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Abstract. An approach and mechanism for the transparenttomputer-integrated manufacturing systems (with computer-
sharing of objects in an environment of interconnected (netaided design as a subset), personal computing, and scientific
worked), autonomous database systems is presented. An esesearch information bases. New approaches and techniques
perimental prototype system has been designed and implde support the interoperation of such systems are required,
mented, and an analysis of its performance conducted. Pravhile at the same time respecting the autonomy of the indi-
vious approaches to sharing in this environment typicallyvidual component database systems. In order to have signif-
rely on the use of a global, integrated conceptual databasieant practical impact, these approaches must be transparent,
schema; users and applications must pose queries at this ndigxible, efficient and place minimal requirements on (exist-
level of abstraction to access remote information. By con-ing) component database systems. We take an object-based
trast, our approach provides a mechanism that allows usem@pproach to sharing in this networked database context. In
to import remote objects directly into their local databaseaddition to sharing data objects (information units) at various
transparently; access to remote objects is virtually the samkevels of abstraction, our approach also supports the sharing
as access to local objects. The experimental prototype sy®f units of behavior (operations, methods, or functions).
tem that has been designed and implemented is based on the The foundations for our work arise from research on
Iris and Omega object-based database management systerhgterogeneous databases (Shan 1989; Smith 1981; Stone-
this system supports the sharing of data and meta-data olbbraker 1977; Templeton 1987), federated databases (Heim-
jects (information units) as well as units of behavior. The re-bigner 1985; Sheth 1990; Gardarin 1995) and multidatabases
sults of experiments conducted to evaluate the performancfitwin 1986). The heterogeneous database approach typi-
of our mechanism demonstrate the feasibility of database&ally relies on a single monolithic global schema. Users are
transparent object sharing in a federated environment, ancequired to participate at this new level of abstraction (or
provide insight into the performance overhead and tradeoffa derived view of it) in order to access shared data. Some
involved. limitations of this approach are apparent: users access shared
data with new tools (i.e., there is a lack of database trans-
Key words: Database system interoperability — Object shar-parency), and limited flexibility is provided, since the re-
ing — Experimental prototype benchmarking quirement for a global schema mandates a single representa-
tion of data. The federated approach stresses autonomy and
flexible sharing patterns through inter-component negotia-
tion. Rather than utilizing a single, static global schema, the
federated architecture allows multiple “import” and “export”
schemas for component database systems. The multidatabase
architecture is in a sense similar to the federated architec-
ture. Emphasis is placed on the interoperability among com-
Data and knowledge base system interoperability is increasponent databases based on a flexible, common multidatabase
ingly important, as computer systems and their associatefhnguage. In this approach, the user is responsible for keep-
collections of information proliferate, and as global connec-ing track of the various databases and their schemas in order
tivity becomes more and more a reality. We address this esp navigate and manipulate data. In addition, the user utilizes
sential area of research by considering an environment corg new multidatabase language to manipulate the shared data.
SiSting of a network of data/knOWIEdge bases and their Sup- By contrast, our approach allows each Component to in-
porting systems, and in which it is desired to accommodat@egrate objects directly into its local database, thereby maxi-
the controlled sharing and exchange of information amongmizing flexibility and providing database transparency. Fur-
the collection. Such networked/federated database enVirOﬁhermore, our Object-based approach allows for both fine and

ments are common in various application domains, includ-coarse grain sharing, as well as the sharing of behavior.
ing office information systems, next generation libraries,

1 Introduction
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With particular regard to the sharing of behavior, the provide a unified framework for inter-component sharing,
approach and mechanisms described here are consistemised upon our functional approach. Section 4 describes the
with the approaches taken in CORBA (Object Managemensharing mechanism, specifically supporting instance, type,
Group 1991; OMG 1992), but are much more flexible. Theand behavior sharing. In Sect.5, we examine in detail the
type of behavior sharing supported in CORBA is based uporexperimental prototype system we have built. Section 6 pro-
the encapsulation of operations at an object’s interface; theséides a substantive analysis of the performance of our ex-
operations are registered in an “object request broker” imperimental system, and analyzes the general impact of our
plementation using the OMG interface definition language.observations based upon our experimental results. Finally,
Clients can request a service from an object by specifyingSect. 7 presents concluding remarks and a brief discussion
the operation, an object reference, and any additional nece®f research directions.
sary parameters. The requested service is actually executed
remotely in an object implementation in which the object re-
sides, and the result is sent back to the client. Our approach An object-based context for sharing
supports a more flexible paradigm, in which object and the
operations that manipulate them can both be either local oA generic functional object-based data(base) model is em-
remote. ployed here as a basis for inter-component sharing and infor-

In what follows, we describe a mechanism and ex-mation unit exchange. This model supports the usual object-
perimental system to support the various kinds of sharingoriented constructs. In addition, the constructs provided in
patterns that arise in the context of an object-based shathis data model serve as a reference point from which we
ing model. We specifically describe and analyze a multi-can later describe our techniques for transparent sharing. We
configurational experimental prototype system that we havelso describe three sharing patterns (instance, type, and be-
constructed to demonstrate, refine, and evaluate the tecliravior) that naturally arise in the object database context and
nigues devised. illustrate them using this data model.

The research described in this paper is couched in the
context of a larger effort, which is addressing three key as-
pects of sharing and interconnection in networked databas®.1 A functional object-based model
systems. These may be viewed without loss of generality
in the context of a given componenf’), which intends The conceptual database model considered in this work
to import information from other (remote) components: (1) draws upon the essentials of functional database models,
the discovery and identification by componénbf relevant  such as those proposed in Daplex (Shipman 1981), Iris (Fish-
non-local information (Hammer 1994); (2) the resolution of man 1987), and Omega (Ghandeharizadeh 1993b). Our func-
the similarities and differences betwe€fs information and  tionally object-based model contains features common to
relevant non-local information (Hammer 1993); and (3) themost semantic (Afsarmanesh 1989; Hull 1987) and object-
efficient realization and implementation of actual sharing andoriented database models (Atkinson 1989), such as Gem-
transmission of information to and frod and other com-  Stone (Maier 1986)(0; (Lecluse 1988), and Orion (Kim
ponents. The focus of this paper is on the third of these key1987). In particular, the model supports complex objects
issues. (aggregation), type membership (classification), subtype to

It is important to note that the research described in thissupertype relationships (generalization), inheritance of func-
paper focuses on the underlying technigues and mechanisnti®ns (attributes) from supertype to subtypes, run-time bind-
to allow database users to import and export objects. Weng of functions (method override), and user-definable func-
are not, for example, specifically concerned with providingtions (methods).
complete facilities for remote update or global consistency; In this model, functions are used to represent inter-object
these are large research problems in their own right and areelationships (attributes), queries (derived data), and opera-
being actively investigated by other researchers. We also dtions (methods). Two types of functions can thus be distin-
not directly address here the problem of determining whetheguished:
objects in two databases refer to the same real-world entity1 Stored functionsA stored function records data as prim-
(this problem is considered to be at a higher level than the™ . ; X P
focus of this paper) (Kent 1993). Finally, it is of course well itive facts in the database. Stored functions can be up-

. , . : . dated.
recognized that many social and legal issues remain open,, Computed functionsA computed function (sometimes

policies regarding the fair use of information, copy and own- = . : : )
L : < termed a foreign function) is defined by a procedure
ership rights, and security need to be addressed for differ written in some programming language. The value of

ent environments (scientific versus commercial). This paper . .
strives to provide a collection of mechanisms that enable the a computed function cannot be directly updated.

users to share and exchange information transparently in the To illustrate our diagrammatic notation, consider the ex-
presence of multiple repositories. The implementation of aample of two collaborating researchers, Researcher-A and
final system (along with its optimization and performance Researcher-B. Each researcher maintains separate databases
specs) depends on the target environment and its specifiof journal and conference publications using a different
constraints. underlying schema to model this information. Figure 1
The remainder of this paper is organized as follows. Secrepresents the conceptual schemas of Researcher-A’s and
tion 2 briefly presents the functional object-based model thaResearcher-B’s databases. In our diagrammatic notation, in-
serves as an inter-component sharing forum. In Sect. 3, wetance and type objects are depicted as bubbles. For type
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Fig. 1a,b. Two-example component database scheraaResearcher-A’s

conceptual schemd. Researcher-B's conceptual schema Fig. 2a,b. Sharing pattern example. Sharing instance objectb. Sharing

type objects

objects, the name of the type is placed within the bubble.
Each type has a set of functions defined on it. The signaapproach, all the instances appear local (i.e., transparent) to
ture of each of these functions is placed immediately abovéResearcher-B, even though Fig.2a depicts the remote in-
the type. The input arguments of each of these functionstances differently than local ones.
are instance objects of the type upon which the function is  EXisting approaches have concentrated on what corre-
defined. Hence, the input argument type of functions is nosponds closely to type sharing (Stonebraker 1988; Williams
shown in their signatures; it is assumed to be of the type orl981). These systems focus on the sharing of entire collec-
which the function is definetl Hence, in Fig. 1a, the func- tions (e.g., relations), rather than members of the collection
tions defined on the typPublications are: Title(), View(),  (€.9., tuples). By contrast, importing a remote type naturally
and TextBody() leads to importing the subtree of the remote type hierarchy
Two kinds of inter-object relationships are explicitly rooted at that type. Again, using the collaborating researchers
modeled and have corresponding diagrammatic notationggxample, assume Researcher-B would also like to have ac-
the supertype to subtype (with inheritance) interclass reC€ss to all of Researcher-A’s journal publications. Figure 2b
lationship and the type membership relationship. All otherillustrates this situation. In this case, Researcher-B also im-
inter-object relationships are modeled through functions. Thedorts theTutorials type by virtue of the supertype-subtype
supertype to subtype relationship is depicted with thick darkrelationship. The principal advantage of this kind of sharing
lines from supertype object to subtype object. In Fig. 1a,is that it allows Researcher-B to use Researcher-A’s database
Conferencesand Journals are subtypes of the typeubli- without integrating Researcher-A’'s conceptual schema with
cations Type membership is depicted with thin dotted lines his/her own conceptual schema; Researcher-B simply uses
from type objects to its members (i.e., instances). In Fig. 1athe part of Researcher-A’s original schema rootedaatr-
the Journals type has four instances: three directly creatednals. Another way of looking at this is that Researcher B
asJournals and one from thdutorials subtype. can now move from his/her own context to Researcher A’s
context. Researcher B can even add or delete instances from
his/her own context of Researcher A (note that one of the
2.2 Object sharing instances ofJournals in Fig. 2b is local) without updating
Researcher A’s database. This is a useful feature when the
Since every object is treated uniformly in our data model,2Utonomy constraints of Researcher A prohibit any addition
it is natural to investigate the sharing of individual data ob-°" deletion O].c Its instances. To some degreg, mstar.\qe shar-
jects (instances), structural objects (e.g., types), and behal9 can be viewed as the complementary situation; instead
ioral objects (functions). Recall the example of collaborating®f INtégrating local instances into a remote component con-
researchers; suppose that Researcher-B would like to impoF‘f’Xt’ the goal is to integrate remote instances into the local
some specific publications from Researcher-A. This situatiorf®MPONent context. _ . o
corresponds to instance sharing and is illustrated in Fig. 2a, " addition to simply sharing objects representing infor-
Imported instance objects are denoted by the hashed bubbl ation units, it is also possible to share bghaworal Obje.CtS'
in the figure. Hence, Researcher-B now sees four instances is enables the importer to access services not provided
of ACM-papers and three instances tEEE-papers, where y his/her local system. For example, in the collaborating

originally there were only two instances in each type. In Ourrgsearchers scenario, assume Researcher-B has a dvi pre-
viewer method but noAleX compiler on his/her local sys-

1 The function can consume the instances of its subtypes using€M. Further, Researcher-A haSlgX available by virtue
inheritance of a function, latex(), which takes ASCII text with ATEX



154

commands as input and outputs dvi format. In this case, outocal function — Local objecfThis is what we term the “base
approach allows Researcher-B to share the fund&tex(). case”. Both objects, the stored functien and its argument
Sharing functions in this way is very natural in our data a, reside in the local component and can be executed as
model because functions are represented as objects. usual; all processing of# is done locally.

Local function — Remote objedh this case, the local stored
function .77 is applied to argument: which resides re-
motely. This situation has the effect of giving local state
to a remote object. For example, Researcher-B can create
R value for thePub Date() function on the highlighted re-
mote object in Fig.1l. The value dPub Date() is stored
locally in Researcher-B’s database while Researcher-A re-

3 A unified framework based on function sharing

To provide a top level, unifying view of sharing in the ob-
ject database context, we consider a functional viewpoint o
sharing. From this point of view, an object is an entity with

its own identity; an object unites the values of its differ- ains unaware of the existence®fib Date(). This feature
ent properties. Functions are applied to an object in ordef” ; arey). TS 18
s very useful for allowing Researcher-B to “adjust” remote

to access values associated with that object (i.e., its state); . ) .
These functions can betored (i.e., attributes) or they can nstances and customize them to the local environment while

be computed(i.e., methods). Using this perspective of the respecting the autonomy of the Researcher-A’s database.

relationship between objects and functions, we can consideRemote function — Local objecthis situation is somewhat

the effects of distribution on both objects and the functionsmeaningless, since stored functions only have a meaning

(stored or computed) independently. in the local context of the component in which they were
initially created.

Remote function — Remote objeSimilar to the first case,
this is also a base case; both the state of the object and the

Let us assume the existence of a functigh, which can be ~ €x€cution of the function are in the same component (e.g.,
shared among components of a federation; without loss ofR€seéarcher-A). The difficulty here lies in providing database
generality, assume7 takes as input the argumea The transparency, as dlscussed |mmed|at_ely below. We point out
argument type can be a literal (i.@nteger, String) or a here that this situation forms the basis of the instance shar-
user-defined type such &esearch-Papers Sharing takes N9 pattern descrlbed.m Sect. 2.2. For example, the shaded
place on a component-pairwise basis, meaning thatis remote instance of Fig. 1 would appear local gnd have its
exported by a componenitl and imported by a component orlgmal' valugs for theTitle() a’nd TextBody() functions that

C2. The importing component is called theral database '€ defined in Researcher-A's database.

while the exporting component is called tteenote database

There are several ways in which componeats and C2 _

can share the service provided 5§, depending upon the 3:1.2 Computed functions

location whereZ7 executes and upon where its input ar- ) ) )
gumenta resides (i.e., there are two degrees of freedom)As in the case for stored functions, there are four combi-
Hence, at this level of abstraction there are four distinctnations of where the computed function executes and where

function-argumentombinations depending on whether ~ the object resides. Below we analyze each case more closely.

or a is local or remote. In addition, since functions can be Local function — Local objectAs in the case of stored func-
further differentiated as either stored or computed functionsyions  this is the base case. Computed functihas well

we can now distinguish between a total of eight different o5 jts argumentd reside in the local component, and the

sharing scenarios. Some of these scenarios are trivial, blgxecution is local.

we present them below for the sake of completeness. We

first focus on stored functions and then turn our attention toLocal function — Remote objecThis situation can be re-

computed functions. duced to the base case described in case 1. For example,
Researcher-B can use his/her own locally defivgew()
computed function to view the remote instance in Fig. 1.

3.1 A Taxonomy of Function Sharing

3.1.1 Stored functions Remote function — Local objecthis is the reverse of the

previous case: the function executes remotely and the in-

As a framework for analysis, recall the collaborating re- E_l[n argument is supplied from the local database. In effect,

;er?giz?;isnic:n;g?e\'\ég?;%ggég I;ﬁii?;%?g:??gﬂggzizmﬂ e remote database is providing a non-local “service”. Intu-
P J P Ively, this is the most useful scenario from Researcher-B’s

lications. Figure 1 shows both schemas together. In this SCE‘}:')erspective and forms the basis for behavior sharing. For
nario, Researcher-B is the local database and Researcher, Xample, if Researcher-B did not havevew() function.

is the remote database. The four situations for the sharingnen slhe could use thdiew() defined in Researcher-A’s
of stored functions among components can be broken dowﬂatabase
as follows. '

2 See Fang (1992a) for more details Remote function — Remote objethis situation is similar to

3 Since the argument can be a complex unit of information, this is not athe first case (Llocal function — .Local object) 'n.that bOth the
limitation; multiple arguments can be handled by an obvious extension ofState of the object and execution of the function are in the
our approach same component. For example, Researcher-B views one of
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Stored Functions Computed Functions ~ add additional state to remote objects without modification
of the exporting database, thereby preserving the autonomy

argument arqument of the exporter. This ability to create local state for remote
function Local Remote function Local Remote objects is achieved automatically from the way we support
instance sharing, and corresponds to simple local database

base case useful base case| useful . X
Local Local access. It also allows a remote object to be customized to
frocessing. vgg%'g?,:}cf;tgg}gte froceesing | localbenavior o the environment of the local component database.
_ba?is for Eaﬁis for _bastis for
Instance enavior Instance . .
Remote| | -dafineq | eVelsharing Remote | sharing | level sharing 3.3 Discussion
Py o o] afocessng | |n more practical terms, our taxonomy of eight different
_ _ _ sharing patterns can be reduced to two “most interesting”
Fig. 3. Function sharing taxonomy cases: (1) executing an imported function on a local argu-

ment; this corresponds thiRemote function- Local object
situation; and (2) executing a local function on an imported
(shared) argument; this corresponds to ltoeal function—
Remote objecsituation. The first case only applies to com-

In the examples above, the functions have returned guted functions and can be described as reusing a previously
literal type [e.qg., theTitle() function returns &tring]. How- defined function from another component in the federation;
ever, functions with signatures involving abstract (user-software reuse is the primary reason for components shar-
defined) types can also be shared. In this case, both the inpifig behavior. The second case applies to both computed and
and output argument types must be defined locally; if theystored functions and can be described as extending the “char-
are not, their meta-data must be imported beforehand. Thecteristics” of a remote object with added functionality while
location of the result argument is determined by the locationat the same time respecting the autonomy of the originating
where the function executes. site. In this case, the structure of an object (type) is shared

by other components which will not be able to see or modify
the original object.

Researcher-A’'sConference-Papersusing Researcher-A’s
original View() function.

3.2 The taxonomy and object sharing

Given the taxonomy presented above, we can now considet A sharing mechanism

how it can be used to unify the original notions of instance,

type, and behavior sharing introduced in Sect.2.2. We proGiven the function-based framework for sharing described

ceed by explaining how each of these sharing patterns cagbove, we now present a mechanism for implementing ob-

be implemented using a case presented in the taxonomy. THect sharing (instance, type, and behavior). In our discussion

two tables in Fig. 3 summarize these results. of function sharing, we have stressed the separation of the
Conceptually, in instance sharing, a remote instance oblocation where the function executes from the location where

ject is imported directly into a local type. This remote in- the data resides. However, in order to achieve database trans-

stance behaves in the same manner as a local instance obj@@rency, this separation of function execution and argument

from the user’s perspective. However, the actual state of théocation should be completely transparent to the user. A ma-

remote instance exists in the remote component database; rgr additional goal of our sharing mechanism and its imple-

trieval of any state of the remote object is accomplished bymentation is therefore to achieve database transparency for

accessing the remote database transparently. Hence, accéBg instance, type, and behavior sharing patterns.

to remote instance objects corresponds toRleenote func-

tion — Remote objedtituations described in Fig.3Sharing )

behavioral objects corresponds to sharing a computed func-1 Instance sharing

tion that exists on a remote component. Intuitively, WhenO hanism for inst hari i i
an instance object is imported, only data is being shared:; ur mechanism for instance sharing relies on creating surro-
ate objects in a database for each remote object that it im-

On the other hand, importing a behavioral object gives thed X !
importer access to services not provided by his/her local Sysports. Surrogates are simply objects that are created locally

tem. This corresponds to thikemote function — Local object and serve as place holders for remote objects. Thus, the local
situation in the taxonomy for computed functions. Type Shar_database management system Is able to mterpre“t and mamEJ-
ing consists of two aspects: (1) sharing the meta-data, anH'ate them as any other local object. Using these “surrogates

(2) sharing all the instances of a type. The first aspect doe@lone’ however, is not enough. The functions encapsulating

not relate to our taxonomy. The second aspect is handled b urrogate objects must be overridden to use computed fu_nc-
instance sharing lons which access the remote component where the object

One particularly useful sharing pattern revealed by the:cS actlcjjally stotrled.f In (t)_rder for_ the k;)_vg_rloadln% tol be per—t
taxonomy, but not directly covered by instance or behavior,0'Med correctly, function naming, binding, and placemen

sharing is the important case tbcal function— Remote n tr_‘re §|3I/peth|terarchy aretr(]:n:l%al (Fan% 1922hb)' de his/h
object Among other things this situation allows users to 0 Iflustrate, assume that Researcher-A has made nisier

publications available for other users, and that Researcher-
4 Note that this applies to both stored or computed functions B has imported this data. Although the two schemas are
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different, eachPublication instance object in Researcher- Papers Thus these (remote) instances inherit multiple func-
B’s database has a similar notion @ftle(), View() and tions from bothR-IEEE-Papers andIEEE-Papers; any du-
TextBody()as Researcher-A’s instances. Hence, only thosélicately named function from the two types is overridden
functions need to be imported into Researcher-A's databaséy the function defined foR-IEEE-Papers. The functions
Figure 4 shows one instance object of Researcher-A bein§efined onR-IEEE-Papers are computed functions, which
imported into Researcher-B’s database. The large gray buhake RPC requests to the remote component database and
ble in the diagram indicates Researcher-A’s perspective ofetrieve the v_alues of funcnons_on remote instances. This ap-
the conceptual schema. Researcher-B is unaware of the othBfoach exploits the fact that objects can be members of more
types in the diagram. Our technique for importing remotethan one type (e.g., IEEE-Papers and R-IEEE-Papers). Dy-

instance Objects can be summarized in the fo”owing thre@amic blndlng is used to resolve overloaded functions so that
steps: the functions defined b\EEE-Papers on a surrogate are ac-

tually overridden to be those defined BAIEEE-Papers.
1. Create a local object (i.e., surrogate) for each remote An alternative approach to the above would be to cre-
instance object. ate R-IEEE as a subtype ofEEE-Papers and create the
2. Create computed functions that access and retrieve daturrogates as instancesRfIEEE. One major drawback of
from remote components. this approach is that remote instances are no longer trans-
3. Force functions defined on surrogates to use (refer toparent members of thH&EEE-Papers. The user is now made
the newly created computed functions in step 2. aware of theR-IEEE subtype in his/her conceptual schema.
A second drawback is that in this approach surrogate types
A surrogate serves as a local handle to access a remoigpear scattered throughout the user's conceptual schema.
object. By using the surrogate, differences between remotg, oyr original approach, all surrogate types are contained

representations of objects, e.g., object identifiers (OIDs), caRg 3 single branch of the type hierarchy, separate from the
be masked out (made transparent). Since the state of the rgser’s conceptual schema.

mote object exists externally, computed functions that make
remote procedure call (RPC) (Birrell 1984) requests to ac-
cess that state are created. Finally, in order to have the sur-
rogates use the remote functions, any existing functions de-
fined on the surrogate must be overridden to use the RPC
defined functions. This can be implemented by dynamicallyThere are two aspects to sharing type objects. The first is to
binding functions to objects. share only the meta-data associated with the type being im-
Surrogates are created as instances of both a local typeorted. The second aspect is to also include all the members
and a surrogate type. The purpose of the surrogate typend subtypes of the type being imported.
(e.g.,R-IEEE-Papers) is to override the local functions that The meta-data associated with a type consist of the signa-
surrogates inherit from the local type of which they are atures of the functions that serve to encapsulate the members
member. By additionally creating the surrogate as a memef that type. Hence, all that is needed to import the meta-data
ber of this surrogate type, the functions that the surrogatef a remote type is to create a surrogate type with the same
instance originally inherited are overridden. The two thin functions. The only real complication occurs when one of
dotted arrows fronR-IEEE-Papers (“R” for remote) and  the functions has a signature whose result type is not known
IEEE-Papersto the surrogate instance serve to indicate thatlocally. Conceptually, it is not difficult to apply this simple
surrogate instances (i.e., remote instances&E-Papers rule recursively to create a surrogate type for the closure of
are created as members of bdHEE-Papers andR-IEEE- this type. However, the entire closure may not necessarily

.2 Type sharing
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be required. The results of importing only the meta-data is| ‘<
illustrated in Fig. 5b for the typdournal. PETPE
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sharing illustrated in Fig. 2b. To accomplish this, we essen- Ve \ e Sting
tially use the same paradigm as described earlier: (1) import |Eequo«1vosum
meta-data of a type, and (2) import all the instances of the RIEEE
meta-data as in instance sharing. To include subtypes, this

rule can be applied recursively. Figure 5b illustrates this kind \ E:O'DO: suing

Research-Papers

71 TN

DBNAME():String

of type sharing for the typdournal. R_HOST(: Sting

4.3 Behavior sharing

The goal of supporting the sharing of behavioral objects is™9- 8- Sharing function objects
to allow a component to utilize remote services that may not
be available locally. This corresponds to sharommnputed
functions® are literals, this simply requires that the function being im-
As in instance sharing, meta-information containing theported computes its result value solely based on its input
location (e.g., remote OID and remote component name) ofrgument without modifying any database state [eFg,
the remote function object being imported must be storedonacci(]. Functions whose input argument are non-literals
locally. However, in contrast with the case for instancepose additional difficulties. In this case, the input argument
sharing, this meta-information is associated directly withis the OID of an instance. The problem then lies in deter-
the function being imported. In instance sharing, the metaimining what information a computed function accesses in
information is indirectly kept for remote functions suchlas  order to compute its results. Strictly applying our definition
tle() andView() via the surrogate instance object (see Fig. 4).0f side-effects would restrict computed functions on non-
Thus, in our implementation we distinguish between twoliterals to solely accessing and then manipulating the input
kinds of “remote” functions: those implicitly defined by im- OID. But realistically, a computed function must be able to
porting instance objects and those directly imported wheraccess some state of the object corresponding to the OID
behavioral objects are shared. Figure 6 shows our mech¥hen computing its result. In our implementation, we take
anism for incorporating this meta-information for sharing the position that the only state that a computed function can
behavioral objects. We exploit the fact that meta-data is als@ccess are those functions that serve to encapsulate that ob-
represented using our functional object-based model. Imject. In other words, the only state the computed function
ported functions are created as instances of theRgmaote- ~ Will possibly access are those functions that are defined on
Functions and can thus store and access the additional lothe types of which the instance is a member. In the case of
cation meta-information required to execute the importedthe View()computed function, the only functions théew()
function. needs to access afiéle(), TextBody() andPub Date()
We now present a slightly different example from Fig.4. ~ Having determined what information a computed func-
In this scenario (Fig. 6), theiew()function is imported from  tion on a non-literal type can access, a problem arises when
some remote component. In additioR;|IEEE-Papers no  trying to execute such a function remotely on a local object.
longer supplies a/iew() function. Hence both the remote The problem occurs when supplying local arguments to a re-
and local instances dEEE-Papers use the same imported mote computed function. Although we know the computed
View() function for displaying research papers. This is ev-function is limited to only accessing the functions that en-
ident in Fig.6 by the absence of théew() function from  capsulate the instance, we do not know exactly which ones
the typeR-IEEE-Papers and the addition of a new (italics it does need. Even if we pass all the possible values the
faced)View() function defined orResearch-Paper§ computed function can access, the computed function must
In order to explain how th&/iew() function works, we  be written in such a way as to retrieve these arguments from
must first explain how our implementation addresses the isthe network and not the local database. This would be un-
sue of side-effects. By side-effect we mean two thihgs)  desirable and contrary to our goal of relieving the computed
any kind of implicit input other than the input argument that function writer of needing to know where the data on which
is necessary to compute the result, and (2) any modification# operates is located.
to the state of the database where the function executes other The best approach to this problem in our autonomous
than to the input argument. For functions whose argument&nvironment is to allow computed function writers to define
functions without concern as to whether the function is to be
5 This.cor'responds to the computed function cas®efmote function - exported. Achieving this tighter level of coupling between
Logﬂﬁ:ﬁﬁg‘ tlf‘oemt"’i‘xo”‘;mopir:;igi‘;dﬂ:’;tst;gﬁ)f ionis mooneq | COMPONENts requires additional functionality on the exporter.
and o longeflocals us u s 1mp We briefly discuss below a simple “callback’ mechanism
7 This extends the more traditional definition given by the programming |mplementejd in the Omega prOtOt_ype that will handle CQm-
language community which defines side-effect as “the modification of aPputed functions that access the object’s own stored functions.
data object that is bound to a non-local variable” Whenever a remotely executing computed function needs
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state (i.e., a stored function) from the local database, it perer behavioral objects). In what follows, we discuss the im-
forms a callback to the local database to retrieve that stateplementation details of both exporter and importer function-
In particular, the local database that imports remote objectsilities in our Iris and Omega prototypes.

can be viewed essentially as a client and the exporter provid-

ing the objects as a server. During instance sharing, the local

database simply operates as a client and makes RPC requestg The Iris prototype

to the server. However, for behavior sharing, when the call-

back mechanism is used, the local database must in additioRor our Iris prototype, we used an early version of the Iris
operate as a server to accept the callback requests. Computggdtabase management system that was developed at Hewlett
functions can be written using any programming languagepackard Laboratories (Fishman 1987). Iris is based on a
that can be compiled to re-entrant object code. This objectunctional object-oriented data model which supports the
code is then dynamically linked into the database manageusual object-oriented constructs. The data manipulation lan-
ment system kernel when the computed function is accesse@uage provided with Iris is a variant of SQL called OSQL.
In our prototype using the Omega database management sygr the following, we discuss key stages involved in imple-
tem, a computed function accesses the local database throughenting the sharing mechanism described in the previous
Omegaeval() which has two parameters: an argument andsection for an Iris based component.
the function that is to be applied to the argum@ént. In order to implement our sharing mechanism, we ex-
We can now consider how the callback mechanism worksended lIris in three ways. First, our approach relies on over-
transparently and allows computed functions to be writtenriding stored functions with computed functions. Writing a
uniformly without regard as to whether that function is to separate computed function for each overloaded stored func-
be exported. Consider again the example using\Miesv()  tion would have been tedious and inefficient. In addition, the
computed function. Suppose that the importéew() func-  overhead in dynamically loading each function would have
tion retrieves theTextBody() of an instance (say iIAIeX  been significant. We eventually wrote a single foreign func-
format), computes the dvi formatted version, and displaysion which applies a remote function to a remote OID, given
the formatted version through a dvi previewer (e.g., xdvi).the host and database names upon which the function and
When the user of the local database invokesviev()func-  instance exist. This functiom,ieval() (remote iris-eval), was
tion on a local object, th¥iew() function is passed the local written using the SUN RPC protocol (Williams 1981). All
OID of a Research-Papersnstance. Theview() on the re-  other computed functions for accessing remote data were
mote server makes a call to Omegaal() to retrieve the derived from it. Second, instead of using dynamic binding,
TextBody() Omegaeval() recognizes that the OID passed Iris by default uses compile-time (early) binding of types to
in as its argument is not local and performs a callback to thehe variables being quantified over in tfe eachclause of
server of the local database that invoked Wi@w() function.  an OSQL query for resolving overloaded functions. To illus-
Since the local server recognizes the OID as a local OID, itrate how this affects our mechanism, consider the following

performs the request and passes backTdBody()to the  query posed against the collaborating researcher’'s example
remote server which can than complete its computation an@atabase depicted in Fig. 4.

display the results on the local database monitor. .
Functions involving signatures returning complex/ab-  select Title(r-paper)
stract data types can theoretically also be imported. In this for each Research-Papers r-paper;

case the result argument type must be defined locally; if . ) ) .
they are not, their meta-data can be imported uding With early binding, the variable-paperis statlc_:ally bound
port Meta() to the typeResearch-Papersthus, the samditle() func-

tion (the one defined oResearch-Paperswould be applied

to every instanc&kesearch-Paperdncluding the instances

of its subtypes|EEE-Papers and ACM-Papers. However,

for remote instances (e.g., the shaded instancéEEE-

Papersg in Fig.4, our mechanism requires the overloaded

An experimental testbed for our sharing mechanism has beeTitle() function to be resolved to using the one defined on

designed and implemented, supporting interconnected conR-IEEE-papers. Fortunately, since Iris is an extensible sys-

ponents based on the Iris and Omega object-based databaggn, we can override this functionality; indeed, Iris provides

management systems. In our testbed, a component consisgsfunctionlatebindwhich uses the needed semantics. Finally,

of a database and is associated with a machine where theur mechanism requires a server which would service RPC

database physically resid®$\ component can participate requests when Iris is used as the expotidnstead of cre-

in as either the importer or exporter of information. In the ating one session for each request, the server opens a single

first case, objects from other components are seamlessly irsession and services all requests made by an importer within

tegrated with the local objects in the importer's databasethat session (each request is treated as a transaction). After

When a component acts as the exporter of information, othea certain period of non-use, the server times out, closes the

components can access and import its information (e.g., datsession and returns to the initial state. The only functionality
required from the server is the ability to: (1) receive a RPC

5 Experimental prototype implementation

8 Omegaeval() is described in more detail in Sect. 5.2

9 For the sake of simplicity, we will assume that each component exports 1% Rpcgen (Sun Microsystems 1988) was utilized to simplify the con-
or imports only a single database and that each component resides on siruction of both the client stub and server and to facilitate access to other
single machine RPC services
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request, (2) apply a function to an argument, and (3) returrthe implementation of a function, the all-purpose function,
the results to the requester. The resulting simplicity of thisOmegaeval() was created. This function takes in as argu-
interface greatly facilitates the addition of components to thements the name of a function and the function’s argument.
federation. Next, it applies the function to the argument and returns the
results. Dynamic binding is implemented in Omegal()
by scanning the SubDir record for an object from right to
5.2 The omega prototype left. The first type which has the required function is the one
that is applied to the object.

Omega (Ghandeharizadeh 1993b) is a parallel object-based 1h€ Omega importer was constructed exactly as de-

system constructed using a relational file system [the WisScribed in Sect.4 using the same RPC stub generated for
consin Storage Structure (Chou 1985)]. Similar to Iris, it is the Iris component. Similarly, the Omega exporter was con-

based on a functional data model (Shipman 1981) and Sups_tructed using a server similar to the Iris prototype that

ports OSQL at its data manipulation language. We used &akes direct calls to Omegaval().

single-node configuration of Omega for the testbed proto-

type. This configuration allows evaluation and testing of the
prototype to be much simpler. In the following, we present
the implementation of Omedhas it relates to some of the

6 Experimental analysis

key constructs needed in implementing our mechanism MA substgntive experimental evaluation of the performance
" of our Iris and Omega has been completed. The goal of

addition, this overview will prove useful when we interpret this evaluation was to quantify the overhead of our sharin

the results of the experiments performed in the next section, . 10 qu . 9
The physical implementation of Omega is organized "€chanism, and to identify the central issues and tradeofts
around three types of files: (1) raeta-datafile, (2) a Sub- involved in object'—based_sr_\arm.g In gener_al. In overview,

object Directory (SubDirfile, and (3) at-file for each type we observed a wide variation in the relative overhead of
in the system. Omega represents a type as a record in el mechanism between the Iris and Omega prototypes. In
meta-data file. This record contains: the name of a type itsOrder to study these factors more systematically, we Instru-
immediate subtypes (supertypes), the identity of processorrsnented the Omega prototypes and conducted a second series

that contain its fragments, relevant declustering information,g; e:ﬁ;rérgé nf,ieui'r?fsgqg l%rgi%&el ﬁ)gg %n;ﬁgﬁgratrrlle(séhan-
number of functions, name of each of its functions, internal P

organization of a function, available indices on a function,geh‘rj‘r'zadeh 1993a), a benchmark tallorgd for pbject-based
etc. atabase systems because it was readily available. [Other

: : benchmarks would also have been well suited to our needs,
Omega represents an object as a collection of sub- 9., (Anderson 1990; Cattell 1988).

objects. A sub-object represents the membership of an obje& In the following, we provide a brief description of the

in a type. The system supports a t-file for each type in th :
- . . - USC synthetic database. Next, we present the results of our
system and groups its instances (each instance is aSUb'ObJZ%prerin)gents for two types of queriezz (1) those that process

. . . . . ()
of an object) together in that file. An object is represented : :
as a recJord )in t%e SubDir file. This reccird maintgins a selme instances of a type, and (2) those that reference a fixed

of (t-file,SID) pairs where a t-file corresponds to a type andset of functions. For the first type of queries, we controlled

SID is a physical pointer to the sub-object that represent§he percentage of the instances that are imported from a re-
the membership of this object in that type. The physical |o-Mote site (horizontal partitioning), while for the second type

cation of this record constitutes its identifier that uniquely of queries we controlled the number of functions imported

distinguishes this object from the other objects in the systerr{mn]l a remhote site (}/emczl part|t|0p|ng). We g:onclucjle by
(OID). analyzing these results and presenting our main conclusions

The organization of the SubDir file allows Omega to about the overhead due to our mechanism and the factors

support objects that are members of more than one class. ﬁ,lffectmg the overall performance of the system.

addition, the SubDir file provides an efficient way for im-

plementing dynamic binding. In order to support dynamic6 1 The benchmark database

binding semantics, the exact order in which an object be-"

comes a member of a type must be maintained. This is donge ysed a modified version of the USC benchmark for this
by ordering the set of (t-file,SID) pairs for an object from gyherimental study. The database consisted of a single type,
left to right. Each time a new type is added to the object, \/5.T.ROOT containing MAXOBJS instances. Table 1 con-
the new (t-file,SID) pair is simply appended to the rightmost sins the functions defined on LVO-T-ROOT. The first nine
position of the object’s record in the SubDir file. functions can be used to model queries with a wide range
_ Omega supportstoredandcomputedunctions. Evaluat- ot selectivity factors. The name of each function reflects its
ing the value of a function for a particular argument dependsr(,j“,]ge of valuesU1D(), for example, is an integer ranging
on its implementation. Retriev_ing the value of a store.d func-petween [0 - MAXOBJS-1] and is assigned sequentially dur-
tion requires a record look up in the corresponding t-file. Ob-jn4 ohiect creation time. The last three functions are object-
taining the value of a computed function on the other hand,,5jued and reference an object of the same typee-to-

requires first dynamically loading the program into MeM- 5ne()is a single valued function that maps one object to
ory and then executing the program. In order to abstract out
12 We could not instrument the Iris prototype because we did not have
11 For a more detailed description see Ghandeharizadeh (1993b) access to its source code
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Table 1. Functions defined on the root of the usc benchmark type lattice

Function Name Return Type Range of Values Order
Unique Identifier (UID) Integer 0-(MAXOBJS - 1)  Sequential
Shuffled UID (SH-UID) Integer 0-(MAXOBJS - 1) Random
Unique Float (UF) Float 0-(MAXOBJS - 1) Random
Unique Stringl (USTR1) String (52 bytes) wx L FUID Sequential
Shuffled String2 (SH-USTR2)  String (52 bytes) ** *SH-UID’ Random
one-percent Integer 0-99 Random
ten-percent Integer 0-9 Random
even Integer 0,2,4,...,198 Random
odd Integer 1,3,5,...,,199 Random
one-to-one LVO-T-ROOT (Object-valued) - Random
one-to-five LVO-T-ROOT (Object-valued) - Random
one-to-0.1p LVO-T-ROOT (Object-valued) - Random

another randomly selected object which is unique and dif- Navigational queries traverse the subcomponents of a

ferent than itselt3 Both one-to-five(Jand one-to-0.1p(Jare  complex object and typically result in expensive random disk

multivalued and reference a set of objects. accesses. Query 2 is used to evaluate our mechanism when
In our experiments, we used the same database for bothrocessing this class of queries. We used dhe-to-one()

the importer and exporter components. Our mechanism refunction to model queries that traverse the subcomponents

quires the importer database to construct a remote type hief a complex object. As in Query 1, we measure the response

erarchy (as described in Sect. 4). Hence, the type R-LVO-Tiime of the system as a function of the percentage of remote

ROOQT is created with the same named literal functions abjects. Once again, this query retrieves 10% of the objects

LVO-T-ROOQOT except that they are actually computed func-in the database. When MAXOBJS is 100000, Query 2 is as

tions which make RPC requests to the exporter. R-LVO-T-follows:

ROOT does not contain the object-valued functions [e.qg.,

one-to-one()is defined only on LVO-T-ROOT]. This is be- select UID(p)

cause the value of a remote object-valued function is unde-  for each LVO-T-ROOT p

fined at the importer sit& where UID(one-to-one(p)) < 10 000

The last query, Query 3, projects out each function de-
fined on the type LVO-T-ROOT with 100% selectivity. For
6.2 The queries this query, we vary the number of functions which are re-
mote. FirstUID() is made remote, thedSTR1()and finally

We used three different queries to quantify the overhead oSHUSTR2()

our mechanism. The first two queries are used to evaluate the select UID(p), USTR1(p), SH_USTR2(p)
scaling of our instance sharing mechanism (logical horizon- for each LVO'—T—ROOT p" -

tal partitioning) as a function of: (1) the fraction of remote '

instances, and (2) the size of the database. The third query is

designed to quantify the overhead of sharing remote storeg Organization of the experiments
functions (logical vertical partitioning).

Queries in object-based database management systemfie hardware platform used for these experiments con-
generally fall into two categories: associative queries rangingsisted of two workstations connected by Ethernet. In order
over one or more sets, and navigational queries which tratg systematically characterize the behavior of the system, we
verse the subcomponents of a complex object. The first cate:onducted our experiments on two separate configurations.
gory of associative queries resembles queries found in tradiThe first configuration consisted of an Iris importer and an
tio_nal relational da_ltabase systems. Q_uery 1is used to mod@mega exportel® The purpose of this configuration was to
this class of queries. It retrieves a fixed percentage of obgemonstrate the feasibility of our mechanism and to gain an
jects that satisfy a certain selection predicate. By varying thentuitive understanding of its overhead. The second configu-
percentage of LVO-T-ROOT objects that are remote, we calyation consisted of Omega as both the importer and exporter.
evaluate the overhead of sharing remote objects. This queryhis configuration provided a far more accurate environment
retrieves 10% of objects from the database. For examplefor quantifying this overhead of our mechanism, as we had
when the database consists of 100000 objects (MAXOBJ&ccess to Omega’s source code and were able to instrument

=100000), Query 1 is defined as: it using simple modifications. We evaluated the performance
of each query for three different database sizes (MAXOBJS):

select UID(p) 1000, 10000, and 100000 objects. In all experiments, each

for each LVO-T-ROOT p remote object at the importer site were chosen at random
where UID(p) < 10 000; from the exporter’s database with no object being imported

more than once.
13 A complete explanation of each function can be found in Ghande-

harizadeh (1993a) 15 The complement configuration of Iris exporter and Omega importer
14 |f this functionality is desired, a surrogate can be created for the remotewas also evaluated. These results were eliminated because they provided
object resulting from applying the one-to-one() no additional observations
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Table 2. Response times for query 1

1000 Objects 10000 Objects 100000 Objects

6.4 Heterogeneous configuration

) ] ) ) ) ) ) 0% 0.98s 14.23s 171.80s
This configuration consisted of an Iris (version DPP 4.0) im- 10% 3.42s 59.25s 983.54s
porter running on a HP 9000/834 workstation and an Omega 20% 4.28s 92.24s 1,686.13s
exporter running on a HP 9000/720 workstation. The goal ggz;" g-gis ;22-225 ggg?-ggs

H H (1] 91s .b5Ss y . S
of this experiment was to demonstrate that the local data 100% 10.35% 346,645 7.045.405

manipulation language of Iris was preserved while provid-
ing transparent access to the remote objects that resided on

the Omega exporter. To this end, the experiment was quit% 5.1 Query 1
successful. However, since this version of Iris was an early "

prototype, we had some difficulties creating large database§able 2 shows the response time of Query 1 for the three

and making accurate measurements. Nevertheless, the Mfatabases sizes as a function of the percentage of remote ob-
sults of running the queries showed that the overhead fog

remote access was approximately 25%. making remote a ects. For each column, the results demonstrate a relatively
) PP Yy o 9 ~ “Hinear increase in response time as a function of the percent-

cesses quite comparable to local access. As we describe

Sect. 6.6, this overhead depends on a number of factors th@1

e of remote objects. For example, in the 100000 object
o t lumn, the incr inr nse tim tween 20%
could not be fully quantified due to our lack of accessibility to abase column, the increase in response time between 20%
to the Iris source code. However, our course grain measur

40% remote objects and 80% to 100% remote objects is
ments for this configuration indicated that the overhead o

‘oughly 1300s (i.e., a constant slope). This behavior is not
our mechanism was relativelv low as compared to the local bserved for the 1000 object database column due to a higher
y ; par ercentage of buffer pool hits at the exporter as a function
d_atabase accesses performed by lIris. The hllgh local acce ? the percentage of remote objesresuilting in a lower
times for Iris re_sulted from the use of ‘Web'”do func- access time per object. This is due to the relative small size
tion. Latebind()is a computed function which must search
the meta-data every time an attribute of an object is ac-

of the database which becomes main memory resident at the
L , . exporter site.

cessed, resm_JItlng n a_hlgher access time [see S?C‘- 51 for With a large database, the exporter’s buffer pool hit ra-
an explanau_on ofatebind() and why it was used in this tio stabilizes at a fixed percentage for various percentage
implementation]. of remote objects. Figure 7 shows that the buffer pool hit
ratio for both the importer and exporter using the 100 000
object database. The importer observes a higher percentage
6.5 Homogeneous configuration of buffer pool hits because it processes objects sequentially.

Since a disk page contains approximately 200 objects, the

importer observes 199 buffer pool hits for each disk 1/O.
In this configuration, Omega components were used as botEach time the importer processes a surrogate (recall that this
the importer and exporter, each running on a HP 9000/72(s a randomly chosen object from the exporter), it makes
workstation. The sizes of the exporter's database for thea request causing the exporter to perform a random disk
1000, 10000 and 100000 object databases were 600 KEhage request which has a significantly lower probability of
6 MB and 60 MB, respectively. The size of the importer’s a buffer pool hit.
database, however, increases as the percentage of remote in- When there are no remote objects, the response time
stances increases because our mechanism requires one sufsf-the system increases almost linearly as a function of
gate object per imported object. In our implementation, thethe database size (see the first row in Table 2). However,
size of a surrogate object is approximately twice the size ofwhen there are remote objects, the increase in response time
a local instance of LVO-T-ROOT. Consequently, when thebecomes superlinear (a 20-fold increase from the 1000 to
importer contains 100% remote objects, the database siz€0000 object database, and a 30-fold increase from the
is roughly double the size of the exporter at 1 MB, 10 MB 10000 to the 100000 object databaSe)his can be at-
and 100 MB, respectively, for the 1000 object, 10000 ob-tributed to two factors. The first is due to the significant
ject, and 100000 object databases. However, in general, weecrease in exporter buffer pool hit ratios as a function of
expect the remote information contained in the surrogate tahe database size (see Fig.8). The second factor is due to
be small when compared to the actual size of the object onhe significant difference in seek time at the exporter site for
the exporter. For these experiments, the Omega componenttfferent database sizes. The 100 000 object database occu-
were configured with a 4-KB disk page and a 400-KB (100 pies more than a hundred times as many tracks as the 1000
pages) buffer pool. The buffer pool size was chosen relaobject database. Since the seek time is proportional to the
tive to the database size in order to investigate the followingsquare root of the distance traveled by the disk head (Gray
two scenarios: the database can become main-memory resi988), this query spends a longer amount of time performing
dent (1000 objects), the database must remain disk residesteks for the 100 000 object database.
(100000 objects). By choosing a larger buffer pool size, we 16 _ o
would have had to modify the size of the database appro- I_:or 10% remotf objects, ttle exporter’s_buffer p_ool hl_t ratio is 81%
priately in order to investigate these alternative cases. Thig g Increases to 99% for a 100% remote object configuration

| h h he final . 7 The increase between the 1000 and 10000 object databases varies
would not have ¢ anged the final observations because tl’\%cause of increase in the buffer pool hit ratio on the exporter for the 1000

Omega system scales as a function of both its buffer poobpject database, whereas the exporter hit ratio for the 10000 object and
and database sizes (Ghandeharizadeh 1993a). 100000 object databases remains constant at 71% and 53%, respectively
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Fig. 7. The 100000 object database Fig. 8. 40% remote objects
Table 3. Response times for query 2 Table 4. Response times for query 3
1000 Objects 10000 Objects 100000 Objects 1000 Objects 10000 Objects 100000 Objects
0% 1.97s 237.41s 6,496.11s 0 Functions 4.36s 46.09s 456.75s
10% 4.44s 251.05s 7,165.53s 1 Function 13.25s 382.17s 6,228.30s
20% 5.23s 301.05s 7,772.54s 2 Functions  19.61s 441.02s 6,931.03s
40% 6.71s 411.71s 9,053.62s 3 Functions  26.94s 514.28s 7,487.53s
80% 10.04s 531.11s 11,374.07 s
100% 11.11s 563.25s 12,578.91s
6.5.3 Query 3
6.5.2 Query 2

Table 4 shows the response time of Query 3 for the three

Table 3 shows the response time of the system for Query glatabase sizes as a function of the remote functions (at-
as a function of the percentage of remote objects for varioudributes). In this experiment, the response time increases sig-
database sizes. As described in Sect.6.2, this query navplflcantly from no remote functions to one remote function
gates the subcomponent of each complex object and result§€., compare the first and second rows in Table 4) because
in random 1/0Os. When there are no remote objects, this querhe importer performs one RPC for each object in order to
observes a lower percentage of buffer pool hits and a highe®ccess its remote function value. Beyond one remote func-
disk access time as compared to Query 1. These factordon, Table 4 exhibits only a modest increase in response
increase the average look up time per object from approxillme beCE.lb_lse of a faster Sel’_\llce time from the eXpOI’te-r for
mately 1 ms for Query 1 to 30ms for Query 2, resulting in €ach additional remote function. The explanation for this is
a significantly higher response time. as follows. For each remote fun(;t|on deﬂned on an object

In the presence of remote objects, the response time cnd referenced by the query, the importer issues a request to
the system increases modestly as a function of the percentie exporter. The first request typically results in a random
age of remote objects because: (1) the random disk accesséS at the exporter. However, the exporter observes a buffer
are offloaded to the exporter site, and (2) our implementaPool hit for each additional request (see Fig. 11). This is be-
tion of surrogate objects causes the importer to observe §ause all the remote functions are defined on LVO-T-ROOT,
higher percentage of buffer pool hits (see Fig.9). The ad-and Omega plusters the values Qf these functions together
ditional random I/Os at the exporter site has no impact orPn a single disk page for each object.
its buffer pool hit ratio because all requests made to this
site result in random 1/Os. The second factor is due to our
implementation of a surrogate object which clusters all the6.6 Discussion and observations
information needed to issue a remote request (e.¢HIST,
R DBNAME, and ROID) together in a single tuple on a The performance evaluation experiments conducted demon-
disk page, causing a higher percentage of buffer pool hits astrate that the overhead of our mechanism depends on: (1)
the importer site. the technique used to resolve overloaded functions at run

Table 3 shows that the response time of the system intime, (2) the implementation of a surrogate object, and (3)
creases superlinearly as a function of the database size. Sirthe network access time. Consider each factor individually.
ilar to Query 1, this can be attributed to two factors: (1) the As discussed in Sect. 6.4, the overhead associated with the
percentage of buffer pool hits decreases drastically as a fundatebind mechanism of Iris for processing an overloaded
tion of the database size (see Fig.10), and (2) the exporteunction was significant. Our implementation of this con-
incurs a longer seek time as a function of the database sizatruct in Omega exploited the physical organization of the
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Hit Ratio (%) upon the size of the request and the result (approximately
100l Database Size of 1k 300B for the request and 100 B for the result in these ex-
periments). This time could be reduced by using (1) a faster

ol . network (FDDI instead of Ethernet), and (2) a more sophis-
Database Size of 10k~~~ tlcate_d prot(_)cpl that groups requests and s_ubmlts the_m at

80| S one time (similar to group commit protocol in transaction

// o processing systems), reducing the network traffic.

70| L In addition to these factors, we made the following ob-
servations on the overall behavior of the Omega system

60 | which implements our mechanism. First, our instance shar-
- Database Size of 100k ing mechanism scales linearly with increasing numbers of
50 | * remote objects for associative queries over sets (Query 1).

Figure 12 shows the time spent in Omegal() for Query

1 on both the importer and exporter for the 100000 object

1 2 3 database. The sum of these two times accounts for over 90%
# of Functions of the total response time. The exporter has a larger slope
Fig. 11. Exporter hit ratio for Query 3 because it performs random disk accesses and observes a

lower percentage of buffer pool hits. Second, this mechanism
scales sublinearly for navigational queries (Query 2). These
queries result in random I/Os at both the exporter and im-
system to provide a more efficient implementation. This im-porter. Figure 13 shows that the time spent in Omegal()
plementa’[ion could be further fine tuned in order to mini- for the importer decreases as the percentage of remote ob-

mize its overhead (e.g., replace the repetitious allocate angbcts increases, due to a smaller working set of active pages
deallocate calls to the operating system by a scheme whicind an increased buffer pool hit ratio.

allocates and deallocates memory in larger chunks and min-  Two factors have a significant impact on these results.
imizes the number of calls to the HP/UX operating system).The first factor is the implementation of the buffer pool and
Our implementation of the surrogate object clusters thethe choice of buffer pool replacement policy. In our experi-
information needed to make a remote request together on gyents, the Omega components were configured with a 4-KB
single disk page. Currently, it is 300 B long. Its size could gisk page and a 400-KB (100-page) buffer pool using a least
be drastically reduced by: (1) assuming a maximum lengthecently used (LRU) replacement policy. Different choices
for the name of a remote host,. its database'name, and sizg puffer pool sizes and replacement policies would signif-
of the remote OID, and (2) using an encoding scheme. Acantly alter our results. Second, the physical organization
smaller surrogate object reduces the disk space requiremegf data and techniques employed to retrieve it can impact
of our mechanism at the importer site, and increases thene results. For example, in the experiments for Query 1, all
probability of this information becoming memory resident the imported objects were chosen at random from the ex-
when processing a query. porter. However, in a more probable situation, the imported
The network access time consists of: (1) the importer iS‘objects might be members of the same type which would
suing a request, and (2) the exporter returning the results. lfhen be clustered together resulting in an overall decrease
all experiments, the importer and exporter were connectegh the observed response time; another example in our ex-

using the Ethernet and our network access time was approxseriments where clustering (or lack of) would have affected
imately 5ms per request. This measurement is contingent
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our results for Query 3. With this query, the overhead of— Sharing patternsOur approach introduces new sharing
referencing additional remote functions beyond one remotgatterns not found in other systems. We support the sharing
function was minimal, due to the natural clustering of func- of objects at various levels of granularity and abstraction.
tions at the exporter site. Clearly, in different componentin addition, we support the sharing of behavioral objects.
implementations, this intra-object clustering technique mayThese sharing patterns may be established dynamically from
be violated. In general for all the experiments, our Omegamultiple sources and are determined individually by each
components used only the simplest of clustering strategiesomponent; there is no global schema.

and assumed no auxiliary access methods. — Database transparencyAnother feature of our approach

is database transparency. With this level of transparency,
, o users are more productive, since learning a new language or
7 Conclusions and future directions moving to a new environment is not a prerequisite to sharing

information.

In this paper, we have described an approach and meChamSLnDecoupling of data and behaviowe have considered the

for the transparent sharing of objects in an environment of in- . . ;
terconnected (networked), autonomous database systems. Ar;qportance of decoupling the location of (persistent) data

experimentl protoype mpemertato as been descrbedy, " 9GA1on of he unctons that operae on data s
along with an analysis of its performance. Our approac ' PP y

provides a mechanism that allows users to import remot e”r]gtif)hne gﬁ??mnlg:ntehniagﬁaa ?gsiégg ae;(iICUtL%r;C%f ;23 (c:’gl_l-
objects directly into their local database environment trans; X P P PP

arently. The experimental prototype system that has beeR".iCk meghanls_m which addressed_ the prpblems associated
I([j)esign()a/d and imrp))lemented E)s basyepd og the Iris and Omeg‘é{'th possible side-effects of behavioral objects.
object-based database management systems; this system saf=ommon data modeThe results described here may also
ports the sharing of data and meta-data objects (informatiofmpact the area of heterogeneous database systems with re-
units), as well as units of behavior. The results of exper-spect to data model and conceptual schema heterogeneity.
iments we performed to evaluate the performance of ouOne of the critical factors that determine the success of these
mechanism demonstrate the feasibility of database transpasystems is the choice of a common data model used for
ent object sharing, and provides insight into the performancéntegrating component database systems (Sheth 1990). We
overhead and tradeoffs involved. expect that our experiences with a functional object-based

There are several aspects to the intended direct and pragata model provide insight into the design and functionality

tical impact of our work: of future CDMs.

— Existing component&hroughout this work we have paid It is important to note that the experiments in the eval-
careful attention to the requirement that there should be naation portion of the research were designed to quantify
modification to existing database management system softhe overhead of our mechanism in a standard environment.
ware. As a result, our approach requires no modification toThere are several ways of improving the performance of our
the query processor or any other component of the local sysnechanisms. First, there is an inherent parallelism that exists
tem. In particular, we do not assume a standard global OI0On a federated environment. All of our experiments consisted
space of which each component must be aware. Not onlpf only one exporter. In the presence of multiple exporting
does our approach support the existing database manageemponents, asynchronous or multi-threaded RPC requests
ment system software (e.g., the query language), but it alscan be used to retrieve the results from these components in
supports existing application programs developed by usersparallel. Second, the importer can cache the remote objects
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in order to minimize the number of RPC requests. AccesSshandeharizadeh S, Choi V, Bock G (1993a) Benchmarking object-based
to a remote object is always more expensi\/e than access to constructs. In: Proceedings of eight brazilian symposium on databases
a local object. Hence, if a remote object is “cached” in theGhandeharizadeh S, Choi V, Ker C, Lin K (1993b) Omega: a parallel

local database as a local object, its access times will de- object-based system. In: Proceedings of the fourth australian database
! conference

crease. By prowd_mg a generalized meCh_amsm for resow'ng}ray J, Sammer H, Whitford S (1988) Shortest seek vs shortest service
overloaded functions (such as the one implemented uSiNg time scheduling of mirrored disks. Tandem Comput

Omega), a local stored function can be used to locally cach@ammer J, McLeod D (1993) An approach to resolving semantic hetero-
the value of the computed function which accesses the re- geneity in afederation of autonomous, heterogeneous database systems.
mote instance’s state. This provides the basis for a simple ntJ of Intell Coop Inf Syst 2:51-83

but powerful mechanism for selectively caching the remoteammer J: McLeod D, SiA (1994) An intelligent system for identifying and
integrating non-local objects in federated database systems. f: 27

StaFe of an |mported ObJeCt' The strategy _fOI’ s_ettlng and_ UP-  Hawaii International Conference on System Sciences, pp 398-407
dating the values of the stored local functions is determinedjeimbigner D, McLeod D (1985) A federated architecture for information
by an appropriate caching policy. We are in the process of systems. ACM Trans Off Inf Syst 3:253-278

studying the impact of various caching policies for this high- Hull R, King R (1987) Semantic database modeling: survey, applications,

level object caching scheme in order to reduce the amount and research issues. ACM Comput Surv 19:201-260
of remote accesses Kent W, Ahmed R, Albert J, Ketabchi M, Shan M (1993) Object identi-

fication in multidatabase systems. In: Interoperable database systems
(DS-5). North Holland, Amsterdam
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