1, . . . , en)) = max�(
⋃

s∈signatures(m(e1,...,en))

dynamics(m(s)))

Fig. 21. Dynamic types of an expression

finally, as one of its arguments is unsafe,refund(hospi-
tal(doctor(p)), amount) is unsafe.

7 Optimizing the type checking of reduced invocations

In this section, we propose an optimization of the type-
checking of reduced invocations. The algorithm forcheckR
presented in Sect. 6.3 is expensive because it requires to
compute the MSA method for every signature in the cover
of the reduced invocation. OptimizingcheckR is particularly
important, as it is called several times bycheck to type check
a general invocation. The idea of the optimization is the fol-
lowing. Given a reduced invocation, if no signature in its
cover, i.e., the run-time signatures, is a disallowed signature
of some method, then the invocation is safe. To evaluate this
condition, one computes the set of disallowed signatures of
the methods that are more specific than the MSA method
of the reduced invocation. This set is called thepotential
disallowed signaturesof the MSA method. If a method has
no potential disallowed signatures, then all invocations, for
which it is the MSA method are safe. Such a property of a
method is calledstatic safetyand constitutes a cheap suffi-
cient condition for the safety of a reduced invocation.

In this section, we first give the optimized algorithm, and
then present the two safety conditions that it uses.

7.1 Optimized algorithm for the static type checking
of reduced invocations

The first step of the optimized algorithm checks the correct-
ness of a reduced invocation, following the same criteria as
in Sect. 6.3 on the MSA method of the invocation. Steps
2 and 3 check the safety. Step 2 checks whether the MSA
method of the invocation is static safe. If it is not, Step 3
verifies that no run-time signature, i.e., no signature covered
by the invocation, is a potential disallowed signature of the
MSA method.

checkR(m(s))
input: a reduced invocationm(s)
output: incorrect, safe or unsafe

msa←MSA(m(s)) ;
Step 1:

if msa = m> or msa is not a total match ors ∈ explicit(msa)
return incorrect ;

Step 2:
if msa is static safe

returnsafe ;
Step 3:

if no signature incover(m(s))
is a potential disallowed signature ofmsa

returnsafe ;
returnunsafe ;
end check

7.2 Safety and potential disallowed signatures

The third step of the algorithm relies on Proposition 1 be-
low, which gives a necessary and sufficient condition for the
safety of a correct reduced invocation.

Potential disallowed signatures of a method.The set of po-
tential disallowed signatures of a methodmi, notedpoten-
tial disallowed(mi), is defined as:

potential disallowed(mi) =
⋃

mj≤smi

s∈cover(mi)

disallowed(mj)

Proposition 1. A correct reduced invocationm(s) is safe iff

potential disallowed(MSA(m(s))) ∩ cover(s) = ∅

Proof. see Appendix 11.

Example 7.1.Consider the hierarchy and methods of Fig. 22.
The potential disallowed signature ofm1 is (C,A), and
there is no potential disallowed signature form2. Invocation
m(A,A) is declared unsafe, because the signature (C,A) is
covered by it.

146

@
@@I

�
���

A

C

B

explicit(m1)=(C,A)

m2 < m1
m1(A,A)
m2(B,B)

Fig. 22. Safety conditions

J
J
J]

� 6

A B

C

D

E

m3 < m2

m3 < m1

m1(A,D)→ E

m2(B,E)→ D

m3(C,D)→ E

m2 < m1

Fig. 23. Consistent schema

7.3 Static safety of a method

The second step of the algorithm relies on Proposition 2
below, which gives a sufficient condition for the safety of a
correct reduced invocation. It uses the notion ofstatic safety
of a method. This property is invocation-independent and
may be computed once for each method, at compile-time.

Static safety of methods.A methodmi is static safeiff

potential disallowed(mi) ∩ cover(mi) = ∅
As ∀s, cover(s) ⊆ cover(MSA(m(s))), we have:

Proposition 2. MSA(m(s)) is static safe⇒ m(s) is safe.

Proof. As cover(s) ⊂ cover(MSA(m(s))), we havepo-
tential disallowed(MSA(m(s))) ∩ cover(MSA(m(s))) =
∅ ⇒ potential disallowed(MSA(m(s))) ∩ cover(s) = ∅,
which implies the safety from Proposition 1.

Example 7.2.In Fig. 22, the methodm2 has no potential
disallowed signature, thus it is static safe. The invocation
m(A,C) is safe even though its MSA method,m1, is not
static safe, andm(B,C) is safe.

8 Safety and consistency

In this section, we establish the relation between safety
and consistency, introducing the notion of thetrespassing
method. A methodmi trespasses on methodmj , if mi may
be selected at run-time for invocations whose MSA method
at compile-time ismj . We show that argument-exceptions
and return-exceptions cause safety problems only if they are
coupled with trespassing. Ifmi is an argument- or return-
exception tomj , but may not be selected for invocations
whose MSA method at compile-time ismj , then no run-
time type error may occur.
Example 8.1 Consider the schema of Fig. 23 with method
foo1(E) → E. The MSA method of invocationm(a, d)
is m1. As methodm2 is both a return-exception and an
argument-exception tom1, a run-time type error could oc-
cur if m2 was selected at run-time. For example,m(a, d)
could return aD and there would not be anyfoo method
applicable to the invocationfoo(m(a, d)). However, all in-
vocations for which bothm1 andm2 are applicable, namely
m(C,D) andm(C,E), havem3 as their MSA method . And

@
@@I

�
���

A

C

B m1(A,A)

m2(B,B)

m2 < m1

Fig. 24. Trespassing

m3 is consistent with respect tom1 andm2. Thus, the in-
consistency ofm2 with respect tom1 cannot lead to any
safety problem, becausem2 never trespasses onm1.

We first give the definition of a trespassing method, then
a proposition that states the relationship between trespassing,
consistency and safety.

Trespassing. A methodmi trespasseson methodmj iff
range(mi) ∩ cover(mj) /= ∅
Example 8.2.In the example of Fig. 24, (C,A) and (C,C) are
both in range(m2) and in cover(m1). Thus,m2 trespasses
on methodm1.

Proposition 3. If mi is a return- and/or argument-exception
to mj , then a run-time type error may occur only ifmi tres-
passes onmj .

Proof. see Appendix 11.

Example 8.3.Looking back at Fig. 23, we see that there
is no methodmi that is both an argument-exception to
some methodmj and trespasses on it:m2 is an argument-
exception tom1, but does not trespass on it, whilem3
trespasses on bothm1 and m2, but is not an argument-
exception to them. Thus,implicit(mi) = ∅, for all mi.
Note that removingm3 makesm2 trespassing onm1, so
that implicit(m2) = {(C,D)}.

Moreover, there is no methodmi that is both a return-
exception to some methodmj and trespasses on it:m2 is a
return-exception tom1, but does not trespass on it, whilem3
trespasses on bothm1 andm2, but is not a return-exception
to them. Thus, the type returned at run-time by any well-
typed invocationm(s) is guaranteed to be a subtype of the
static type ofm(s).

It must be noted that although the covariance and con-
travariance rules are too pessimistic, they are adopted in
most systems because they are simpler to check and they
offer a better support for schema evolution. Indeed, adding
or removing a method that abides by the covariance and
contravariance rules with respect to all other methods, has
no consequences on safety. As we showed in the above ex-
amples, this is not the case when trespassing is taken into
account.

9 Final steps

The last two steps of the type checking process are the gen-
eration of check statements and the type checking of the
exception-handling code provided by the user. These two
issues are out of the scope of this paper. In this section, we
just give an idea of the problems and sketch the solution.

147

9.1 Generation of check statements

As invocations may appear as arguments of other invoca-
tions, a single statement may contain several unsafe subex-
pressions. This naturally leads to nest the check statements.

Example 9.1.We re-use the methods and types of Fig. 8
and assume the following methods exists:bill(Patient) →
Dollar, to get the expenses of a patient andrefund(Hos-
pital,Dollar) to refund hospitals for the expenses of their
patients. Moreover, we assume that alcoholics are not billed
for their treatment, i.e.,Alcoholic is an explicitly disallowed
signature ofbill(Patient). Consider statementrefund(hos-
pital(doctor(p)), bill(p)). A naive approach to check gen-
eration examines each subexpressions of a statement in a
left-to-right, depth-first order and generates a check state-
ment whenever an unsafe subexpression is encountered.
Thus, after type checkingp,doctor(p), hospital(doctor(p)),
p, bill(p), the following nested check statements are gener-
ated:

CHECKhospital IS CORRECT ON(doctor(p))
CHECKbill IS CORRECT ONp
ELSE
END

ELSE
END

However, the check onbill(p) is redundant. Indeed, if
hospital(doctor(p)) is correct, thendoctor(p) is a Physi-
cian andp is not anAlcoholic. Thus,bill(p) is safe.

To correctly generate check statements, the idea is to
provide the type checker with the ability to infer the run-
time types of subexpressions likedoctor(p) andp, based on
the previously generated checks. The inferred types are then
used to bind the remaining subexpressions, using what can
be calledtype closures. These bindings are then used by the
type checker.

9.2 Type checking the exception-handling code

Type checking the exception-handling code provided by the
user differs from the type checking we defined in the two
previous sections. To give an idea of the problem, consider
the following example:

Example 9.2.Going back to the doctor and patient hierar-
chy of Fig. 8, assume there exists a methodpractice(Psy-
chologist) → Office to access the practice of psycholo-
gists and two methodsaddress(Hospital)→ Address and
address(Office) → Address to get the addresses. Con-
sider the exception-handling code of the following check
statement:

addr : Address;
CHECKhospital IS CORRECT ON(doctor(p))

addr ← address(hospital(doctor(p)));
ELSE

addr ← address(practice(doctor(p)));
END

In the ELSE part, one can infer thatdoctor(p) is of type
Psychologist. This allows to write a modified version of
the original statement usingpractice instead ofhospital.

However, note that the ELSE statement is not correct accord-
ing to standard static type checking, asstatic(doctor(p)) =
Physician andpractice is not applicable toPhysician.

As for the generation of check statements, the solution
is to provide the type checker with the ability to infer the
run-time types of subexpressions likedoctor(p) based on the
previously generated checks.

10 Related work

The problems due to maintaining consistency rules have
been recognized by many researchers, each focusing on a
particular rule, but to our knowledge, considering these prob-
lems in a single framework has never been proposed.

Cook (1989), Mc Kenzie (1992), and Danforth and Si-
mon (1992) forbid argument-exceptions. Hence, subtyping
between generic collections (list ofPerson and list of
Student) and attribute type redefinition are also disallowed.

Esse (Coen-Porsini et al. 1991; Cattaneo et al. 1993) and
Eiffel (Meyer 1992) use data flow analysis to detect unsafe
invocations due to argument-exceptions: the set of types to
which a variable may refer (calledtype setby Coen-Porsini
et al. (1991) and Cattaneo et al. (1993) and thedynamic class
set in Meyer (1992)) are maintained during type checking
and evaluated after every statement. Using this “type flow”
technique, a slightly larger class of programs are statically
determined to be safe, as exact types may be used to replace
constant objects or variables that have just been assigned a
newly-created object. Although this approach provides more
accurate type checking, two problems remain. First, state-
ments that cannot be proved to be safe are rejected (pes-
simistic option). Second, this approach is less applicable to
a database context where applications use collections. In-
deed, a variable iterating over a collection ofT may refer
to objects of any subtype ofT with no way of knowing the
exact subset of types present in the collection. Our approach
can be used as a complement to “type flow” techniques,
taking over when they have failed to prove the safety of a
statement.

Using a special construct calledreverse assignment, Eif-
fel (Meyer 1992) allows a certain kind of illegal substitu-
tion: the assignment of an expression with static typeT1
to a variable of typeT2, althoughT1 is a supertype ofT2.
The assignment is checked at run-time to ensure that the dy-
namic type of the expression is actuallyT2 or a subtype of
T2. Otherwise, a NULL reference is assigned to the variable.
It is the responsibility of the programmer to check that the
variable is not NULL after the reverse assignment. A similar
construct, thedynamic cast(Lajoie 1993), is being incorpo-
rated into C++ to check, at run-time, the correctness of a
down-ward cast(assertion by the programmer that an object
of static typeT1 is actually of typeT2 with T1 supertype of
T2).

Bounded type quantification, first introduced by Cardelli
and Wegner (1985), appears in several proposals (Connor
and Morrison (1992); Canning et al. 1989; Kemper and Mo-
erkotte 1994) to extend the flexibility of statically typed
object-languages. As explained by Kemper and Moerkotte
(1994), it enables “polymorphic operations [. . .] to deal with
objects of different types that do not necessarily lie on the

148

same branch of the super/subtype relationship”. Connor and
Morrison (1992) uses bounded type quantification, restrict-
ing the application of subtyping to enforce the composition
integrity constraint on constructed types. Bounded universal
quantification allows substitutability only when passing pa-
rameters to a function. All other assignments must involve
objects of the same type. Bounded existential quantification
extends substitutability to assignments in the called function.
In all cases, bounded quantification requires the exact types
of actual parameters to be known statically. It is this knowl-
edge that allows static type checking of covariant code. In
particular, this prevents passing bounded parameters to an-
other function. Finally, F-bounded quantification (Canning
et al. 1989) allows support of recursively defined types, like
Person andStudent in Fig. 1.

In the works onmethod schemas(Abiteboul et al. 1990;
Walter 1991), no consistency rules are imposed on the
schema and the return type of user-defined methods is not
specified. Consistency is defined as type safety, i.e., absence
of run-time type errors. Proving type safety involves simu-
lating the execution of methods from a typing point of view.
This is shown to be impossible in the general case, i.e., with
multi-targeted methods and recursion. Covariant updates are
shown to maintain consistency.

Madsen et al. (1990) recognize the conflict that arises
from the use of the type system both “as a means for repre-
senting concepts in the application domain and for detecting
[. . .] type errors”. They show that the subtyping of “vir-
tual classes” (i.e., classes with a type parameter) introduces
type holes, similar to component type redefinition. They con-
clude that a combination of compile-time and run-time type
checks, as implemented in Beta, gives a good balance of
flexibility and type safety. All operations on virtual classes
involve run-time type checking. Furthermore, an error occurs
if a statement in a Beta program is not correct at run-time.

Our approach is very similar to Borgida’s (1988) in that
it aims at detecting unsafety at compile-time, using dynamic
type checking when necessary and allowing the user to write
exception handling code. Borgida (1988) addresses the prob-
lem of inapplicable attributes and return-exceptions due to
attribute domain redefinition. The notion ofexcusesserves
to distinguish between desired exceptions and errors. A type
system that supports these excuses is formally defined by
Borgida (1989), along with an efficient algorithm to stati-
cally detect unsafe statements. Check clauses are provided
by the user. The user formulates the correction condition in
an extensional way, testing the run-time type of expressions.
The type system verifies that the correction condition implies
the safety of the checked statement and of the exception-
handling code. We extend this work in two directions. First,
we address the problem of exceptions on single- and multi-
targeted methods. Second, we provide an intensional formu-
lation of the correction condition, allowing this condition to
remain invariant when the type hierarchy is modified and/or
new exceptions are introduced.

11 Conclusion

In this paper, we proposed to facilitate schema evolution in
object-oriented databases by supporting exceptions to behav-

ioral schema consistency, while at the same time guarantee-
ing type safety. After presenting the three consistency rules
of covariance, contravariance and substitutability, we defined
a typology of exceptions. We gave examples of schema up-
dates that naturally yield exceptions to the consistency rules,
and we showed that existing solutions that seek preserv-
ing schema consistency lead to expensive modifications of
the type hierarchy and method codes. We then proposed a
new type checking process whereby exceptions to consis-
tency can be safely tolerated. To guarantee type safety, ev-
ery statement is first analyzed to determine whether it is
correct, and then further analyzed to determine whether it
is safe. Then, every unsafe statement is surrounded by a
check clause. This clause is merely an if-then-else state-
ment where the if-part performs a run-time type checking,
the then-part contains the original statement, and the else-
part contains some exception-handling code (user-defined or
system-generated).

Unlike traditional solutions offered by object-oriented
design, our approach enables the handling of schema updates
that do not preserve schema consistency without creating ar-
tificial types and methods, or modifying the type hierarchy.
Schema updates can only yield the additions of check clauses
in the code of existing methods. Another advantage of our
solution is that conditions in the check are specified inten-
sionally, thereby avoiding their reformulation when the type
hierarchy is modified, or when exceptions are introduced or
removed. We believe our approach provides a useful com-
plement to existing sophisticated techniques for static type
checking. Indeed, our proposed system relieves these tech-
niques when they fail to prove the safety of a statement.
Finally, we are not aware of any other work in the field
of object-oriented systems and languages that consider ex-
ceptions to schema consistency in the general framework of
mono- and multi-targeted functions.

All the steps of the proposed type checking process have
now been specified (see Amiel 1994). Future work involves
providing the user with means to express explicitly disal-
lowed signatures, and developing efficient algorithms to im-
plement our type checking. Finally, an environment to help
programming with exceptions is being designed. Such an
environment addresses important issues, such as providing
the user with explanations about why some statements are
unsafe and assistance in writing exception-handling code.

Acknowledgement.We would like to thank Franc¸ois Bancilhon and Guy
Ferran for their interest in this work. Special thanks go to Catriel Beeri,
Françoise Fabret, Claude Delobel and Patrick Valduriez for their insightful
comments on an earlier version of this paper. We also would like to thank
the three referees for their extremely careful reviews and helpful comments.

Appendices

A. Proof of Proposition 1

We first introduce the following lemma:

Lemma 1. ∀s, s′, s′ ∈ cover(s) ⇒ MSA(m(s′)) ≤s′
MSA(m(s))

Proof. As s′ � s, MSA(m(s)) is applicable tos′. As
MSA(m(s′)) is the most specific method applicable tos′

149

with respect to the ordering ofs′, MSA(m(s′)) is more
specific or equal toMSA(m(s)).

We prove that a necessary and sufficient condition of
safety onm(s) is thatpotential disallowed(MSA(m(s)))
∩cover(s) = ∅. This amounts to the following equivalence:

m(s) is correct and(⋃
mi≤s′′MSA(m(s))

s′′∈cover(MSA(m(s)))

disallowed(mi)
) ∩ cover(s) = ∅

(1)

equivalent to

∀s′ ∈ cover(s), MSA(m(s′)) /= m> and

MSA(m(s′)) is a total match form(s′) and

s′ 6∈ explicit(MSA(m(s′))) (2)

Using the definition of the correctness of a reduced in-
vocation, (1) can be written:

MSA(m(s)) /= m> and

MSA(m(s)) is a total match form(s) and

∀s′ ∈ cover(s), ∀s′′ ∈ cover(MSA(m(s))),

∀mi ≤s′′ MSA(m(s)), s′ 6∈ disallowed(mi) (3)

To rewrite (2), we use the following equivalence, that
comes from the definition ofimplicit(mi):

MSA(m(s′)) is a total match

for s′ ⇔ s′ 6∈ implicit(MSA(m(s′)))

Thus (2) can be written:

∀s′ ∈ cover(s), MSA(m(s′)) /= m> and

s′ 6∈ disallowed(MSA(m(s′))) (4)

Let us prove now that (3)⇒ (4). We assume that (3)
is true for m and s. MSA(m(s)) /= m> implies ∀s′ ∈
cover(s), MSA(m(s′)) /= m>. Thus the first conjunct of
(4) is established.

We also prove that∀s′ ∈ cover(s), s′ 6∈ disallowed(
MSA(m(s′))), applying the second conjunct of (3). From
Lemma 1, we haveMSA(m(s′)) ≤s′ MSA(m(s)), and
s′ ∈ cover(s) implies s′ ∈ cover(MSA(m(s))). Thus
s′ 6∈ disallowed(MSA(m(s′))). This concludes the first part
of our proof.

Let us prove now that (4)⇒ (3). We assume that
(4) is true form and s. As s ∈ cover(s), we have that
MSA(m(s)) /= m>. As s 6∈ implicit(MSA(m(s))),
MSA(m(s)) is a total match form(s).

Now let s′ ∈ cover(s), s′′ ∈ cover(MSA(m(s))), and
mi ≤s′′ MSA(m(s)). If mi = MSA(m(s′)), from (4) we
haves′ 6∈ disallowed(mi). If mi /= MSA(m(s′)), from the
definition ofimplicit(mi) andexplicit(mi), disallowed(mi)
∈ range(mi), thuss′ 6∈ disallowed(mi). This concludes the
proof of proposition 1.

B. Proof of Proposition 3

We prove that a run-time type error due to a methodmi

being a return- or an argument-exception to a methodmj ,

may occur only ifmi trespasses onmj . We first consider
the case of return-exceptions, then of argument-exceptions.

A run-time type error may occur due to a methodmi

being a return-exception to a methodmj , iff for some
static signatures ∈ well-typed(m), mi ∈ RTC(m(s)) and
mj = MSA(m(s)). We have to prove that in this case,mi

trespasses onmj .
As mi ∈ RTC(m(s)), there existss′ ∈ cover(s) such

that mi = MSA(m(s′)). As s ∈ cover(mj), we have
s′ ∈ cover(mj), and s′ ∈ range(mi), thus range(mi) ∩
cover(mj) /= ∅. This concludes the first part of our proof.

Let us now consider the case of argument-exceptions.
The general static safety condition is:

potential exceptions(mi)) ∩ cover(mi) = ∅
Using the decomposition of exceptions into implicit and

explicit exceptions, we can rewrite the condition as:

((
⋃

mj≤mi

implicit(mj))

∪(
⋃

mj≤mi

explicit(mj))) ∩ cover(mi) = ∅ ⇔

(
⋃

mj≤mi

implicit(mj)) ∩ cover(mi) = ∅, and

(
⋃

mj≤mi

explicit(mj)) ∩ cover(mi) = ∅

Static safety with respect to implicit exception corre-
sponds to the first part of the conjunction. As the implicit
exceptions of methods are due to argument exceptions, let
us see what conditions must hold onmi and themj < mi.

As implicit(mi)∩cover(mi) = (range(mi)−cover(mi))
∩cover(mi) = ∅, the first conjunctive term can be written
as:⋃
mj<mi

implicit(mj) ∩ cover(mi) = ∅ (5)

Let us prove that if (5) is false, then∃mj < mi such
that mj is an argument-exception tomi and trespasses on
mi

For this, we show that if either (a)mj is not an argument-
exception tomi, or (b)mj does not trespass onmi, then (c)
implicit(mj) ∩ cover(mi) = ∅.

Let us first prove (A)⇒ (C). (A) means that:

T p+1
j , . . . , Tn

j � T p+1
i , . . . , Tn

i (6)

For all T 1, . . . , Tn in implicit(mj), we have:

T p+1, . . . , Tn 6� T p+1
j , . . . , Tn

j (7)

(6) and (7) imply:

T p+1, . . . , Tn 6� T p+1
i , . . . , Tn

i (8)

And thus:

mjnot argument-exception tomi

⇒ implicit(mj) ∩ cover(mi) = ∅ (9)

Let us now prove (b)⇒ (c). We have thatimplicit(mj) =
range(mj) − cover(mj) and (b) means thatrange(mj) ∩
cover(mi) = ∅. Thus,implicit(mj) ∩ cover(mi) = ∅. This
concludes the proof of Proposition 3.

150

References

1. Abadi M, Cardelli L, Pierce B, Plotkin G (1989) Dynamic typing in a
statistically-typed language. In: Proc POPL, Austin, Tex, January

2. Agrawal R, DeMichiel LG, Lindsay BG (1991) Static type checking of
multi-methods. In: Proceedings of the Sixth International Conference
on Object-Oriented Programming: Systems, Languages and Applica-
tions, Phoenix, Ariz, October

3. Abiteboul S, Kanellakis P, Waller E (1990) Method schemas. In: Pro-
ceedings of the Fourth ACM Symposium on the Principles of Database
Systems, Nashville, 10 April

4. Amiel E (1994) Sch́emas orient́es-objet: Exceptions̀a la coh́erence
comportementale et envoi de multi-méthodes. PhD thesis, University
of Paris VI

5. Apple Computer (1994) Dylan interim reference manual, June. Avail-
able by ftp from ftp.cambridge.apple.com in /pub/dylan/dylan-manual

6. Banerjee J, Kim W, Kim HJ, Korth HF (1987) Semantics and imple-
mentation of schema evolution in object-oriented databases. In: Pro-
ceedings of the ACM SIGMOD International Conference on Manage-
ment Of Data, San Francisco, Calif, June

7. Bobrow DG, Kahn K, Kiczales G, Masinter L, Stefik M, Zdybel F
(1986) CommonLoops: merging Lisp and object-oriented program-
ming. In: Proceedings of the First International Conference on Object-
Oriented Programming: Systems, Languages and Applications, Port-
land, Ore, September

8. Bobrow DG, DeMichiel LG, Gabriel RP, Keene S, Kiczales G, Moon
DA (1988) Common Lisp Object System specification. SIGPLAN Not,
23, September

9. Borgida A (1988) Modeling class hierarchies with contradictions. In:
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Chicago, Ill, June

10. Borgida A (1989) Type systems for querying class hierarchies with
non-strict inheritance. In: Proceedings of the Eigth ACM Symposium
on Principles of Database Systems, Philadelphia, Pa, March

11. Bruce KB (1993) Safe type-checking in a statically-typed object-
oriented programming language. In: Proc POPL, January

12. Canning P, Cook W, Hill W, Olthoff W (1989) F-bounded polymor-
phism for object-oriented programming: In Proceedings of the Interna-
tional Conference on Functional Programming and Computer Archi-
tecture, London, UK, September

13. Cardelli L (1984) A semantics of multiple inheritance. In: Proceedings
of the Symposium on Semantics of Data Types. (Lecture notes on
computer science, vol 173) Springer, Berlin Heidelberg New York

14. Cardelli L, Wegner P (1985) On understanding types, data abstraction,
and polymorphism. ACM Comput Surv, 17:471–522

15. Cattaneo F, Coen-Porisini A, Lavazza L, Zicari R (1993) Overview
and progress report of the ESSE project: supporting object-oriented
database schema analysis and evolution. In: Proceedings of the
Eleventh International Conference on Technology of Object-Oriented
Languages and Systems, Santa Barbara, Calif, August

16. Cattell RGG (ed) (1994) The object database standard: ODMG-93.
Morgan Kaufmann, San Mateo, Calif

17. Chambers C (1992) Object-oriented multi-methods in Cecil. In: Pro-
ceedings of the Sixth European Conference on Object-Oriented Pro-
gramming, Utrecht, Netherlands, June

18. Coen-Porisini A, Lavazza L, Zicari R (1991) Updating the schema of
an object-oriented database. IEEE Data Eng Bull, 14:33–37

19. Connor RCH, Morrison R (1992) Subtyping without tears. In: Proceed-
ings of the Australian Computer Science Conference, Sydney, February

20. Connor RCH, McNally D, Morrison R (1991) Subtyping and assign-
ment in database programming languages. In: Proceedings of the Sec-
ond International Workshop on Database Programming Languages,
Gleneden Beach, Ore, August

21. Cook W (1989) A proposal to make Eiffel type-safe. In: Proceedings
of the Third European Conference on Object-Oriented Programming,
Nottingham, UK, July

22. Danforth S (1990) Multi-targetted virtual functions for OODG. In:
INRIA, Proceedings of the Sixth Journées Bases de Donnees Avancées,
Montpellier, France, September

23. Danforth S, Simon E (1992) A data and operation model for advanced
database systems. In: Papazoglou MP, Zeleznikow J (eds) The next
generation of information systems: from data to knowledge. (Lecture
notes in computer science, vol 611)

24. DeMichiel LG, Chamberlin DD, Lindsay BG, Agrawal R, Arya M
(1993) Polyglot: extensions to relational databases for sharable types
and functions in a multi-language environment. In Proceedings of the
International Conference on Data Engineering, Vienna, Austria, April

25. Formica A, Missikoff M (1994) Correctness of isa hierarchies in object-
oriented database schemas. In: Proc EDBT, Cambridge, March

26. Kemper A, Moerkotte G (1994) Object- oriented database manage-
ment: applications in engineering and computer science. Prentice-Hall,
Englewood Cliffs, NJ

27. Lajoie J (1993) The new language extensions. C++ Rep, 5:47–52
28. Madsen OL, Magnusson B, Moller-Pedersen B (1990) Strong typing

of object- oriented languages revisited. In: Proc ECOOP- OOPSLA
29. McKenzie R (1992) An algebraic model of class, inheritance, and mes-

sage passing. PhD thesis, Computer Science Dept., University of Texas
at Austin

30. Melton J (ed) (1994) ISO Working Draft. SQL persistent stored mod-
ules (SQL/PSM). ANSI X3H2-94-331, August

31. Meyer B (1992) EIFFEL: the language. Prentice-Hall, Englewood
Cliffs, NJ

32. Mugridge WB, Hamer J, Hosking JG (1991) Multi-methods in a
statistically-typed programming language. In: Proceedings of the
Fifth European Conference on Object-Oriented Programming, Geneva,
Switzerland, July

33. O2 Technology (1992) The O2 user’s manual
34. Waller E (1991) Schema updates and consistency. In Delobel C, Kifer

M, Masunaga Y (eds) Proceedings of the Second International Confer-
ence on Deductive and Object-Oriented Databases. (Lecture notes in
computer science, vol 566) Springer, Berlin Heidelberg New York

35. Zdonik S, Maier D (1989) Fundamentals of object-oriented databases.
In: Zdonik S, Maier D (eds) Readings in object-oriented databases.
Morgan-Kaufmann, San Mateo, Calif, pp 1–32

