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Abstract. An approach and mechanism for the transparent
sharing of objects in an environment of interconnected (net-
worked), autonomous database systems is presented. An ex-
perimental prototype system has been designed and imple-
mented, and an analysis of its performance conducted. Pre-
vious approaches to sharing in this environment typically
rely on the use of a global, integrated conceptual database
schema; users and applications must pose queries at this new
level of abstraction to access remote information. By con-
trast, our approach provides a mechanism that allows users
to import remote objects directly into their local database
transparently; access to remote objects is virtually the same
as access to local objects. The experimental prototype sys-
tem that has been designed and implemented is based on the
Iris and Omega object-based database management systems;
this system supports the sharing of data and meta-data ob-
jects (information units) as well as units of behavior. The re-
sults of experiments conducted to evaluate the performance
of our mechanism demonstrate the feasibility of database
transparent object sharing in a federated environment, and
provide insight into the performance overhead and tradeoffs
involved.

Key words: Database system interoperability – Object shar-
ing – Experimental prototype benchmarking

1 Introduction

Data and knowledge base system interoperability is increas-
ingly important, as computer systems and their associated
collections of information proliferate, and as global connec-
tivity becomes more and more a reality. We address this es-
sential area of research by considering an environment con-
sisting of a network of data/knowledge bases and their sup-
porting systems, and in which it is desired to accommodate
the controlled sharing and exchange of information among
the collection. Such networked/federated database environ-
ments are common in various application domains, includ-
ing office information systems, next generation libraries,

computer-integrated manufacturing systems (with computer-
aided design as a subset), personal computing, and scientific
research information bases. New approaches and techniques
to support the interoperation of such systems are required,
while at the same time respecting the autonomy of the indi-
vidual component database systems. In order to have signif-
icant practical impact, these approaches must be transparent,
flexible, efficient and place minimal requirements on (exist-
ing) component database systems. We take an object-based
approach to sharing in this networked database context. In
addition to sharing data objects (information units) at various
levels of abstraction, our approach also supports the sharing
of units of behavior (operations, methods, or functions).

The foundations for our work arise from research on
heterogeneous databases (Shan 1989; Smith 1981; Stone-
braker 1977; Templeton 1987), federated databases (Heim-
bigner 1985; Sheth 1990; Gardarin 1995) and multidatabases
(Litwin 1986). The heterogeneous database approach typi-
cally relies on a single monolithic global schema. Users are
required to participate at this new level of abstraction (or
a derived view of it) in order to access shared data. Some
limitations of this approach are apparent: users access shared
data with new tools (i.e., there is a lack of database trans-
parency), and limited flexibility is provided, since the re-
quirement for a global schema mandates a single representa-
tion of data. The federated approach stresses autonomy and
flexible sharing patterns through inter-component negotia-
tion. Rather than utilizing a single, static global schema, the
federated architecture allows multiple “import” and “export”
schemas for component database systems. The multidatabase
architecture is in a sense similar to the federated architec-
ture. Emphasis is placed on the interoperability among com-
ponent databases based on a flexible, common multidatabase
language. In this approach, the user is responsible for keep-
ing track of the various databases and their schemas in order
to navigate and manipulate data. In addition, the user utilizes
a new multidatabase language to manipulate the shared data.

By contrast, our approach allows each component to in-
tegrate objects directly into its local database, thereby maxi-
mizing flexibility and providing database transparency. Fur-
thermore, our object-based approach allows for both fine and
coarse grain sharing, as well as the sharing of behavior.
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With particular regard to the sharing of behavior, the
approach and mechanisms described here are consistent
with the approaches taken in CORBA (Object Management
Group 1991; OMG 1992), but are much more flexible. The
type of behavior sharing supported in CORBA is based upon
the encapsulation of operations at an object’s interface; these
operations are registered in an “object request broker” im-
plementation using the OMG interface definition language.
Clients can request a service from an object by specifying
the operation, an object reference, and any additional neces-
sary parameters. The requested service is actually executed
remotely in an object implementation in which the object re-
sides, and the result is sent back to the client. Our approach
supports a more flexible paradigm, in which object and the
operations that manipulate them can both be either local or
remote.

In what follows, we describe a mechanism and ex-
perimental system to support the various kinds of sharing
patterns that arise in the context of an object-based shar-
ing model. We specifically describe and analyze a multi-
configurational experimental prototype system that we have
constructed to demonstrate, refine, and evaluate the tech-
niques devised.

The research described in this paper is couched in the
context of a larger effort, which is addressing three key as-
pects of sharing and interconnection in networked database
systems. These may be viewed without loss of generality
in the context of a given component (C), which intends
to import information from other (remote) components: (1)
the discovery and identification by componentC of relevant
non-local information (Hammer 1994); (2) the resolution of
the similarities and differences betweenC ’s information and
relevant non-local information (Hammer 1993); and (3) the
efficient realization and implementation of actual sharing and
transmission of information to and fromC and other com-
ponents. The focus of this paper is on the third of these key
issues.

It is important to note that the research described in this
paper focuses on the underlying techniques and mechanisms
to allow database users to import and export objects. We
are not, for example, specifically concerned with providing
complete facilities for remote update or global consistency;
these are large research problems in their own right and are
being actively investigated by other researchers. We also do
not directly address here the problem of determining whether
objects in two databases refer to the same real-world entity
(this problem is considered to be at a higher level than the
focus of this paper) (Kent 1993). Finally, it is of course well
recognized that many social and legal issues remain open;
policies regarding the fair use of information, copy and own-
ership rights, and security need to be addressed for differ-
ent environments (scientific versus commercial). This paper
strives to provide a collection of mechanisms that enable the
users to share and exchange information transparently in the
presence of multiple repositories. The implementation of a
final system (along with its optimization and performance
specs) depends on the target environment and its specific
constraints.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly presents the functional object-based model that
serves as an inter-component sharing forum. In Sect. 3, we

provide a unified framework for inter-component sharing,
based upon our functional approach. Section 4 describes the
sharing mechanism, specifically supporting instance, type,
and behavior sharing. In Sect. 5, we examine in detail the
experimental prototype system we have built. Section 6 pro-
vides a substantive analysis of the performance of our ex-
perimental system, and analyzes the general impact of our
observations based upon our experimental results. Finally,
Sect. 7 presents concluding remarks and a brief discussion
of research directions.

2 An object-based context for sharing

A generic functional object-based data(base) model is em-
ployed here as a basis for inter-component sharing and infor-
mation unit exchange. This model supports the usual object-
oriented constructs. In addition, the constructs provided in
this data model serve as a reference point from which we
can later describe our techniques for transparent sharing. We
also describe three sharing patterns (instance, type, and be-
havior) that naturally arise in the object database context and
illustrate them using this data model.

2.1 A functional object-based model

The conceptual database model considered in this work
draws upon the essentials of functional database models,
such as those proposed in Daplex (Shipman 1981), Iris (Fish-
man 1987), and Omega (Ghandeharizadeh 1993b). Our func-
tionally object-based model contains features common to
most semantic (Afsarmanesh 1989; Hull 1987) and object-
oriented database models (Atkinson 1989), such as Gem-
Stone (Maier 1986),O2 (Lecluse 1988), and Orion (Kim
1987). In particular, the model supports complex objects
(aggregation), type membership (classification), subtype to
supertype relationships (generalization), inheritance of func-
tions (attributes) from supertype to subtypes, run-time bind-
ing of functions (method override), and user-definable func-
tions (methods).

In this model, functions are used to represent inter-object
relationships (attributes), queries (derived data), and opera-
tions (methods). Two types of functions can thus be distin-
guished:

1. Stored functions: A stored function records data as prim-
itive facts in the database. Stored functions can be up-
dated.

2. Computed functions: A computed function (sometimes
termed a foreign function) is defined by a procedure
written in some programming language. The value of
a computed function cannot be directly updated.

To illustrate our diagrammatic notation, consider the ex-
ample of two collaborating researchers, Researcher-A and
Researcher-B. Each researcher maintains separate databases
of journal and conference publications using a different
underlying schema to model this information. Figure 1
represents the conceptual schemas of Researcher-A’s and
Researcher-B’s databases. In our diagrammatic notation, in-
stance and type objects are depicted as bubbles. For type
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Fig. 1a,b. Two-example component database schemas.a Researcher-A’s
conceptual schema.b Researcher-B’s conceptual schema

objects, the name of the type is placed within the bubble.
Each type has a set of functions defined on it. The signa-
ture of each of these functions is placed immediately above
the type. The input arguments of each of these functions
are instance objects of the type upon which the function is
defined. Hence, the input argument type of functions is not
shown in their signatures; it is assumed to be of the type on
which the function is defined.1 Hence, in Fig. 1a, the func-
tions defined on the typePublications are: Title(), View(),
andTextBody().

Two kinds of inter-object relationships are explicitly
modeled and have corresponding diagrammatic notations:
the supertype to subtype (with inheritance) interclass re-
lationship and the type membership relationship. All other
inter-object relationships are modeled through functions. The
supertype to subtype relationship is depicted with thick dark
lines from supertype object to subtype object. In Fig. 1a,
Conferencesand Journals are subtypes of the typePubli-
cations. Type membership is depicted with thin dotted lines
from type objects to its members (i.e., instances). In Fig. 1a,
the Journals type has four instances: three directly created
asJournals and one from theTutorials subtype.

2.2 Object sharing

Since every object is treated uniformly in our data model,
it is natural to investigate the sharing of individual data ob-
jects (instances), structural objects (e.g., types), and behav-
ioral objects (functions). Recall the example of collaborating
researchers; suppose that Researcher-B would like to import
some specific publications from Researcher-A. This situation
corresponds to instance sharing and is illustrated in Fig. 2a.
Imported instance objects are denoted by the hashed bubbles
in the figure. Hence, Researcher-B now sees four instances
of ACM-papers and three instances ofIEEE-papers, where
originally there were only two instances in each type. In our

1 The function can consume the instances of its subtypes using
inheritance

Journals

SIG():String

Research-Papers

IEEE-Papers ACM-Papers
IEEE-Papers ACM-Papers
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Research-Papers
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Text_Body():String
View()

Pub_Date(): String

Title(): String

Text_Body():String
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Pub_Date(): String

SIG():String

(Researcher-B’s Conceptual Schema)

Legend

Supertype
Membership

Remote

Fig. 2a,b. Sharing pattern example.a Sharing instance objects.b Sharing
type objects

approach, all the instances appear local (i.e., transparent) to
Researcher-B, even though Fig. 2a depicts the remote in-
stances differently than local ones.

Existing approaches have concentrated on what corre-
sponds closely to type sharing (Stonebraker 1988; Williams
1981). These systems focus on the sharing of entire collec-
tions (e.g., relations), rather than members of the collection
(e.g., tuples). By contrast, importing a remote type naturally
leads to importing the subtree of the remote type hierarchy
rooted at that type. Again, using the collaborating researchers
example, assume Researcher-B would also like to have ac-
cess to all of Researcher-A’s journal publications. Figure 2b
illustrates this situation. In this case, Researcher-B also im-
ports theTutorials type by virtue of the supertype-subtype
relationship. The principal advantage of this kind of sharing
is that it allows Researcher-B to use Researcher-A’s database
without integrating Researcher-A’s conceptual schema with
his/her own conceptual schema; Researcher-B simply uses
the part of Researcher-A’s original schema rooted atJour-
nals. Another way of looking at this is that Researcher B
can now move from his/her own context to Researcher A’s
context. Researcher B can even add or delete instances from
his/her own context of Researcher A (note that one of the
instances ofJournals in Fig. 2b is local) without updating
Researcher A’s database. This is a useful feature when the
autonomy constraints of Researcher A prohibit any addition
or deletion of its instances. To some degree, instance shar-
ing can be viewed as the complementary situation; instead
of integrating local instances into a remote component con-
text, the goal is to integrate remote instances into the local
component context.

In addition to simply sharing objects representing infor-
mation units, it is also possible to share behavioral objects.
This enables the importer to access services not provided
by his/her local system. For example, in the collaborating
researchers scenario, assume Researcher-B has a dvi pre-
viewer method but no LaTEX compiler on his/her local sys-
tem. Further, Researcher-A has LaTEX available by virtue
of a function, latex(), which takes ASCII text with LaTEX
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commands as input and outputs dvi format. In this case, our
approach allows Researcher-B to share the functionlatex().
Sharing functions in this way is very natural in our data
model because functions are represented as objects.

3 A unified framework based on function sharing

To provide a top level, unifying view of sharing in the ob-
ject database context, we consider a functional viewpoint on
sharing. From this point of view, an object is an entity with
its own identity; an object unites the values of its differ-
ent properties. Functions are applied to an object in order
to access values associated with that object (i.e., its state).
These functions can bestored (i.e., attributes) or they can
be computed(i.e., methods). Using this perspective of the
relationship between objects and functions, we can consider
the effects of distribution on both objects and the functions
(stored or computed) independently.2

3.1 A Taxonomy of Function Sharing

Let us assume the existence of a functionF , which can be
shared among components of a federation; without loss of
generality, assumeF takes as input the argumenta.3 The
argument type can be a literal (i.e.,Integer, String) or a
user-defined type such asResearch-Papers. Sharing takes
place on a component-pairwise basis, meaning thatF is
exported by a componentC1 and imported by a component
C2. The importing component is called thelocal database,
while the exporting component is called theremote database.
There are several ways in which componentsC1 andC2
can share the service provided byF , depending upon the
location whereF executes and upon where its input ar-
gumenta resides (i.e., there are two degrees of freedom).
Hence, at this level of abstraction there are four distinct
function-argumentcombinations depending on whetherF
or a is local or remote. In addition, since functions can be
further differentiated as either stored or computed functions,
we can now distinguish between a total of eight different
sharing scenarios. Some of these scenarios are trivial, but
we present them below for the sake of completeness. We
first focus on stored functions and then turn our attention to
computed functions.

3.1.1 Stored functions

As a framework for analysis, recall the collaborating re-
searchers scenario where both Researcher-A and Researcher-
B maintain separate databases of journal and conference pub-
lications. Figure 1 shows both schemas together. In this sce-
nario, Researcher-B is the local database and Researcher-A
is the remote database. The four situations for the sharing
of stored functions among components can be broken down
as follows.

2 See Fang (1992a) for more details
3 Since the argument can be a complex unit of information, this is not a

limitation; multiple arguments can be handled by an obvious extension of
our approach

Local function – Local object. This is what we term the “base
case”. Both objects, the stored functionF and its argument
a, reside in the local component and can be executed as
usual; all processing ofF is done locally.

Local function – Remote object. In this case, the local stored
function F is applied to argumenta which resides re-
motely. This situation has the effect of giving local state
to a remote object. For example, Researcher-B can create
a value for thePub Date() function on the highlighted re-
mote object in Fig. 1. The value ofPub Date() is stored
locally in Researcher-B’s database while Researcher-A re-
mains unaware of the existence ofPub Date(). This feature
is very useful for allowing Researcher-B to “adjust” remote
instances and customize them to the local environment while
respecting the autonomy of the Researcher-A’s database.

Remote function – Local object. This situation is somewhat
meaningless, since stored functions only have a meaning
in the local context of the component in which they were
initially created.

Remote function – Remote object. Similar to the first case,
this is also a base case; both the state of the object and the
execution of the function are in the same component (e.g.,
Researcher-A). The difficulty here lies in providing database
transparency, as discussed immediately below. We point out
here that this situation forms the basis of the instance shar-
ing pattern described in Sect. 2.2. For example, the shaded
remote instance of Fig. 1 would appear local and have its
original values for theTitle() andTextBody() functions that
are defined in Researcher-A’s database.

3.1.2 Computed functions

As in the case for stored functions, there are four combi-
nations of where the computed function executes and where
the object resides. Below we analyze each case more closely.

Local function – Local object. As in the case of stored func-
tions, this is the base case. Computed functionF as well
as its argument (a) reside in the local component, and the
execution is local.

Local function – Remote object. This situation can be re-
duced to the base case described in case 1. For example,
Researcher-B can use his/her own locally definedView()
computed function to view the remote instance in Fig. 1.

Remote function – Local object. This is the reverse of the
previous case: the function executes remotely and the in-
put argument is supplied from the local database. In effect,
the remote database is providing a non-local “service”. Intu-
itively, this is the most useful scenario from Researcher-B’s
perspective and forms the basis for behavior sharing. For
example, if Researcher-B did not have aView() function,
then s/he could use theView() defined in Researcher-A’s
database.

Remote function – Remote object. This situation is similar to
the first case (Local function – Local object) in that both the
state of the object and execution of the function are in the
same component. For example, Researcher-B views one of
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Fig. 3. Function sharing taxonomy

Researcher-A’sConference-Papersusing Researcher-A’s
original View() function.

In the examples above, the functions have returned a
literal type [e.g., theTitle() function returns aString]. How-
ever, functions with signatures involving abstract (user-
defined) types can also be shared. In this case, both the input
and output argument types must be defined locally; if they
are not, their meta-data must be imported beforehand. The
location of the result argument is determined by the location
where the function executes.

3.2 The taxonomy and object sharing

Given the taxonomy presented above, we can now consider
how it can be used to unify the original notions of instance,
type, and behavior sharing introduced in Sect. 2.2. We pro-
ceed by explaining how each of these sharing patterns can
be implemented using a case presented in the taxonomy. The
two tables in Fig. 3 summarize these results.

Conceptually, in instance sharing, a remote instance ob-
ject is imported directly into a local type. This remote in-
stance behaves in the same manner as a local instance object
from the user’s perspective. However, the actual state of the
remote instance exists in the remote component database; re-
trieval of any state of the remote object is accomplished by
accessing the remote database transparently. Hence, access
to remote instance objects corresponds to theRemote func-
tion – Remote objectsituations described in Fig. 3.4 Sharing
behavioral objects corresponds to sharing a computed func-
tion that exists on a remote component. Intuitively, when
an instance object is imported, only data is being shared.
On the other hand, importing a behavioral object gives the
importer access to services not provided by his/her local sys-
tem. This corresponds to theRemote function – Local object
situation in the taxonomy for computed functions. Type shar-
ing consists of two aspects: (1) sharing the meta-data, and
(2) sharing all the instances of a type. The first aspect does
not relate to our taxonomy. The second aspect is handled by
instance sharing.

One particularly useful sharing pattern revealed by the
taxonomy, but not directly covered by instance or behavior
sharing is the important case ofLocal function– Remote
object. Among other things this situation allows users to

4 Note that this applies to both stored or computed functions

add additional state to remote objects without modification
of the exporting database, thereby preserving the autonomy
of the exporter. This ability to create local state for remote
objects is achieved automatically from the way we support
instance sharing, and corresponds to simple local database
access. It also allows a remote object to be customized to
the environment of the local component database.

3.3 Discussion

In more practical terms, our taxonomy of eight different
sharing patterns can be reduced to two “most interesting”
cases: (1) executing an imported function on a local argu-
ment; this corresponds theRemote function– Local object
situation; and (2) executing a local function on an imported
(shared) argument; this corresponds to theLocal function–
Remote objectsituation. The first case only applies to com-
puted functions and can be described as reusing a previously
defined function from another component in the federation;
software reuse is the primary reason for components shar-
ing behavior. The second case applies to both computed and
stored functions and can be described as extending the “char-
acteristics” of a remote object with added functionality while
at the same time respecting the autonomy of the originating
site. In this case, the structure of an object (type) is shared
by other components which will not be able to see or modify
the original object.

4 A sharing mechanism

Given the function-based framework for sharing described
above, we now present a mechanism for implementing ob-
ject sharing (instance, type, and behavior). In our discussion
of function sharing, we have stressed the separation of the
location where the function executes from the location where
the data resides. However, in order to achieve database trans-
parency, this separation of function execution and argument
location should be completely transparent to the user. A ma-
jor additional goal of our sharing mechanism and its imple-
mentation is therefore to achieve database transparency for
the instance, type, and behavior sharing patterns.

4.1 Instance sharing

Our mechanism for instance sharing relies on creating surro-
gate objects in a database for each remote object that it im-
ports. Surrogates are simply objects that are created locally
and serve as place holders for remote objects. Thus, the local
database management system is able to interpret and manip-
ulate them as any other local object. Using these “surrogates”
alone, however, is not enough. The functions encapsulating
surrogate objects must be overridden to use computed func-
tions which access the remote component where the object
is actually stored. In order for the overloading to be per-
formed correctly, function naming, binding, and placement
in the type hierarchy are critical (Fang 1992b).

To illustrate, assume that Researcher-A has made his/her
publications available for other users, and that Researcher-
B has imported this data. Although the two schemas are
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Fig. 4. Sharing instance objects

different, eachPublication instance object in Researcher-
B’s database has a similar notion ofTitle(), View(), and
TextBody()as Researcher-A’s instances. Hence, only those
functions need to be imported into Researcher-A’s database.
Figure 4 shows one instance object of Researcher-A being
imported into Researcher-B’s database. The large gray bub-
ble in the diagram indicates Researcher-A’s perspective of
the conceptual schema. Researcher-B is unaware of the other
types in the diagram. Our technique for importing remote
instance objects can be summarized in the following three
steps:

1. Create a local object (i.e., surrogate) for each remote
instance object.

2. Create computed functions that access and retrieve data
from remote components.

3. Force functions defined on surrogates to use (refer to)
the newly created computed functions in step 2.

A surrogate serves as a local handle to access a remote
object. By using the surrogate, differences between remote
representations of objects, e.g., object identifiers (OIDs), can
be masked out (made transparent). Since the state of the re-
mote object exists externally, computed functions that make
remote procedure call (RPC) (Birrell 1984) requests to ac-
cess that state are created. Finally, in order to have the sur-
rogates use the remote functions, any existing functions de-
fined on the surrogate must be overridden to use the RPC
defined functions. This can be implemented by dynamically
binding functions to objects.

Surrogates are created as instances of both a local type
and a surrogate type. The purpose of the surrogate type
(e.g.,R-IEEE-Papers) is to override the local functions that
surrogates inherit from the local type of which they are a
member. By additionally creating the surrogate as a mem-
ber of this surrogate type, the functions that the surrogate
instance originally inherited are overridden. The two thin
dotted arrows fromR-IEEE-Papers (“R” for remote) and
IEEE-Papers to the surrogate instance serve to indicate that
surrogate instances (i.e., remote instances) ofIEEE-Papers
are created as members of bothIEEE-Papers andR-IEEE-

Journals

SIG():String

IEEE-Papers ACM-Papers

Tutorials

Research-Papers

Title(): String

Text_Body():String
View()
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Fig. 5a,b. Sharing type objects.a Import meta-data of journal.b Import
journal type

Papers. Thus these (remote) instances inherit multiple func-
tions from bothR-IEEE-Papers andIEEE-Papers; any du-
plicately named function from the two types is overridden
by the function defined forR-IEEE-Papers. The functions
defined onR-IEEE-Papers are computed functions, which
make RPC requests to the remote component database and
retrieve the values of functions on remote instances. This ap-
proach exploits the fact that objects can be members of more
than one type (e.g., IEEE-Papers and R-IEEE-Papers). Dy-
namic binding is used to resolve overloaded functions so that
the functions defined byIEEE-Papers on a surrogate are ac-
tually overridden to be those defined onR-IEEE-Papers.

An alternative approach to the above would be to cre-
ate R-IEEE as a subtype ofIEEE-Papers and create the
surrogates as instances ofR-IEEE . One major drawback of
this approach is that remote instances are no longer trans-
parent members of theIEEE-Papers. The user is now made
aware of theR-IEEE subtype in his/her conceptual schema.
A second drawback is that in this approach surrogate types
appear scattered throughout the user’s conceptual schema.
In our original approach, all surrogate types are contained
to a single branch of the type hierarchy, separate from the
user’s conceptual schema.

4.2 Type sharing

There are two aspects to sharing type objects. The first is to
share only the meta-data associated with the type being im-
ported. The second aspect is to also include all the members
and subtypes of the type being imported.

The meta-data associated with a type consist of the signa-
tures of the functions that serve to encapsulate the members
of that type. Hence, all that is needed to import the meta-data
of a remote type is to create a surrogate type with the same
functions. The only real complication occurs when one of
the functions has a signature whose result type is not known
locally. Conceptually, it is not difficult to apply this simple
rule recursively to create a surrogate type for the closure of
this type. However, the entire closure may not necessarily
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be required. The results of importing only the meta-data is
illustrated in Fig. 5b for the typeJournal.

In addition to importing meta-data, the second aspect of
type object importation involves also importing the remote
members and subtypes of the type. This is the kind of type
sharing illustrated in Fig. 2b. To accomplish this, we essen-
tially use the same paradigm as described earlier: (1) import
meta-data of a type, and (2) import all the instances of the
meta-data as in instance sharing. To include subtypes, this
rule can be applied recursively. Figure 5b illustrates this kind
of type sharing for the typeJournal.

4.3 Behavior sharing

The goal of supporting the sharing of behavioral objects is
to allow a component to utilize remote services that may not
be available locally. This corresponds to sharingcomputed
functions.5

As in instance sharing, meta-information containing the
location (e.g., remote OID and remote component name) of
the remote function object being imported must be stored
locally. However, in contrast with the case for instance
sharing, this meta-information is associated directly with
the function being imported. In instance sharing, the meta-
information is indirectly kept for remote functions such asTi-
tle() andView()via the surrogate instance object (see Fig. 4).
Thus, in our implementation we distinguish between two
kinds of “remote” functions: those implicitly defined by im-
porting instance objects and those directly imported when
behavioral objects are shared. Figure 6 shows our mech-
anism for incorporating this meta-information for sharing
behavioral objects. We exploit the fact that meta-data is also
represented using our functional object-based model. Im-
ported functions are created as instances of the typeRemote-
Functions and can thus store and access the additional lo-
cation meta-information required to execute the imported
function.

We now present a slightly different example from Fig. 4.
In this scenario (Fig. 6), theView()function is imported from
some remote component. In addition,R-IEEE-Papers no
longer supplies aView() function. Hence both the remote
and local instances ofIEEE-Papers use the same imported
View() function for displaying research papers. This is ev-
ident in Fig. 6 by the absence of theView() function from
the typeR-IEEE-Papers and the addition of a new (italics
faced)View() function defined onResearch-Papers.6

In order to explain how theView() function works, we
must first explain how our implementation addresses the is-
sue of side-effects. By side-effect we mean two things:7 (1)
any kind of implicit input other than the input argument that
is necessary to compute the result, and (2) any modifications
to the state of the database where the function executes other
than to the input argument. For functions whose arguments

5 This corresponds to the computed function case ofRemote function –
Local objectin the taxonomy presented in Sect. 3

6 The italics font is used to indicate that theView() function is imported
and no longer local

7 This extends the more traditional definition given by the programming
language community which defines side-effect as “the modification of a
data object that is bound to a non-local variable”
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Fig. 6. Sharing function objects

are literals, this simply requires that the function being im-
ported computes its result value solely based on its input
argument without modifying any database state [e.g.,Fi-
bonacci()]. Functions whose input argument are non-literals
pose additional difficulties. In this case, the input argument
is the OID of an instance. The problem then lies in deter-
mining what information a computed function accesses in
order to compute its results. Strictly applying our definition
of side-effects would restrict computed functions on non-
literals to solely accessing and then manipulating the input
OID. But realistically, a computed function must be able to
access some state of the object corresponding to the OID
when computing its result. In our implementation, we take
the position that the only state that a computed function can
access are those functions that serve to encapsulate that ob-
ject. In other words, the only state the computed function
will possibly access are those functions that are defined on
the types of which the instance is a member. In the case of
theView()computed function, the only functions thatView()
needs to access areTitle(), TextBody(), andPub Date().

Having determined what information a computed func-
tion on a non-literal type can access, a problem arises when
trying to execute such a function remotely on a local object.
The problem occurs when supplying local arguments to a re-
mote computed function. Although we know the computed
function is limited to only accessing the functions that en-
capsulate the instance, we do not know exactly which ones
it does need. Even if we pass all the possible values the
computed function can access, the computed function must
be written in such a way as to retrieve these arguments from
the network and not the local database. This would be un-
desirable and contrary to our goal of relieving the computed
function writer of needing to know where the data on which
it operates is located.

The best approach to this problem in our autonomous
environment is to allow computed function writers to define
functions without concern as to whether the function is to be
exported. Achieving this tighter level of coupling between
components requires additional functionality on the exporter.
We briefly discuss below a simple “callback” mechanism
implemented in the Omega prototype that will handle com-
puted functions that access the object’s own stored functions.
Whenever a remotely executing computed function needs
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state (i.e., a stored function) from the local database, it per-
forms a callback to the local database to retrieve that state.
In particular, the local database that imports remote objects
can be viewed essentially as a client and the exporter provid-
ing the objects as a server. During instance sharing, the local
database simply operates as a client and makes RPC requests
to the server. However, for behavior sharing, when the call-
back mechanism is used, the local database must in addition
operate as a server to accept the callback requests. Computed
functions can be written using any programming language
that can be compiled to re-entrant object code. This object
code is then dynamically linked into the database manage-
ment system kernel when the computed function is accessed.
In our prototype using the Omega database management sys-
tem, a computed function accesses the local database through
Omegaeval(), which has two parameters: an argument and
the function that is to be applied to the argument.8

We can now consider how the callback mechanism works
transparently and allows computed functions to be written
uniformly without regard as to whether that function is to
be exported. Consider again the example using theView()
computed function. Suppose that the importedView() func-
tion retrieves theTextBody() of an instance (say in LaTEX
format), computes the dvi formatted version, and displays
the formatted version through a dvi previewer (e.g., xdvi).
When the user of the local database invokes theView() func-
tion on a local object, theView() function is passed the local
OID of a Research-Papersinstance. TheView() on the re-
mote server makes a call to Omegaeval() to retrieve the
TextBody(), Omegaeval() recognizes that the OID passed
in as its argument is not local and performs a callback to the
server of the local database that invoked theView() function.
Since the local server recognizes the OID as a local OID, it
performs the request and passes back theTextBody() to the
remote server which can than complete its computation and
display the results on the local database monitor.

Functions involving signatures returning complex/ab-
stract data types can theoretically also be imported. In this
case the result argument type must be defined locally; if
they are not, their meta-data can be imported usingIm-
port Meta().

5 Experimental prototype implementation

An experimental testbed for our sharing mechanism has been
designed and implemented, supporting interconnected com-
ponents based on the Iris and Omega object-based database
management systems. In our testbed, a component consists
of a database and is associated with a machine where the
database physically resides.9 A component can participate
in as either the importer or exporter of information. In the
first case, objects from other components are seamlessly in-
tegrated with the local objects in the importer’s database.
When a component acts as the exporter of information, other
components can access and import its information (e.g., data

8 Omegaeval() is described in more detail in Sect. 5.2
9 For the sake of simplicity, we will assume that each component exports

or imports only a single database and that each component resides on a
single machine

or behavioral objects). In what follows, we discuss the im-
plementation details of both exporter and importer function-
alities in our Iris and Omega prototypes.

5.1 The Iris prototype

For our Iris prototype, we used an early version of the Iris
database management system that was developed at Hewlett
Packard Laboratories (Fishman 1987). Iris is based on a
functional object-oriented data model which supports the
usual object-oriented constructs. The data manipulation lan-
guage provided with Iris is a variant of SQL called OSQL.
In the following, we discuss key stages involved in imple-
menting the sharing mechanism described in the previous
section for an Iris based component.

In order to implement our sharing mechanism, we ex-
tended Iris in three ways. First, our approach relies on over-
riding stored functions with computed functions. Writing a
separate computed function for each overloaded stored func-
tion would have been tedious and inefficient. In addition, the
overhead in dynamically loading each function would have
been significant. We eventually wrote a single foreign func-
tion which applies a remote function to a remote OID, given
the host and database names upon which the function and
instance exist. This function,r ieval() (remote iris-eval), was
written using the SUN RPC protocol (Williams 1981). All
other computed functions for accessing remote data were
derived from it. Second, instead of using dynamic binding,
Iris by default uses compile-time (early) binding of types to
the variables being quantified over in thefor eachclause of
an OSQL query for resolving overloaded functions. To illus-
trate how this affects our mechanism, consider the following
query posed against the collaborating researcher’s example
database depicted in Fig. 4.

select Title(r-paper)
for each Research-Papers r-paper;

With early binding, the variabler-paper is statically bound
to the typeResearch-Papers; thus, the sameTitle() func-
tion (the one defined onResearch-Papers) would be applied
to every instanceResearch-Papersincluding the instances
of its subtypes,IEEE-Papers andACM-Papers. However,
for remote instances (e.g., the shaded instance ofIEEE-
Papers) in Fig. 4, our mechanism requires the overloaded
Title() function to be resolved to using the one defined on
R-IEEE-papers. Fortunately, since Iris is an extensible sys-
tem, we can override this functionality; indeed, Iris provides
a functionlatebindwhich uses the needed semantics. Finally,
our mechanism requires a server which would service RPC
requests when Iris is used as the exporter.10 Instead of cre-
ating one session for each request, the server opens a single
session and services all requests made by an importer within
that session (each request is treated as a transaction). After
a certain period of non-use, the server times out, closes the
session and returns to the initial state. The only functionality
required from the server is the ability to: (1) receive a RPC

10 Rpcgen (Sun Microsystems 1988) was utilized to simplify the con-
struction of both the client stub and server and to facilitate access to other
RPC services
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request, (2) apply a function to an argument, and (3) return
the results to the requester. The resulting simplicity of this
interface greatly facilitates the addition of components to the
federation.

5.2 The omega prototype

Omega (Ghandeharizadeh 1993b) is a parallel object-based
system constructed using a relational file system [the Wis-
consin Storage Structure (Chou 1985)]. Similar to Iris, it is
based on a functional data model (Shipman 1981) and sup-
ports OSQL at its data manipulation language. We used a
single-node configuration of Omega for the testbed proto-
type. This configuration allows evaluation and testing of the
prototype to be much simpler. In the following, we present
the implementation of Omega11 as it relates to some of the
key constructs needed in implementing our mechanism. In
addition, this overview will prove useful when we interpret
the results of the experiments performed in the next section.

The physical implementation of Omega is organized
around three types of files: (1) ameta-datafile, (2) a Sub-
object Directory (SubDir)file, and (3) at-file for each type
in the system. Omega represents a type as a record in the
meta-data file. This record contains: the name of a type, its
immediate subtypes (supertypes), the identity of processors
that contain its fragments, relevant declustering information,
number of functions, name of each of its functions, internal
organization of a function, available indices on a function,
etc.

Omega represents an object as a collection of sub-
objects. A sub-object represents the membership of an object
in a type. The system supports a t-file for each type in the
system and groups its instances (each instance is a sub-object
of an object) together in that file. An object is represented
as a record in the SubDir file. This record maintains a set
of (t-file,SID) pairs where a t-file corresponds to a type and
SID is a physical pointer to the sub-object that represents
the membership of this object in that type. The physical lo-
cation of this record constitutes its identifier that uniquely
distinguishes this object from the other objects in the system
(OID).

The organization of the SubDir file allows Omega to
support objects that are members of more than one class. In
addition, the SubDir file provides an efficient way for im-
plementing dynamic binding. In order to support dynamic
binding semantics, the exact order in which an object be-
comes a member of a type must be maintained. This is done
by ordering the set of (t-file,SID) pairs for an object from
left to right. Each time a new type is added to the object,
the new (t-file,SID) pair is simply appended to the rightmost
position of the object’s record in the SubDir file.

Omega supportsstoredandcomputedfunctions. Evaluat-
ing the value of a function for a particular argument depends
on its implementation. Retrieving the value of a stored func-
tion requires a record look up in the corresponding t-file. Ob-
taining the value of a computed function on the other hand,
requires first dynamically loading the program into mem-
ory and then executing the program. In order to abstract out

11 For a more detailed description see Ghandeharizadeh (1993b)

the implementation of a function, the all-purpose function,
Omegaeval(), was created. This function takes in as argu-
ments the name of a function and the function’s argument.
Next, it applies the function to the argument and returns the
results. Dynamic binding is implemented in Omegaeval()
by scanning the SubDir record for an object from right to
left. The first type which has the required function is the one
that is applied to the object.

The Omega importer was constructed exactly as de-
scribed in Sect. 4 using the same RPC stub generated for
the Iris component. Similarly, the Omega exporter was con-
structed using a server similar to the Iris prototype that
makes direct calls to Omegaeval().

6 Experimental analysis

A substantive experimental evaluation of the performance
of our Iris and Omega has been completed. The goal of
this evaluation was to quantify the overhead of our sharing
mechanism, and to identify the central issues and tradeoffs
involved in object-based sharing in general. In overview,
we observed a wide variation in the relative overhead of
our mechanism between the Iris and Omega prototypes. In
order to study these factors more systematically, we instru-
mented the Omega prototypes and conducted a second series
of experiments using only Omega components.12 For these
experiments we chose to use the USC Benchmark (Ghan-
deharizadeh 1993a), a benchmark tailored for object-based
database systems because it was readily available. [Other
benchmarks would also have been well suited to our needs,
e.g., (Anderson 1990; Cattell 1988).

In the following, we provide a brief description of the
USC synthetic database. Next, we present the results of our
experiments for two types of queries: (1) those that process
the instances of a type, and (2) those that reference a fixed
set of functions. For the first type of queries, we controlled
the percentage of the instances that are imported from a re-
mote site (horizontal partitioning), while for the second type
of queries we controlled the number of functions imported
from a remote site (vertical partitioning). We conclude by
analyzing these results and presenting our main conclusions
about the overhead due to our mechanism and the factors
affecting the overall performance of the system.

6.1 The benchmark database

We used a modified version of the USC benchmark for this
experimental study. The database consisted of a single type,
LV0-T-ROOT containing MAXOBJS instances. Table 1 con-
tains the functions defined on LV0-T-ROOT. The first nine
functions can be used to model queries with a wide range
of selectivity factors. The name of each function reflects its
range of values.UID(), for example, is an integer ranging
between [0 - MAXOBJS-1] and is assigned sequentially dur-
ing object creation time. The last three functions are object-
valued and reference an object of the same type.One-to-
one() is a single valued function that maps one object to

12 We could not instrument the Iris prototype because we did not have
access to its source code



160

Table 1. Functions defined on the root of the usc benchmark type lattice

Function Name Return Type Range of Values Order
Unique Identifier (UID) Integer 0-(MAXOBJS - 1) Sequential
Shuffled UID (SH-UID) Integer 0-(MAXOBJS - 1) Random
Unique Float (UF) Float 0-(MAXOBJS - 1) Random
Unique String1 (USTR1) String (52 bytes) ‘**...*UID’ Sequential
Shuffled String2 (SH-USTR2) String (52 bytes) ‘**...*SH-UID’ Random
one-percent Integer 0-99 Random
ten-percent Integer 0-9 Random
even Integer 0,2,4,...,198 Random
odd Integer 1,3,5,...,199 Random
one-to-one LV0-T-ROOT (Object-valued) - Random
one-to-five LV0-T-ROOT (Object-valued) - Random
one-to-0.1p LV0-T-ROOT (Object-valued) - Random

another randomly selected object which is unique and dif-
ferent than itself.13 Both one-to-five()and one-to-0.1p()are
multivalued and reference a set of objects.

In our experiments, we used the same database for both
the importer and exporter components. Our mechanism re-
quires the importer database to construct a remote type hi-
erarchy (as described in Sect. 4). Hence, the type R-LV0-T-
ROOT is created with the same named literal functions as
LV0-T-ROOT except that they are actually computed func-
tions which make RPC requests to the exporter. R-LV0-T-
ROOT does not contain the object-valued functions [e.g.,
one-to-one()is defined only on LV0-T-ROOT]. This is be-
cause the value of a remote object-valued function is unde-
fined at the importer site.14

6.2 The queries

We used three different queries to quantify the overhead of
our mechanism. The first two queries are used to evaluate the
scaling of our instance sharing mechanism (logical horizon-
tal partitioning) as a function of: (1) the fraction of remote
instances, and (2) the size of the database. The third query is
designed to quantify the overhead of sharing remote stored
functions (logical vertical partitioning).

Queries in object-based database management systems
generally fall into two categories: associative queries ranging
over one or more sets, and navigational queries which tra-
verse the subcomponents of a complex object. The first cate-
gory of associative queries resembles queries found in tradi-
tional relational database systems. Query 1 is used to model
this class of queries. It retrieves a fixed percentage of ob-
jects that satisfy a certain selection predicate. By varying the
percentage of LV0-T-ROOT objects that are remote, we can
evaluate the overhead of sharing remote objects. This query
retrieves 10% of objects from the database. For example,
when the database consists of 100 000 objects (MAXOBJS
= 100 000), Query 1 is defined as:

select UID(p)
for each LV0-T-ROOT p
where UID(p) < 10 000;

13 A complete explanation of each function can be found in Ghande-
harizadeh (1993a)

14 If this functionality is desired, a surrogate can be created for the remote
object resulting from applying the one-to-one()

Navigational queries traverse the subcomponents of a
complex object and typically result in expensive random disk
accesses. Query 2 is used to evaluate our mechanism when
processing this class of queries. We used theone-to-one()
function to model queries that traverse the subcomponents
of a complex object. As in Query 1, we measure the response
time of the system as a function of the percentage of remote
objects. Once again, this query retrieves 10% of the objects
in the database. When MAXOBJS is 100 000, Query 2 is as
follows:

select UID(p)
for each LV0-T-ROOT p
where UID(one-to-one(p)) < 10 000

The last query, Query 3, projects out each function de-
fined on the type LV0-T-ROOT with 100% selectivity. For
this query, we vary the number of functions which are re-
mote. First,UID() is made remote, thenUSTR1()and finally
SH USTR2().

select UID(p), USTR1(p), SH_USTR2(p)
for each LV0-T-ROOT p;

6.3 Organization of the experiments

The hardware platform used for these experiments con-
sisted of two workstations connected by Ethernet. In order
to systematically characterize the behavior of the system, we
conducted our experiments on two separate configurations.
The first configuration consisted of an Iris importer and an
Omega exporter.15 The purpose of this configuration was to
demonstrate the feasibility of our mechanism and to gain an
intuitive understanding of its overhead. The second configu-
ration consisted of Omega as both the importer and exporter.
This configuration provided a far more accurate environment
for quantifying this overhead of our mechanism, as we had
access to Omega’s source code and were able to instrument
it using simple modifications. We evaluated the performance
of each query for three different database sizes (MAXOBJS):
1000, 10 000, and 100 000 objects. In all experiments, each
remote object at the importer site were chosen at random
from the exporter’s database with no object being imported
more than once.

15 The complement configuration of Iris exporter and Omega importer
was also evaluated. These results were eliminated because they provided
no additional observations
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6.4 Heterogeneous configuration

This configuration consisted of an Iris (version DPP 4.0) im-
porter running on a HP 9000/834 workstation and an Omega
exporter running on a HP 9000/720 workstation. The goal
of this experiment was to demonstrate that the local data
manipulation language of Iris was preserved while provid-
ing transparent access to the remote objects that resided on
the Omega exporter. To this end, the experiment was quite
successful. However, since this version of Iris was an early
prototype, we had some difficulties creating large databases
and making accurate measurements. Nevertheless, the re-
sults of running the queries showed that the overhead for
remote access was approximately 25%, making remote ac-
cesses quite comparable to local access. As we describe in
Sect. 6.6, this overhead depends on a number of factors that
could not be fully quantified due to our lack of accessibility
to the Iris source code. However, our course grain measure-
ments for this configuration indicated that the overhead of
our mechanism was relatively low as compared to the local
database accesses performed by Iris. The high local access
times for Iris resulted from the use of thelatebind() func-
tion. Latebind() is a computed function which must search
the meta-data every time an attribute of an object is ac-
cessed, resulting in a higher access time [see Sect. 5.1 for
an explanation oflatebind() and why it was used in this
implementation].

6.5 Homogeneous configuration

In this configuration, Omega components were used as both
the importer and exporter, each running on a HP 9000/720
workstation. The sizes of the exporter’s database for the
1000, 10 000 and 100 000 object databases were 600 KB,
6 MB and 60 MB, respectively. The size of the importer’s
database, however, increases as the percentage of remote in-
stances increases because our mechanism requires one surro-
gate object per imported object. In our implementation, the
size of a surrogate object is approximately twice the size of
a local instance of LV0-T-ROOT. Consequently, when the
importer contains 100% remote objects, the database size
is roughly double the size of the exporter at 1 MB, 10 MB
and 100 MB, respectively, for the 1000 object, 10 000 ob-
ject, and 100 000 object databases. However, in general, we
expect the remote information contained in the surrogate to
be small when compared to the actual size of the object on
the exporter. For these experiments, the Omega components
were configured with a 4-KB disk page and a 400-KB (100
pages) buffer pool. The buffer pool size was chosen rela-
tive to the database size in order to investigate the following
two scenarios: the database can become main-memory resi-
dent (1000 objects), the database must remain disk resident
(100 000 objects). By choosing a larger buffer pool size, we
would have had to modify the size of the database appro-
priately in order to investigate these alternative cases. This
would not have changed the final observations because the
Omega system scales as a function of both its buffer pool
and database sizes (Ghandeharizadeh 1993a).

Table 2. Response times for query 1

1000 Objects 10 000 Objects 100 000 Objects
0% 0.98 s 14.23 s 171.80 s
10% 3.42 s 59.25 s 983.54 s
20% 4.28 s 92.24 s 1,686.13 s
40% 5.85 s 159.59 s 3,058.80 s
80% 8.91 s 288.63 s 5,727.04 s
100% 10.35 s 346.64 s 7,045.40 s

6.5.1 Query 1

Table 2 shows the response time of Query 1 for the three
databases sizes as a function of the percentage of remote ob-
jects. For each column, the results demonstrate a relatively
linear increase in response time as a function of the percent-
age of remote objects. For example, in the 100 000 object
database column, the increase in response time between 20%
to 40% remote objects and 80% to 100% remote objects is
roughly 1300 s (i.e., a constant slope). This behavior is not
observed for the 1000 object database column due to a higher
percentage of buffer pool hits at the exporter as a function
of the percentage of remote objects16, resulting in a lower
access time per object. This is due to the relative small size
of the database which becomes main memory resident at the
exporter site.

With a large database, the exporter’s buffer pool hit ra-
tio stabilizes at a fixed percentage for various percentage
of remote objects. Figure 7 shows that the buffer pool hit
ratio for both the importer and exporter using the 100 000
object database. The importer observes a higher percentage
of buffer pool hits because it processes objects sequentially.
Since a disk page contains approximately 200 objects, the
importer observes 199 buffer pool hits for each disk I/O.
Each time the importer processes a surrogate (recall that this
is a randomly chosen object from the exporter), it makes
a request causing the exporter to perform a random disk
page request which has a significantly lower probability of
a buffer pool hit.

When there are no remote objects, the response time
of the system increases almost linearly as a function of
the database size (see the first row in Table 2). However,
when there are remote objects, the increase in response time
becomes superlinear (a 20-fold increase from the 1000 to
10 000 object database, and a 30-fold increase from the
10 000 to the 100 000 object database).17 This can be at-
tributed to two factors. The first is due to the significant
decrease in exporter buffer pool hit ratios as a function of
the database size (see Fig. 8). The second factor is due to
the significant difference in seek time at the exporter site for
different database sizes. The 100 000 object database occu-
pies more than a hundred times as many tracks as the 1000
object database. Since the seek time is proportional to the
square root of the distance traveled by the disk head (Gray
1988), this query spends a longer amount of time performing
seeks for the 100 000 object database.

16 For 10% remote objects, the exporter’s buffer pool hit ratio is 81%
and increases to 99% for a 100% remote object configuration

17 The increase between the 1000 and 10 000 object databases varies
because of increase in the buffer pool hit ratio on the exporter for the 1000
object database, whereas the exporter hit ratio for the 10 000 object and
100 000 object databases remains constant at 71% and 53%, respectively
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Table 3. Response times for query 2

1000 Objects 10 000 Objects 100 000 Objects
0% 1.97 s 237.41 s 6,496.11 s
10% 4.44 s 251.05 s 7,165.53 s
20% 5.23 s 301.05 s 7,772.54 s
40% 6.71 s 411.71 s 9,053.62 s
80% 10.04 s 531.11 s 11,374.07 s
100% 11.11 s 563.25 s 12,578.91 s

6.5.2 Query 2

Table 3 shows the response time of the system for Query 2
as a function of the percentage of remote objects for various
database sizes. As described in Sect. 6.2, this query navi-
gates the subcomponent of each complex object and results
in random I/Os. When there are no remote objects, this query
observes a lower percentage of buffer pool hits and a higher
disk access time as compared to Query 1. These factors
increase the average look up time per object from approxi-
mately 1 ms for Query 1 to 30 ms for Query 2, resulting in
a significantly higher response time.

In the presence of remote objects, the response time of
the system increases modestly as a function of the percent-
age of remote objects because: (1) the random disk accesses
are offloaded to the exporter site, and (2) our implementa-
tion of surrogate objects causes the importer to observe a
higher percentage of buffer pool hits (see Fig. 9). The ad-
ditional random I/Os at the exporter site has no impact on
its buffer pool hit ratio because all requests made to this
site result in random I/Os. The second factor is due to our
implementation of a surrogate object which clusters all the
information needed to issue a remote request (e.g., RHOST,
R DBNAME, and ROID) together in a single tuple on a
disk page, causing a higher percentage of buffer pool hits at
the importer site.

Table 3 shows that the response time of the system in-
creases superlinearly as a function of the database size. Sim-
ilar to Query 1, this can be attributed to two factors: (1) the
percentage of buffer pool hits decreases drastically as a func-
tion of the database size (see Fig. 10), and (2) the exporter
incurs a longer seek time as a function of the database size.

Table 4. Response times for query 3

1000 Objects 10 000 Objects 100 000 Objects
0 Functions 4.36 s 46.09 s 456.75 s
1 Function 13.25 s 382.17 s 6,228.30 s
2 Functions 19.61 s 441.02 s 6,931.03 s
3 Functions 26.94 s 514.28 s 7,487.53 s

6.5.3 Query 3

Table 4 shows the response time of Query 3 for the three
database sizes as a function of the remote functions (at-
tributes). In this experiment, the response time increases sig-
nificantly from no remote functions to one remote function
(i.e., compare the first and second rows in Table 4) because
the importer performs one RPC for each object in order to
access its remote function value. Beyond one remote func-
tion, Table 4 exhibits only a modest increase in response
time because of a faster service time from the exporter for
each additional remote function. The explanation for this is
as follows. For each remote function defined on an object
and referenced by the query, the importer issues a request to
the exporter. The first request typically results in a random
I/O at the exporter. However, the exporter observes a buffer
pool hit for each additional request (see Fig. 11). This is be-
cause all the remote functions are defined on LV0-T-ROOT,
and Omega clusters the values of these functions together
on a single disk page for each object.

6.6 Discussion and observations

The performance evaluation experiments conducted demon-
strate that the overhead of our mechanism depends on: (1)
the technique used to resolve overloaded functions at run
time, (2) the implementation of a surrogate object, and (3)
the network access time. Consider each factor individually.
As discussed in Sect. 6.4, the overhead associated with the
latebind mechanism of Iris for processing an overloaded
function was significant. Our implementation of this con-
struct in Omega exploited the physical organization of the
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system to provide a more efficient implementation. This im-
plementation could be further fine tuned in order to mini-
mize its overhead (e.g., replace the repetitious allocate and
deallocate calls to the operating system by a scheme which
allocates and deallocates memory in larger chunks and min-
imizes the number of calls to the HP/UX operating system).

Our implementation of the surrogate object clusters the
information needed to make a remote request together on a
single disk page. Currently, it is 300 B long. Its size could
be drastically reduced by: (1) assuming a maximum length
for the name of a remote host, its database name, and size
of the remote OID, and (2) using an encoding scheme. A
smaller surrogate object reduces the disk space requirement
of our mechanism at the importer site, and increases the
probability of this information becoming memory resident
when processing a query.

The network access time consists of: (1) the importer is-
suing a request, and (2) the exporter returning the results. In
all experiments, the importer and exporter were connected
using the Ethernet and our network access time was approx-
imately 5 ms per request. This measurement is contingent

upon the size of the request and the result (approximately
300 B for the request and 100 B for the result in these ex-
periments). This time could be reduced by using (1) a faster
network (FDDI instead of Ethernet), and (2) a more sophis-
ticated protocol that groups requests and submits them at
one time (similar to group commit protocol in transaction
processing systems), reducing the network traffic.

In addition to these factors, we made the following ob-
servations on the overall behavior of the Omega system
which implements our mechanism. First, our instance shar-
ing mechanism scales linearly with increasing numbers of
remote objects for associative queries over sets (Query 1).
Figure 12 shows the time spent in Omegaeval() for Query
1 on both the importer and exporter for the 100 000 object
database. The sum of these two times accounts for over 90%
of the total response time. The exporter has a larger slope
because it performs random disk accesses and observes a
lower percentage of buffer pool hits. Second, this mechanism
scales sublinearly for navigational queries (Query 2). These
queries result in random I/Os at both the exporter and im-
porter. Figure 13 shows that the time spent in Omegaeval()
for the importer decreases as the percentage of remote ob-
jects increases, due to a smaller working set of active pages
and an increased buffer pool hit ratio.

Two factors have a significant impact on these results.
The first factor is the implementation of the buffer pool and
the choice of buffer pool replacement policy. In our experi-
ments, the Omega components were configured with a 4-KB
disk page and a 400-KB (100-page) buffer pool using a least
recently used (LRU) replacement policy. Different choices
of buffer pool sizes and replacement policies would signif-
icantly alter our results. Second, the physical organization
of data and techniques employed to retrieve it can impact
the results. For example, in the experiments for Query 1, all
the imported objects were chosen at random from the ex-
porter. However, in a more probable situation, the imported
objects might be members of the same type which would
then be clustered together resulting in an overall decrease
in the observed response time; another example in our ex-
periments where clustering (or lack of) would have affected
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our results for Query 3. With this query, the overhead of
referencing additional remote functions beyond one remote
function was minimal, due to the natural clustering of func-
tions at the exporter site. Clearly, in different component
implementations, this intra-object clustering technique may
be violated. In general for all the experiments, our Omega
components used only the simplest of clustering strategies
and assumed no auxiliary access methods.

7 Conclusions and future directions

In this paper, we have described an approach and mechanism
for the transparent sharing of objects in an environment of in-
terconnected (networked), autonomous database systems. An
experimental prototype implementation has been described,
along with an analysis of its performance. Our approach
provides a mechanism that allows users to import remote
objects directly into their local database environment trans-
parently. The experimental prototype system that has been
designed and implemented is based on the Iris and Omega
object-based database management systems; this system sup-
ports the sharing of data and meta-data objects (information
units), as well as units of behavior. The results of exper-
iments we performed to evaluate the performance of our
mechanism demonstrate the feasibility of database transpar-
ent object sharing, and provides insight into the performance
overhead and tradeoffs involved.

There are several aspects to the intended direct and prac-
tical impact of our work:

– Existing components.Throughout this work we have paid
careful attention to the requirement that there should be no
modification to existing database management system soft-
ware. As a result, our approach requires no modification to
the query processor or any other component of the local sys-
tem. In particular, we do not assume a standard global OID
space of which each component must be aware. Not only
does our approach support the existing database manage-
ment system software (e.g., the query language), but it also
supports existing application programs developed by users.

– Sharing patterns.Our approach introduces new sharing
patterns not found in other systems. We support the sharing
of objects at various levels of granularity and abstraction.
In addition, we support the sharing of behavioral objects.
These sharing patterns may be established dynamically from
multiple sources and are determined individually by each
component; there is no global schema.

– Database transparency.Another feature of our approach
is database transparency. With this level of transparency,
users are more productive, since learning a new language or
moving to a new environment is not a prerequisite to sharing
information.

– Decoupling of data and behavior.We have considered the
importance of decoupling the location of (persistent) data
and the location of the functions that operate on data in a
distributed environment. Traditional approaches inextricably
link the location of the data and the execution of the op-
eration. Our implementation provides an approach and call-
back mechanism which addressed the problems associated
with possible side-effects of behavioral objects.

– Common data model. The results described here may also
impact the area of heterogeneous database systems with re-
spect to data model and conceptual schema heterogeneity.
One of the critical factors that determine the success of these
systems is the choice of a common data model used for
integrating component database systems (Sheth 1990). We
expect that our experiences with a functional object-based
data model provide insight into the design and functionality
of future CDMs.

It is important to note that the experiments in the eval-
uation portion of the research were designed to quantify
the overhead of our mechanism in a standard environment.
There are several ways of improving the performance of our
mechanisms. First, there is an inherent parallelism that exists
in a federated environment. All of our experiments consisted
of only one exporter. In the presence of multiple exporting
components, asynchronous or multi-threaded RPC requests
can be used to retrieve the results from these components in
parallel. Second, the importer can cache the remote objects
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in order to minimize the number of RPC requests. Access
to a remote object is always more expensive than access to
a local object. Hence, if a remote object is “cached” in the
local database as a local object, its access times will de-
crease. By providing a generalized mechanism for resolving
overloaded functions (such as the one implemented using
Omega), a local stored function can be used to locally cache
the value of the computed function which accesses the re-
mote instance’s state. This provides the basis for a simple
but powerful mechanism for selectively caching the remote
state of an imported object. The strategy for setting and up-
dating the values of the stored local functions is determined
by an appropriate caching policy. We are in the process of
studying the impact of various caching policies for this high-
level object caching scheme in order to reduce the amount
of remote accesses.
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