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Abstract. The OSAM*.KBMS is a knowledge-base man- process a large number of knowledge rules which main-
agement system, or the so-called next-generation databasain the database in a consistent state or trigger some pre-
management system, for non-traditional data/knowledge-indefined actions when certain events occur. Although object-
tensive applications. In order to define, query, and manipuoriented programming languages can be used for defining
late a knowledge base, as well as to write codes to impleobject classes and implementing methods, they generally do
ment any application system, we have developed an objechot have integrated facilities to support persistence, query
oriented knowledge-base programming language called K t@rocessing, and the specification and execution of rules. In
serve as the high-level interface of OSAM*.KBMS. This order to solve thémpedance mismatgbroblems (Copeland
paper presents the design of K, its implementation, and itand Maier 1984) between database languages (which in-
supporting KBMS developed at the Database Systems Re:lude data definition languages, query languages, and rule
search and Development Center of the University of Floridalanguages) and traditional programming languages, next-
generatiordatabase programming languagas also needed
Key words: Knowledge-base programming language — for defining, querying, and manipulating a database, as well
Abstractions — Object-oriented knowledge model — Struc-as for supporting object-oriented and rule-based computa-
tural associations — Association patterns tions in an integrated fashion. Application objects, meth-
ods and rules are integrated in a database which we shall
call a knowledge base. In this paper, we shall use the
term “knowledge-base management system” (KBMS) and
“knowledge-base programming language” (KBPL) to refer

1 Introduction to such a next-generation DBMS and database programming
language, respectively.
1.1 Motivation In our earlier research effort, we have developed a pro-

totype KBMS (Lam et al. 1989a, b; Yassen et al. 1991)
With a view to widening the applicability of database tech- which used OSAM* (Su 1983; Su 1989; Su et al. 1989; Su
nology to non-traditional application domains such as com-and Lam 1992) as its underlying knowledge model, OQL
puter-aided software engineering (CASE), computer-aidedAlashqur et al. 1989; Guo et al. 1991] as its query lan-
design and manufacturing (CAD/CAM), office information guage, and the language reported by Alashqur et al. (1990)
systems, and knowledge representation systems, many sa8nd Su and Alashqur (1991) as its constraint specification
called next-generation database management systeni@nguage. In that system, the implementation of methods
(DBMSs) (Atkinson et al. 1990; Comittee for advanced still needed to be done in such traditional programming lan-
DBMS Function 1990; Special issue on next-generationguage as C++ (Stroustrup 1986). Because the method im-
database systems 1991) have been proposed in recent yedpementation language does not directly support the OSAM*
In general, a next-generation DBMS extends the functionalknowledge model, all the impedance mismatch problems still
ities of traditional DBMSs (such as persistent data manageéXxist. For example, one cannot combine the programming
ment, query processing, concurrency control, and recovery§onstructs of the method implementation language and the
in either or both of the following aspects. Firstly, object- querying constructs of the query language within a method
oriented data modeling constructs are introduced to modelo directly retrieve and manipulate the database. Moreover,
complex application domains, and the behavioral specificathe execution of rules is not well integrated with the exe-
tions are also incorporated into the domain and functionalitycution of methods. To solve these problems, we have de-
of a DBMS in terms of user-defined methods. Secondly,veloped a single integrated object-oriented knowledge-base
rule management facilities are introduced to manage an@rogramming language called K (Arroyo 1991; Shyy and Su

1991; Shyy 1992) to serve as the high-level interface of a
Correspondence tdS.Y.W. Su
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new version of KBMS called OSAM*KBMS (Su and Lam typed language so that as many type errors as possible can
1992; Su et al. 1993) for defining, querying, and manipu-be checked by static type checking at compilation time. On
lating the knowledge base, as well as for coding methodshe other hand, the type system should be flexible enough to
and rules of any data/knowledge-intensive application syssupport multiple representations of OSAM* objects in mul-
tem. In addition to such well-known object-oriented featurestiple classes as will be discussed in Sect. 2.

as abstract data types, information hiding, complex objectsy More emphasis on functionalities rather than efficiency.
relationships, inheritance, and reusable codes, K provides (1js a high-level programming language, K should put more
powerful abstraction mechanisms for supporting the undersmphasis on function than efficiency so that complex ap-
lying knowledge model which captures any application do-pjication systems can be rapidly constructed by the use of
main knowledge in terms of the structural associations (Suchhose high-level facilities of K. With the rate of hardware
as generalization and aggregation), methods, and knowledggogress, we do not feel that efficiency will be a serious
rules, (2) a strong notion of address-independent object idensgncern in the future.

tifiers (oid) instead of physical pointers, (3) a persistence Ty versions of K and its supporting OSAM*.KBMS
mechanism for supporting both persistent and transient obnaye peen implemented on Sun 4 in C++ as a first step
jects uniformly without the dangling references problem, (4)toward a complete KBMS-supported software development
a flexible type system which supports both static type checkzystem (Shyy 1992; Su and Shyy 1993). This paper presents
ing and multiple views of objects in multiple classes, (5) the design and implementation of the latest version of K.
a declarative knowledge retrieval mechanism based on oboyr contribution lies in providing a clean fusion of the
ject association patterns for querying the knowledge bas&echniques introduced in knowledge-base management sys-

and (6) basic data structures (set, list, and array) and multigey, programming language, and software engineering in an
paradigm programming constructs for specifying proceduralypject-oriented framework.

and rule-based computations.

1.2 Design principles 1.3 Related works
Many “database programming languages” (Atkinson and
Buneman 1987; Bloom and Zdonik 1987) have been pro-

ples.. . posed in recent years [e.g., Pascal/R, Rigel, Taxis, Dial,
1. Direct support of the OSAM*. KBMS kernel knowledge p|5i, ‘paplex, Adaplex, PS-Algol, GemStone, Galileo, Trel-

model.K should provide knowledge abstraction mechanisms;is;owel Vbase. E. Orion Proquel, O++, OQL[X], On-

to support an extensible kernel knowledge model which Wi”tos, IRIS, ObjectStore, and 02, as described respectively
be described in Sect. 2. All the semantic constructs such Schmidt (1977), Rowe and Shoens (1979), Mylopoulos
classes, associations, methods, and rules of the model shoul¢l | (1980), Hammer and Berkowitz (1980), Wasserman
be treated as first class objects in the same way as any othgf 5. (1981), Shipman (1981), Smith et al. (1983), Atkin-
objects in K. son et al. (1983), Copeland and Maier (1984), Butterworth
2. Wide-spectrum for both specification and implementationet al. (1990), Albano et al. (1985), Schaffert et al. (1988),
K should be a uniform language for knowledge definition, Andrews and Harris (1987), Richardson and Caray (1987),
knowledge retrieval, knowledge manipulation, and generalKim et al. (1988), Lingat and Rolland (1988), Agrawal and
purpose computation involving persistent/transient objects. Gehani (1989), Blakeley et al. (1990), Ontologic Inc. (1991),
3. Computationally complete should provide all the ba- Fishman et al. (1987), Wilkinson et al. (1990), Annevelink
sic data structures (set, array, and list), control structure§1991), Lamb et al. (1991), and Deux et al. (1991)]. Their
(sequence, repetition, and condition), and rule specificatio®m has been to overcome the infamdugpedance mis-

constructs for the users to implement any algorithm and tgnatchproblem between traditional programming languages
perform any computation. and DDL/DML (Copeland and Maier 1984; Maier 1989) by
integrating data definition, data manipulation, and general
: mputing facilities in a single language. A detailed survey
K should have readable syntax and stable semantics so th%gn be found in the work of Atkinson and Buneman (1987).

it can be easily understood and maintained. o . .

. , Most of the existing works are based on either relational,
5. Seamless incorporation of query/rule languagestead  fnctional, or object-oriented data models, with the extension
of simply embedding the existing query and rule languagesf persistence, associative access (using either iterators or
of OSAM*.KBMS into K, a uniform and well-integrated o -jike construct), and the computation facilities of some
syntax is necessary to provide set-oriented and declarativggitional programming languages such as Pascal, Lisp, and
query and rule specification facilities without any conflict c/c4+. They generally do not support rules which is con-
or ambiguity with other programming constructs of K. New gjgered to be one of the major requirements for the next-
constructs should be introduced only if we can demonstratgyeneration database systems. While research works in deduc-
one or more of the following pointseadability, new con-  {jye database systems [e.g., LDL (Chimenti et al. 1990), LO-
cept andconcisenessdvioreover, new constructs must satisfy grgs (Cacace et al. 1990), and Glue-Nail (Phipps and Derr
theorth_ogonalityprinciple, i.e., any combination of the pro- 1991)] and active database systems [e.g., Postgres (Stone-
gramming constructs is allowed. braker and Kemnitz 1991), Starburst (Lohman et al. 1991),
6. Strongly typedSince K is to be used for the develop- Ariel (Hanson 1989) and HiPAC (Dayal 1989; Chakravarthy
ment of complex software systems, it should be a stronglyl989) have extended relational or object-oriented database

The design of K is guided by the following general princi-

4. Maintainability and readability.The software written in
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systems with rules, they provide separate rule languages @s an abstraction to classify objects. Semantic relationships
extensions of their query languages instead of integratedmong objects are modeled by semantic associations; differ-
database programming languages. ent types of semantics are modeled by different association
Among the existing works, K is most closely related to types. Behavioral properties of objects can be defined declar-
O++ (Agrawal and Gehani 1989; Gehani and Jagadish, iratively by using knowledge rules, or procedurally by using
press); both provide persistence, querying, and rule facilitiesnethods. In K, persistence is an object property rather than
in an object-oriented framework. O++ extends C++ with thea class property, i.e. objects in the same class could be either
facilities for creating persistent and versioned objects, definpersistent or transient. Persistence is transparently supported,
ing sets, iterating over sets and clusters of persistent objectthus relieving the application developer from the burden of
and associating constraints and triggers with object classespecifying any procedure or data structure for storage man-
Unlike O++, which is a superset of C++, K is designed to beagement.
a high-levelprogramming language with the following dif-
ferences. Firstly, while O++ extends C++ data model with
rules, K supports a high-level knowledge model OSAM* 2.1 Knowledge model
where everything, including classes, associations, methods,
and rules, is all uniformly treated as objects. A user can2.1.1 Semantic constructs
use the query facility of K to query the meta-information
from the kernel schema in the same way as one queries arfylasses We useclassesas the knowledge abstraction unit
application domain. Secondly, while O++ extends the “for” to classify objects by their common structural and behav-
loop construct to iterate over sets, K provides more declaraloral properties in an integrated fashion. Classes are catego-
tive and concise constructs for specifying queries and rulegized asentity classe§E-Classes) andiomain classe¢D-
based orpbject association patterngAlashqur et al. 1989; classes). The sole function of a domain class is to define a
Guo et al. 1991). Thirdly, K uses address-independent obdomain of possiblealuesfrom which descriptive attributes
ject identifiers oids (soft pointers) as object surrogates rathe®f objects draw their values. Bottrimitive domain classes
than using physical address pointers (hard pointers). Persi§e.g., Integer, Real, and String) andmplexdomain classes
tent and transient objects are transparent to the users arf@.g., Date and Address) are supported. An entity class, on
are treated in the same way. For example, a query will rethe other hand, forms a domain of objects which occur in
trieve both types of objects instead of only persistent object&n application’s world and can be physical entities, abstract
as in O++. Fourthly, K provides a more flexible type sys- things, functions, events, processes, and relationships. The
tem which supports both static type checking and multiplestructural properties of each object class (calleddiéning
representations of objects in multiple classes which is no€las9, and thus its instances are uniformly defined in terms
possible in O++. Lastly, more emphasis is put on readabilof its structural associationge.g., aggregation and general-
ity and maintainability by providing readable syntax ratherization (Smith and Smith 1977)] with other object classes,
than using the non-intuitive syntax of C++. called theconstituent class¢sEach type of structural as-
sociation represents a set of generic rules that govern the
knowledge-base manipulation operations on the instances of
1.4 Paper organization those classes that are defined by the association type. Ma-
nipulation of the structural properties of an object instance
The rest of this paper is organized as follows. Section 2is done through methods, and the execution of methods is
gives an overview of K in terms of the underlying knowledge automatically governed by rules to maintain the system in a
model, knowledge definition facilities, persistence, and typeconsistent state or to trigger some predefined actions under
system. Query processing facilities are described in Sect. gertain conditions. In other words, the behavioral properties
in terms of object association patterns, context looping stateof an object class are defined as methods and rules applica-
ments, and existential and universal quantifiers. Procedurdle to the instances of that class. Since rules applicable to the
and rule-based computation facilities are described in Sect. 4nstances of a class are defined with the class, rules relevant
Section 5 describes the computation model of K. The syst0 these instances are naturally distributed and available for
tem architecture and the implementation of K and its sup-use when instances are processedichemas defined as a
porting OSAM*.KBMS are given in Sect. 6. Section 7 gives Set of class associations.
our conclusion and the future research directions. A partsObjects and instancefn the kernel model of K, objects are
manufacturing knowledge base, as suggested by Atkinsopategorized as domain class objects (DClassObject) and en-
and Buneman (1987), is given as an example throughoutity class objects (EClassObject). Domain class objects are
this paper to illustrate the expressiveness of K. self-named objects which are referred to by their values. En-
tity class objects are system-named objects each of which is
given a unique oid. We adoptdistributedview of objects to
2 Language overview support generalization as by Lam et al. (1989) and Yassen
et al. (1991) by visualizing an instance of class X as the
In this section, we present an overview of the features ofrepresentatior{or view) of some object in the class X. Each
the K language in terms of its knowledge model and knowl-object can be instantiated in different classes with differ-
edge definition facilities, its support of persistence, and itsent representations but with the same oid. Each instance is
underlying type system. The knowledge model of K is anidentified by a uniquenstance identifieiid) which is the
extensible object-oriented model in which classes are usedoncatenation of cid and oid, where cid is a unique number



184

A

signature
methods - Set

O MethodSignature

A
@] name (3 Siring
String link_name constituent_class

: String
EClassObject base_dass 4 Entity Class

Aggregation

G A
A
oid base_cmoDClassObject
G
OID Integer
csType | [ awoType | o
ass ] s80C e
i P A String
base_class Character
Boolean
Association
OAggregate
G
smmy Fig. 1. Overview of the kernel class
List structure of K

assigned for each class in the system and is defined as thepresented as rectangular nodes and circular nodes, respec-
typeof this instance. For two entity classes A and B, if classtively, (2) a generalization association is represented by a
A is a superclass of class B (generalization association), the@ link from a superclass to a subclass, and (3) an aggrega-
for each object which has an instance in the class B, it mustion association is represented by an A link from the defin-
also have an instance in the class A. Both instances have thag class to a constituent class. After compilation, any user-
same oid and are conceptually connected by a generalizatiamefined class will be added to the class structure as an im-
association link. A detailed discussion of the advantages ofnediate or non-immediate subclass of either EClassObject
the distributed view of objects can be found in the work of or DClassObject, while at the same time the objects corre-
Yassen et al. (1991). Each entity class is associated with asgponding to the class definition, associations, methods, and
extensionwhich is the set of all its instances. rules of the defining class will be created as instances of
Encapsulation and inheritancale adopt the C++ three- the system-defined entity classes named Class, Association,
level information hidingmechanism (Stroustrup 1986) by Method, and Rule, respectively. Note that this class struc-
classifying aggregation associations (which are referred tdure is self-describing in the sense that we use the model to
as attributes data membersor instance variablesn other ~ describe the model itself. _ _ _
object-oriented programming languages to describestie _As any application domain (including the model itself) is
of an object instance) and methods as either “public”, “pri- Uniformly modeled and mapped into the kernel model, one
vate”, or “protected”. All the rules associated with a class arec@n use the kernel model tocrementallyextend the model
treated as protected by definition. At the class level, all thelSelf to meet the requirements of various applications by
rules and public/protected aggregations and methods definegither (1) adding new structural association types [e.g., In-
by a class arenherited by its subclasses. At the instance teraction, Composition, and Crossproduct Su et al. (1989)] or
level, an instance of entity class A stores only the attributegntroducing subtypes of existing association types, or (2) ex-
defined for A, and it inherits (i.e., gets access to) all thetending the definition of existing association types [e.g., add
public/protected attributes from its corresponding instance$€W attributes defaultalue, nullvalue, optional, unchange-

(with the same oid) of all the superclasses of A. able, dependent (Shyy et al. 1991), etc., for the association
type Aggregation] so that more semantics can be captured

in the schema and maintained by the KBMS instead of be-
2.1.2 Model extensibility ing buried in application codes. Once a new association type
is defined, it becomes a semantic construct of the extended

Model extensibility is achieved via self-describingkernel ~ knowledge model and can be used in the definition of any
model, shown in Fig. 1, in which all the data model con- Object class.

structs such as classes, associations, methods, and rules are

modeled as first-class objects. One can extend the data model

by modifying this set of meta-classes. This kernel model als®-2 Knowledge definition facilities

serves as thdictionary of the OSAM*.KBMS as all the ob-

ject classes in the system are mapped into this class stru¢éa Atkinson and Buneman (1987), a set of four tasks is
ture. One can therefore browse and query any user-definggroposed to evaluate the expressiveness of database pro-
schema as well as the dictionary uniformly. In our graphicgramming languages using a manufacturing company’s parts
schema notation(1) entity classes and domain classes aredatabase. The four tasks are:
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F ] At the instance level, we store values and iids for value at-
| Use ‘ tributes and reference attributes, respectivéiylti-valued
A attributes are specified using the constructor classes Set, List,
child /A or Array. Note that in addition to the constructor Set which
" parent )\ quantity is critical in object-oriented databases, we also provide List
G and Array to capture the semantics of order which is useful

T — / Y

= ﬁ F— L in real-world applications (Atkinson et al. 1990; Committee
C

]
!

| BasePart ompositePart Real for advanced DBMS Function 1990). Note that an aggrega-

To— N : tion association between two entity classes is interpreted as
cost_~ a bi-directional link. For example, for the aggregation as-
Real ( assemblyCost sociation called parent from entity class Use to entity class
O Part, the system will automatically define and maintain a
Real set-valued aggregation from Part to Use (for each Part in-
Fig. 2. The parts knowledge base schema stance, the system records all the Use instances that refer to
this Part instance). The system will use this information to
support bi-directional navigation and to maintain teger-
1. Describe the database ential integrity of the knowledge base. Note that similar to
2. Print the name and cost of all base parts that cost mor¢he ER model (Chen 1976), when an association is expected
than $100 to carry descriptive data or behavioral information (in terms
3. Compute the total cost of a given composite part of methods and/or rules), the knowledge-base designer can

4. Record the decomposition of a new part in the databasegxplicitly model the association as an entity class.

"eb* how a new composite part is manufactured from itSgenerajization For each object class, one can use the gener-
subparts alization (G) association to specify its immediate superclass.

. . . Note that the generalization association is bi-directional and
This example has been successfully implemented in K.

: : : : . _.~can be specified in either direction. When class B is specified

In this section, we give an overview of the knowledge defini- as a subclass of class A, we say that class Bspezializa-
o e o K oY g how e s 10 peror e fon f ciass A, Forexarple, o say ‘BascPart & @ peci-
: : : " . lzation or subclass of Part” is equivalent to saying “Part is
be described in the following sections after the approprlatea generalization or superclass of BasePart”. In general, spe-
g;?ﬁéan;mnl?ng\?v?esérugtsagg\ils s%%?;?n?r?fzcinb; dénzhtﬁesggrerg]g?alization is used to construct object classes in a top-down
b Jge ba: : 194 . _“and step-wise refinement approach by giving more and more

sponding class definition in K is shown in Fig. 3. We define | and behavioral ies. N h I I
entity classes Part, CompositePart, and BasePart to model tﬁtructura and behavioral properties. Note that we also allow
N ' Ifie user to define specializations of primitive domain classes

parts, and an entity class Use to model the many-to-man

relationships among parts. Each Use instance has three g9, a s_ubset of integer) by_usmg rules to specify range,
; . . . .enumeration, or other constraints.

tributes, parent, child, and quantity, to record the relationship

that the parent part uses a certain number of the child part.

Each part has an attribute padtand must be either a base 5 3 persistence

part or a composite part. A base part has an attribute cost,

and a composite part has an attribute assemblyCost. K supports persistence so that objects can live after the exe-
cution of a program is terminated. Persistence in K is based
on the following rationales:

2.2.1 Association definition 1. Persistence isrthogonalto classes as in E (Richardson

and Carey 1987), O++ (Agrawal and Gehani 1989), ONTOS
Based on the knowledge model described in Sect. 2.1, eadfontologic Inc. 1991), and OQLIX] (Blakeley et al. 1990),
class definition in K generally consists of associations je. persistence is an object property rather than a class prop-
section, amethodssection, and aules section, as shown in  erty. Any subclass of ElassObject automatically inherits
Fig. 3. The following two kernel structural association typesthe persistence mechanism and it is up to the user to specify
are supported in K. Other association types can be introducegach of its instances to be either persistent or transient us-
by the model extensibility feature of the KBMS. ing the pnewor tnew operator, respectively, when creating
A new object. When a transaction is terminated, the object
manager will delete all the transient objects and remove all
gwe references to these transient objects by following the in-
verse aggregation links mentioned in Sect. 2.2. Contrary to
other existing systems, K automatically takes care of the dan-

st of aggregaton speciicatons. Each aggregaion spedli0 Eferences prabem (e, some anstnt nstances e
ification corresponds to an instance of the class Aggrega: yp prog

tion. An aggregation association defines either (Mahie terminated) instead of leaving it to the user’s responsability.
attribute if its constituentclass is a domain class, or (2) a 2. Persistence is orthogonal to oid. The advantages are
reference attributef its constituentclass is an entity class. twofold. Firstly, K provides a better object-oriented flavor

Aggregation.For each object class, one can define a set o
aggregation associations (attributes) to describestate of
its instances, as shown in Fig. 3. Each aggregation-group i
specified by a protection or encapsulation leyilyic:, pri-
vate; andprotected; as described in Sect. 2.1) followed by
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define CompositePart : Entity
associations:
Specialization { Part };
public:
Aggregation
{
assemblyCost : Real;

methods:
public:
method getCost() : Real,
method askUse();

method askChildPid(u : Use),
method askChildQty(u : Use);

end CompositePart;

define BascPart : Entity
associations:
Specialization { Part };
end BasePart;

define Use : Entity
associations:
public:

define Part : Entity

associations:
public:
Aggregation
{

part_id : String;
cost : Real;

}

methods:
method deleteDependents();

rules:
rule comp_part_no is
triggered after create(), immediate_after update(part_id)
dition (this.is_a(CompositePart), this.part_id |="" |
part_id[1] = "C")

otherwise
"All composite part ids must start with a C\n".display();
this.del();

end;

rule uniquePid is

triggered immediate_after update(part_id)

condition exist p in p:Part where p.part_id = this.part_id
and p != this

action "Part_id cannot be redundant” fdisplay("*** %s *** \n");

this.del();
end uniquePid;

Aggregation rule delDependents is
{ triggered before del()
parent : CompositePart; condition exist u in this *<[child] u:Use
child : Part; action
quantity : Real; this.deleteDependents();
} end delDependents;
end Use; end Part; Fig. 3. Specification of the parts knowledge base in K

than C++-based languages by enabling the users to (1) maneans that a variable of type X can only be assigned expres-
nipulate objects at the logical level instead of going to thesions which represent instances of class X or any subclass of
physical level, and (2) navigate through the database usX. In the latter case, the system will automatically convert
ing oids instead of pointer chasing. Secondly, as oids arghe type of the instance from the right-hand-side expression
independent of physical address, K enforcesitheutabil-  to class X during run time to actually refer to it as an in-
ity requirement of identity (Khoshfian and Copeland 1986).stance of class X. Method parameters and returned values
Therefore, unlike C++-based persistent languages which pudre checked against the method signature following the same
extra burden of managing two or three types of pointersrule as above.

(persistent, transient, and/or dual pointers) on the users, per-

sistence in K is transparent to the user in managing entity

class instance variables. 2.4.2 Type conversion

3. Persistence is orthogonal to queries and any object manigt the type checker is not able to ascribe a type to an ex-
ulation. For example, a selection query over an entity clas®T€SSion, the user must use trestoperator $ to specify the

should return both its persistent and transient instances d¥P€ in the form<class>$<expressior. The cast operator

long as they satisfy the selection condition as in Blakeley etS useful for the user to temporarily convert the type of an
al. (1990). expression or refer different representations of the same en-

tity class object in different classes. For example, suppose p
is an instance variable of type Part, then BasePart$p asserts
that the type of p is BasePart instead of Part. Similarly, to
resolve anyname conflictin inheritance, one must specify

i i , . from which superclass a particular property is inherited, by
K directly manipulates objects at the instance level. We de<aqing the type of an expression to that particular superclass
fine thetypeof an instance as the class to which this instancey, refer 1o the corresponding instance explicitly. For exam-
belongs. Every variable in K is bound to some instance andyje syppose hoth classes Part and BasePart define a method
therefore must be declared to have a type. Similarly, th&.5jjeq getCost(). To invoke getCost on a BasePart instance
result of an expression in K is an instance whose type i , one must use Part$h.getCost() for the system to unam-
determined by the return type specified for the methods angliyously invoke the correct method to corresponding Part
operators that are invoked in the expression. instance of b. Note that in the case when no name conflict
occurs, the system will automatically find the appropriate
superclass and perform the casting to support inheritance. In
other words, inheritance at run time is supported by casting
an instance of class X to be an instance of class Y (which is
The type of an expression in general can be detected bg superclass of class X) before accessing a property defined
textual inspection to decide on the type compatibility which by class VY.

2.4 Type system

2.4.1 Type compatibility
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For domain classes, onlypwardtype casting is allowed, CompositePart instance referred to by ¢ as a Part instance
i.e., a value from the domain class X can be converted tavhose iid is then assigned to p2. In statement (5), we delete
a value of any superclass of X, but not vice versa. For enthe instance ¢ and the object manager will automatically
tity classes, type casting can be performed either upward odelete all the instances of the object referred to by c in all
downward along a generalization hierarchy. Note that a nulthe subclasses of CompositePart (if any) following the gen-
value might be returned from a cast operator in the caseeralization association. All the references (association links)
when there does not exist any corresponding instance in thi these deleted instances from other object instances will be
target class. For example, BasePart$p will return null if theautomatically removed to maintain theferential integrity
Part instance referred to by p has a corresponding instanceonstraint. Note that for this particular object, even though
in CompositePart rather than in BasePart. It would be thet lost its instance in CompositePart, it still has its instance
user’s responsibility to handle null values explicitly. in Part. For example, we can use the variable p2 from state-

ment (4) to refer to its Part instance. In other words, we

allow an object to have different representations in different
2.4.3 KBMS operations classes (even spans more than one branch of the generaliza-

tion lattice), and we can insert or delete these representations
After an entity class is defined, we can insert instances intalynamically. This is a property that cannot be expressed in
that class. An instance can be created from scratch by inmost object-oriented programming languages except those
voking the tnew or pnew methods (defined in the meta-classystems which support multiple views of objects [e.g., As-
Entity of Fig. 1), followed by a list of attribute assignments, pect (Richardson and Schwartz 1991), IRIS (Fishman et al.
to create a new transient or persistent object along with ari987; Wilkinson et al. 1990; Annevelink 1991), and Clovers
instance of this object. The following K-program block illus- (Stein and Zdonik 1989)]. At the implementation level, it
trates the basic OSAM*.KBMS operations and the conceptis easier to delete an instance without extra copying data
of object/instance by using our example parts knowledgeand changing addresses. Note that we achieve this flexibil-
base: ity without losing the advantages of static type checking by
directly manipulating instances rather than objects. In state-

local 1:Part ment (6), a destroy statement will automatically delete all the
p2: p r:c instances of the object referred to by variable p1, including
E. .Co;p’ositepart those in the superclasses of Part (if any). An implementation
b: BasePart: of the object manager has been reported by Arroyo (1991).
begin
pl := Part.tnew() partid := “LS741" }; I/ (1) : —_
b := basePart.pnew() 3 Query processing facilities
e _{ pf rialgeft(égr?isi,tecgztrt; 2500/ (i)(S) Object retrieval in K is based on structural association pat-
2._'—pP-art$C' P ' I (4) terns among object classes in the form of (1) a context loop-
Edé?()' ' 11 (5) ing construct for querying and manipulating the knowledge
'1 des’tro 0: 11(6) base, and (2) existential and universal quantifiers for posing
end P yo: logical questions upon the knowledge base.

Statements (1) and (2) create two new objects, insert their
instances in the class Part and class BasePart, update th&irl Association patterns
attribute values, and return the iids to variables pl and b,
respectively. Note that by inserting a BasePart instance, th8ince K serves as a high-level interface of OSAM*.KBMS,
system object manager automatically inserts a correspondhe execution ba K program would generally involve the
ing Part instance (with the same oid) because of the geneprocessing of a persistent knowledge base. For knowledge-
alization association. The difference between the instancebase retrieval and manipulation, a knowledge-base program-
referred to by “b” and “pl” is that the former is a persis- ming language should include some knowledge manipulation
tent instance and therefore any update (using the assignmeobnstructs in addition to general programming constructs. In
operator) will be written to the database, while the latterour work on K, we use pattern-based querying constructs
is a transient instance which resides only in main memoryfor this purpose. We modify the context expression of OQL
Notice that the pnew and thew methods are invoked usindgAlashqur et al. 1989; Guo et al. 1991) as the primitive
conventional dot notation following the name of the class.construct for specifying structural association patterns based
This is interpreted by K as follows: return the instance of on which the system canavigatethrough the knowledge
the meta-class Entity corresponding to the given class, anBlase to identify the correspondiegntextssub-knowledge-
invoke the method pnew or tnew for that instance. This isbases) that satisfy the specifisdensionalpatterns.
similar to SmallTalk “class methods” or C++ “static mem- In general, each association pattern is specified by the
ber functions”. Statement (3) inserts a new CompositePartontextclause which has a set of classes and operators, and
instance of the object referred to by variable p1 (assume weptional where and selectclauses. Operators can be either
learn that this part is a CompositePart) and returns the iidassociation operators like **, and *<, or non-association
to variable c. Note that no new object is created and the iicoperators like !, &, and . The> and < symbols that fol-
returned to ¢ has the same oid as pl. Statement (4) casts th®v the association operators are used to explicitly indicate a
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direction, which is the defining class of a given association,navigation vianegation or the non-associataelationships.

where> stands for left-to-right, anet stands for right-to-left  For example, it is not possible to express all the parts that

direction. For example, the pattecontextPart *> Compos-  composite part cloes notuse using a simple dot expression.

itePart specifies all the Part objects that are associated witk supports all the above cases using association patterns.

some CompositePart objects, where Part is the defining class

of the association (in this case an unnamed Generalization

association). Similarly, the pattecontextCompositePart< 3.2 Context looping statement

[parent] Use specifies all the Use objects that are not asso-

ciated to any CompositePart objects through the associatiop context corresponding to an association pattern can be

link called parent, defined in the class Use. _ thought of as a normalized relation whose columns are de-
One can also explicitly specify a range variable overfineq over the participating classes and each of its tuples

a class in an association pattern. For exampentext represents aextensionapattern of iids that satisfy the in-

pl:Part *> c:CompositePart< [parent] Use * [child]  tensional pattern. After a context is identified, one can use

p2:Partwherep2.partid="LS741’ selectpl specifies a sub- the context loopinglo statement provided by K to manipu-

knowledge-base that contains all the parts that are composate objects over each extensional pattern. For example, the

ite parts (i.e., there is generalization link connecting a pario|iowing statement will print the paritl of each composite

with a composite part) which do not use (i.e., compositepart whose assembly cost is greater than the cost of any of
parts not connected through the parent association with anjs components:

Use instance) part number_ LS741" (i.e., Use nstances Conéontextc:CompositePart{ [parent] Use * [child] p:Part
nected through the child link to part whose pafrtequals

. , . wherec.assemblyCost p.costselectc do

LS741’). Here, pl and p2 are variables that represent the c.partid.fdisplay(*Composite part idyn”);

Part instances that satisfy the association pattern specifica- P fdispiay P P '

. ; - : end

tion. Notice that the name of an association link can be ] . ]
explicitly stated within square brackets following an asso-Note that the where-clause is used to specify the inter-class
ciation operator. Notice also that a select clause is used tgelection condition between CompositePart and Part and the

perform a projection operation over the class Part referregelect-clause is used to project over CompositePart column

to by variable p1. and_ remove fche redundant tuples so tha_t each qualified Com-
Instead of using a class notation, one can also directlypositePart will appear only once even if it has more than one

designateobjects by replacing class name with any user-component. Also note that c.pa_ct returns a string and fdis-

defined variable which is bound to a single or a collectionPlay() is @ method of the domain class String with the same

of entity class instances. For examyse Set of Part declares format notation as the C printf function.

a variable s whose value will be a set of Part instances, and Similarly, the second task of the Parts database example

s *< [parent] Use specifies a context which consists of all(Atkinson and Buneman 1987M i.e., to print the name and

the parts denoted by s that are the parents in the relatiorfz0st of all the base parts which cost more than $100) can be

ship defined by the class Use. Note that biotiplicit sets ~ €xpressed straight-forwardly as follows:

(denoted by a class name followed by an optional selectiortontextb:BasePartvhereb.cost> 100.00do

condition in a context expression) amdplicit sets (user- b.partid.fdisplay(* Base Part %s );

defined set variables as the above example) are supported in b.cost.fdisplay(* with cost = %5.2{n");

K. Explicit sets can be manipulated by using set operators -end

(union), & (intersection), and- (difference). One can also

use the overloaded + (add) and(remove) operators to add  Ag another example, the following statement will print

and remove a single instance to and from a set, respectivelyhe name of all the parts which are not used by any com-
A more detailed description of complex association patterng)gsite part. Note that the use of the ! non-associate operator

can be found by Shyy (1992). provides a more concise expression because, otherwise, we
Note that in existing object-oriented database systemsyaye to jterate over each part and, for each looping, we have
navigation is expressed by using thet expressiorfor im- {4 i turn iterate over each composite part to test if any com-

plicit joins. However, the use of dot expressions is limited by yosite part uses this particular part as a subpart:
the following factors. Firstly, navigation is done only in one
direction unlessnverseattributes are supported and explic-
itly defined in the system. For example, suppose class Part
defines an aggregation association whose name is subPart
and whose constituent class is Part itself. Then, one can us%nd

the association patterns (1) this-}subPart] p:Part to iden-

tify the subparts of a particular Part denoted by this, and (2)

this *< [subPart] p:Part to identify all the parts of which this

is a subpart. Such bi-directional navigation is not possible in3.3 Existential and universal quantifiers

a dot expression. Secondly, navigation cannot continue after

a multi-valued attribute is met. For example, the dot expres-Statements for the retrieval and manipulation of a knowledge
sion c.components.quantity is not allowed, since componentbase may involvexistentialanduniversalquantifiers. Quan-

is a multi-valued aggregation association defined from Comtifiers make it much easier for the users to declaratively and
positePart to Use. Thirdly, dot expressions cannot expressoncisely pose logic questions upon the knowledge base. For

contextp:Part k[child] Use *> [parent] CompositePado
p.partid.fdisplay("Part %s is not used by any
composite pakn”);
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example, one can ask if there exists a part, used by a comexample to illustrate the object-oriented computation facil-
posite part, whose cost is greater than the assembly cost dies of K. A detailed and complete description of the lan-
the composite part bgxistp in c:CompositePart [parent]  guage constructs can be found in the work of Shyy (1992).
Use *> [child] p:Partwherep.cost> c.assemblyCost. Simi- Note that since the current version of K does not support
larly, one can ask iall the CompositeParts whose assemblyrecursive queries, we define a method getCost() of class
cost is greater than the cost of its components have an a&ompositePart, which will recursively call itself to make
sembly cost greater than $100 foyall c in c:CompositePart a depth-first traverse of all the immediate or non-immediate
* < [parent] Use * [child] p:Partwherec.assemblyCost subparts of a given composite part and return the total cost.
p.costsuchthatc.assemblyCost> 100.00. Notice that the  methodCompositePart::getCost() : real is

suchthatclause in theforall expression is mandatory since,  |gcal sum : real:

given an association pattern, it is necessary to check that pegin

a given condition is satisfied by all the objects that satisfy  gym := this.assemblyCost;

the condition specified in therhereclause. In the case of contextthis *>[components] u:Use *[child] p:Part do
exist it is only necessary to check for the existence of at case
least one object that satisfies the condition specified in the whenp.is a(BasePart) do
whereclause. Note that by following therthogonalityprin- Sum := sum + p.cost * u.quantity:
ciple, both the context looping statements and quantifiers are whenp.is a(CompositePart) do
treated as normal K statements and expressions, and they can sum ‘= sum
be nested in an arbitrary number of levels or combined with + CompositePart$p.getCost() * u.quantity;
other boolean expressions. For example, the following state- endcase
ment will print the name of all the composite parts which end
use only base parts: return sum:;
contextpl:CompositePardo end
if forall p2 in p2:Part ¥[child] Use *> [parent] p1 endgetCost;
suchthat nop2.is a(BaseParghen The program body of getCost is a sindtecal statement,
pl.partid.fdisplay(Part %s uses only base pait where we define a local variable sum to record the total cost.
endif; We first initialize the local variable sum to be the assembly-
end Cost value of the given composite part (which is the receiver

Note that we use an if-then-else statement inside the contexif this method and denoted by the pseudo-variable this, like
looping statement, which uses a universal quantifier as itsn C++). We then use a context looping statement described
test condition. Also note that since the type of p2 is Part,in Sect. 3.2 to retrieve the immediate subparts used by this.
we invoke the isa method to test if p2 is a BasePart. For each subpart, we use a case statement to compute its
contribution to the total cost (which is the multiplication of
its own cost and the quantity used) based on whether this
4 Object-oriented and rule-based computation facilities  subpart is a base part or composite part. This condition is
) ] . tested by the use of the @ method. If it is a base part, its
Both object-oriented and rule-based computations are supywn cost can be directly returned as the value of its cost at-
ported in K by the use of methods and rules as will betripyte; if it is a composite part, we recursively call getCost
described in Sects. 4.1 and 4.2, respectively. Corresponding, compute its own total cost. No otherwise clause is used in

to each executable software system, the user has to definetge case statement because each part must be either a base
named Kprogram (similar to the “main” program of C++)  part or a composite part.

as the starting point of execution as will be described in
Sect.4.3.
4.2 Rule definition

4.1 Method definition Rules serve as a high-level mechanism for specifying declar-
ative knowledge that governs the manipulations of objects
Each method definition consists of two parts: (Bignature  made by KBMS operations, updates, and user-defined meth-
which is given in the methods section of a class definitionods. Note that, although the semantics represented by rules
and specifies the name of the method, the type of the pacan be implemented in methods, high-level declarative rules
rameters, and the type of the return value, and (2) the actuahake it much easier for a database designer to clearly cap-
programbodywhich is given in the implementation section ture the semantics instead of burying the knowledge in the
of a class definition and is a sequence of K statements thamplementation codes and thus simplify the tasks of imple-
contains local variable declarations and general computamentation, debugging, and maintenance. Moreover, rules can
tions. Both method and operator overloading are allowed irbe used to dynamically modify the control flow among pro-
K. gram modules without having to modify the codes of each
As a computationally complete programming language,module and thus improve the system modularity.
K provides the basic data structures (set, list, and array) and Each rule is given a name for its identification, which
control structures (sequential, condition, repetition, and conimust be unique within its defining class. A rule is specified
text looping). In this section, we use the third task of theby a set of trigger conditions and a rule body. Each trigger
parts knowledge base (Atkinson and Buneman 1987) as aoondition consists of a timing specification and a sequence of
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knowledge-base event specification. A timing specificationend of a higher level operation. In the case that multiple
(or coupling mode) can bleefore after, orimmediateafter. rules satisfy a trigger condition, such rules will be triggered
An event specification can be a KBMS operation describedn some unspecified order which is dependent on the imple-
in Sect. 2.4 or a user-defined method. Note that in the case ahentation.
a name conflict in multiple inheritance caused by a redefined Another example of a rule specification is presented in
attribute or method, the user must attach the proper claskig. 3. The rule uniquePid in the class Part specifies the con-
name with the attribute or method name to unambiguouslystraint that parid is the user-define#ley of class Part, i.e.,
specify the knowledge-base event. The rule body consists ofach part should have a unique piart This rule will be
aconditionclause, aractionclause, and antherwiseclause, triggered immediately after the pad attribute value of a
both of which can be a sequence of any K computation statePart instance denoted by the pseudo-variable this is updated.
ment. Theconditionclause of a rule may contain any valid We use a existential quantifier in the condition-clause, which
K boolean expression, and may return eittrese, false or tests if there exists a part (denoted by the range variable p)
skip. If a rule condition istrue, then the action part of it is which has the same pad as this, but does not have the
executed. If it returndalse then theotherwisepart is exe- same iid as this, i.e., p != this. The action clause will be
cuted. Ifskipis returned, then the whole rule is skipped. A executed if the condition clause returns true, i.e., if there
condition may returrskipif a guard expressioiis specified.  exists some part with the same paftas this.
A guard expression is in the form (guardl, guard2,...,guardN  Note that rules specified in a class definition can conflict
| target). Each guard in the expression is evaluated from leftvith other rules for the same knowledge-base event or cause
to right, and the evaluation stops as soon as one of the guardsfinite looping during execution. This is a knowledge-base
evaluates tdalse The evaluation of a guard expression can validation problem (Wu 1993) which is not in the scope of
return either (1) true, if all the guards and the target (all ofthis paper. We assume that it is the user’s responsibility to
which are boolean expressions by themselves) are true, (Zpake sure that such logic errors do not happen as in the
skip, if any of the guards are false when they are evaluatedvork of Gehani Jagadish (in press). We will present the rule
from left to right, or (3) false, if all the guards are true but the execution model in more detail in Sect. 5.
target is false. Although the semantics of a guard expression
can be implemented by nesting of if-then-else constructs, the
guard expression is a simpler and more concise construct t4.3 An example
use, particularly when the number of guards is large. Be-
sides, we feel that rules should be specified as declarativelin application can be specified and implemented in K by
as possible, and we would like to make a clear distinctionuniformly modeling as object classes all the objects used by
among the condition, action, and otherwise parts of a rulehe application, and the components (software modules) of
instead of mixing them in a nested if-then-else procedurathe application itself. For example, we can define an entity
statement. Similarly to method invocation, rule checking isclass PartHandler as the top-level software system that ma-
performed at the instance level, and the pseudo-variable thigipulate the parts knowledge base as shown in Fig. 4. Each
can be used in a rule body to represent a certain instance @lass definition is represented by a .k file, and one can use
the defining class to which some event occurs. the include statement to include the necessary files for com-
Figure 3 presents examples of K rule specifications. Thepilation. Each schema can also be represented by a .k file
rule comppart no defined in the class Part is triggered eitherwhich contains a list of include statements to include all the
after a new part instance is created (or before committingelated classes into one module. Note that PartHandler in-
the transaction where this operation was performed), or imeludes a file PartSchema.k, which in turn includes all the
mediately after an update is done to attribute pdrit uses  classes Part, BasePart, CompositePart, and Use. The func-
a guard expression to state that if a Part is a CompositePartionality of PartHandler is represented by a method called
and the parid is not a null string, then the paid should  main, which displays a menu and asks the user to choose
start with a C, otherwise the part will be deleted from the among various tasks (create a new base part, create a new
knowledge base. The deletion operation is performed by incomposite part, delete a part, display a part, etc.).
voking the del method. In addition to the definition of object classes, one also has
All the rules are assumed to laetivewhen a user ses- to define a named K program as the starting point of execu-
sion begins. However, during the execution of a user pro4ion. In generala K program contains few statements which
gram, one can invoke the activate or deactivate methods toreate instances of the entity classes that model the software
temporarily activate or deactivate any particular rule, respecsystem, and invoke the main method on the newly created
tively. For each knowledge-base event occuring to instancénstances to obtain the functionality as shown in Fig. 4. After
this of class X, all the applicable rules will be triggered compilation, each K program is translated into an executable
(i.e., the evaluation of the rule body) according to the trig-file, which can be activated by just typing in the program
ger conditions of each rule (1) before the triggering event,name at the Unix shell.
(2) immediately after the triggering event, or (3) not imme-  Note that because the user is allowed to manipulate
diately after the triggering event, but at the end of the parenthe knowledge base only via the interface of PartHandler,
event that causes the triggering event. Note that the use afertain system constraints can be implicitly enforced by
the after mode allows for temporary violation of constraints PartHandler. For example, by providing the user with only
(which is likely to happen when a constraint on an objectthe options to create a base part and a composite part, we
depends on two inter-related values and when one of thenforce thetotal participation and set exclusiorconstraints
values is updated) by deferring the rule checking until the(Su et al. 1989) that each part must be either a base part or
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u := Use.pnew(); /* create a new Use instance */

PartSchema.k u.parent := this;

define PartHandler : Entity
methods:
public:
method main();
private:

this.askChildPid(u); /* ask the subpart */
this.askChildQty(u); /* ask the quantity used */
this.components := this.components + u;

[* add element to a set */

#include "Part.k"
#include "Use k"
#include "BasePart.k" |
#include "CompositePart k" ‘

method displayMenu() : Integer;
method newBasePart();

this.askUse(); /* ask again */

method newCompositePart(); e nd
method deletePart(); PartDemo.k _
method displayAllBascParts(); whenmore = ndo
method displayAllCompositeParts(); program PartsDemo return;
method selectedBasePart() : Boolean; esin s
method selectedCompositePart() : Boolean; (PartHandler.tnew()).main(); | end case
method updatePartCost(); | e:dfian b end
d PartHandler: en sDemo; .
o andler, | endaskUse;

Fig. 4. Software system specification in K ] ) )
Note that in the implementation of askUse, we use a

method called read, which is a method of the system-defined

a composite part. Some other constraints and triggers can #omain class String, to obtained the string value typed in
explicitly specified as rules. For example, as shown in Fig. 3Py the user. Also note that we use the askChildPid and
a rule delDependents enforces the constraint of class Pa@skChildQuantity methods to record each subpart informa-
that, before a part is deleted, all the composite parts whiciion in a Use instance. Each Use instance will then be added
directly or indirectly use this part must also be deleted. The(using the + operator) to the components attribute (whose

following is the implementation of the method deleteDepen-value is a set of Use instances) of the composite part in-
dents: stance.

methodPart::deleteDependentd§)
contextthis *< [child] u:Use *> :

[parent] c:CompositePado 5 Computation model

u.del();

c.del();

enddeleteDependents;

5.1 Overview

The computation model of K is based on an object-oriented
paradigm (Stefik and Bobrow 1986) and nested transactions
The fourth task of the parts knowledge-base example(Moss 1981) to model the behavior of the combined exe-
i.e., to create a new composite part in the knowledge baseution of methods and triggered rules in an object-oriented
can now be easily expressed. When the user selects the neyamework. Transactions can be nested to an arbitrary num-
composite part option from the main menu, PartHandler willber of levels by explicitly defining new transactions using the
in turn invoke its private method newCompositePart to per-pegintrans and endtrans statements. As a result, a trans-
form this task. The method newCompositePart will create aaction may contain any number of nested transactions or
new persistent CompositePart instance, and invoke the metlsubtransactions, and all are organized as a transaction tree
ods askPid (which is inherited from class Part) and askUs&vhose root is the top-level transaction.
(which is defined by class CompositePart) to ask the user to  Changes to the knowledge base made by a nested trans-
provide the parid and subparts information. The implemen- action are contingent upon the successful commitment of all
tation of newCompositePart and askUse is shown as followspf its ancestral transactions. Aborting any of its ancestors
methodPartHandler::newCompositeParig) invalidates all of its changes. If a nested transaction aborts,

local ¢ : CompositePart;
begin

¢ := CompositePart.pnew();

c.askPid();
c.askUse();
end
end newCompositePart;

methodCompositePart:askUsei§
local
u: Use,
more : String;
begin

Any subpart? (y/n) == .fdisplay( /n %s );

more.read(); /* read the input
case
whenmore = ydo
begin

the knowledge-base state seen by its parent is the same as
it was immediately prior to starting the nested transaction.
K provides the user with thabort statement taundo any
update to the knowledge base (i.e., the states of persistent
entity class instances) made between the beginning of the
current transaction and the abort statement. Note that the
abort statement has no effect on the update to the value of
any local variable itself. When a transaction is committed,
both persistent and transient objects are removed from the
memory cache, but only persistent objects are written into
secondary storage.

5.2 Rule execution model

from the terminal */

As mentioned in Sect. 4, a knowledge-base event could be a
KBMS operation (thew, pnew, insert, delete, and destroy),

an update, or a method invocation. The occurrence of a
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knowledge-base event P in transaction T on instance thification. Then, the update of the cost value of a Part instance
of class C consists of the following steps: (1) get, bind, andmust triggerboth rules of Part and CompositePart as long
trigger all the applicable before rules of P, (2) execute theas this part is also a CompositePart. Failing to trigger the
event P itself, (3) get, bind, and trigger all the applicable CompositePart rule may leave the knowledge base in an in-
immediateafter rules of P, and (4) get, bind, but delay the consistent state. None of the existing systems addresses this
triggering of all the applicable after rules until the end of problem adequately.

transaction T. Note that the execution of a rule body might In the case that an update is made to an attribute of
invoke certain events which might in turn trigger other rules.some entity class instance whose underlying domain is a
Notice that both the event P and the triggering of the correcomplex domain class, such an update will be subjected
sponding rules are considered part of transaction T. to the constraints of the rules specified in all the enclosed

After compilation, each triggering event is represented aslomain classes as well as the hosting entity class via the
either<iid, SourceClass, operationfor both KBMS opera- navigation path. For example, suppose class Part defines a
tions and method invocations, eriid, SourceClasspdate value attribute called purchaskate whose type is a com-
operand- for updates, where iid is the instance to which the plex domain class Date. The class Date defines three value
event occurs, and SourceClass could be (1) the class, oratributes, month, day, and year, all of which have type in-
of whose instances is being created, deleted, destroyed, ¢eger. Then, the update event p.purchdate.year := 1992
inserted, (2) the defining class of the method which is be-should trigger not only any update date::year rule defined by
ing invoked, or (3) the defining class of the attribute which Date, but also any update Part:purchdsée rule defined by
is being updated (the operand followed by tgdatekey- Part.
word). Note that in the case of inherited attributes or meth-
ods, SourceClass will be a superclass of the class to which iid
belongs. Name conflict in multiple inheritance and subclass6 System architecture and implementation
redefined attribute/method will be explicitly resolved by the
user in the event specification as mentioned in Sect. 4.2. Sims.1 Overview
ilarly, the event specifications of rules are internally repre-
sented as<SourceClass, operationor <SourceClassyp- A prototype of the K compiler has been implemented on
date operand-. In generalapplicable rulesof event P with  Sun4 using C++. After bootstrapping, some of the system
certain coupling mode must satisfy the following conditions. components were implemented in the K language itself. All
Firstly, the coupling mode and knowledge-base event musthe linguistic facilities described in Sects. 3-5 have been im-
match one of the trigger conditions of this rule. Secondly,plemented. The only limitation is that in our current imple-
there must be an instance with the same oid as iid in thenentation, we treat the execution of each K program as a
defining class of this rule. In other words, for any triggering single transaction because the nested transaction model is
event<iid, SourceClass, operationor <iid, SourceClass, not well supported in the Storage Manager level. We are
update operand-, we match the triggering event with all the currently extending the underlying KBMS to support nested
active rules of SourceClass and any of its subclasses whictransactions. The specialized tools Lex and Yacc were used
has an instance with the same oid as iid. to generate the lexical analyzer and parser.

The advantage of this approach is threefold. Firstly, the  The K compiler maps K code to C++ code with calls to
search space is reduced in the sense that we start froliBMS functions. Each K class is mapped to a C++ class.
SourceClass instead of the root class to avoid searching thoges C++ does not support the distributed view of objects as
inherited rules which are impossible to match the triggeringdescribed in Sect. 2, we cannot use the C++ class inheritance
event. For example, the evenBasePArt, update, castwill facilities (denoted by the keyword public) to represent a class
never trigger any rule defined by class Part because cost isheritance lattice in K. Therefore, all association links, in-
defined by BasePart and not visible from Part. Secondlycluding generalization links, are mapped to C++ data mem-
redefined attributes or methods can be easily identified andders that contain, for each object, ttederenceqor oids) to
thus avoid incorrectly triggering rules. For example, if classthe associated objects.

CompositePart redefines the method deletePart of Part, then Method declarations are directly mapped into C++ with
invoking deletePart in a CompositePart instance will notthe same encapsulation level. Similarly, operator declara-
trigger any rule of Part which hasPart,deletePaxt as its  tions are mapped into C++ methods with special names
trigger condition because the SourceClasses are differenfe.g.,, KOPGT for the> operator). Each K program def-
Thirdly, different from existing rule-based systems such asinition is defined as a C++ class with a main method. For
ODE (Agrawal and Gehani 1989) and HiPAC (Chakravarthyevery K method, two additional C++ methods are gener-
1989), the choice of applicable rules in our paradigm is notated: (1) KBEGIN <methodname>, which contains calls
limited to inherited rules. For example, suppose class Parto the Rule Processor and is invoked at the beginning of
defines an attribute cost with the constraint that the cost of ahe method to trigger the applicable before rules, and (2)
part must be greater than $10.00. As a subclass of Part, clasKkEND <methodname>, which also contains calls to the
CompositePart inherits the cost attribute and defines a morRule Processor and is invoked at the end of the method to
restrictive constraint that the cost value of a CompositePartrigger the applicable immediatgter and after rules.

must be greater than $20.00. In other words, in the case that Rules are mapped to C++ methods with special names
a part is also a CompositePart, the CompositePart constrairfe.g., KRULE valid salary for the rule validsalary). Each
overwrites the Part constraint. Since cost is defined by clas€++ method corresponding to a rule contains the C++ code
Part, both rules have Part,update,cost as the event speci- that belongs to the rule body. lmember-function pointes
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transaction management (concurrency control and recovery)
facilities to the KBMSHandler. The functionalities of the
current implementation of Kdandler and KBMSHandler

are described below

CI'(‘iteerediatte The K Handler is responsible for compiling any K pro-
ode Senerator gram. It serves as the main interface to the K compiler. It

uses the Parser module to parse an input K specification
(which is tokenized by the Lexical Analyzer) and generate
a standard tree representation which will be used by: (1) the
Semantic Checker module, to check the semantic correctness
of a K specification, (2) the Intermediate Code Generator,
to generate corresponding C++ code, and (3) the Dictionary
Handler module, which creates the new classes, associations,
rules and methods defined & K program as objects in the
knowledge base.

As the top-level interface class of all the KBMS compo-
nents, KBMSHandler hides all the details of its constituent
classes and serves as the controller of all incoming mes-

U\ //LJ sages by dispatching them to appropriate KBMS compo-
T nents which actually implement the corresponding methods.
Object KBMS Handler uses the following classes: @pject Man-
Manager ager, which performs the basic KBMS operations such as
U tnew, pnew, insert, delete, and destroy, described in Sect. 2.4,
as well as transaction management, )ery Processor
which takes as an input a query tree and evaluates a query
e Storage Manager —|js— returning the corresponding contexts as tables of extensional

association patterns, as described in Sect. 3.2, an®({®
U Processorwhich performs the triggering of applicable rules,
(I as described in Sect. 4.2.

At the lower level, the Storage Manager provides an in-
terface to the underlying storage manager, which gives ba-
sic get/put semantics, indexing, and transaction management
functions. The interface has been designed to provide trans-
parency to the underlying storage manager interface func-

defined for every method that corresponds to a rule. Theslons. This allows to easily replace the underlying storage
pointers are used by the Rule Processor to trigger rulegnanager without affecting the upper layers (i.e., the Object
For delayed (after) rules, the Rule Processor maintains ¥lanager).
gueue of rule pointers which is processed at the end of every
transaction. )
Basic control structures (block, if-then-else, for-loop, 7 Conclusion
while-loop, break, continue, and return) are mapped into ) ) _
their C++ counterpart statements. Local variable declaration$ this paper, we have described the features and imple-
are mapped into C++ variable declarations. mentation of the object-oriented knowledge-base program-
Most of the C++ code generated by K consists of callsming language K. K serves as a high-level interface of the
to the KBMS library functions. The K compiler generates an OSAM*.KBMS knowledge-base management system to de-
executable file which is linked with a library of KBMS func- fine, query, and manipulate the knowledge base as well as

tions. In the next section, we will present the components of® Write codes to implement any data/knowledge-intensive
the KBMS library. application system. Starting from a query language and rule

language, K seamlessly incorporates the query processing,
rule processing, persistence, and general computation facil-
ities within an object-oriented framework. K provides (1)
knowledge abstraction mechanisms for supporting the un-
The implementation of K and its supporting KBMS is based derlying OSAM* knowledge model which captures any ap-
on an open, modular, and extensible architecture as shown iplication domain knowledge in terms of the structural as-
Fig. 5. Note that each major component of the system is repsociations, methods, and knowledge rules, (2) a strong no-
resented by an object class, and we use the Using (U) assodion of address-independent oids, (3) a persistence mech-
ation to represent the client-server relationship among thesanism for supporting both persistent and transient objects
components. The StorageManager is currently supported byithout the dangling references problem, (4) a flexible type
Exodus (Richardson and Carey 1987), an object-orientedystem which supports both static type checking and mul-
DBMS, to provide the low-level storage management (e.g.tiple views of objects, (5) a declarative knowledge-retrieval
access method, data organization, and file management) amdechanism based on object association patterns, and (6) an

EXODUS

Fig. 5. The system architecture of K

6.2 System architecture
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extended computation paradigm for supporting both procebayal U, Blaustein BT, Buchmann AP, Chakravarthy US, Hsu M, Ledin

dural and rule-based computations. Two versions of K and R, McCarthy DR, Rosenthal A, Sarin SK, Carey MJ, Livny M, Jauhari

its supporting OSAM*.KBMS have been implemented at the R (1988) The HIiPAC project: combining active databases and timing
constraints. In: SIGMOD Rec 17:51-70

Database Systems Research and Development Center of tlagux O (1991) The 02 system. CACM 34:34—48

UmverS't_y of Florida. _\N_e a_re Current!y extendlng the lan- Fishman DH, Beech D, Cate HP, Chow EC, Connors T, Davis JW, Derrett
guage W|th.query optimization, generic rules, abStra(?t _qlass N, Hoch CG, Kent W, Lyngbaek P, Mahbod B, Neimat MA, Ryan
for supporting dynamic binding, and model extensibility. TA, Shan MC (1987) IRIS: An object-oriented database management

Another effort is to integrate K with the graphic user inter-  systems. ACM Trans Off Inf Syst 5
face of OSAM*.KBMS (Lam et al. 1992) toward a complete Gehani NH, Jagadish HV (1991) Ode as an active database: constraints and

_ triggers. In: Proc. 17th Int Conf on Very Large Data Bases, Barcelona,
KBMS-supported software development system. Catalonia, Spain, September 3-6, pp 327336

Guo MS, Su SYW, Lam H (1991) An association algebra for processing
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