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Abstract. Various temporal extensions to the relational comprehensive data model arises, where time is an intrinsic
model have been proposed. All of these, however, devipart of the model.

ate significantly from the original relational model. This pa-
per presents a temporal extension of the relational algebran
that is not significantly different from the original relational S
model, yet is at least as expressive as any of the previ(—ji

ous approaches. This algebra employs multidimensional tUzaie time. However, due to differing points of view, these

ple time-stamping to capture the complete temporal bEhaVioéxtended models are very diverse. Two approaches have

of data. The basic relational operations are redefined as co leen proposed in the literature for temporally extending the

sistent extensions of the existing operations in a manner that, 5iional algebratuple time-stamping, andttribute time-

preserves the basic a_Igebraic equivalences of _the snapsh&tamping_ Tuple time-stamping, where the timestamp is a
(i.e., conventional static) algebra. A new operation, namel '

S S yspecial attribute of the relation scheme and hence is part
temporal projectionis introduced. The complete update se- of every tuple, was first proposed in LEGOL 2.0 (Jones et

mantics are formally specified and aggregate functions ar : P :
defined. The algebra is closed, and reduces to the snapsh(ggs:f0 1979) which uses two implicit time atributestart and

In recent years, a considerable amount of work has been
dertaken in the area of temporal databases (Kline 1993;
nodgrass 1990). Most of these research efforts have been
rected towards extending the relational model to incorpo-

assess the algebr.a, it is.evaluated using a set of twenty—s' oposed by Navathe and Ahmed (1989, 1993) use tuple
criteria proposed in the literature, and compared to existin ime-stamping with valid time, and have :':1 structure simi-

temporal relational algebras. The proposed algebra appeas; (4 hat of LEGOL 2.0 (Jones et al. 1979). They extend
to satisfy more criteria than any other existing algebra. g tor temporal relations, and define three new operators,
namely TJOIN, TNJOIN and COMPRESSA similar struc-
ture for historical relations is proposed by Lorentzos and
Johnson (1988) in their algebra which introduces three new
operations that allow them to convert interval representation
of timestamp to point representation, avide versa Their
algebra also supports timestamps with nested granularity.
Sarda’s (1990, 1993) algebra uses a single nonatomic times-
tamp (time intervals callegeriod) instead of the start and
Database systems store information about the real WorldendIOOintS of an interval as in Lorentzos and Johnson (1988)

they attempt to represent. However, any useful represen@nd Navathe and Ahmed (1989), with the extra restriction
' éhat two tuples with the same values for the visible (or non-

temporal nature of information, since the real world is veryt'me) attributes anq overla_pping or adjace_nt lime interv_als
dynamic, changing continually over time. In the relational must pecoalespedmtp a single tuple. BaS'C set-thgoreﬂc
model (Codd 1970, 1990) the temporal nature of data haQP€rations retain their usual meaning, while selection, pro-
been largely ignored, being reflected only through update ection and Cartesian p(oduct operations are redefined, and
while ignoring the past states. In many real world applica-/OUr New operators are introduced.

tions where temporal data is critical, time has been modeled Clifford and Tansel (1985) were the first to propose that
in anad hocfashion, primarily with the help of application timestamps should be part of the attributes, and not of the
programs. Clearly, this defeats the very purpose of the rewhole tuple. The historical algebra by Clifford and Croker
lational modé— a high level of independence between the (1987, 1993) is based on lifespans, where the basic rela-
data and the application programs. Thus the need for a morgonal operations are redefined to handle lifespans and four
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new operators are introduced. Tansel's model (Clifford and
Tansel 1985; Tansel 1986, 1987), though similar to Clif-

ford’s, supports four types of attributes: time-varying, non- 2.

vathe and Ahmed (1989,1993) model transaction time
as a user-defined data type.
Introduction of a multitude of new operations. Due to

time-varying, set-valued, and atomic. This model uses time
intervals, instead of time-points as in Clifford’s algebra, to
capture the temporal nature of the attributes. Eight new oper-
ators are introduced. Aggregate functions are also discussed
by Tansel (1986, 1987). Gadia (1988) proposes his homo-
geneous temporal relational model based on attribute time-
stamping, and a restriction callésbmogeneityhat restricts 3.

the wide variations in the proposed data models, several
new operations have been introduced. Many of these op-
erators, such aBBACK/IUNPACKor FOLD/UNFOLD, are
useful only in generating alternate views of the same data
and do not necessarily add to the expressive power of a
language.

Introduction of several objects. All proposals introduce

the temporal domain to remain the same for all attributes
within a single tuple. All the basic relational operations are
redefined, and two new operators caltddmandtemporal
selectionare introduced. Gadia (1986) relax the abbweeno-
geneityassumption in the multihomogeneous model, while

Gadia and Yeung (1988) extends this model to support mul-

tiple time dimensions. Two different algebras are proposed
by Tuzhilin and Clifford (1990) where the usual relational

a wide variety of objects such as static relations, tem-
poral elements, temporal relations (with time points and

with time intervals), etc. As a result, these algebras are
multisorted. It should be noted that the snapshot algebra
(i.e., conventional relational algebra) is unisorted, since
it supports only one type of object, namely a relation. It

would be desirable to have a general definition that can
encompass all of the possible objects (McKenzie and

operations are redefined using snapshot semantics and sev-
eral new operations are introduced. McKenzie and Snodgrasg.
(1991a) propose a historical relational algebra based on at-
tribute time-stamping. The algebra uses only valid time, and
the attributes are single-valued. The basic relational opera-
tions are redefined. Three new operations caliedorical
derivation snapshotand historical rollback are introduced.

Two more operators are provided for unigue and nonunique
aggregates.

Significant work has also been done in the area of object-5.
oriented databases and their temporal extensions. Rose and
Segev (1991) extend the object-based entity-relationship
model into a temporal object-oriented model. They incor-
porate temporal structures and constraints in the model an%ji

Snodgrass 1991b).

Lack of precise definitions of aggregate functions.
McKenzie and Snodgrass (1991a) provide a formal def-
inition for aggregate functions for the attribute time-
stamping view. However, such precise definitions do
not exist for the tuple time-stamping view. Navathe and
Ahmed (1989) describe aggregate functions for extend-
ing SQL temporally, but the associated relational algebra
is not provided.

Lack of formal update semantic. Previous research has
not considered algebraic operators for modifications in a
temporal database in a formal way.

The objective of this research is to develop a tempo-
. | relational algebra based on tuple time-stamping. Un-
propose an SQL-like query language. Rose and Segev (1994 e alternatives such as the object-oriented data model that

propose an object-oriented temporal algebra for this modelrack a - - -
. , proper definition and widespread usage, the relational
Wuu and Dayal (1993) start with OODAPLEX, an object- model has a formal basis in set theory and logic. Relational

orlentec_J data m(_)del, and temporally extend_ It Temporaldatabases are very widely used because the relational model
properties of objects are modeled as functions of tlme—is well understood in theory and in practice

dependent functions. Dayal and Wuu (1992) describe the Several reasons (e.g., simplicity, ease of implementation)

associated algebra and show how it can be used for P"%ave been provided in the literature claiming superiority of

cessing temporal queries. Cheng and Gadia (1993) also u . . ; .
OODAPLEX as the base and build temporal Support in an?ﬁple time-stamping (Segev and Shoshani 1988; Navathe and

object-oriented environment. They call the model OOTem Ahmed 1989). There are several more that we feel are im-

: “portant. We believe that the success of an extension to an
PDBM and the associated query language OOTempSQL. already popular model lies in its compatibility with the orig-

The above overview leads to the conclusion that previougna| model — both theoretically, as well as with respect to
research in temporal relational algebra suffers from severaj |,gers perception about it. Temporal relations with tuple

shortcomings. time-stamping provide the same “look and feel” as the origi-
) , . , ) . hal, static relations. Attribute time-stamping, in a sense, pro-
1. Lack of treatment of multiple time dimensions in a uni- yjges a view similar to the nested relational model (Roth et
fied way. A temporal data model should treat both valid, 5| 1988) which, despite its superior expressive power, does
as well as transaction timfejn a uniform way, and o enjoy widespread popularity due to implementation prob-
should allow the user to chose any one or both basefyms Gadia (1988) raises the issuehafiizontal and ver-
on the demands of the application. Unfortunately, otherijcq| anomaliesto discredit tuple time-stamping. However,
than the algebra of Gadia and Yeung (1988), no othefyne must note that these anomalies are limitations of the

proposal does this. More specifically, no temporal ré-rg|ational model itself and would, therefore, persist in any
lational algebra with tuple time-stamping considers bOthIogicaI extension?.

the time domains. Sarda (1990, 1993) and Lorentzos and Although there have been several proposals in the lit-

Johnson (1988) consider only valid time, whereas Na-gratyre based on tuple time-stamping, each has been inad-
equate in some respects. In this paper, we propose a rela-
1 Snodgrass and Ahn (1985) show that there could be two orthogonal
time dimensionsvalid timeg when a change occurs in the real world, and
transaction timewhen such a change is recorded in the database

2 In order to convince oneself, the reader is encouraged to try to represent
a nested relation within the flat relational structure
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tional algebra that makes the best use of existing results ana nonnegative real number eb; a; = b; is allowed, so
overcomes all of the significant difficulties. We adopt mul- a time point may also be represented as an interval. If for
tidimensional tuple time-stamping to capture the completesomesi, a; = b;, thent; = q;, i.e., empty intervals are not
time-dependency of temporal data. Our algebra is based oallowed. If b; = oo, thent; < b;, i.e., the interval must be

a temporal extension of set theory, and reduces to the snappen from the right along théh dimension. A subset of
shot algebra when all relations are static. Valid timestampghe time space is called aglementary subseaf and only

are formed by application of a finite number of union oper-if it can be expressed as the union of a finite number of
ations on multidimensional time intervals. As a result, bothtime intervals (Rudin 1976). Thus an elementary subset is
valid and transaction time can be supported in this algebraa generalization of Gadia’s (1988) temporal elements which
We provide a general definition of a relation that can repre-are only one-dimensional. We usé to denote the family of
sent both static and temporal relations. The traditional relaall elementary subsets of the time space. By construction,
tional operations are redefined as consistent extensions, angl closed under application of finite number of set theoretic
a new one is introduced. The algebra obviates the need adperations, such as union, intersection, and difference.
supporting operations such 8 CKUNPACK by internal- In our algebra,7 is the domain of time attributes —
izing them. We also provide precise definitions of aggregatémplicit or user-defined. The implicit time attribute is the
functions and update operations. The algebra is shown ttimestamp, and is always denoted BY. User-defined time

be closed and as expressive as the temporal calculus basattributes can have a name of a user’'s choic&.dfis re-
language TQuel (Snodgrass 1987). named, then it behaves as a user-defined time attribute; i.e.,

We call this algebra th€omplete Temporal Relational it ceases to be the timestamp attribute.

Algebra The term “complete” has been used by different  Several Boolean operations are allowable on time at-
authors to mean different things, and can be misleading. Wéributes. We list them below.

call ours “complete” to mean that it is at least as expressive
as the temporal calculus. (See Sect. 4 for more details.) wet-
believe that it is not significantly different from the original
relational algebra, yet addresses all the above issues in a
systematic way. This algebra is evaluated against the set of
26 criteria proposed by McKenzie and Snodgrass (1991b),
and compared to several other existing algebras.

The remainder of the paper is divided into five sections.
Section 2 outlines the basic assumptions and formally de->*
fines the relational structure for our algebra. The relational
operations are described in Sect. 3. Section 4 discusses th
most important properties of this algebra and evaluates it.”
Section 5 concludes the paper and offers directions for fu-
ture research.

If t1 andt, arem-dimensional time points, then a par-

tial order “<” is defined as:t; < t2 if t1, < t,,

1 =1,2,...,m. Other operations such as* and “="

can be defined in a similar fashion. If the time points are

one-dimensional, this is a total order.

2. If t is a time point ands € .7, thent € ¢s retains usual

set-theoretic meaning.

If ts1,1s0 € .7, thentsy C is, retains its usual set-

theoretic meaning, as do other operations suchd@s “

and “=."

If ts1,ts0 €.7, then

a) ts1Mtsy (to be read ag; overlapstsy) if 3t € ts1(t €
1s2).

b) #s1 < ts2 (to be read ads; precedests,) if (¢1 €
ts1) A (t2 € ts2) = (t1 < t2). (“=” can be defined by

2 Relational structure replacing ‘<” with “ <” in the above definition.)

C) ts1 < tso (to be read ags; partially precedess,) if
In this section, we formally define the structure of relations I € ts1 Ttz € t5p(ts < t2). (Note that it possible to
for our algebra. havets; < tsy andts, < ts; Simultaneously.)

Example.In the following table, expressions on the left are

) ) “true,” whereas expression on the right are “false:”
2.1 Representation of time

. o . L . TRUE FALSE

We assume that the time line is continuous, i.e., isomorphic 2.3 C[L5) [23)cC[45)

to the set of nonnegative real numbers (with a linear order ;' 7)q6/9) [2.7)[7,9)

“<"). In other words, it is the metric space of,[&). The [2,4)<[6,9) [2,7)<6,9)

most current time is denoted agow. The time spaceis [2,6)< [3,7) [6,9) < [2,4)

formed by one or more orthogonal time lines. For example, if

both transaction time and valid time are supported, then these

time lines serve as the basis vectors of the two-dimensiona2.2 Representation of tuples and relations
time space. Atime pointt, is any point in the time space.

If the time space isn-dimensional, then éime intervalt; Let. /" ={1,2,...,n} be an arbitrary set of integers.ra-
in the time space is the set of all points= (t1,t2,...,tm) lation schemeR is a set ofattribute nameg A;, Ay, ..., A, },
such that one of which may be a special timestamp attribute denoted

TS. Corresponding to each attribute narg i € ./, there
is a setD;, called thedomainof A;; if A; is a time attribute,
or the set of points which is characterized by the abovethenD, =.7". ThemultisetD = {D;, D5, ..., D, } is called
inequality with any or all of the< signs replaced by. the domain ofR. A tuplexz over R is a function fromR to
The limit a; is a nonnegative real number, ahdis either D such thatz(4;) € D;, i € ./, In other words, a tuple

a'LSt'LSb’La i=1a27"',m;
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over R can be viewed as a set of attribute name-value pairs!2?'¢ 1. Example relations for an employee database

T = {<A¢,’U,’>|Vi S V(AZ €ER N v € Dt)} If TS ¢ R,

- . . . . Relation: PERSON Relation: PROJECT

it is said thatz has a zero-dimensional timestamp. The fol- g LName FName PROJ# Name  Client

lowing definitions are needed before defining a relation. 086630763  Lyons James 12345  projA  Mobil
980678976  Kivari  Jack 11233  proj B Kodak

Definition 2.1 Let R be any relation scheme. Two tuples 229767329 Myers  Peter 11234  projC  Kodak
andy on Rk arevalue_—equaleﬁt(w_rltten T~y ory~rm) Relation: EMPLOYEE
if and only if all non-timestamp attribute values are the same gypg  ssn

in both the tuples. Symbolicallyx ~ y < VA € (R — 3025 086630763
{TSH(y(A) = z(A)). 6637 980678976
Value-equivalent tuples are analogousdwplicatesin the EME‘:"”‘“;Z SALAEYI EM'E)Z""‘“OTE SALAF;YI
snapshot algebra. Duplicates are not allowed in a legal re- /7" /o vl 5025 [29] id
lation in the conventional relational model, and similarly 30,5 59y 20k 3025  (720) 20K
value-equivalent tuples are not allowed in a legal temporal ge37  [3,10) 17K 6637  [12,15) 19K
relation; they must beoalescednto a single tuple. 6637  [10,12) 19K
Definition 2.2 The coalescenc@peratiod (denoted byd) Relation: DEPT Relation: ASSIGNMENT
on two value-equivalent tuples andy on relation scheme  EmP# TS Dept EMP# PROJ# TS
R can be defined as 3025  [1,3) depl 3025 12345 [1,4)
3025  [3,9) dep2 3025 11233 [4,6)
z=xdy & (x=y) A(z =) 6637  [3,5) dep2 3025 11234  [5,10]
- 6637  [5,11)  dep3 6637 11233  [3,10]
MIS € R = 2(T5) = 2(T5) Uy(I5)) 6637  [11,12) depl 6637 11234  [8.12)

Example.The tuples(3025[1,5],15K) and (3025 [4, 7],

15K) are value-equivalent. If they are coalesced, the result- =~ ) ) .

ing tuple would be(3025 [1, 7], 15K). Definition 2.4 A relation » on the schemeR is a finite
The idea of value-equivalent tuples and coalescence op€mporal set of tuples on R.

eration need not be confined to just two tuples. Given o )

tupleszy, za, . . ., zm, all of which are on the same relation Note that by definition _of a temporallset, value-.equwalent

scheme, they are said to be value-equivalent;if- x; for tuples are not allowed in a legal relation. A relation can be

all i,7; 1 < 14,j < m. The coalescence operation on all the eitherstatic(i.e., a relation on a scheme without timestamps)

m value-equivalent tuples will recursively coalesce all the OF ttmporal(i.e., a relation on a scheme with a timestamp).

tuples pairwise to produce a tuple that has a timestamp proThe above definition of a relation is general enough to in-

duced by the union of timestamps of all the tuples. In otherclude both possibilities, and in the next section, the relational
words, ifz1, 25, .. ., z,, are value-equivalent, then operations are defined in such a manner that both types of

relations can be supported. A few sample relations are pre-
R sented in Table 1; these relations will be used for illustrating
Pri=(. (102 D) D ... D ET1) © T some of the relational operations. Sirs, the timestamp of
=1 any tuple, can represent multiple orthogonal time domains,
Definition 2.3 A temporal seis a collection of tuples, such this algebra can support transaction as well as valid (one

that no two of its members are value-equivalent. or more) time domains. For simplicity, however, only valid
time is used in most of the illustrations.
A relation in this algebra can now be defined as follows. There are two notions of a relation (Ullman 1988):
(1) set-of-listsnotion, where the order of the columns is
3 Snodgrass (1987) introduced the concepivalue-equivalentuples.  important, and (2set-of-mapping®otion, where the order

He also proposed that such tuples tealescedif their timestamps are s not. In our definition of a relation, the set-of-mappings
overlapping or adjacent. Our coalescence operator does not have this extdefinition of a relation has been adopted It is known. how-

restriction. Also note that thEOLD operation of Lorentzos and Johnson .
(1988), theCOMPRESSperator of Navathe and Ahmed (1989), and the ever, that one notion can be converted to the other rather

CONTRACToperator of Sarda (1990) — are all similar to the coalescenceefasny (U"ma_n 1988). Befor_e desc_ribi_ng the temporal rela-
operator. However, there is a basic difference between their operators andlonal operations, the following definitions are necessary.
ours. For example, Navathe and Ahmed useGMPRES®perator on a

relation (a set of tuples) so that all overlapping or adjacent value-equivalenDefininition 2.5 Let R be any relation scheme. A tuple

tuples reduce to a single tuple. In other words, @@MPRES®perator is on R is said totemporally implya tuple:c on R (Written
one of the allowable operations within the algebra. A similar observation

is true for the other operators as well. On the other hand, a user of out — r)ify=yoduz.

algebra is not allowed to use coalescence as one of the relational opera-

tions. Every time there is a possibility of generating value-equivalent tuplesDefinition 2.6 A tuple z is atemporal membeof a relation
(due to application of a relational operation), the coalescence operator is . . t

automatically used so that no value-equivalent tuples are present in thé on schemef? (ertten T &t T) if Jy € r(y - z)

resulting relation. Thus, analogous to removal of duplicates in the static . .

algebra, coalescence is an intrinsic part of the definition of all operationsNOte that, although a nonempty relation can possibly have

in our temporal algebra infinitely many temporal members, the relation can always



be represented as a finite collection of tuples. For exam
ple, the relation SALARY in Table 1 has an infinite number
of temporal members; it can, however, be represented as a
collection of four tuples.

a SALARY U SALARY'
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Table 2a,b. Examples of union and difference operations

b SALARY = SALARY’

EMP# TS Salary EMP# TS Salary
3025  [1,5) 15K 3025  [1,2)(3,5) 15K
Definition 2.7 A tuple x is a partial temporal membeof a 3025  [520) 20K 3025  [5,7] 20K
. . . t 6637 [3,10) 17K 6637  [3,10) 17K
relationr on schemeR (written z €, r) if Jy € r3z((y — 6637 [1015) 19K 6637  [10,12) 19K

DA (@S 2).

Definition 2.8 A relationr; on a schemer is said to be a
temporal subsetf a relationr, on the same scheme (written
r1 C¢ r2) if and only if every tuplex € r; is a temporal
member ofr,.

Example.The tuple (3025 [1,5), 15K) temporally implies
the tuple (3025 [2, 3], 15K). The tuples(3025[1, 5), 15K)
and (30252, 3], 15K) are both temporal members of the
relation SALARY. The first tuple is not a temporal member
of SALARY’, but is a partial temporal member of SALARY

3 Relational operations and the relational algebra

The basic relational operations — union, difference, join, pro-
jection, and selection — can now all be outlined with the help
of the above definitions. One additional operation, namely
temporal projection, is also introduced. Other relational op-
erations (e.g., intersection, Cartesian product, division) can
also be defined in terms of the basic operations. Each opera-
tion is defined to be a consistent extension of its counterpart
in the snapshot algebra. It can also be verified that each oper-
ation reduces to the conventional definition of that operation
in the snapshot algebra.

For economy of expression, the definitions are given in
terms of temporal membership (as defined in the last sec-
tion). However, since there can be an infinite number of
temporal members in a nonempty relation, it may appear
that these operations cannot be efficiently computed; this is
why we also show how these operations can be computed
in an efficient manner.

Temporal relational operations are distinguished from the
conventional static relational operations by the use baa
(") over the symbols of the former.

Union (U). Let 7, andr, be two relations on the relation
schemeR. The union of these two relations, denoted by
r1Ur,, is a temporal set of tuples aR such that

x € (10r) & (x € 11) V (x €4 10)
V(3y € m3z € ra(y @ z = x))

For example, the union of SALARY and SALARYs
shown in Table 2a. It can easily be verified that the union
operation is associative and commutative. The union
operation can be easily computed using the following
algorithm#

4 In this algorithm, and in all others that follow, we have assumed that the
relations can fit in the main memory. If this is not the case, the algorithms
can be easily modified

Algorithm union
input: relationsr; andr, on schemeR
output: relations = r;Ury on schemeR

begin
s(R) « r1;
for all z € r, do
forally € s do
if (r>~vy) then
y—(zdy)
else s — sU {z};
end;

Difference (=). Letr, andr, be as above. Thdifference

of these two relations, denoted by—r,, is a temporal
set of tuples omR such that

T € (r1mm) & (e r)A(x Ept T2)

For example, the difference, SALARY SALARY' is
shown in Table 2b. The following algorithm implements
the difference operation:

Algorithm difference
input: relationsr; andr, on schemeR
output: relations = r;—r, on schemeR

begin
s(R) « r1;
for all x € r, do
forally € s do
if (r>~vy) then
if (TS € R) A (y(TS) € x=(1S)) then
y(TS) «— y(TS) — z(TS)
else s — s — {y};
end;

Natural join ( ). Let r; andr, be any two relations on

schemesi?; and R, respectively. Thenatural join of r;
andr;, denotedri xry, is a temporal set of tuples on the
relation schemeS = R; U R, such that

x € (rixm) <y € 1 (y = 2(R1))
ATz €t 12 (2 = 2(R2))

For example, the natural join between EMPLOYEE,

SALARY and DEPT is shown in Table 3. It can easily be

verified that the natural join operation is associative and
commutative. The natural join between any two relations
can be computed using the following algorithm:

Algorithm natural join
input: relationsr; on schemeR; andr, on schemeR,
output: relations =r;x72 on schemeS = Ry U Ry
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Table 3. Relation: EMPLOYEE = EMPLOYEE x SALARY w DEPT

EMP# ssn s salary  dept
3025 086630763  [1,3) 15K depl
3025 086630763  [3,5) 15K dep2
3025 086630763  [5,9) 20K dep2
6637 980678976  [3,5) 17K dep2
6637 980678976  [5,10) 17K dep3
6637 980678976 [10,11) 19K dep3
6637 980678976 [11,12) 19K depl
begin
Q — (RiNRy) — {TS};
s(S) — 0;

forall x € r, do
forall y € r, do

if (z(Q) =y(Q)) then
if (TS € (R1N R2)) A (z(TS) Ny(TS) #0) then
s« sU{{(z(R1 — {T5}), y(R2 — Ra), =(TS)
Ny(TS9)}
else if (z(TS) € (R1 N Ry)) then

s — sU{(z(R1),y(R2 — R1))};
end;

Projection (II). Letr be a relation on the schenfe Let
S C R be any other relation scheme. Thejection of
r onto S, written I1g(r) is the temporal set of tuples on

S such that
re Ils(r) & Jgcyr <x = @y(S))
yeq
For example,
EMPLOYEE :IAY{EMP#,SSQ(EMPLOYEE),
SALARY = ﬁ{EMp#TsysamM(EMPLOYEE),

DEPT = IT(empsrs,depy (EMPLOYEE),

where the relation EMPLOYEESs as given in Table 3.
For relation scheme®, R and S with S C R C @, it
can easily be verified that, ifis any relation on scheme
Q, then

[Is(ITr(r) = Is(r)

The following algorithm computes the projection opera-
tion:

Algorithm projection

input: relationr on schemeR? and a subschemg& C R.

output: relations = ITg(r) on schemes

begin
s(S) « 0;
for all € r do
s «— sU{z(S)};
end;

Selection ). Let r be a relation on the schem®. Let
© be a set of comparators over domains of attribute
names inR. Let P be a predicate (called the selection
predicate) formed by attributes iR, comparators ir©,
constants in dom{), A € R, and logical connectives.
The selectionon r for P, written 6p(r), is a temporal
set{x € r|P(z)}. Since this definition is already in con-
ventional set-theoretic notation, we do not provide an
algorithm for selection.

Table 4. Example of selection and temporal projection operations

a GEMP#=3024DEPT) b Ti2.6)(6EMP#=3024DEPT))

EMP# TS  Dept EMP# TS Dept
3025 [1,3) Depl 3025  [2.3) Depl
3025 [3,9) dep2 3025  [3.6) Dep2

The selection on DEPT for “EMP# = 3025” is shown
in Table 4a. The reader may verify that for any two
selection predicateB; and P, involving attributes ofR,

&Pl (&Pz (T)) = &P2(8P1(T)) = &Pl/\PZ (T)

In the temporal model, the selection predicdtemay
contain temporal conditiong contains, in addition to

the usual comparators, temporal comparators discussed
in Sect.2.1. A wide variety of selection predicates can
be formulated using these comparators.

Temporal projection (7). Letr be a relation on the scheme
R andT €.7. Thetemporal projectiorof r during 7',
denotedl'r(r), is a temporal set of tuples dr such that

2 Tr(r) & (xe,r)A(TS € R= 2(TS) CT)

For example, the temporal projection of the relation in
Table 4a during [2,6) is shown in Table 4b. Clearly, if
TS ¢ R, thenfT(r) =r, wherer is a relation onR. The
algorithm for temporal projection is given below:
Algorithm temporal projection

input: relationsr on schemeR andT € .7
output: relations = T'r(r) on schemeR

begin
s(R) — 0;
for all z € r do
if (TS € R)A(z(TS)NT #0) then
s —sU{(z(R—-T9),=(TS)NT)}
else if (z(TS) € (R1N Ry)) then
s —sU{z};
end,

Our temporal projection is similar to the time-slice op-
eration of Clifford and Crocker (1987) and Navathe and
Ahmed (1989) and the temporal selection operation of
Gadia (1988). Since there is an added dimension of time
in the temporal extension of the relational model, we
need the temporal projection operation to restrict a rela-
tion along the time dimension.

Note that the rollback and snapshot operations (McKen-
zie and Snodgrass 1991b; Snodgrass and Ahn 1985) can
be obtained by using the projection and temporal pro-
jection operations jointly. For example, consider a re-
lation » on a schemeR such that7S € R, with TS
two-dimensional. LetR’ = R — {T'S}. Then the roll-
back operation om to a transaction time poirtt would
produce the relation’ = Tio +ac)x[z.4(r)-

The snapshot of’ at a valid time-point’ as oft would

be the relation” = IIr: (Yj 1) 1,4(r))-

Rename p). The renameoperation p) is used to change
the names of some attributes of a relation. Lebe a
relation on schemer, where A and B are attributes
satisfyingA € R andB ¢ R. Let A and B have the
same domain, and le®’ = (R — A) U B. Thenr with A
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renamed taB, written g4 5(r), is the set of tuples (on Cartesian product (x). The Cartesian product of two re-

R) {y|3z € r((y(R'—B) = 2(R—A)) A (y(B) = z(A4)))}.

lations can be defined as a special case of a natural

Thus, the rename operation remains the same (as in snap- join (Codd 1990, p. 66) where the relations do not have

shot algebra) in our algebra. One must be careful when
renaming the timestamp attribuié, because if it is re-
named, it will no longer be treated as the implicit times-
tamp; rather it will be a user-defined time attribute.

3.1 The relational algebra

Given the above operations, the relational algebra can now
be defined formally in a fashion similar to Maier (1983):

Definition 3.1 (Relational Algebra) Assume thatU is a
set of attribute names, called thaiverse U may have
timestampTsS as its element. LefZ be a set of domains,
and letdom be a total function fromU to &. Let R =
{R1, Rz, ..., R,} denote a set of distinct relation schemes,
whereR, C U, for 1< i <p. Letd ={rq,r,...,r,} be a
set of relations, such that is a relation onR;, 1 < i < p.

© denotes a set of comparators over domainsZin The
relational algebraover U, &, dom, R, d and © is the
seven-tuple2 = (U, <~ ,dom, R, d, ©, 0), whereO is the
set of operators union, difference, natural join, projection,
selection, temporal projection and rename using attributes
in U and comparators i, and logical connectives. Aal-
gebraic expressionver.# is any expression formed legally
(according to the restrictions on the operators) from the re-
lations ind and constant relations over schemegjinusing

the operators ir0.

Let scHE) be theschemeof an algebraic expressiali. We
can definesch F) recursively as follows:

1. If Eisr;, thenschE) = R;.

2. If F is a constant relation, thesth(E) is the scheme for
that relation. R

3. If E = E\0UE,, E1=F,, 6p(F), or Tr(E1), whereP is
a selection predicate, alde .7, thensch(E)=sch(E3).

any common column (with the possible exception of the
timestampTs). Let Ry and R, be two relation schemes
such that R; N Ry) — {TS} = . Let r, andr, be any
two relations on schemd?; and R, respectively. Then,
the Cartesian product of; andr, is a relation on the
scheme Ry U R,) defined as:

T1XT2 =T1XT2

Note that the criterion®§; N R,) — {T'S} = (), necessary

in the definition of Cartesian product, is not a limitation,
since any common attribute can be renamed before this
operation is applied.

Theta-join (xe). The theta-join operation can be thought

of as a Cartesian product between two relations (with
common attributes except timestamp renamed when nec-
essary) followed by a selection operation, where the
selection predicate contairscomparable comparators
(Maier 1983). Letr; and r, be as above, an®® =

Ri U Ry. Let ©® and P be as in the definition of the
selectionoperation. Then the theta-join betweenand

2, Written 71 x pr), iS given as:

T1IX pro = Gp(riXr))

Division (). Letr; andr; be any two relations on schemes

R; and R, respectively, whereR, C R;. Let R’ =
Ry — (R — {TS}). The division ofr; by r,, denoted
r1=rp, is a maximal temporal subset éfx (r1) which,
when joined (natural join) withr,, produces a temporal
subset ofr;. Alternatively, the division operation may
be expressed as:

riiry = p(ry) = g ((ﬁR/(T’l)I;Wz) “r1)

3.3 Modification of the database

In addition to data extraction queries, a query language also
has to support modification of the database. The relational
algebra should then support operations such as insertion,
deletion and updating. Each of these is discussed below.

4. If E = ITg(Ey), thensch(E) = S.
5. If E = E1xE», thensch(E)=sch(E1)Usch(Fy).
6. If £ =pa.p(F1), thenscHE)=(schF;) — A) U B.

Insertion. An insertion into a relation is expressed as

r «— rJE, whereFE is any relational expression such that
the schemes of and £ are the same. Since the uniab) (
operation has been redefined, the above expression can
handle insertion into static as well as temporal relations.

beletion. A deletion from a relationr is expressed as
r «— r—E, whereE is any relational expression on the

3.2 Other relational operations

It is also possible to express the other relational operations,
such as intersection, Cartesian product, theta-join and di-
vision in terms of the basic relational operations discusse
above.

Intersection (7). Letr; andr, be two relations on the re-
lation schemeR. The intersection of these two relations,
denotedr1 Ny, is a temporal set of tuples di such that

x € (rNrp) & (x € 1) A (x € 1)
Alternatively, it can easily be verified that

Tlﬁ’l’z = Tli(T’]_:Tz)

same scheme as that of Since the difference opera-
tion has been redefined, such expressions will work with
static, as well as temporal relations. The deletion opera-
tion need not necessarily delete all historical information.
Careful specification off can retain all the past informa-
tion, while ensuring that no more information is added in
the future. More specifically, for two-dimensional times-
tamps,E can be specified a8 = Yr(op(r)), where P

is the selection predicate specifying the delete condition
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andT = [07 OO)X[tNOWa oo); the first axis ofT is the valid Table 5. Examples of delete and update operations

time, and the second the transaction time.

Consider, as an example, the relation DEPT1 shown in a Relation: DEPT1

Table 5a, where the timestamp is two-dimensional with i g Dept
valid and transaction time. The first tuple in this relation 3005 2, o0y x[1,10) U [2,9)x[10,00)  depl
should be interpreted as (Snodgrass and Ahn 198%)e “ 3025  [9, 00) X [10, c0) dep2
Employee with EMP# 3025 worked in depl from 2x0 . .
(valid time) as of 1 through 10 (transaction time), and

from 2 to 9 as of 10 througho.” Now at time 15, if we

know that the same employee has resigned, we could b Relation: DEPT2

perform the following delete operation:

EMP# TS Dept

DEPT1Z 7; _ DEPT1 3025 [2,00)x[1,10) U [2,9)x[10,15) depl

[0, 00){ tnow, 00) (TEMP#=302¢ ) 3025 [0 00)x [10,15) dep2
The resulting relation is shown as DEPT2 in Table 5b. . . .
Note that the system should automatically assign a value -
of 15 to tyow-

Updating. The update operation is used when some values ¢ Relation: DEPT3

in a tuple need to be changed, while retaining the other gypy TS Dept
values that we do not wish to change. Such changes 3025 (2, 00)x[1,10) U [2,9)x[10,00)  depl
cannot always be made by using only ttieletionand 3025  [9, 00)x[10,15) U [9, 16)x[15,00)  dep2
insertionoperations. Thapdateoperator (denoted b§) 3025 [16, 00) X [15, o0) dep3

is redefined in this algebra. This operation is expressed
as 6(a—g),r(r) wherer is the name of a relation with
attribute A, which is assigned, for all time points i €

7", the value of an arithmetic expressi@ninvolving  nponunique aggregates, where duplicates are retained for cal-
constants and attributes i? (the scheme ofr). The  cyjation of aggregates. It must be noted that the case of
semantics of the update operation is given by: unique aggregates does not need any special treatment, since
2 5 our algebra, by default, removes duplicates and coalesces
T € dacmyr(r) < (x & ATT(T))) overlapping tuples. It will be shown, by way of examples,
V(Jy € Tr(r)(@(R) ~ y(R')) how unique aggregates can be calculated by slight variation
Az (A) = E(y))) of the approach useq for nonunique aggregates.

Klug (1982) provides a formal basis for nonunique ag-
whereR' = R — {A}. If r is static,fT(r) =r, and the gregates in the snapshot relational algebra. Most of his ideas
definition would reduce to the definition of static update can be extended in the temporal relational algebra. Aggre-
where values are simply overwritten. gates in temporal databases have been examined by sev-
To illustrate, we reconsider the relation DEPT1 showneral researchers (Ben-Zvi 1982; Navathe and Ahmed 1989;
in Table 5a. Assume that a piece of information arrivesMcKenzie and Snodgrass 1991a; Tansel 1987). These ef-
at time 15 indicating that effective time 16, 3025 will forts indicate the necessity for obtaining a distribution of
be transferred to dep3. The update operation should bgalues over time. This aspect is modeled by adopting the

specified as: idea of amoving aggregation windofvom TSQL (Navathe
- and Ahmed 1989), and refining the overall scheme with pre-
O(dept—dep3)[16,00) x [tnow.0c) (DEPTL) cise definitions.

and would result in a relation DEPT3 as shown in Ta-

ble 5c.

_ . . 3.4.1 Basic aggregate functions
In the definition of deletion and update operations, we

specified the transaction time component for clarity of ex-

pression; it could be automatically supplied by the system. Let g = {min, max, sum, avg, ...} be a set of aggregate

functions. Letr be any relation on the schenie Let R’ =

R — {TS}. For anyg € g, g(r) returns an aggregate tuple

on R/, i.e., g is a function from the set of instances of the
relation schemeR to the domain ofR’. If the aggregate

i i . function g is not defined on the domain of an attribute name
Commercial database management systems typically providg ¢ g’ then a special valug is returned for that attribute.

aggregatefunctions such agax, min, sum, avg, count ,  gefore these aggregate functions can be described, we must
etc., and anaggregateclausegroup by . Obviously, it = gefine ameasure function(Rudin 1976)y on .7 in the
would also be useful to have temporal aggregate funct|on§0"owing manner:

supported in a temporal database management system.

Two types of aggregates have been discussed in the litd. If ¢; is an m-dimensional interval, then; is the set
erature (McKenzie and Snodgrass 1991a): (1) unique ag- of pointst = (t1,t2,...,t,) such thata; < ¢; < b;,
gregates, where duplicate tuples are eliminated, and (2) i=1,2,...,m, and one or more of th& signs may be

3.4 Aggregate functions
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replaced by<. Then,u(t7) = [T:2,(b; — a; +¢€), wheree
is a very small number (say, 1&). In the case where
b; = oo, b; should be replaced b, in calculation of
the functiony. If ¢, is anm-dimensional time point, then  Temporal group by. This clause allows us to find a distri-
it can be treated as a degenerate interval,gng) = ™. bution of aggregate values over time, based omoaing
2. If T € .7, thenT can be represented as the union of  window(Navathe and Ahmed 1989) af The aggregate
a finite number of disjoint intervals, i.€T = Uk, tr;, g for the attributes inX C R’ of relationr on scheme

wheret;; Nt;; =0 if i # j. Then,u(T) = Zf:l ultry). R, TS € R, aggregated over am-dimensional tempo-

_ _ _ _ ral window w is written asg%(r), and is given by the
Now the aggregate functions can be defined in the following  following relation on the schemeX(U {TSY):
manner. The minimum function an writtenmin (), returns .
a relation containing a single tupteon R’ such that:(4) = W () = R T (r
meiny(A), forall A € R’. Similarly, max(r) returns a relation 9x(r) TLéJr{ yuigx ( ( ))}
yer

k0= | (=R {ox (fa}ir)}

weﬁy(r)

with the tuplez on R’ such thatz(A4) = Tgxy(A), and wherel is the collection of time intervalgry, 72, . .., 7, }

such that the following hold:
q

1. Ur,; = t;, wheret; is the smallestn-dimensional
=1
interval containingll 7, (r).

2. inf(tr) = inf(r), and supl;) = supfy).

sum(r) returns a relation with the tuple on R’ such that
z(A) = Zy(A), for all A € R’. The average function on

yeT
r is written asavg (r), and returns a relation with a single

tuple z on R’ such that, for allA € R,

> y(Ap(TS)) 8. 7N =0i#j,1<ij<q
z(A) =¥, 4. If 7;; is thej-th component interval of;, and if w;
; wy(15)) is the j-th component ofv, then u(r;;) = w;, for all
yer

i,5;1=12,....,q—1;7=212,...,m.
It has been assumed that a relatiohas zero-dimensional
timestamps if its schemB does not contaiff’s; as a result,

the above definition is applicable to static relations as well.
If any one of the above mentioned functions is not defined
on an attributeA € R’, thenz(A4) = 2. Other aggregate
functions can be defined in a similar manner and added to
the selg. Now, the aggregate function on a set of attributes is
defined agyx (r) which represents the nonunique aggregate
g for the attributes inX c R’ as

gx(r) = ﬁx(g(r))

For count , a slightly different approach is taken. The
count function onr returns, for each non-timestamp at-
tribute in its scheme, an integérgiven by

k=) ()

yer Example query 1. How many clients are thereThis is
equivalent to counting the total number of unique clients
in the relation PROJECT.

count  (ITclieng (PROJECT) = 2

The above conditions ensure that the entire time horizon
of the relation is partitioned into smaller subintervals of
the size of the moving window. The aggregate function

is then performed repeatedly on the temporal projection
of the relation during each of these subintervals. We al-
low anm-dimensional moving window; however, if the
distribution of values is required only over valid time as
of a time-point in the transaction time domain, it is possi-
ble to rollback the relation using projection and temporal
projection operations, and then take the aggregate over
the resulting relation.

We show a few examples now to illustrate how different
types of aggregate functions can be expressed in terms of
the formalism described above.

In other wordscount is a function from the set of instances
of the relation schem® to the set of nonnegative integers.
Thecount function onr for an attribute inR’ is the same

numberk.
Example query 2. What was the minimum salary during

[2,3)?
MiN satary (Ti2,3(SALARY)) = {15K}

It may be desirable to calculate aggregates on several pagExample query 3. Find the average salary grouped by em-
titions of a relation that are partitioned based on a set of pjoyee

attributes. This is equivalent to tlggoup byclause in SQL. EMp
Two types of partitioning is defined: (1) partitioning based  aVg say(SALARY) = {(302517.50), (6637, 17.44K) }
Example query 4. Find the average salary of all employees

on nontemporal attributes which is equivalentg@up by
in SQL, and (2) partitioning based on temporal attributes over the moving window of. ZThis is a temporal group
by, and can be expressed agg galan(SALARY). The

3.4.2 Aggregate functions on partitions of relations

which may be viewed as @mporal group by

Group by. The aggregate for the attributes inX ¢ R’ of
relationr grouped byattributes inY, Y c R/, XNY =,
is written asg¥. (), and is given by the following relation
on the schemeX UY):

interval [1,12), the time horizon of the relation, is first
computed, and then partitioned to smaller subintervals
of measure 2. The desired aggregate is then computed
within each subinterval. The result is shown in Table 6.
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Table 6. Distribution of average salary over time (moving window = 2) temporal
transform
s Salary r e - =TT.(r)
[1,3) 15K
[3,5) 16K
[5,9) 18.5K snapshot analogous
[9,11) 18K o err)ator temporal
[11,12) 19K pop operator
op
) ) A\ A\
4 Properties of complete temporal relational algebra op(r) . | > TT(op(r)) = op(r)
emporal
. . . transform
In this section, several properties of the proposed tempo- TT.

ral relational algebra are described. This algebra is closedkig. 1. Outline of an equivalence proof (McKenzie and Snodgrass 1991b)

meaning that all of the algebraic operators produce valid ob-

jects; in this case relations. It is also a consistent extension

of the snapshot algebra, and reduces to the latter when timiavo possibilities. Either there is only one value-equivalent

is not part of the relation schemes. It is as expressive afuple y € r, in which case{ @ y) € (r1Urp); or there is

the temporal calculus based query language TQuel (Snodio such tuple inr,, in which caser € (r1Ur,). A similar

grass 1987). This algebra also supports the basic algebra@oservation is also true about every tuplerin It is then

equivalences of the snapshot algebra. Some of these algelear that the total number of tuples im{r;) is no more

braic equivalences are stated in the following theorem, andhan (ri| +|r2|), where|r| denotes the number of tuples in

then the other properties examined. a relationr. It can be shown in an analogous manner that
(a) the number of tuples inr{—r;) cannot exceedr|, (b)

Theorem 4.1 LetQ, R andS be three relation schemes with the number of tuples inr{xr;) cannot exceedr| x |r2|,

S C R. Letq be a relation on schem@, and letr, 71, 72 (c) the number of tuples ifis(r) cannot exceetr|, and (d)

_be relatlons on schemgR. Let P be any selection predicate the number of tuples i /() cannot exceedr|.

involving attributes ofR, and letT be any value from7",

the domain ofl’'S. Then, the following are identities:

@) g (10m) = (grr)0(gnrs),  (0) e (r1 =) = (gRr) > (gera), 4.1 Correspondence with the snapshot algebra

©36p(ri0r2) =6p(r)06p(ra),  (d) Gp(ri=ra) = Gp(r)=ap(ra),

(@) Tr(ri0r2) = Vr(r)OTr(r2), () Tr(ri=r2) = Tr(r)=Tr(r2), This algebra is a consistent extension of the conventional
@7r(gwr) =Tr(@)nTr(r), (h) I1s(r10r2) = I15(r1)011s(r2).  spapshot algebra, and reduces to the snapshot algebra when

time is not modeled. Before these properties can be proven,

we first need to define two operators. These operators are not

part of the algebra, but allow us to transform static relations

Theorem 4.2 The proposed temporal relational algebra is t0 temporal relations ance versaFor these definitions and

closed. the related discussion, we will use primé X for temporal
relations exclusively.

Proof. We must show that all of the basic operations in o

this algebra result in a relation as defined in the algebra. ADefinition 4.1 (Temporal transform) Let R and R’ be re-

relation must satisfy three criteria: (1) the values must comdation schemes satisfyin@s ¢ R and k' = R U {T5}.

from an appropriate domain, (2) no two tuples in a relationL€t 7 be any relation on sch_emB. The tem_poral trans-

are value-equivalent, and (3) it must be a finite collection ofform of r» over 7 € .7~ (written TT.(r)) is a relation

tuples. r’ ={z|z(R) € r,z(IS) =7} on R’.

It is easy to see that the first criterion is satisfied for all
attributes except timestamps. For timestamp attributes, th
domain.Z~ has been constructed in such a fashion that th oint ¢ (written SN.(+) is a relationr = {z(R)|z € 1/,
timestamps are closed under usual set theoretic operationx(TS)} on R ’
Also by definition of a tuple, it cannot contain an empty '

timestamp. For example{(3025[3,5))}~{(3025[3,5))}  Theorem 4.3 The proposed temporal relational algebra is a

would evaluate to an empty relation (“null set” of tuples) consistent extension of the snapshot algebra.
in our algebra, and not t§(3025 0)}.

The fact that no two value-equivalent tuples are producedProof. A temporal algebra is said to be a consistent ex-
when the basic operators are used is explicitly ensured in theension of the snapshot algebra if any relation or algebraic
definitions of the operators. If there is a possibility of gen- expression that can be represented in the snapshot algebra
eration of value-equivalent tuples, then those tuples woulchas a counterpart in the temporal algebra (McKenzie and
be automatically coalesced in this algebra. Snodgrass 1991b). In other words, the algebra should be at

One can prove that the third criterion is satisfied by con-least as powerful as the snapshot algebra. Figure 1 gives an
structing the resulting relation from the operands. Let usoutline of the equivalence proof for a unary operator.
consider the union operation. Assume thatndr, are re- Let @ and R be two relation schemes such thet ¢
lations on the same scheme. For every tuptery, thereare @ and TS ¢ R, and letq(Q), r(R), r1(R) and rp(R) be

Proof. Straightforward, by expanding both sides of each
identity using the definitions of the operators.

eDefinition 4.2 (Snapshot)Let R and R’ be as above. Let
7' be any relation on scheni®. Thesnapshotof r’ at time
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snnghot SN,(r5), then there exists’ € 4 such thatr = 2/(R) and
7! > 7 = SN(r) t € «/(T5). In either casex’ ¢ (rqUrp), = «'(R) and
t € 2/(15). Clearly,z € SN,(r{Ur?).

Now assume that a tupleis in SN,(r;0r3). Then there

temooral analogous . N A g
o err’ator snapshot existsz’ € (ri0rp), with z = 2/(R) andt € 2/(TS). This
pép operator means that:’ is a partial temporal member in at least one
op of r{ andrj. Clearly,z must be in at least one of ${¥;)
v v and SN(r5), which implies thate € (SN;(r7) U SN;(r5)).
op(r’) snapshot > SNe(p(r')) = op(r)
SN,

Fig. 2. Outline of a reduction proof (McKenzie and Snodgrass 1991b) 4.2 Correspondence with temporal calculus and TQuel

In this section, we show that the proposed algebra is equiv-

relations on these schemes. Also @t = Q U {75} and alent to a temporal calculus in its expressive power. This,
R' = RU{TSY. In order to establish this theorem, we must in a sense, would ensure the much desired completeness of

prove just the following identities for any € .7 the algebrd. We will use TQuel (Snodgrass 1987) (which

is based on temporal calculus) for this purpose. The reasons
@) TT,(r)UTT(r2) = TT-(r1 Ura), for choosing TQuel over others proposed in the literature are
(0) TTr(r)=TTr(r2) = TTr(r1 — 72), simple. First, TQuel employs tuple time-stamping as does
©) TTr(@nTT-(r) = TTr(q x 7), our algebra. Second, TQuel semantics is formally defined.
@) 6p(TT+(r)) = TT-(op(r)), Third, TQuel uses both valid and transaction time. Finally,
(€) IIg/(TT,(r)) = TT-(IIs(r)), whereS C R andS’ = S U {TS} TQuel istemporally complete

The TQuelretrieve statement has the following syntax

We will prove only the first identity; the others can be proven (Snodgrass 1987):
similarly. ~ range of x1 is r1

If atuplex’ €, TT.(r1)UTT,(r2), then there are just two
possibilities: (1)’ €; TT.(r1), or (2) 2’ €; TT,(r2). The

third possibility of existence of value-equivalent tuples is not 2198 of zk iS %

, ) . : tri iy-Djys - xiy D
relgvgnt, since all of the Fuples hz_ive |dent!cal t|me§tamps.re nevsaﬁfj trom v 1o ;5 a-Dia)
This implies thatz’(R) is in r; or in rp, or in both, i.e., where 1
Z'(R) € (ryUrp). Thenz’ € TT.(ry Ury). when 7

Alternatively, if a tuplex’ is temporally in TT.(r; U as of a through 3

rp), then 2’(R) € (r1 U rp), which implies that either
a' € TTo(r1), or a’ € TT.(r2). Clearly,z" €; (TT(r1)
UTT,(r2)).

The corresponding tuple calculus statement has the fol-
lowing form:

(a+4)|(3 ...(3 VAN
Theorem 4.4 The proposed temporal relational algebra re- %[1] i(zzl&l] A( .%fcz\(ryl[(g]li/;iq[jq]m(mk)

duces to the snapshot algebra. Aylg+ 1] = B, A ylg + 2] = &y A Beforeg[q + 1], ylg + 2])
) ) ) Aylq + 3] = current transaction id y[q + 4] = co
Proof. A temporal relational algebra is said to reduce to theay’ A,

snapshot algebra if the semantics of the algebra is consisten{v))(1 < ! < k.(Before@., z;[stop]) A Before(;[stop], #)))
with that of the snapshot algebra (McKenzie and Snodgrasy:
1991b). The reduction proof for any unary operator is OUt'wherew’ and I', are obtained fromy and = by replacing

lined in Figure 2. ;
, , . , each occurrence of an attribute name by the value of that
Let @ and R’ be two relation schemes such thi#t e Q attribute for a tuple.

and TS € ', and letq'(Q), '(R'), ry(R') andr(R') be We, however, necessarily wish to deviate from Snod-

relations on these schemes. Also @t= Q' — {IS} and ' : ; P :
pige ¢ ” grass’s philosophy of updating the transaction timestamp (in

R = f n {TS}tL;.We must prove the following identities for the resulting relation) to the current transaction id (or, time).

any time pointt: Recall that the transaction time of a tuple is the time when

(@) SN.(}) U SNe(r) = SNe(r]0rp), the information contained in _the _tuple was recorded. in the
(b) SNe(r}) — SN () = SN (%, ~75), database. Thus, the transaction time should only be inserted
(c) SNi(¢') X SN¢(+) = SNi(g’ =), or changed when a new tuple is inserted or an old tuple is up-
(d) o p(SNe(r")) = SN (6 p (")), dated. It must be noted that no new information is recorded
(e) IT5(SNy(r")) = SNy(ITg/ (")), whereS C R, andS’ = S U {TS} in the database during the execution of a retrieval query.

5 McKenzie and Snodgrass (1991a) define a relational algebra to be
The first identity is proven below. The rest follow in an completeif it is at least as expressive as the snapshot algebra. In that
analogous fashion sense, this algebra is complete (see Theorem 4.3). However, we adopt a
L , . , different criterion for the completeness in a temporal relational model. We
Ifa tuplex € SNt(Tl)USNt(Tz)! then eitherr € _SNt(rl) feel that the completeness of a temporal relational algebra must require
or x € SNi(r5). If x € SNi(ry), then there exists’ ¢ reducibility of every expression in a temporal relational calculus to an
ry such thatz = 2/(R) andt € /(7S). Similarly, if x € equivalent expression in that algebra
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Table 7. Relation SAL SAL’ with attribute A being renamed tod’. Note that the
timestamp[’S in SAL is renamed td’S’ in SAL’, and is no
EMP# s Salary longer a timestamp. The answer can be found by evaluating

3025 [13)U[5,7) 18K
3025 [35)U[7,9) 20K

6637 7 17K . A
6637 [[73,1;) 19K ey (SALIXI pSAL/) ,

the following relational expression:

where

Then, it is clear that the transaction timestamp of any tuplef’ = (EMP# = EMP#) A (salary> salary) A (TS < TS').

in the resulting relation should not bé.d., oc). Rather, it |t gther attributes (such as name, department and manager)
should be calculated from the tuples of the participating re-g these employees are needed, that can be easily found by

lations, much in the same way valid timestamp for the tuplejsining the above expression with the relations which contain
is calculated. The modified tuple calculus statement woul&pat information.

then assume the form:

(Y| 3z1) . .. Cap)(ral@) A - .. Arplor)

Ayl = 24 [ A - Ayldl = =4, L] 4.3 Evaluation of the proposed algebra
Aylg +1] = D, A ylg + 2] = &y A Beforef[q + 1], ylg + 2])
Q?p[’q * i]; Pa Aylg+4] =P A Before[q + 3], ylq + 4]) Recently Snodgrass et al. (1994) describe a temporal exten-
7 sion to SQL-92. They provide a list of desirable features for
.(Bef o> T f , , i
)A}M)(l < 1< k.(Before@., i[stop]) A Beforets[stop] 25))) the data model and the language. Our model contains most

of these features. First, it employs tuple time-stamping. As
Let us call this thé'modified TQuel semantics”. It must  a result, all the tuples are automatically homogeneous. Sec-
also be noted that TQuel coalesces value-equivalent tuplesnd, our valid time support includes support for both the
only if they are adjacent or overlapping. Thus TQuel al- past and the future. Third, since we assume the time line is
lows other value-equivalent tuples to be present. It will, continuous, our timestamp values are not limited in range
however, be assumed that a resulting relation contains nor precision. Fourth, our algebra is a consistent extension of
value-equivalent tuples; that is, all value-equivalent tuplesthe relational algebra. Fifth, our operations do not accord any
are coalesced. explicit attribute special semantics. Sixth, in our model tem-
) ) poral support is optional; it is possible to have static relations
Theorem 4.5 Every TQuelretrieve statement, with the 55 4 special case. Seventh, we define temporal extensions of
modified TQuel semanticscan be expressed in the proposed g common aggregate functions. Finally, our relations are
temporal relational algebra. implementable in terms of first normal form relations. The

Proof. Consider a generalized retrieve statement of TQuel>€ of multidimensional elementary subsets as timestamps
should not be considered as a violation of first normal form.

with the modified T | semanti iven ve. | n ) . ]
th the modified TQuel semantics as given above. It ca In this algebra, each elementary subset is treated as a sin-

easily be verified that this statement is equivalent to the . ;
following expression in our algebra: gle value for a time attribute, not as a set of values (or as

repeating groups). Valid operations on these values are also

o gorsy (Tnodans) (GuanTiXrsX ... xr}))) discussed so that the domaifi can be supported in a tem-
. . _ . . poral database management system.
wherer; is basicallyr;, 1 < ¢ < k, with some attributes Snodgrass et al. (1994) conclude that TSQL2 must have

renamed such that the Cartesian product operation is defineg, efficiently implementable algebra. Since our algebra sat-
on these relations. The Cartesian product ensures that all thgfies most of the desirable features, we feel that it is the
relevant relations take part in the expression. The selectiop,qst syitable for implementation of TSQL2.

operation ensures that the predicatesndr are satisfied for Besides, McKenzie and Snodgrass (1991b) provide a set
all tuples in the resulting relation. The temporal projection ot »g criteria for evaluating temporal algebras. The algebra
allows us to select only those tuples that are defined during, onqsed in this research is evaluated on these crftatia.
[v,X) x [, 5). Finally, the projection operation allows one g giso compared to five other existing algebras: (1) the time
to display only the necessary attributes. relational model by Ben-Zvi (1982), (2) the homogeneous

; ; : del by Gadia (1988), (3) the temporal relational model

Clifford et al. (1994) show that TQuel is complete with M© , rele .
respect to their calculugC for ungrouped temporal rela- 2Y Navathe and Ahmed (1989), (4) the historical relational
tions. This implies that our algebra is also equivalenfo algebra by Sarda.(1990) and (5) the historical r.elatlonal ?I'
and hence i§U complete. To illustrate the superior expres- gebra by Mc;Kenpe and Snodgrgss (1991a). This gvaluaugn
sive power of this algebra, let us formulate a query thatand comparison is summarized in Table 8. From this table, it
Clifford et al. (1994) shovx; most algebras fail to express:Can be seen 'ghat the propqsed algebra sat_|sf|es the maximum
“Find the employees who have at some time received a sala 'mber of cr'|ter|'a.'We'beI|.e\./e that ;he primary strength of
cut” We consider the relation SAL shown in Table 7. is algebra lies in its simplicity and its consistency with the

This query can be answered by using thi@in operation snapshot algebra.
between two instances of the same relation. However, be- ¢ McKenzie and Snodgrass (1991b) clearly show that, out of these 26

fore applying this operation, we need to rename th_e attribut@yriteria, seven criteria are conflicting. In other words, no algebra can satisfy
names in the second instance. Let the renamed instance lag 26 criteria
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Table 8. Evaluation of the proposed complete temporal relational algebra based on the criteria of McKenzie and Snodgrass (1991b)

Criteria Ben Gad NvA Sar McS CTR
1. All attributes in a tuple are defined for same interval(s) Y Y Y Y N Y
2. Consistent extension of the snapshot algebra Y Y ? ? Y Y
3. Data periodicity is supported N N N N N N
4.  Each collection of legal attribute values is a legal tuple N N N Y N Y
5. Each set of legal tuples is a legal relation Y Y N Y N N
6. Formal semantics are well defined P Y P P Y Y
7. Has the expressive power of a temporal calculus P Y P P Y Y
8. Includes aggregates Y P N N Y Y
9. Incremental semantics defined N N N N Y N
10. Intersection@-join, natural join, and quotient are defined P P P N Y Y
11. s, in fact, an algebra Y Y P ? Y Y
12.  Model doesn't require null attribute values Y Y Y Y Y Y
13.  Multidimensional timestamps are supported N N N N N Y
14. Reduces to the snapshot algebra Y Y Y Y P Y
15. Restricts relations to first normal form Y N Y N N P
16. Supports a 3D view of historical states and operations N N N N Y N
17.  Supports basic algebraic equivalence Y Y ? ? P Y
18.  Supports relations of all four classes P P P P Y Y
19.  Supports rollback operations P N N N Y Y
20.  Supports multiple stored schemas N N N N Y N
21.  Supports static attributes N N Y N Y Y
22. Treats valid time and transaction time orthogonally Y ? ? ? P Y
23.  Tuples are timestamped Y N Y Y N Y
24.  Unique representation for each temporal relation N N Y N Y Y
25.  Unisorted (not multisorted) N N N N N Y
26. Update semantics are specified P N N N Y Y

The ratings for all the models except the one presented in this paper have been taken from (McKenzie and Snodgrass 1991b).

Y, criterion satisfied)V, criterion not satisfiedP, criterion partially satisfied; ?, unspecified in repdBin, the time relational model by Ben-Zvi (1982);
Gad, the homogeneous model by Gadia (1988)y A, the temporal relational model by Navathe and Ahmed (198%):, the relational algebra for a
historical data model by Sarda (1990)/cS, the relational algebra by McKenzie and Snodgrass (1991#@)R, the complete temporal relational algebra
proposed in this paper

5 Conclusion A major contribution of this work is a concise and formal
definition of the relational structure and relational operations.

. One of the immediate future directions of this research
Although .temporal databases have peen an active area ?sf. to implement this algebra in a temporal database man-
research in recent years, representations of temporal data ement system; this is currently being pursued. Once this
the relational model have been varied. The complete temposx '

| relational alaeb din thi | Is done, we could build a more user-friendly interface such
ral refational aigebra proposed In this paper resoves SeVergig tg,| 2 we also plan to conduct a benchmark study that
open temporal relational issues, yet it is not significantly

! - ; will evaluate the performance of a temporal database man-
d|ﬁere.nt from the original reIauopaI algebrg. , .. agement system based on our algebra. One of the implicit
This algebra employs tuple time-stamping with multidi- assumptions of the proposed algebra is that a relation scheme
mensional _tlmestamps._The basic relatlonal operations havgges not change over time. This assumption, however, is too
been redefined as consistent extensions of the snapshot opegstrictive to model the real world accurately. McKenzie and
ations in a manner that preserves the basic algepra|c equisnodgrass (1990) and Roddick (1992) examine evolution of
alences of the snapshot algebra. A new operation, callegb|ation schemes. Future research will explore how the evo-

temporal projectionis introduced. The complete update se- |ytion of a relation scheme can be incorporated into our
mantics are formally specified and aggregate functions arg|gebra.

defined. The algebra is closed and reduces to the snapshot

algebra. It is also shown to be at least as expressive as the . _ »
calculus-based temporal query language TQuel (Snodgrag CoeReBtin T s oreiel e Py e e Universiy o
1987)' In Orde.r tq assess the algema’ it _IS evaluated usin ochester. We wish to thank our anonymous reviewers for their insightful
a set of 26 criteria proposed by McKenzie and Snodgrasggmments on a previous version of this manuscript.

(1991b), and compared to several existing temporal rela-

tional algebras. The proposed algebra satisfies the maximum

number of criteria.

We believe that a temporal extension of the relational
_mOdeI should at_tach th_e timestamps at the tuDIe level'_ Thlsl. Ben-Zvi J (1982) The time relational model (PhD dissertation) UCLA
is be.cause the view is simpler and much closer to the original, Cheng TS, Gadia SK (1993) An object-oriented model for temporal
relational model. Although a number of research efforts have  gatabases. In: Proceedings of the International Workshop on an Infras-
tried this approach, they all suffer from several limitations.  tructure for Temporal Databases, Arlington, Tex, June
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