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Abstract. Various temporal extensions to the relational
model have been proposed. All of these, however, devi-
ate significantly from the original relational model. This pa-
per presents a temporal extension of the relational algebra
that is not significantly different from the original relational
model, yet is at least as expressive as any of the previ-
ous approaches. This algebra employs multidimensional tu-
ple time-stamping to capture the complete temporal behavior
of data. The basic relational operations are redefined as con-
sistent extensions of the existing operations in a manner that
preserves the basic algebraic equivalences of the snapshot
(i.e., conventional static) algebra. A new operation, namely
temporal projection, is introduced. The complete update se-
mantics are formally specified and aggregate functions are
defined. The algebra is closed, and reduces to the snapshot
algebra. It is also shown to be at least as expressive as the
calculus-based temporal query language TQuel. In order to
assess the algebra, it is evaluated using a set of twenty-six
criteria proposed in the literature, and compared to existing
temporal relational algebras. The proposed algebra appears
to satisfy more criteria than any other existing algebra.
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1 Introduction

Database systems store information about the real world
they attempt to represent. However, any useful represen-
tation of the real world needs to address the issue of the
temporal nature of information, since the real world is very
dynamic, changing continually over time. In the relational
model (Codd 1970, 1990) the temporal nature of data has
been largely ignored, being reflected only through updates
while ignoring the past states. In many real world applica-
tions where temporal data is critical, time has been modeled
in an ad hocfashion, primarily with the help of application
programs. Clearly, this defeats the very purpose of the re-
lational model – a high level of independence between the
data and the application programs. Thus the need for a more

comprehensive data model arises, where time is an intrinsic
part of the model.

In recent years, a considerable amount of work has been
undertaken in the area of temporal databases (Kline 1993;
Snodgrass 1990). Most of these research efforts have been
directed towards extending the relational model to incorpo-
rate time. However, due to differing points of view, these
extended models are very diverse. Two approaches have
been proposed in the literature for temporally extending the
relational algebra:tuple time-stamping, andattribute time-
stamping. Tuple time-stamping, where the timestamp is a
special attribute of the relation scheme and hence is part
of every tuple, was first proposed in LEGOL 2.0 (Jones et
al. 1979) which uses two implicit time attributes,start and
stop. Ben-Zvi (1982) uses both valid time and transaction
time as timestamps of every tuple, and redefines the seman-
tics of the basic relational operations. The historical relations
proposed by Navathe and Ahmed (1989, 1993) use tuple
time-stamping with valid time, and have a structure simi-
lar to that of LEGOL 2.0 (Jones et al. 1979). They extend
SQL for temporal relations, and define three new operators,
namelyTJOIN, TNJOIN and COMPRESS. A similar struc-
ture for historical relations is proposed by Lorentzos and
Johnson (1988) in their algebra which introduces three new
operations that allow them to convert interval representation
of timestamp to point representation, andvice versa. Their
algebra also supports timestamps with nested granularity.
Sarda’s (1990, 1993) algebra uses a single nonatomic times-
tamp (time intervals calledperiod) instead of the start and
endpoints of an interval as in Lorentzos and Johnson (1988)
and Navathe and Ahmed (1989), with the extra restriction
that two tuples with the same values for the visible (or non-
time) attributes and overlapping or adjacent time intervals
must becoalescedinto a single tuple. Basic set-theoretic
operations retain their usual meaning, while selection, pro-
jection and Cartesian product operations are redefined, and
four new operators are introduced.

Clifford and Tansel (1985) were the first to propose that
timestamps should be part of the attributes, and not of the
whole tuple. The historical algebra by Clifford and Croker
(1987, 1993) is based on lifespans, where the basic rela-
tional operations are redefined to handle lifespans and four
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new operators are introduced. Tansel’s model (Clifford and
Tansel 1985; Tansel 1986, 1987), though similar to Clif-
ford’s, supports four types of attributes: time-varying, non-
time-varying, set-valued, and atomic. This model uses time
intervals, instead of time-points as in Clifford’s algebra, to
capture the temporal nature of the attributes. Eight new oper-
ators are introduced. Aggregate functions are also discussed
by Tansel (1986, 1987). Gadia (1988) proposes his homo-
geneous temporal relational model based on attribute time-
stamping, and a restriction calledhomogeneitythat restricts
the temporal domain to remain the same for all attributes
within a single tuple. All the basic relational operations are
redefined, and two new operators calledtdomand temporal
selectionare introduced. Gadia (1986) relax the abovehomo-
geneityassumption in the multihomogeneous model, while
Gadia and Yeung (1988) extends this model to support mul-
tiple time dimensions. Two different algebras are proposed
by Tuzhilin and Clifford (1990) where the usual relational
operations are redefined using snapshot semantics and sev-
eral new operations are introduced. McKenzie and Snodgrass
(1991a) propose a historical relational algebra based on at-
tribute time-stamping. The algebra uses only valid time, and
the attributes are single-valued. The basic relational opera-
tions are redefined. Three new operations calledhistorical
derivation, snapshotand historical rollback are introduced.
Two more operators are provided for unique and nonunique
aggregates.

Significant work has also been done in the area of object-
oriented databases and their temporal extensions. Rose and
Segev (1991) extend the object-based entity-relationship
model into a temporal object-oriented model. They incor-
porate temporal structures and constraints in the model and
propose an SQL-like query language. Rose and Segev (1992)
propose an object-oriented temporal algebra for this model.
Wuu and Dayal (1993) start with OODAPLEX, an object-
oriented data model, and temporally extend it. Temporal
properties of objects are modeled as functions of time-
dependent functions. Dayal and Wuu (1992) describe the
associated algebra and show how it can be used for pro-
cessing temporal queries. Cheng and Gadia (1993) also use
OODAPLEX as the base and build temporal support in an
object-oriented environment. They call the model OOTem-
pDBM and the associated query language OOTempSQL.

The above overview leads to the conclusion that previous
research in temporal relational algebra suffers from several
shortcomings.

1. Lack of treatment of multiple time dimensions in a uni-
fied way. A temporal data model should treat both valid,
as well as transaction time,1 in a uniform way, and
should allow the user to chose any one or both based
on the demands of the application. Unfortunately, other
than the algebra of Gadia and Yeung (1988), no other
proposal does this. More specifically, no temporal re-
lational algebra with tuple time-stamping considers both
the time domains. Sarda (1990, 1993) and Lorentzos and
Johnson (1988) consider only valid time, whereas Na-

1 Snodgrass and Ahn (1985) show that there could be two orthogonal
time dimensions:valid time, when a change occurs in the real world, and
transaction time, when such a change is recorded in the database

vathe and Ahmed (1989,1993) model transaction time
as a user-defined data type.

2. Introduction of a multitude of new operations. Due to
the wide variations in the proposed data models, several
new operations have been introduced. Many of these op-
erators, such asPACK/UNPACKor FOLD/UNFOLD, are
useful only in generating alternate views of the same data
and do not necessarily add to the expressive power of a
language.

3. Introduction of several objects. All proposals introduce
a wide variety of objects such as static relations, tem-
poral elements, temporal relations (with time points and
with time intervals), etc. As a result, these algebras are
multisorted. It should be noted that the snapshot algebra
(i.e., conventional relational algebra) is unisorted, since
it supports only one type of object, namely a relation. It
would be desirable to have a general definition that can
encompass all of the possible objects (McKenzie and
Snodgrass 1991b).

4. Lack of precise definitions of aggregate functions.
McKenzie and Snodgrass (1991a) provide a formal def-
inition for aggregate functions for the attribute time-
stamping view. However, such precise definitions do
not exist for the tuple time-stamping view. Navathe and
Ahmed (1989) describe aggregate functions for extend-
ing SQL temporally, but the associated relational algebra
is not provided.

5. Lack of formal update semantic. Previous research has
not considered algebraic operators for modifications in a
temporal database in a formal way.

The objective of this research is to develop a tempo-
ral relational algebra based on tuple time-stamping. Un-
like alternatives such as the object-oriented data model that
lack a proper definition and widespread usage, the relational
model has a formal basis in set theory and logic. Relational
databases are very widely used because the relational model
is well understood in theory and in practice.

Several reasons (e.g., simplicity, ease of implementation)
have been provided in the literature claiming superiority of
tuple time-stamping (Segev and Shoshani 1988; Navathe and
Ahmed 1989). There are several more that we feel are im-
portant. We believe that the success of an extension to an
already popular model lies in its compatibility with the orig-
inal model – both theoretically, as well as with respect to
a user’s perception about it. Temporal relations with tuple
time-stamping provide the same “look and feel” as the origi-
nal, static relations. Attribute time-stamping, in a sense, pro-
vides a view similar to the nested relational model (Roth et
al. 1988) which, despite its superior expressive power, does
not enjoy widespread popularity due to implementation prob-
lems. Gadia (1988) raises the issue ofhorizontal and ver-
tical anomaliesto discredit tuple time-stamping. However,
one must note that these anomalies are limitations of the
relational model itself and would, therefore, persist in any
logical extensions.2

Although there have been several proposals in the lit-
erature based on tuple time-stamping, each has been inad-
equate in some respects. In this paper, we propose a rela-

2 In order to convince oneself, the reader is encouraged to try to represent
a nested relation within the flat relational structure



169

tional algebra that makes the best use of existing results and
overcomes all of the significant difficulties. We adopt mul-
tidimensional tuple time-stamping to capture the complete
time-dependency of temporal data. Our algebra is based on
a temporal extension of set theory, and reduces to the snap-
shot algebra when all relations are static. Valid timestamps
are formed by application of a finite number of union oper-
ations on multidimensional time intervals. As a result, both
valid and transaction time can be supported in this algebra.
We provide a general definition of a relation that can repre-
sent both static and temporal relations. The traditional rela-
tional operations are redefined as consistent extensions, and
a new one is introduced. The algebra obviates the need of
supporting operations such asPACK/UNPACK by internal-
izing them. We also provide precise definitions of aggregate
functions and update operations. The algebra is shown to
be closed and as expressive as the temporal calculus based
language TQuel (Snodgrass 1987).

We call this algebra theComplete Temporal Relational
Algebra. The term “complete” has been used by different
authors to mean different things, and can be misleading. We
call ours “complete” to mean that it is at least as expressive
as the temporal calculus. (See Sect. 4 for more details.) We
believe that it is not significantly different from the original
relational algebra, yet addresses all the above issues in a
systematic way. This algebra is evaluated against the set of
26 criteria proposed by McKenzie and Snodgrass (1991b),
and compared to several other existing algebras.

The remainder of the paper is divided into five sections.
Section 2 outlines the basic assumptions and formally de-
fines the relational structure for our algebra. The relational
operations are described in Sect. 3. Section 4 discusses the
most important properties of this algebra and evaluates it.
Section 5 concludes the paper and offers directions for fu-
ture research.

2 Relational structure

In this section, we formally define the structure of relations
for our algebra.

2.1 Representation of time

We assume that the time line is continuous, i.e., isomorphic
to the set of nonnegative real numbers (with a linear order
“≤”). In other words, it is the metric space of [0,∞). The
most current time is denoted astNOW. The time spaceis
formed by one or more orthogonal time lines. For example, if
both transaction time and valid time are supported, then these
time lines serve as the basis vectors of the two-dimensional
time space. Atime pointtp is any point in the time space.
If the time space ism-dimensional, then atime intervaltI
in the time space is the set of all pointsτ = (t1, t2, . . . , tm)
such that

ai ≤ ti ≤ bi, i = 1, 2, . . . ,m;

or the set of points which is characterized by the above
inequality with any or all of the≤ signs replaced by<.
The limit ai is a nonnegative real number, andbi is either

a nonnegative real number or∞; ai = bi is allowed, so
a time point may also be represented as an interval. If for
somei, ai = bi, then ti = ai, i.e., empty intervals are not
allowed. If bi = ∞, then ti < bi, i.e., the interval must be
open from the right along theith dimension. A subset of
the time space is called anelementary subsetif and only
if it can be expressed as the union of a finite number of
time intervals (Rudin 1976). Thus an elementary subset is
a generalization of Gadia’s (1988) temporal elements which
are only one-dimensional. We useT to denote the family of
all elementary subsets of the time space. By construction,T
is closed under application of finite number of set theoretic
operations, such as union, intersection, and difference.

In our algebra,T is the domain of time attributes –
implicit or user-defined. The implicit time attribute is the
timestamp, and is always denoted byTS. User-defined time
attributes can have a name of a user’s choice. IfTS is re-
named, then it behaves as a user-defined time attribute; i.e.,
it ceases to be the timestamp attribute.

Several Boolean operations are allowable on time at-
tributes. We list them below.

1. If t1 and t2 arem-dimensional time points, then a par-
tial order “<” is defined as:t1 < t2 if t1i < t2i ,
i = 1, 2, . . . ,m. Other operations such as “≤” and “=”
can be defined in a similar fashion. If the time points are
one-dimensional, this is a total order.

2. If t is a time point andts ∈ T , thent ∈ ts retains usual
set-theoretic meaning.

3. If ts1, ts2 ∈ T , then ts1 ⊂ ts2 retains its usual set-
theoretic meaning, as do other operations such as “⊆”
and “=.”

4. If ts1, ts2 ∈ T , then
a) ts1u ts2 (to be read asts1 overlapsts2) if ∃t ∈ ts1(t ∈
ts2).

b) ts1 ≺ ts2 (to be read asts1 precedests2) if ( t1 ∈
ts1) ∧ (t2 ∈ ts2)⇒ (t1 < t2). (“�” can be defined by
replacing “<” with “≤” in the above definition.)

c) ts1 C ts2 (to be read asts1 partially precedests2) if
∃t1 ∈ ts1 ∃t2 ∈ ts2(t1 < t2). (Note that it possible to
havets1 C ts2 and ts2 C ts1 simultaneously.)

Example.In the following table, expressions on the left are
“true,” whereas expression on the right are “false:”

TRUE FALSE
[2, 3)⊂ [1, 5) [2, 3)⊂ [4, 5)
[2, 7)u [6, 9) [2, 7)u [7, 9)
[2, 4)≺ [6, 9) [2, 7)≺ [6, 9)
[2, 6)C [3, 7) [6, 9)C [2, 4)

2.2 Representation of tuples and relations

Let N = {1, 2, . . . , n} be an arbitrary set of integers. Are-
lation schemeR is a set ofattribute names{A1, A2, . . . , An},
one of which may be a special timestamp attribute denoted
TS. Corresponding to each attribute nameAi, i ∈ N , there
is a setDi, called thedomainof Ai; if Ai is a time attribute,
thenDi = T . ThemultisetD = {D1, D2, . . . , Dn} is called
the domain ofR. A tuplex overR is a function fromR to
D such thatx(Ai) ∈ Di, i ∈ N . In other words, a tuplex
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overR can be viewed as a set of attribute name-value pairs:
x = {〈Ai, vi〉|∀i ∈ N (Ai ∈ R ∧ vi ∈ Di)}. If TS 6∈ R,
it is said thatx has a zero-dimensional timestamp. The fol-
lowing definitions are needed before defining a relation.

Definition 2.1 Let R be any relation scheme. Two tuplesx
andy on R arevalue-equivalent3 (written x ' y or y ' x)
if and only if all non-timestamp attribute values are the same
in both the tuples. Symbolically,x ' y ⇔ ∀A ∈ (R −
{TS})(y(A) = x(A)).

Value-equivalent tuples are analogous toduplicatesin the
snapshot algebra. Duplicates are not allowed in a legal re-
lation in the conventional relational model, and similarly
value-equivalent tuples are not allowed in a legal temporal
relation; they must becoalescedinto a single tuple.

Definition 2.2 The coalescenceoperation3 (denoted by⊕)
on two value-equivalent tuplesx andy on relation scheme
R can be defined as

z = x⊕ y ⇔ (x ' y) ∧ (z ' x)

∧(TS ∈ R⇒ z(TS) = x(TS) ∪ y(TS))

Example.The tuples〈3025, [1, 5], 15K〉 and 〈3025, [4, 7],
15K〉 are value-equivalent. If they are coalesced, the result-
ing tuple would be〈3025, [1, 7], 15K〉.

The idea of value-equivalent tuples and coalescence op-
eration need not be confined to just two tuples. Givenm
tuplesx1, x2, . . . , xm, all of which are on the same relation
scheme, they are said to be value-equivalent ifxi ' xj for
all i, j; 1 ≤ i, j ≤ m. The coalescence operation on all the
m value-equivalent tuples will recursively coalesce all the
tuples pairwise to produce a tuple that has a timestamp pro-
duced by the union of timestamps of all the tuples. In other
words, if x1, x2, . . . , xm are value-equivalent, then

m⊕
i=1

xi = (. . . ((x1⊕ x2)⊕ x3)⊕ . . .⊕ xm−1)⊕ xm

Definition 2.3 A temporal setis a collection of tuples, such
that no two of its members are value-equivalent.

A relation in this algebra can now be defined as follows.

3 Snodgrass (1987) introduced the concept ofvalue-equivalenttuples.
He also proposed that such tuples becoalescedif their timestamps are
overlapping or adjacent. Our coalescence operator does not have this extra
restriction. Also note that theFOLD operation of Lorentzos and Johnson
(1988), theCOMPRESSoperator of Navathe and Ahmed (1989), and the
CONTRACToperator of Sarda (1990) – are all similar to the coalescence
operator. However, there is a basic difference between their operators and
ours. For example, Navathe and Ahmed use theCOMPRESSoperator on a
relation (a set of tuples) so that all overlapping or adjacent value-equivalent
tuples reduce to a single tuple. In other words, theCOMPRESSoperator is
one of the allowable operations within the algebra. A similar observation
is true for the other operators as well. On the other hand, a user of our
algebra is not allowed to use coalescence as one of the relational opera-
tions. Every time there is a possibility of generating value-equivalent tuples
(due to application of a relational operation), the coalescence operator is
automatically used so that no value-equivalent tuples are present in the
resulting relation. Thus, analogous to removal of duplicates in the static
algebra, coalescence is an intrinsic part of the definition of all operations
in our temporal algebra

Table 1. Example relations for an employee database

Relation: PERSON
SSN LName FName
086630763 Lyons James
980678976 Kivari Jack
229767329 Myers Peter

Relation: PROJECT
PROJ# Name Client
12345 proj A Mobil
11233 proj B Kodak
11234 proj C Kodak

Relation: EMPLOYEE
EMP# ssn
3025 086630763
6637 980678976

Relation: SALARY
EMP# TS Salary
3025 [1,5) 15K
3025 [5,9) 20K
6637 [3,10) 17K
6637 [10,12) 19K

Relation: SALARY′
EMP# TS Salary
3025 [2,3] 15K
3025 (7,20) 20K
6637 [12,15) 19K

Relation: DEPT
EMP# TS Dept
3025 [1,3) dep1
3025 [3,9) dep2
6637 [3,5) dep2
6637 [5,11) dep3
6637 [11,12) dep1

Relation: ASSIGNMENT
EMP# PROJ# TS

3025 12345 [1,4)
3025 11233 [4,6)
3025 11234 [5,10]
6637 11233 [3,10]
6637 11234 [8,12)

Definition 2.4 A relation r on the schemeR is a finite
temporal set of tuplesx onR.

Note that by definition of a temporal set, value-equivalent
tuples are not allowed in a legal relation. A relation can be
eitherstatic(i.e., a relation on a scheme without timestamps)
or temporal(i.e., a relation on a scheme with a timestamp).
The above definition of a relation is general enough to in-
clude both possibilities, and in the next section, the relational
operations are defined in such a manner that both types of
relations can be supported. A few sample relations are pre-
sented in Table 1; these relations will be used for illustrating
some of the relational operations. SinceTS, the timestamp of
any tuple, can represent multiple orthogonal time domains,
this algebra can support transaction as well as valid (one
or more) time domains. For simplicity, however, only valid
time is used in most of the illustrations.

There are two notions of a relation (Ullman 1988):
(1) set-of-listsnotion, where the order of the columns is
important, and (2)set-of-mappingsnotion, where the order
is not. In our definition of a relation, the set-of-mappings
definition of a relation has been adopted. It is known, how-
ever, that one notion can be converted to the other rather
easily (Ullman 1988). Before describing the temporal rela-
tional operations, the following definitions are necessary.

Defininition 2.5 Let R be any relation scheme. A tupley
on R is said to temporally implya tuplex on R (written
y

t→ x) if y = y ⊕ x.

Definition 2.6 A tuple x is a temporal memberof a relation
r on schemeR (written x ∈t r) if ∃y ∈ r(y

t→ x).

Note that, although a nonempty relation can possibly have
infinitely many temporal members, the relation can always
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be represented as a finite collection of tuples. For exam-
ple, the relation SALARY in Table 1 has an infinite number
of temporal members; it can, however, be represented as a
collection of four tuples.

Definition 2.7 A tuple x is a partial temporal memberof a
relationr on schemeR (written x ∈pt r) if ∃y ∈ r∃z((y

t→
z) ∧ (x

t→ z)).

Definition 2.8 A relation r1 on a schemeR is said to be a
temporal subsetof a relationr2 on the same scheme (written
r1 ⊂t r2) if and only if every tuplex ∈ r1 is a temporal
member ofr2.

Example.The tuple 〈3025, [1, 5), 15K〉 temporally implies
the tuple〈3025, [2, 3], 15K〉. The tuples〈3025, [1, 5), 15K〉
and 〈3025, [2, 3], 15K〉 are both temporal members of the
relation SALARY. The first tuple is not a temporal member
of SALARY′, but is a partial temporal member of SALARY′.

3 Relational operations and the relational algebra

The basic relational operations – union, difference, join, pro-
jection, and selection – can now all be outlined with the help
of the above definitions. One additional operation, namely
temporal projection, is also introduced. Other relational op-
erations (e.g., intersection, Cartesian product, division) can
also be defined in terms of the basic operations. Each opera-
tion is defined to be a consistent extension of its counterpart
in the snapshot algebra. It can also be verified that each oper-
ation reduces to the conventional definition of that operation
in the snapshot algebra.

For economy of expression, the definitions are given in
terms of temporal membership (as defined in the last sec-
tion). However, since there can be an infinite number of
temporal members in a nonempty relation, it may appear
that these operations cannot be efficiently computed; this is
why we also show how these operations can be computed
in an efficient manner.

Temporal relational operations are distinguished from the
conventional static relational operations by the use of ahat
( ˆ ) over the symbols of the former.

Union (∪̂). Let r1 and r2 be two relations on the relation
schemeR. Theunion of these two relations, denoted by
r1∪̂r2, is a temporal set of tuples onR such that

x ∈t (r1∪̂r2)⇔ (x ∈t r1) ∨ (x ∈t r2)

∨ (∃y ∈t r1∃z ∈t r2(y ⊕ z = x))

For example, the union of SALARY and SALARY′ is
shown in Table 2a. It can easily be verified that the union
operation is associative and commutative. The union
operation can be easily computed using the following
algorithm:4

4 In this algorithm, and in all others that follow, we have assumed that the
relations can fit in the main memory. If this is not the case, the algorithms
can be easily modified

Table 2a,b.Examples of union and difference operations

a SALARY ∪̂ SALARY′

EMP# TS Salary
3025 [1,5) 15K
3025 [5,20) 20K
6637 [3,10) 17K
6637 [10,15) 19K

b SALARY −̂ SALARY′

EMP# TS Salary
3025 [1,2)∪(3,5) 15K
3025 [5,7] 20K
6637 [3,10) 17K
6637 [10,12) 19K

Algorithm union
input: relationsr1 andr2 on schemeR
output: relations = r1∪̂r2 on schemeR

begin
s(R)← r1;
for all x ∈ r2 do

for all y ∈ s do
if (x ' y) then
y ← (x⊕ y)

else s← s ∪ {x};
end;

Difference (−̂). Let r1 andr2 be as above. Thedifference
of these two relations, denoted byr1−̂r2, is a temporal
set of tuples onR such that

x ∈t (r1−̂r2) ⇔ (x ∈t r1) ∧ (x 6∈pt r2)

For example, the difference, SALARŶ− SALARY′ is
shown in Table 2b. The following algorithm implements
the difference operation:

Algorithm difference
input: relationsr1 andr2 on schemeR
output: relations = r1−̂r2 on schemeR

begin
s(R)← r1;
for all x ∈ r2 do

for all y ∈ s do
if (x ' y) then

if (TS ∈ R) ∧ (y(TS) 6⊆ x(TS)) then
y(TS)← y(TS)− x(TS)

else s← s− {y};
end;

Natural join ( ôn). Let r1 and r2 be any two relations on
schemesR1 andR2 respectively. Thenatural join of r1
andr2, denotedr1ônr2, is a temporal set of tuples on the
relation schemeS = R1 ∪R2 such that

x ∈t (r1ônr2)⇔ ; ∃y ∈t r1 (y = x(R1))

∧∃z ∈t r2 (z = x(R2))

For example, the natural join between EMPLOYEE,
SALARY and DEPT is shown in Table 3. It can easily be
verified that the natural join operation is associative and
commutative. The natural join between any two relations
can be computed using the following algorithm:

Algorithm natural join
input: relationsr1 on schemeR1 andr2 on schemeR2
output: relations = r1ônr2 on schemeS = R1 ∪R2
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Table 3. Relation: EMPLOYEE′ = EMPLOYEEôn SALARY ôn DEPT

EMP# ssn TS salary dept
3025 086630763 [1,3) 15K dep1
3025 086630763 [3,5) 15K dep2
3025 086630763 [5,9) 20K dep2
6637 980678976 [3,5) 17K dep2
6637 980678976 [5,10) 17K dep3
6637 980678976 [10,11) 19K dep3
6637 980678976 [11,12) 19K dep1

begin
Q← (R1 ∩R2)− {TS};
s(S)← ∅;
for all x ∈ r1 do

for all y ∈ r2 do
if (x(Q) = y(Q)) then

if (TS ∈ (R1 ∩R2)) ∧ (x(TS) ∩ y(TS) /= ∅) then
s← s ∪ {〈x(R1 − {TS}), y(R2 −R1), x(TS)
∩ y(TS)〉}

else if (x(TS) 6∈ (R1 ∩R2)) then
s← s ∪ {〈x(R1), y(R2 −R1)〉};

end;

Projection (Π̂). Let r be a relation on the schemeR. Let
S ⊂ R be any other relation scheme. Theprojection of
r ontoS, written Π̂S(r) is the temporal set of tuples on
S such that

x ∈t Π̂S(r) ⇔ ∃q ⊂t r
(
x =

⊕
y∈q

y(S)

)

For example,

EMPLOYEE =Π̂{EMP#,ssn}(EMPLOYEE′),

SALARY = Π̂{EMP#,TS,salary}(EMPLOYEE′),

DEPT =Π̂{EMP#,TS,dept}(EMPLOYEE′),

where the relation EMPLOYEE′ is as given in Table 3.
For relation schemesQ, R andS with S ⊂ R ⊂ Q, it
can easily be verified that, ifr is any relation on scheme
Q, then

Π̂S(Π̂R(r)) = Π̂S(r)

The following algorithm computes the projection opera-
tion:
Algorithm projection
input: relationr on schemeR and a subschemeS ⊂ R.
output: relations = Π̂S (r) on schemeS

begin
s(S)← ∅;
for all x ∈ r do

s← s∪̂{x(S)};
end;

Selection (̂σ). Let r be a relation on the schemeR. Let
Θ be a set of comparators over domains of attribute
names inR. Let P be a predicate (called the selection
predicate) formed by attributes inR, comparators inΘ,
constants in dom(A), A ∈ R, and logical connectives.
The selectionon r for P , written σ̂P (r), is a temporal
set{x ∈ r|P (x)}. Since this definition is already in con-
ventional set-theoretic notation, we do not provide an
algorithm for selection.

Table 4. Example of selection and temporal projection operations

a σ̂EMP#=3025(DEPT)

EMP# TS Dept
3025 [1,3) Dep1
3025 [3,9) dep2

b Υ̂[2,6)(σ̂EMP#=3025(DEPT))

EMP# TS Dept
3025 [2,3) Dep1
3025 [3,6) Dep2

The selection on DEPT for “EMP# = 3025” is shown
in Table 4a. The reader may verify that for any two
selection predicatesP1 andP2 involving attributes ofR,

σ̂P1(σ̂P2(r)) = σ̂P2(σ̂P1(r)) = σ̂P1∧P2(r)

In the temporal model, the selection predicateP may
contain temporal conditions.Θ contains, in addition to
the usual comparators, temporal comparators discussed
in Sect. 2.1. A wide variety of selection predicates can
be formulated using these comparators.

Temporal projection (Υ̂ ). Let r be a relation on the scheme
R andT ∈ T . The temporal projectionof r during T ,
denotedΥ̂T (r), is a temporal set of tuples onR such that

x ∈t Υ̂T (r) ⇔ (x ∈t r) ∧ (TS ∈ R⇒ x(TS) ⊂ T )

For example, the temporal projection of the relation in
Table 4a during [2,6) is shown in Table 4b. Clearly, if
TS 6∈ R, thenΥ̂T (r) = r, wherer is a relation onR. The
algorithm for temporal projection is given below:
Algorithm temporal projection
input: relationsr on schemeR andT ∈ T
output: relations = Υ̂T (r) on schemeR

begin
s(R)← ∅;
for all x ∈ r do

if (TS ∈ R) ∧ (x(TS) ∩ T /= ∅) then
s← s ∪ {〈x(R− TS), x(TS) ∩ T 〉}

else if (x(TS) 6∈ (R1 ∩R2)) then
s← s ∪ {x};

end;

Our temporal projection is similar to the time-slice op-
eration of Clifford and Crocker (1987) and Navathe and
Ahmed (1989) and the temporal selection operation of
Gadia (1988). Since there is an added dimension of time
in the temporal extension of the relational model, we
need the temporal projection operation to restrict a rela-
tion along the time dimension.
Note that the rollback and snapshot operations (McKen-
zie and Snodgrass 1991b; Snodgrass and Ahn 1985) can
be obtained by using the projection and temporal pro-
jection operations jointly. For example, consider a re-
lation r on a schemeR such thatTS ∈ R, with TS
two-dimensional. LetR′ = R − {TS}. Then the roll-
back operation onr to a transaction time pointt would
produce the relationr′ = Υ̂[0,+∞)×[t,t] (r).
The snapshot ofr′ at a valid time-pointt′ as oft would
be the relationr′′ = Π̂R′

(
Υ̂[t′,t′]×[t,t] (r)

)
.

Rename (̂ρ). The renameoperation ( ˆρ) is used to change
the names of some attributes of a relation. Letr be a
relation on schemeR, whereA and B are attributes
satisfyingA ∈ R andB 6∈ R. Let A andB have the
same domain, and letR′ = (R−A)∪B. Thenr with A
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renamed toB, written ρ̂A←B(r), is the set of tuples (on
R′) {y|∃x ∈ r((y(R′−B) = x(R−A))∧ (y(B) = x(A)))}.
Thus, the rename operation remains the same (as in snap-
shot algebra) in our algebra. One must be careful when
renaming the timestamp attributeTS, because if it is re-
named, it will no longer be treated as the implicit times-
tamp; rather it will be a user-defined time attribute.

3.1 The relational algebra

Given the above operations, the relational algebra can now
be defined formally in a fashion similar to Maier (1983):

Definition 3.1 (Relational Algebra) Assume thatU is a
set of attribute names, called theuniverse. U may have
timestampTS as its element. LetD be a set of domains,
and let dom be a total function fromU to D . Let R =
{R1, R2, . . . , Rp} denote a set of distinct relation schemes,
whereRi ⊂ U , for 1≤ i ≤ p. Let d = {r1, r2 . . . , rp} be a
set of relations, such thatri is a relation onRi, 1≤ i ≤ p.
Θ denotes a set of comparators over domains inD . The
relational algebra over U , D , dom, R, d and Θ is the
seven-tupleR = (U ,D , dom,R, d, Θ,O), whereO is the
set of operators union, difference, natural join, projection,
selection, temporal projection and rename using attributes
in U and comparators inΘ, and logical connectives. Anal-
gebraic expressionoverR is any expression formed legally
(according to the restrictions on the operators) from the re-
lations ind and constant relations over schemes inU , using
the operators inO.

Let sch(E) be theschemeof an algebraic expressionE. We
can definesch(E) recursively as follows:

1. If E is ri, thensch(E) = Ri.
2. If E is a constant relation, thensch(E) is the scheme for

that relation.
3. If E = E1∪̂E2, E1−̂E2, σ̂P (E1), or Υ̂T (E1), whereP is

a selection predicate, andT ∈ T , thensch(E)=sch(E1).
4. If E = Π̂S(E1), thensch(E) = S.
5. If E = E1ônE2, thensch(E)=sch(E1)∪sch(E1).
6. If E = ρA←B(E1), thensch(E)=(sch(E1)−A) ∪B.

3.2 Other relational operations

It is also possible to express the other relational operations,
such as intersection, Cartesian product, theta-join and di-
vision in terms of the basic relational operations discussed
above.

Intersection (∩̂). Let r1 andr2 be two relations on the re-
lation schemeR. The intersection of these two relations,
denotedr1∩̂r2, is a temporal set of tuples onR such that

x ∈t (r1∩̂r2) ⇔ (x ∈t r1) ∧ (x ∈t r2)

Alternatively, it can easily be verified that

r1∩̂r2 = r1−̂(r1−̂r2)

Cartesian product (×̂). The Cartesian product of two re-
lations can be defined as a special case of a natural
join (Codd 1990, p. 66) where the relations do not have
any common column (with the possible exception of the
timestampTS). Let R1 andR2 be two relation schemes
such that (R1 ∩ R2) − {TS} = ∅. Let r1 and r2 be any
two relations on schemesR1 andR2 respectively. Then,
the Cartesian product ofr1 and r2 is a relation on the
scheme (R1 ∪R2) defined as:

r1×̂r2 = r1ônr2

Note that the criterion (R1 ∩R2)− {TS} = ∅, necessary
in the definition of Cartesian product, is not a limitation,
since any common attribute can be renamed before this
operation is applied.

Theta-join (ônΘ). The theta-join operation can be thought
of as a Cartesian product between two relations (with
common attributes except timestamp renamed when nec-
essary) followed by a selection operation, where the
selection predicate containsθ-comparable comparators
(Maier 1983). Letr1 and r2 be as above, andR =
R1 ∪ R2. Let Θ and P be as in the definition of the
selectionoperation. Then the theta-join betweenr1 and
r2, written r1ônP r2), is given as:

r1ônP r2 = σ̂P (r1×̂r2)

Division (÷̂). Let r1 andr2 be any two relations on schemes
R1 and R2 respectively, whereR2 ⊂ R1. Let R′ =
R1 − (R2 − {TS}). The division ofr1 by r2, denoted
r1÷̂r2, is a maximal temporal subset ofΠR′ (r1) which,
when joined (natural join) withr2, produces a temporal
subset ofr1. Alternatively, the division operation may
be expressed as:

r1÷̂r2 = Π̂R′ (r1) −̂ Π̂R′
((
Π̂R′ (r1)ônr2

) −̂r1
)

3.3 Modification of the database

In addition to data extraction queries, a query language also
has to support modification of the database. The relational
algebra should then support operations such as insertion,
deletion and updating. Each of these is discussed below.

Insertion. An insertion into a relationr is expressed as
r ← r∪̂E, whereE is any relational expression such that
the schemes ofr andE are the same. Since the union (∪̂)
operation has been redefined, the above expression can
handle insertion into static as well as temporal relations.

Deletion. A deletion from a relationr is expressed as
r ← r−̂E, whereE is any relational expression on the
same scheme as that ofr. Since the difference opera-
tion has been redefined, such expressions will work with
static, as well as temporal relations. The deletion opera-
tion need not necessarily delete all historical information.
Careful specification ofE can retain all the past informa-
tion, while ensuring that no more information is added in
the future. More specifically, for two-dimensional times-
tamps,E can be specified asE = Υ̂T (σP (r)), whereP
is the selection predicate specifying the delete condition
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andT = [0,∞)×[tNOW,∞); the first axis ofT is the valid
time, and the second the transaction time.
Consider, as an example, the relation DEPT1 shown in
Table 5a, where the timestamp is two-dimensional with
valid and transaction time. The first tuple in this relation
should be interpreted as (Snodgrass and Ahn 1985): “The
Employee with EMP# 3025 worked in dep1 from 2 to∞
(valid time) as of 1 through 10 (transaction time), and
from 2 to 9 as of 10 through∞.” Now at time 15, if we
know that the same employee has resigned, we could
perform the following delete operation:

DEPT1−̂ Υ̂[0,∞)×[tNOW,∞)(σEMP#=3025(DEPT1))

The resulting relation is shown as DEPT2 in Table 5b.
Note that the system should automatically assign a value
of 15 to tNOW.

Updating. The update operation is used when some values
in a tuple need to be changed, while retaining the other
values that we do not wish to change. Such changes
cannot always be made by using only thedeletionand
insertionoperations. Theupdateoperator (denoted bŷδ)
is redefined in this algebra. This operation is expressed
as δ̂(A←E),T (r) wherer is the name of a relation with
attributeA, which is assigned, for all time points inT ∈
T , the value of an arithmetic expressionE involving
constants and attributes inR (the scheme ofr). The
semantics of the update operation is given by:

x ∈t δ̂(A←E),T (r)⇔ (
x ∈t (r−̂Υ̂T (r))

)
∨(∃y ∈t Υ̂T (r)(x(R′) ' y(R′))

∧(x(A) = E(y))
)

whereR′ = R − {A}. If r is static,Υ̂T (r) = r, and the
definition would reduce to the definition of static update
where values are simply overwritten.
To illustrate, we reconsider the relation DEPT1 shown
in Table 5a. Assume that a piece of information arrives
at time 15 indicating that effective time 16, 3025 will
be transferred to dep3. The update operation should be
specified as:

δ̂(dept←dep3),[16,∞)×[tNOW,∞)(DEPT1)

and would result in a relation DEPT3 as shown in Ta-
ble 5c.

In the definition of deletion and update operations, we
specified the transaction time component for clarity of ex-
pression; it could be automatically supplied by the system.

3.4 Aggregate functions

Commercial database management systems typically provide
aggregatefunctions such asmax, min , sum, avg , count ,
etc., and anaggregateclause group by . Obviously, it
would also be useful to have temporal aggregate functions
supported in a temporal database management system.

Two types of aggregates have been discussed in the lit-
erature (McKenzie and Snodgrass 1991a): (1) unique ag-
gregates, where duplicate tuples are eliminated, and (2)

Table 5. Examples of delete and update operations

a Relation: DEPT1

EMP# TS Dept
3025 [2,∞)×[1, 10) ∪ [2, 9)×[10,∞) dep1
3025 [9,∞)×[10,∞) dep2
...

...
...

b Relation: DEPT2

EMP# TS Dept
3025 [2,∞)×[1, 10) ∪ [2, 9)×[10, 15) dep1
3025 [9,∞)×[10, 15) dep2
...

...
...

c Relation: DEPT3

EMP# TS Dept
3025 [2,∞)×[1, 10) ∪ [2, 9)×[10,∞) dep1
3025 [9,∞)×[10, 15) ∪ [9, 16)×[15,∞) dep2
3025 [16,∞)×[15,∞) dep3

...
...

...

nonunique aggregates, where duplicates are retained for cal-
culation of aggregates. It must be noted that the case of
unique aggregates does not need any special treatment, since
our algebra, by default, removes duplicates and coalesces
overlapping tuples. It will be shown, by way of examples,
how unique aggregates can be calculated by slight variation
of the approach used for nonunique aggregates.

Klug (1982) provides a formal basis for nonunique ag-
gregates in the snapshot relational algebra. Most of his ideas
can be extended in the temporal relational algebra. Aggre-
gates in temporal databases have been examined by sev-
eral researchers (Ben-Zvi 1982; Navathe and Ahmed 1989;
McKenzie and Snodgrass 1991a; Tansel 1987). These ef-
forts indicate the necessity for obtaining a distribution of
values over time. This aspect is modeled by adopting the
idea of amoving aggregation windowfrom TSQL (Navathe
and Ahmed 1989), and refining the overall scheme with pre-
cise definitions.

3.4.1 Basic aggregate functions

Let g = {min , max, sum, avg , . . .} be a set of aggregate
functions. Letr be any relation on the schemeR. Let R′ =
R − {TS}. For anyg ∈ g, g(r) returns an aggregate tuple
on R′, i.e., g is a function from the set of instances of the
relation schemeR to the domain ofR′. If the aggregate
functiong is not defined on the domain of an attribute name
A ∈ R′, then a special valueΩ is returned for that attribute.
Before these aggregate functions can be described, we must
define ameasure function(Rudin 1976)µ on T in the
following manner:

1. If tI is an m-dimensional interval, thentI is the set
of points τ = (t1, t2, . . . , tm) such thatai ≤ ti ≤ bi,
i = 1, 2, . . . ,m, and one or more of the≤ signs may be
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replaced by<. Then,µ(tI ) =
∏m
i=1(bi − ai + ε), whereε

is a very small number (say, 10−12). In the case where
bi = ∞, bi should be replaced bytNOW in calculation of
the functionµ. If tp is anm-dimensional time point, then
it can be treated as a degenerate interval, andµ(tp) = εm.

2. If T ∈ T , thenT can be represented as the union of
a finite number of disjoint intervals, i.e.,T = ∪ki=1tI i,
wheretI i ∩ tI j = ∅ if i /= j. Then,µ(T ) =

∑k
i=1µ(tI i).

Now the aggregate functions can be defined in the following
manner. The minimum function onr, writtenmin (r), returns
a relation containing a single tuplex onR′ such thatx(A) =
min
y∈r y(A), for allA ∈ R′. Similarly,max(r) returns a relation

with the tuplex on R′ such thatx(A) = max
y∈r

y(A), and

sum(r) returns a relation with the tuplex on R′ such that
x(A) =

∑
y∈r

y(A), for all A ∈ R′. The average function on

r is written asavg (r), and returns a relation with a single
tuplex onR′ such that, for allA ∈ R′,

x(A) =

∑
y∈r

y(A)µ(y(TS))∑
y∈r

µ(y(TS))

It has been assumed that a relationr has zero-dimensional
timestamps if its schemeR does not containTS; as a result,
the above definition is applicable to static relations as well.
If any one of the above mentioned functions is not defined
on an attributeA ∈ R′, then x(A) = Ω. Other aggregate
functions can be defined in a similar manner and added to
the setg. Now, the aggregate function on a set of attributes is
defined asgX (r) which represents the nonunique aggregate
g for the attributes inX⊂R′ as

gX (r) = Π̂X (g(r))

For count , a slightly different approach is taken. The
count function on r returns, for each non-timestamp at-
tribute in its scheme, an integerk given by

k =
∑
y∈r

(1)

In other words,count is a function from the set of instances
of the relation schemeR to the set of nonnegative integers.
The count function onr for an attribute inR′ is the same
numberk.

3.4.2 Aggregate functions on partitions of relations

It may be desirable to calculate aggregates on several par-
titions of a relation that are partitioned based on a set of
attributes. This is equivalent to thegroup byclause in SQL.
Two types of partitioning is defined: (1) partitioning based
on nontemporal attributes which is equivalent togroup by
in SQL, and (2) partitioning based on temporal attributes
which may be viewed as atemporal group by.

Group by. The aggregateg for the attributes inX⊂R′ of
relationr grouped byattributes inY , Y ⊂R′, X∩Y = ∅,
is written asgYX (r), and is given by the following relation
on the scheme (X ∪ Y ):

gYX (r) =
⋃̂

x∈Π̂Y (r)

{x}ôn{gX ({x}ônr)}
Temporal group by. This clause allows us to find a distri-

bution of aggregate values over time, based on amoving
window(Navathe and Ahmed 1989) ofω. The aggregate
g for the attributes inX ⊂R′ of relation r on scheme
R, TS ∈ R, aggregated over anm-dimensional tempo-
ral window ω is written asgωX (r), and is given by the
following relation on the scheme (X ∪ {TS}):

gωX (r) =
⋃̂
τ∈Γ
{τ}ôn{gX

(
Υ̂τ (r)

)}
whereΓ is the collection of time intervals{τ1, τ2, . . . , τq}
such that the following hold:

1.
q⋃
i=1

τi = tI , wheretI is the smallestm-dimensional

interval containingΠ̂{TS}(r).
2. inf(tI ) = inf(τ1), and sup(tI ) = sup(τq).
3. τi ∩ τj = ∅, i /= j, 1≤ i, j ≤ q.
4. If τij is thej-th component interval ofτi, and if ωj

is thej-th component ofω, thenµ(τij) = ωj , for all
i, j; i = 1, 2, . . . , q − 1; j = 1, 2, . . . ,m.

The above conditions ensure that the entire time horizon
of the relation is partitioned into smaller subintervals of
the size of the moving windowω. The aggregate function
is then performed repeatedly on the temporal projection
of the relation during each of these subintervals. We al-
low anm-dimensional moving window; however, if the
distribution of values is required only over valid time as
of a time-point in the transaction time domain, it is possi-
ble to rollback the relation using projection and temporal
projection operations, and then take the aggregate over
the resulting relation.

We show a few examples now to illustrate how different
types of aggregate functions can be expressed in terms of
the formalism described above.

Example query 1. How many clients are there?This is
equivalent to counting the total number of unique clients
in the relation PROJECT.

count
(
Π̂{client}(PROJECT)

)
= 2

Example query 2. What was the minimum salary during
[2, 3)?

min salary
(
Υ̂[2,3)(SALARY)

)
= {15K}

Example query 3. Find the average salary grouped by em-
ployee.

avg EMP#
salary(SALARY) = {〈3025, 17.50〉, 〈6637, 17.44K〉}

Example query 4. Find the average salary of all employees
over the moving window of 2. This is a temporal group
by, and can be expressed asavg 2

salary(SALARY). The
interval [1,12), the time horizon of the relation, is first
computed, and then partitioned to smaller subintervals
of measure 2. The desired aggregate is then computed
within each subinterval. The result is shown in Table 6.
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Table 6. Distribution of average salary over time (moving window = 2)

TS Salary
[1, 3) 15K
[3, 5) 16K
[5, 9) 18.5K

[9, 11) 18K
[11, 12) 19K

4 Properties of complete temporal relational algebra

In this section, several properties of the proposed tempo-
ral relational algebra are described. This algebra is closed,
meaning that all of the algebraic operators produce valid ob-
jects; in this case relations. It is also a consistent extension
of the snapshot algebra, and reduces to the latter when time
is not part of the relation schemes. It is as expressive as
the temporal calculus based query language TQuel (Snod-
grass 1987). This algebra also supports the basic algebraic
equivalences of the snapshot algebra. Some of these alge-
braic equivalences are stated in the following theorem, and
then the other properties examined.

Theorem 4.1 LetQ,R andS be three relation schemes with
S ⊂ R. Let q be a relation on schemeQ, and letr, r1, r2
be relations on schemeR. LetP be any selection predicate
involving attributes ofR, and letT be any value fromT ,
the domain ofTS. Then, the following are identities:

(a)qôn(r1∪̂r2) = (qônr1)∪̂(qônr2), (b) qôn(r1−̂r2) = (qônr1)−̂(qônr2),
(c) σ̂P (r1∪̂r2) = σ̂P (r1)∪̂σ̂P (r2), (d) σ̂P (r1−̂r2) = σ̂P (r1)−̂σ̂P (r2),
(e) Υ̂T (r1∪̂r2) = Υ̂T (r1)∪̂Υ̂T (r2), (f) Υ̂T (r1−̂r2) = Υ̂T (r1)−̂Υ̂T (r2),
(g) Υ̂T (qônr) = Υ̂T (q)ônΥ̂T (r), (h) Π̂S (r1∪̂r2) = Π̂S (r1)∪̂Π̂S (r2).

Proof. Straightforward, by expanding both sides of each
identity using the definitions of the operators.

Theorem 4.2 The proposed temporal relational algebra is
closed.

Proof. We must show that all of the basic operations in
this algebra result in a relation as defined in the algebra. A
relation must satisfy three criteria: (1) the values must come
from an appropriate domain, (2) no two tuples in a relation
are value-equivalent, and (3) it must be a finite collection of
tuples.

It is easy to see that the first criterion is satisfied for all
attributes except timestamps. For timestamp attributes, the
domainT has been constructed in such a fashion that the
timestamps are closed under usual set theoretic operations.
Also by definition of a tuple, it cannot contain an empty
timestamp. For example,{〈3025, [3, 5)〉}−̂{〈3025, [3, 5)〉}
would evaluate to an empty relation (“null set” of tuples)
in our algebra, and not to{〈3025, ∅〉}.

The fact that no two value-equivalent tuples are produced
when the basic operators are used is explicitly ensured in the
definitions of the operators. If there is a possibility of gen-
eration of value-equivalent tuples, then those tuples would
be automatically coalesced in this algebra.

One can prove that the third criterion is satisfied by con-
structing the resulting relation from the operands. Let us
consider the union operation. Assume thatr1 andr2 are re-
lations on the same scheme. For every tuplex ∈ r1, there are

op(r) TTτ (op(r)) = ôp(r′)-
temporal
transform

TTτ

r r′ = TTτ (r)-

temporal
transform

TTτ

?

snapshot
operator
op

?

analogous
temporal
operator
ôp

Fig. 1. Outline of an equivalence proof (McKenzie and Snodgrass 1991b)

two possibilities. Either there is only one value-equivalent
tuple y ∈ r2, in which case (x ⊕ y) ∈ (r1∪̂r2); or there is
no such tuple inr2, in which casex ∈ (r1∪̂r2). A similar
observation is also true about every tuple inr2. It is then
clear that the total number of tuples in (r1∪̂r2) is no more
than (|r1| + |r2|), where|r| denotes the number of tuples in
a relationr. It can be shown in an analogous manner that
(a) the number of tuples in (r1−̂r2) cannot exceed|r1|, (b)
the number of tuples in (r1ônr2) cannot exceed|r1| × |r2|,
(c) the number of tuples in̂ΠS(r) cannot exceed|r|, and (d)
the number of tuples in ˆσP (r) cannot exceed|r|.

4.1 Correspondence with the snapshot algebra

This algebra is a consistent extension of the conventional
snapshot algebra, and reduces to the snapshot algebra when
time is not modeled. Before these properties can be proven,
we first need to define two operators. These operators are not
part of the algebra, but allow us to transform static relations
to temporal relations andvice versa. For these definitions and
the related discussion, we will use prime (′ ) for temporal
relations exclusively.

Definition 4.1 (Temporal transform) Let R andR′ be re-
lation schemes satisfyingTS 6∈ R and R′ = R ∪ {TS}.
Let r be any relation on schemeR. The temporal trans-
form of r over τ ∈ T (written TTτ (r)) is a relation
r′ = {x|x(R) ∈ r, x(TS) = τ} onR′.

Definition 4.2 (Snapshot) Let R andR′ be as above. Let
r′ be any relation on schemeR′. Thesnapshotof r′ at time
point t (written SNt(r′)) is a relationr = {x(R)|x ∈ r′, t ∈
x(TS)} onR.

Theorem 4.3 The proposed temporal relational algebra is a
consistent extension of the snapshot algebra.

Proof. A temporal algebra is said to be a consistent ex-
tension of the snapshot algebra if any relation or algebraic
expression that can be represented in the snapshot algebra
has a counterpart in the temporal algebra (McKenzie and
Snodgrass 1991b). In other words, the algebra should be at
least as powerful as the snapshot algebra. Figure 1 gives an
outline of the equivalence proof for a unary operator.

Let Q andR be two relation schemes such thatTS 6∈
Q and TS 6∈ R, and let q(Q), r(R), r1(R) and r2(R) be
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ôp(r′) SNt(ôp(r′)) = op(r)-
snapshot

SNt

r′ r = SNt(r′)-
snapshot

SNt

?

temporal
operator
ôp

?

analogous
snapshot
operator
op

Fig. 2. Outline of a reduction proof (McKenzie and Snodgrass 1991b)

relations on these schemes. Also letQ′ = Q ∪ {TS} and
R′ = R ∪ {TS}. In order to establish this theorem, we must
prove just the following identities for anyτ ∈ T :

(a) TTτ (r1)∪̂TTτ (r2) = TTτ (r1 ∪ r2),

(b) TTτ (r1)−̂TTτ (r2) = TTτ (r1 − r2),

(c) TTτ (q)ônTTτ (r) = TTτ (q on r),

(d) σ̂P (TTτ (r)) = TTτ (σP (r)),

(e) Π̂S′ (TTτ (r)) = TTτ (ΠS (r)), whereS ⊂ R andS′ = S ∪ {TS}

We will prove only the first identity; the others can be proven
similarly.

If a tuplex′ ∈t TTτ (r1)∪̂TTτ (r2), then there are just two
possibilities: (1)x′ ∈t TTτ (r1), or (2) x′ ∈t TTτ (r2). The
third possibility of existence of value-equivalent tuples is not
relevant, since all of the tuples have identical timestamps.
This implies thatx′(R) is in r1 or in r2, or in both, i.e.,
x′(R) ∈ (r1 ∪ r2). Thenx′ ∈ TTτ (r1 ∪ r2).

Alternatively, if a tuplex′ is temporally in TTτ (r1 ∪
r2), then x′(R) ∈ (r1 ∪ r2), which implies that either
x′ ∈t TTτ (r1), or x′ ∈t TTτ (r2). Clearly, x′ ∈t (TTτ (r1)
∪̂TTτ (r2)).

Theorem 4.4 The proposed temporal relational algebra re-
duces to the snapshot algebra.

Proof. A temporal relational algebra is said to reduce to the
snapshot algebra if the semantics of the algebra is consistent
with that of the snapshot algebra (McKenzie and Snodgrass
1991b). The reduction proof for any unary operator is out-
lined in Figure 2.

LetQ′ andR′ be two relation schemes such thatTS∈Q′
and TS ∈ R′, and letq′(Q′), r′(R′), r′1(R′) and r′2(R′) be
relations on these schemes. Also letQ = Q′ − {TS} and
R = R′ − {TS}. We must prove the following identities for
any time pointt:

(a) SNt(r′1) ∪ SNt(r′2) = SNt(r′1∪̂r′2),

(b) SNt(r′1)− SNt(r′2) = SNt(r′1−̂r′2),

(c) SNt(q′) on SNt(r′) = SNt(q′ônr′),
(d) σP (SNt(r′)) = SNt(σ̂P (r′)),
(e)ΠS (SNt(r′)) = SNt(Π̂S′ (r′)), whereS ⊂ R, andS′ = S ∪ {TS}

The first identity is proven below. The rest follow in an
analogous fashion.

If a tuplex ∈ SNt(r′1)∪SNt(r′2), then eitherx ∈ SNt(r′1)
or x ∈ SNt(r′2). If x ∈ SNt(r′1), then there existsx′ ∈
r′1 such thatx = x′(R) and t ∈ x′(TS). Similarly, if x ∈

SNt(r′2), then there existsx′ ∈ r′2 such thatx = x′(R) and
t ∈ x′(TS). In either case,x′ ∈ (r′1∪̂r′2), x = x′(R) and
t ∈ x′(TS). Clearly,x ∈ SNt(r′1∪̂r′2).

Now assume that a tuplex is in SNt(r′1∪̂r′2). Then there
existsx′ ∈ (r′1∪̂r′2), with x = x′(R) and t ∈ x′(TS). This
means thatx′ is a partial temporal member in at least one
of r′1 and r′2. Clearly,x must be in at least one of SNt(r′1)
and SNt(r′2), which implies thatx ∈ (SNt(r′1) ∪ SNt(r′2)).

4.2 Correspondence with temporal calculus and TQuel

In this section, we show that the proposed algebra is equiv-
alent to a temporal calculus in its expressive power. This,
in a sense, would ensure the much desired completeness of
the algebra.5 We will use TQuel (Snodgrass 1987) (which
is based on temporal calculus) for this purpose. The reasons
for choosing TQuel over others proposed in the literature are
simple. First, TQuel employs tuple time-stamping as does
our algebra. Second, TQuel semantics is formally defined.
Third, TQuel uses both valid and transaction time. Finally,
TQuel is temporally complete.

The TQuelretrieve statement has the following syntax
(Snodgrass 1987):

range of x1 is r1

...
range of xk is rk
retrieve (xi1 .Dj1 , . . . , xiq .Djq )

valid from ν to χ
where ψ
when τ
as of α through β

The corresponding tuple calculus statement has the fol-
lowing form:

{y(q+4)|(∃x1) . . . (∃xk)(r1(x1) ∧ . . . ∧ rk(xk)
∧y[1] = xi1[j1] ∧ . . . ∧ y[q] = xiq [jq ]
∧y[q + 1] = Φν ∧ y[q + 2] = Φχ ∧ Before(y[q + 1], y[q + 2])
∧y[q + 3] = current transaction id∧ y[q + 4] =∞
∧ψ′ ∧Γτ
∧(∀l)(1≤ l ≤ k.(Before(Φα, xl[stop])∧ Before(xl[stop], Φβ )))
)},

whereψ′ andΓτ are obtained fromψ and τ by replacing
each occurrence of an attribute name by the value of that
attribute for a tuple.

We, however, necessarily wish to deviate from Snod-
grass’s philosophy of updating the transaction timestamp (in
the resulting relation) to the current transaction id (or, time).
Recall that the transaction time of a tuple is the time when
the information contained in the tuple was recorded in the
database. Thus, the transaction time should only be inserted
or changed when a new tuple is inserted or an old tuple is up-
dated. It must be noted that no new information is recorded
in the database during the execution of a retrieval query.

5 McKenzie and Snodgrass (1991a) define a relational algebra to be
completeif it is at least as expressive as the snapshot algebra. In that
sense, this algebra is complete (see Theorem 4.3). However, we adopt a
different criterion for the completeness in a temporal relational model. We
feel that the completeness of a temporal relational algebra must require
reducibility of every expression in a temporal relational calculus to an
equivalent expression in that algebra
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Table 7. Relation SAL

EMP# TS Salary
3025 [1, 3)∪ [5, 7) 18K
3025 [3, 5)∪ [7, 9) 20K
6637 [3, 7) 17K
6637 [7,12) 19K

Then, it is clear that the transaction timestamp of any tuple
in the resulting relation should not be [tNOW,∞). Rather, it
should be calculated from the tuples of the participating re-
lations, much in the same way valid timestamp for the tuple
is calculated. The modified tuple calculus statement would
then assume the form:

{y(q+4)|(∃x1) . . . (∃xk)(r1(x1) ∧ . . . ∧ rk(xk)
∧y[1] = xi1[j1] ∧ . . . ∧ y[q] = xiq [jq ]
∧y[q + 1] = Φν ∧ y[q + 2] = Φχ ∧ Before(y[q + 1], y[q + 2])
∧y[q + 3] = Φα ∧ y[q + 4] = Φβ ∧ Before(y[q + 3], y[q + 4])
∧ψ′ ∧Γτ
∧(∀l)(1≤ l ≤ k.(Before(Φα, xl[stop])∧ Before(xl[stop], Φβ )))
)}

Let us call this the“modified TQuel semantics”. It must
also be noted that TQuel coalesces value-equivalent tuples
only if they are adjacent or overlapping. Thus TQuel al-
lows other value-equivalent tuples to be present. It will,
however, be assumed that a resulting relation contains no
value-equivalent tuples; that is, all value-equivalent tuples
are coalesced.

Theorem 4.5 Every TQuel retrieve statement, with the
modified TQuel semanticscan be expressed in the proposed
temporal relational algebra.

Proof. Consider a generalized retrieve statement of TQuel
with the modified TQuel semantics as given above. It can
easily be verified that this statement is equivalent to the
following expression in our algebra:

Π̂{j1,...,jq,TS}
(
Υ̂[ν,χ)×[α,β)

(
σ̂(ψ∧τ )(r

′
1×̂r′2×̂ . . . ×̂r′k)

))
where r′i is basicallyri, 1 ≤ i ≤ k, with some attributes
renamed such that the Cartesian product operation is defined
on these relations. The Cartesian product ensures that all the
relevant relations take part in the expression. The selection
operation ensures that the predicatesψ andτ are satisfied for
all tuples in the resulting relation. The temporal projection
allows us to select only those tuples that are defined during
[ν, χ)× [α, β). Finally, the projection operation allows one
to display only the necessary attributes.

Clifford et al. (1994) show that TQuel is complete with
respect to their calculusTC for ungrouped temporal rela-
tions. This implies that our algebra is also equivalent toTC
and hence isTU complete. To illustrate the superior expres-
sive power of this algebra, let us formulate a query that
Clifford et al. (1994) show most algebras fail to express:
“Find the employees who have at some time received a salary
cut.” We consider the relation SAL shown in Table 7.

This query can be answered by using theθ-join operation
between two instances of the same relation. However, be-
fore applying this operation, we need to rename the attribute
names in the second instance. Let the renamed instance be

SAL′ with attributeA being renamed toA′. Note that the
timestampTS in SAL is renamed toTS′ in SAL′, and is no
longer a timestamp. The answer can be found by evaluating
the following relational expression:

Π̂EMP#

(
SALônPSAL′

)
,

where

P = (EMP# = EMP#′) ∧ (salary> salary′) ∧ (TS C TS′).

If other attributes (such as name, department and manager)
of these employees are needed, that can be easily found by
joining the above expression with the relations which contain
that information.

4.3 Evaluation of the proposed algebra

Recently Snodgrass et al. (1994) describe a temporal exten-
sion to SQL-92. They provide a list of desirable features for
the data model and the language. Our model contains most
of these features. First, it employs tuple time-stamping. As
a result, all the tuples are automatically homogeneous. Sec-
ond, our valid time support includes support for both the
past and the future. Third, since we assume the time line is
continuous, our timestamp values are not limited in range
or precision. Fourth, our algebra is a consistent extension of
the relational algebra. Fifth, our operations do not accord any
explicit attribute special semantics. Sixth, in our model tem-
poral support is optional; it is possible to have static relations
as a special case. Seventh, we define temporal extensions of
all common aggregate functions. Finally, our relations are
implementable in terms of first normal form relations. The
use of multidimensional elementary subsets as timestamps
should not be considered as a violation of first normal form.
In this algebra, each elementary subset is treated as a sin-
gle value for a time attribute, not as a set of values (or as
repeating groups). Valid operations on these values are also
discussed so that the domainT can be supported in a tem-
poral database management system.

Snodgrass et al. (1994) conclude that TSQL2 must have
an efficiently implementable algebra. Since our algebra sat-
isfies most of the desirable features, we feel that it is the
most suitable for implementation of TSQL2.

Besides, McKenzie and Snodgrass (1991b) provide a set
of 26 criteria for evaluating temporal algebras. The algebra
proposed in this research is evaluated on these criteria.6 It
is also compared to five other existing algebras: (1) the time
relational model by Ben-Zvi (1982), (2) the homogeneous
model by Gadia (1988), (3) the temporal relational model
by Navathe and Ahmed (1989), (4) the historical relational
algebra by Sarda (1990) and (5) the historical relational al-
gebra by McKenzie and Snodgrass (1991a). This evaluation
and comparison is summarized in Table 8. From this table, it
can be seen that the proposed algebra satisfies the maximum
number of criteria. We believe that the primary strength of
this algebra lies in its simplicity and its consistency with the
snapshot algebra.

6 McKenzie and Snodgrass (1991b) clearly show that, out of these 26
criteria, seven criteria are conflicting. In other words, no algebra can satisfy
all 26 criteria
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Table 8. Evaluation of the proposed complete temporal relational algebra based on the criteria of McKenzie and Snodgrass (1991b)

Criteria Ben Gad NvA Sar McS CTR
1. All attributes in a tuple are defined for same interval(s) Y Y Y Y N Y
2. Consistent extension of the snapshot algebra Y Y ? ? Y Y
3. Data periodicity is supported N N N N N N
4. Each collection of legal attribute values is a legal tuple N N N Y N Y
5. Each set of legal tuples is a legal relation Y Y N Y N N
6. Formal semantics are well defined P Y P P Y Y
7. Has the expressive power of a temporal calculus P Y P P Y Y
8. Includes aggregates Y P N N Y Y
9. Incremental semantics defined N N N N Y N

10. Intersection,Θ-join, natural join, and quotient are defined P P P N Y Y
11. Is, in fact, an algebra Y Y P ? Y Y
12. Model doesn’t require null attribute values Y Y Y Y Y Y
13. Multidimensional timestamps are supported N N N N N Y
14. Reduces to the snapshot algebra Y Y Y Y P Y
15. Restricts relations to first normal form Y N Y N N P
16. Supports a 3D view of historical states and operations N N N N Y N
17. Supports basic algebraic equivalence Y Y ? ? P Y
18. Supports relations of all four classes P P P P Y Y
19. Supports rollback operations P N N N Y Y
20. Supports multiple stored schemas N N N N Y N
21. Supports static attributes N N Y N Y Y
22. Treats valid time and transaction time orthogonally Y ? ? ? P Y
23. Tuples are timestamped Y N Y Y N Y
24. Unique representation for each temporal relation N N Y N Y Y
25. Unisorted (not multisorted) N N N N N Y
26. Update semantics are specified P N N N Y Y

The ratings for all the models except the one presented in this paper have been taken from (McKenzie and Snodgrass 1991b).
Y , criterion satisfied;N , criterion not satisfied;P , criterion partially satisfied; ?, unspecified in report;Ben, the time relational model by Ben-Zvi (1982);
Gad, the homogeneous model by Gadia (1988);NvA, the temporal relational model by Navathe and Ahmed (1989);Sar, the relational algebra for a
historical data model by Sarda (1990);McS, the relational algebra by McKenzie and Snodgrass (1991a);CTR, the complete temporal relational algebra
proposed in this paper

5 Conclusion

Although temporal databases have been an active area of
research in recent years, representations of temporal data in
the relational model have been varied. The complete tempo-
ral relational algebra proposed in this paper resolves several
open temporal relational issues, yet it is not significantly
different from the original relational algebra.

This algebra employs tuple time-stamping with multidi-
mensional timestamps. The basic relational operations have
been redefined as consistent extensions of the snapshot oper-
ations in a manner that preserves the basic algebraic equiv-
alences of the snapshot algebra. A new operation, called
temporal projection, is introduced. The complete update se-
mantics are formally specified and aggregate functions are
defined. The algebra is closed and reduces to the snapshot
algebra. It is also shown to be at least as expressive as the
calculus-based temporal query language TQuel (Snodgrass
1987). In order to assess the algebra, it is evaluated using
a set of 26 criteria proposed by McKenzie and Snodgrass
(1991b), and compared to several existing temporal rela-
tional algebras. The proposed algebra satisfies the maximum
number of criteria.

We believe that a temporal extension of the relational
model should attach the timestamps at the tuple level. This
is because the view is simpler and much closer to the original
relational model. Although a number of research efforts have
tried this approach, they all suffer from several limitations.

A major contribution of this work is a concise and formal
definition of the relational structure and relational operations.

One of the immediate future directions of this research
is to implement this algebra in a temporal database man-
agement system; this is currently being pursued. Once this
is done, we could build a more user-friendly interface such
as TSQL2. We also plan to conduct a benchmark study that
will evaluate the performance of a temporal database man-
agement system based on our algebra. One of the implicit
assumptions of the proposed algebra is that a relation scheme
does not change over time. This assumption, however, is too
restrictive to model the real world accurately. McKenzie and
Snodgrass (1990) and Roddick (1992) examine evolution of
relation schemes. Future research will explore how the evo-
lution of a relation scheme can be incorporated into our
algebra.
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