
The VLDB Journal (1996) 5: 181–195 The VLDB Journal
c© Springer-Verlag 1996

The design and implementation of K:
a high-level knowledge-base programming language
of OSAM*.KBMS
Yuh-Ming Shyy, Javier Arroyo, Stanley Y.W. Su, Herman Lam

CSE 470, Database Systems R&D Center, Department of Computer and Information Science and Engineering, University of Florida, Gainesville,
FL 32611, USA

Edited by Dennis McLeod. Received July 1992 / Accepted August 1995

Abstract. The OSAM*.KBMS is a knowledge-base man-
agement system, or the so-called next-generation database
management system, for non-traditional data/knowledge-in-
tensive applications. In order to define, query, and manipu-
late a knowledge base, as well as to write codes to imple-
ment any application system, we have developed an object-
oriented knowledge-base programming language called K to
serve as the high-level interface of OSAM*.KBMS. This
paper presents the design of K, its implementation, and its
supporting KBMS developed at the Database Systems Re-
search and Development Center of the University of Florida.

Key words: Knowledge-base programming language –
Abstractions – Object-oriented knowledge model – Struc-
tural associations – Association patterns

1 Introduction

1.1 Motivation

With a view to widening the applicability of database tech-
nology to non-traditional application domains such as com-
puter-aided software engineering (CASE), computer-aided
design and manufacturing (CAD/CAM), office information
systems, and knowledge representation systems, many so-
called next-generation database management systems
(DBMSs) (Atkinson et al. 1990; Comittee for advanced
DBMS Function 1990; Special issue on next-generation
database systems 1991) have been proposed in recent years.
In general, a next-generation DBMS extends the functional-
ities of traditional DBMSs (such as persistent data manage-
ment, query processing, concurrency control, and recovery)
in either or both of the following aspects. Firstly, object-
oriented data modeling constructs are introduced to model
complex application domains, and the behavioral specifica-
tions are also incorporated into the domain and functionality
of a DBMS in terms of user-defined methods. Secondly,
rule management facilities are introduced to manage and

Correspondence to:S.Y.W. Su

process a large number of knowledge rules which main-
tain the database in a consistent state or trigger some pre-
defined actions when certain events occur. Although object-
oriented programming languages can be used for defining
object classes and implementing methods, they generally do
not have integrated facilities to support persistence, query
processing, and the specification and execution of rules. In
order to solve theimpedance mismatchproblems (Copeland
and Maier 1984) between database languages (which in-
clude data definition languages, query languages, and rule
languages) and traditional programming languages, next-
generationdatabase programming languagesare also needed
for defining, querying, and manipulating a database, as well
as for supporting object-oriented and rule-based computa-
tions in an integrated fashion. Application objects, meth-
ods and rules are integrated in a database which we shall
call a knowledge base. In this paper, we shall use the
term “knowledge-base management system” (KBMS) and
“knowledge-base programming language” (KBPL) to refer
to such a next-generation DBMS and database programming
language, respectively.

In our earlier research effort, we have developed a pro-
totype KBMS (Lam et al. 1989a, b; Yassen et al. 1991)
which used OSAM* (Su 1983; Su 1989; Su et al. 1989; Su
and Lam 1992) as its underlying knowledge model, OQL
(Alashqur et al. 1989; Guo et al. 1991] as its query lan-
guage, and the language reported by Alashqur et al. (1990)
and Su and Alashqur (1991) as its constraint specification
language. In that system, the implementation of methods
still needed to be done in such traditional programming lan-
guage as C++ (Stroustrup 1986). Because the method im-
plementation language does not directly support the OSAM*
knowledge model, all the impedance mismatch problems still
exist. For example, one cannot combine the programming
constructs of the method implementation language and the
querying constructs of the query language within a method
to directly retrieve and manipulate the database. Moreover,
the execution of rules is not well integrated with the exe-
cution of methods. To solve these problems, we have de-
veloped a single integrated object-oriented knowledge-base
programming language called K (Arroyo 1991; Shyy and Su
1991; Shyy 1992) to serve as the high-level interface of a

182

new version of KBMS called OSAM*.KBMS (Su and Lam
1992; Su et al. 1993) for defining, querying, and manipu-
lating the knowledge base, as well as for coding methods
and rules of any data/knowledge-intensive application sys-
tem. In addition to such well-known object-oriented features
as abstract data types, information hiding, complex objects,
relationships, inheritance, and reusable codes, K provides (1)
powerful abstraction mechanisms for supporting the under-
lying knowledge model which captures any application do-
main knowledge in terms of the structural associations (such
as generalization and aggregation), methods, and knowledge
rules, (2) a strong notion of address-independent object iden-
tifiers (oid) instead of physical pointers, (3) a persistence
mechanism for supporting both persistent and transient ob-
jects uniformly without the dangling references problem, (4)
a flexible type system which supports both static type check-
ing and multiple views of objects in multiple classes, (5)
a declarative knowledge retrieval mechanism based on ob-
ject association patterns for querying the knowledge base,
and (6) basic data structures (set, list, and array) and multi-
paradigm programming constructs for specifying procedural
and rule-based computations.

1.2 Design principles

The design of K is guided by the following general princi-
ples.

1. Direct support of the OSAM*. KBMS kernel knowledge
model.K should provide knowledge abstraction mechanisms
to support an extensible kernel knowledge model which will
be described in Sect. 2. All the semantic constructs such as
classes, associations, methods, and rules of the model should
be treated as first class objects in the same way as any other
objects in K.

2. Wide-spectrum for both specification and implementation.
K should be a uniform language for knowledge definition,
knowledge retrieval, knowledge manipulation, and general-
purpose computation involving persistent/transient objects.

3. Computationally complete.K should provide all the ba-
sic data structures (set, array, and list), control structures
(sequence, repetition, and condition), and rule specification
constructs for the users to implement any algorithm and to
perform any computation.

4. Maintainability and readability.The software written in
K should have readable syntax and stable semantics so that
it can be easily understood and maintained.

5. Seamless incorporation of query/rule language.Instead
of simply embedding the existing query and rule language
of OSAM*.KBMS into K, a uniform and well-integrated
syntax is necessary to provide set-oriented and declarative
query and rule specification facilities without any conflict
or ambiguity with other programming constructs of K. New
constructs should be introduced only if we can demonstrate
one or more of the following points:readability, new con-
cept, andconciseness. Moreover, new constructs must satisfy
theorthogonalityprinciple, i.e., any combination of the pro-
gramming constructs is allowed.

6. Strongly typed.Since K is to be used for the develop-
ment of complex software systems, it should be a strongly

typed language so that as many type errors as possible can
be checked by static type checking at compilation time. On
the other hand, the type system should be flexible enough to
support multiple representations of OSAM* objects in mul-
tiple classes as will be discussed in Sect. 2.

7. More emphasis on functionalities rather than efficiency.
As a high-level programming language, K should put more
emphasis on function than efficiency so that complex ap-
plication systems can be rapidly constructed by the use of
those high-level facilities of K. With the rate of hardware
progress, we do not feel that efficiency will be a serious
concern in the future.

Two versions of K and its supporting OSAM*.KBMS
have been implemented on Sun 4 in C++ as a first step
toward a complete KBMS-supported software development
system (Shyy 1992; Su and Shyy 1993). This paper presents
the design and implementation of the latest version of K.
Our contribution lies in providing a clean fusion of the
techniques introduced in knowledge-base management sys-
tem, programming language, and software engineering in an
object-oriented framework.

1.3 Related works

Many “database programming languages” (Atkinson and
Buneman 1987; Bloom and Zdonik 1987) have been pro-
posed in recent years [e.g., Pascal/R, Rigel, Taxis, Dial,
Plain, Daplex, Adaplex, PS-Algol, GemStone, Galileo, Trel-
lis/Owel, Vbase, E, Orion, Proquel, O++, OQL[X], On-
tos, IRIS, ObjectStore, and O2, as described respectively
by Schmidt (1977), Rowe and Shoens (1979), Mylopoulos
et al. (1980), Hammer and Berkowitz (1980), Wasserman
et al. (1981), Shipman (1981), Smith et al. (1983), Atkin-
son et al. (1983), Copeland and Maier (1984), Butterworth
et al. (1990), Albano et al. (1985), Schaffert et al. (1988),
Andrews and Harris (1987), Richardson and Caray (1987),
Kim et al. (1988), Lingat and Rolland (1988), Agrawal and
Gehani (1989), Blakeley et al. (1990), Ontologic Inc. (1991),
Fishman et al. (1987), Wilkinson et al. (1990), Annevelink
(1991), Lamb et al. (1991), and Deux et al. (1991)]. Their
aim has been to overcome the infamousimpedance mis-
matchproblem between traditional programming languages
and DDL/DML (Copeland and Maier 1984; Maier 1989) by
integrating data definition, data manipulation, and general
computing facilities in a single language. A detailed survey
can be found in the work of Atkinson and Buneman (1987).

Most of the existing works are based on either relational,
functional, or object-oriented data models, with the extension
of persistence, associative access (using either iterators or
SQL-like construct), and the computation facilities of some
traditional programming languages such as Pascal, Lisp, and
C/C++. They generally do not support rules which is con-
sidered to be one of the major requirements for the next-
generation database systems. While research works in deduc-
tive database systems [e.g., LDL (Chimenti et al. 1990), LO-
GRES (Cacace et al. 1990), and Glue-Nail (Phipps and Derr
1991)] and active database systems [e.g., Postgres (Stone-
braker and Kemnitz 1991), Starburst (Lohman et al. 1991),
Ariel (Hanson 1989) and HiPAC (Dayal 1989; Chakravarthy
1989) have extended relational or object-oriented database

183

systems with rules, they provide separate rule languages as
extensions of their query languages instead of integrated
database programming languages.

Among the existing works, K is most closely related to
O++ (Agrawal and Gehani 1989; Gehani and Jagadish, in
press); both provide persistence, querying, and rule facilities
in an object-oriented framework. O++ extends C++ with the
facilities for creating persistent and versioned objects, defin-
ing sets, iterating over sets and clusters of persistent objects,
and associating constraints and triggers with object classes.
Unlike O++, which is a superset of C++, K is designed to be
a high-levelprogramming language with the following dif-
ferences. Firstly, while O++ extends C++ data model with
rules, K supports a high-level knowledge model OSAM*
where everything, including classes, associations, methods,
and rules, is all uniformly treated as objects. A user can
use the query facility of K to query the meta-information
from the kernel schema in the same way as one queries any
application domain. Secondly, while O++ extends the “for”
loop construct to iterate over sets, K provides more declara-
tive and concise constructs for specifying queries and rules
based onobject association patterns(Alashqur et al. 1989;
Guo et al. 1991). Thirdly, K uses address-independent ob-
ject identifiers oids (soft pointers) as object surrogates rather
than using physical address pointers (hard pointers). Persis-
tent and transient objects are transparent to the users and
are treated in the same way. For example, a query will re-
trieve both types of objects instead of only persistent objects
as in O++. Fourthly, K provides a more flexible type sys-
tem which supports both static type checking and multiple
representations of objects in multiple classes which is not
possible in O++. Lastly, more emphasis is put on readabil-
ity and maintainability by providing readable syntax rather
than using the non-intuitive syntax of C++.

1.4 Paper organization

The rest of this paper is organized as follows. Section 2
gives an overview of K in terms of the underlying knowledge
model, knowledge definition facilities, persistence, and type
system. Query processing facilities are described in Sect. 3
in terms of object association patterns, context looping state-
ments, and existential and universal quantifiers. Procedural
and rule-based computation facilities are described in Sect. 4.
Section 5 describes the computation model of K. The sys-
tem architecture and the implementation of K and its sup-
porting OSAM*.KBMS are given in Sect. 6. Section 7 gives
our conclusion and the future research directions. A parts-
manufacturing knowledge base, as suggested by Atkinson
and Buneman (1987), is given as an example throughout
this paper to illustrate the expressiveness of K.

2 Language overview

In this section, we present an overview of the features of
the K language in terms of its knowledge model and knowl-
edge definition facilities, its support of persistence, and its
underlying type system. The knowledge model of K is an
extensible object-oriented model in which classes are used

as an abstraction to classify objects. Semantic relationships
among objects are modeled by semantic associations; differ-
ent types of semantics are modeled by different association
types. Behavioral properties of objects can be defined declar-
atively by using knowledge rules, or procedurally by using
methods. In K, persistence is an object property rather than
a class property, i.e. objects in the same class could be either
persistent or transient. Persistence is transparently supported,
thus relieving the application developer from the burden of
specifying any procedure or data structure for storage man-
agement.

2.1 Knowledge model

2.1.1 Semantic constructs

Classes. We useclassesas the knowledge abstraction unit
to classify objects by their common structural and behav-
ioral properties in an integrated fashion. Classes are catego-
rized asentity classes(E-Classes) anddomain classes(D-
classes). The sole function of a domain class is to define a
domain of possiblevaluesfrom which descriptive attributes
of objects draw their values. Bothprimitive domain classes
(e.g., Integer, Real, and String) andcomplexdomain classes
(e.g., Date and Address) are supported. An entity class, on
the other hand, forms a domain of objects which occur in
an application’s world and can be physical entities, abstract
things, functions, events, processes, and relationships. The
structural properties of each object class (called thedefining
class), and thus its instances are uniformly defined in terms
of its structural associations[e.g., aggregation and general-
ization (Smith and Smith 1977)] with other object classes,
called theconstituent classes). Each type of structural as-
sociation represents a set of generic rules that govern the
knowledge-base manipulation operations on the instances of
those classes that are defined by the association type. Ma-
nipulation of the structural properties of an object instance
is done through methods, and the execution of methods is
automatically governed by rules to maintain the system in a
consistent state or to trigger some predefined actions under
certain conditions. In other words, the behavioral properties
of an object class are defined as methods and rules applica-
ble to the instances of that class. Since rules applicable to the
instances of a class are defined with the class, rules relevant
to these instances are naturally distributed and available for
use when instances are processed. Aschemais defined as a
set of class associations.

Objects and instances.In the kernel model of K, objects are
categorized as domain class objects (DClassObject) and en-
tity class objects (EClassObject). Domain class objects are
self-named objects which are referred to by their values. En-
tity class objects are system-named objects each of which is
given a unique oid. We adopt adistributedview of objects to
support generalization as by Lam et al. (1989) and Yassen
et al. (1991) by visualizing an instance of class X as the
representation(or view) of some object in the class X. Each
object can be instantiated in different classes with differ-
ent representations but with the same oid. Each instance is
identified by a uniqueinstance identifier(iid) which is the
concatenation of cid and oid, where cid is a unique number

184

Fig. 1. Overview of the kernel class
structure of K

assigned for each class in the system and is defined as the
typeof this instance. For two entity classes A and B, if class
A is a superclass of class B (generalization association), then
for each object which has an instance in the class B, it must
also have an instance in the class A. Both instances have the
same oid and are conceptually connected by a generalization
association link. A detailed discussion of the advantages of
the distributed view of objects can be found in the work of
Yassen et al. (1991). Each entity class is associated with an
extensionwhich is the set of all its instances.

Encapsulation and inheritance.We adopt the C++ three-
level information hiding mechanism (Stroustrup 1986) by
classifying aggregation associations (which are referred to
as attributes, data members, or instance variablesin other
object-oriented programming languages to describe thestate
of an object instance) and methods as either “public”, “pri-
vate”, or “protected”. All the rules associated with a class are
treated as protected by definition. At the class level, all the
rules and public/protected aggregations and methods defined
by a class areinherited by its subclasses. At the instance
level, an instance of entity class A stores only the attributes
defined for A, and it inherits (i.e., gets access to) all the
public/protected attributes from its corresponding instances
(with the same oid) of all the superclasses of A.

2.1.2 Model extensibility

Model extensibility is achieved via aself-describingkernel
model, shown in Fig. 1, in which all the data model con-
structs such as classes, associations, methods, and rules are
modeled as first-class objects. One can extend the data model
by modifying this set of meta-classes. This kernel model also
serves as thedictionaryof the OSAM*.KBMS as all the ob-
ject classes in the system are mapped into this class struc-
ture. One can therefore browse and query any user-defined
schema as well as the dictionary uniformly. In our graphic
schema notation, (1) entity classes and domain classes are

represented as rectangular nodes and circular nodes, respec-
tively, (2) a generalization association is represented by a
G link from a superclass to a subclass, and (3) an aggrega-
tion association is represented by an A link from the defin-
ing class to a constituent class. After compilation, any user-
defined class will be added to the class structure as an im-
mediate or non-immediate subclass of either EClassObject
or DClassObject, while at the same time the objects corre-
sponding to the class definition, associations, methods, and
rules of the defining class will be created as instances of
the system-defined entity classes named Class, Association,
Method, and Rule, respectively. Note that this class struc-
ture is self-describing in the sense that we use the model to
describe the model itself.

As any application domain (including the model itself) is
uniformly modeled and mapped into the kernel model, one
can use the kernel model toincrementallyextend the model
itself to meet the requirements of various applications by
either (1) adding new structural association types [e.g., In-
teraction, Composition, and Crossproduct Su et al. (1989)] or
introducing subtypes of existing association types, or (2) ex-
tending the definition of existing association types [e.g., add
new attributes defaultvalue, nullvalue, optional, unchange-
able, dependent (Shyy et al. 1991), etc., for the association
type Aggregation] so that more semantics can be captured
in the schema and maintained by the KBMS instead of be-
ing buried in application codes. Once a new association type
is defined, it becomes a semantic construct of the extended
knowledge model and can be used in the definition of any
object class.

2.2 Knowledge definition facilities

In Atkinson and Buneman (1987), a set of four tasks is
proposed to evaluate the expressiveness of database pro-
gramming languages using a manufacturing company’s parts
database. The four tasks are:

185

Fig. 2. The parts knowledge base schema

1. Describe the database
2. Print the name and cost of all base parts that cost more

than $100
3. Compute the total cost of a given composite part
4. Record the decomposition of a new part in the database,

i.e., how a new composite part is manufactured from its
subparts

This example has been successfully implemented in K.
In this section, we give an overview of the knowledge defini-
tion facilities of K by showing how to use K to perform the
first task, Describe the database. The other three tasks will
be described in the following sections after the appropriate
programming constructs have been described. The schema
of the parts knowledge base is shown in Fig. 2, and the corre-
sponding class definition in K is shown in Fig. 3. We define
entity classes Part, CompositePart, and BasePart to model the
parts, and an entity class Use to model the many-to-many
relationships among parts. Each Use instance has three at-
tributes, parent, child, and quantity, to record the relationship
that the parent part uses a certain number of the child part.
Each part has an attribute partid and must be either a base
part or a composite part. A base part has an attribute cost,
and a composite part has an attribute assemblyCost.

2.2.1 Association definition

Based on the knowledge model described in Sect. 2.1, each
class definition in K generally consists of anassociations
section, amethodssection, and arules section, as shown in
Fig. 3. The following two kernel structural association types
are supported in K. Other association types can be introduced
by the model extensibility feature of the KBMS.

Aggregation.For each object class, one can define a set of
aggregation associations (attributes) to describe thestateof
its instances, as shown in Fig. 3. Each aggregation-group is
specified by a protection or encapsulation level (public:, pri-
vate:, andprotected:, as described in Sect. 2.1) followed by
a list of aggregation specifications. Each aggregation spec-
ification corresponds to an instance of the class Aggrega-
tion. An aggregation association defines either (1) avalue
attribute if its constituentclass is a domain class, or (2) a
reference attributeif its constituentclass is an entity class.

At the instance level, we store values and iids for value at-
tributes and reference attributes, respectively.Multi-valued
attributes are specified using the constructor classes Set, List,
or Array. Note that in addition to the constructor Set which
is critical in object-oriented databases, we also provide List
and Array to capture the semantics of order which is useful
in real-world applications (Atkinson et al. 1990; Committee
for advanced DBMS Function 1990). Note that an aggrega-
tion association between two entity classes is interpreted as
a bi-directional link. For example, for the aggregation as-
sociation called parent from entity class Use to entity class
Part, the system will automatically define and maintain a
set-valued aggregation from Part to Use (for each Part in-
stance, the system records all the Use instances that refer to
this Part instance). The system will use this information to
support bi-directional navigation and to maintain therefer-
ential integrity of the knowledge base. Note that similar to
the ER model (Chen 1976), when an association is expected
to carry descriptive data or behavioral information (in terms
of methods and/or rules), the knowledge-base designer can
explicitly model the association as an entity class.

Generalization. For each object class, one can use the gener-
alization (G) association to specify its immediate superclass.
Note that the generalization association is bi-directional and
can be specified in either direction. When class B is specified
as a subclass of class A, we say that class B is aspecializa-
tion of class A. For example, to say “BasePart is a special-
ization or subclass of Part” is equivalent to saying “Part is
a generalization or superclass of BasePart”. In general, spe-
cialization is used to construct object classes in a top-down
and step-wise refinement approach by giving more and more
structural and behavioral properties. Note that we also allow
the user to define specializations of primitive domain classes
(e.g., a subset of integer) by using rules to specify range,
enumeration, or other constraints.

2.3 Persistence

K supports persistence so that objects can live after the exe-
cution of a program is terminated. Persistence in K is based
on the following rationales:

1. Persistence isorthogonal to classes as in E (Richardson
and Carey 1987), O++ (Agrawal and Gehani 1989), ONTOS
(Ontologic Inc. 1991), and OQL[X] (Blakeley et al. 1990),
i.e., persistence is an object property rather than a class prop-
erty. Any subclass of EClassObject automatically inherits
the persistence mechanism and it is up to the user to specify
each of its instances to be either persistent or transient us-
ing the pnewor tnew operator, respectively, when creating
a new object. When a transaction is terminated, the object
manager will delete all the transient objects and remove all
the references to these transient objects by following the in-
verse aggregation links mentioned in Sect. 2.2. Contrary to
other existing systems, K automatically takes care of the dan-
gling references problem (i.e., some transient instances are
referred to by persistent instances after program execution is
terminated) instead of leaving it to the user’s responsability.

2. Persistence is orthogonal to oid. The advantages are
twofold. Firstly, K provides a better object-oriented flavor

186

Fig. 3. Specification of the parts knowledge base in K

than C++-based languages by enabling the users to (1) ma-
nipulate objects at the logical level instead of going to the
physical level, and (2) navigate through the database us-
ing oids instead of pointer chasing. Secondly, as oids are
independent of physical address, K enforces theimmutabil-
ity requirement of identity (Khoshfian and Copeland 1986).
Therefore, unlike C++-based persistent languages which put
extra burden of managing two or three types of pointers
(persistent, transient, and/or dual pointers) on the users, per-
sistence in K is transparent to the user in managing entity
class instance variables.

3. Persistence is orthogonal to queries and any object manip-
ulation. For example, a selection query over an entity class
should return both its persistent and transient instances as
long as they satisfy the selection condition as in Blakeley et
al. (1990).

2.4 Type system

K directly manipulates objects at the instance level. We de-
fine thetypeof an instance as the class to which this instance
belongs. Every variable in K is bound to some instance and
therefore must be declared to have a type. Similarly, the
result of an expression in K is an instance whose type is
determined by the return type specified for the methods and
operators that are invoked in the expression.

2.4.1 Type compatibility

The type of an expression in general can be detected by
textual inspection to decide on the type compatibility which

means that a variable of type X can only be assigned expres-
sions which represent instances of class X or any subclass of
X. In the latter case, the system will automatically convert
the type of the instance from the right-hand-side expression
to class X during run time to actually refer to it as an in-
stance of class X. Method parameters and returned values
are checked against the method signature following the same
rule as above.

2.4.2 Type conversion

If the type checker is not able to ascribe a type to an ex-
pression, the user must use thecastoperator $ to specify the
type in the form<class>$<expression>. The cast operator
is useful for the user to temporarily convert the type of an
expression or refer different representations of the same en-
tity class object in different classes. For example, suppose p
is an instance variable of type Part, then BasePart$p asserts
that the type of p is BasePart instead of Part. Similarly, to
resolve anyname conflictin inheritance, one must specify
from which superclass a particular property is inherited, by
casting the type of an expression to that particular superclass
to refer to the corresponding instance explicitly. For exam-
ple, suppose both classes Part and BasePart define a method
called getCost(). To invoke getCost on a BasePart instance
b, one must use Part$b.getCost() for the system to unam-
biguously invoke the correct method to corresponding Part
instance of b. Note that in the case when no name conflict
occurs, the system will automatically find the appropriate
superclass and perform the casting to support inheritance. In
other words, inheritance at run time is supported by casting
an instance of class X to be an instance of class Y (which is
a superclass of class X) before accessing a property defined
by class Y.

187

For domain classes, onlyupwardtype casting is allowed,
i.e., a value from the domain class X can be converted to
a value of any superclass of X, but not vice versa. For en-
tity classes, type casting can be performed either upward or
downward along a generalization hierarchy. Note that a null
value might be returned from a cast operator in the cases
when there does not exist any corresponding instance in the
target class. For example, BasePart$p will return null if the
Part instance referred to by p has a corresponding instance
in CompositePart rather than in BasePart. It would be the
user’s responsibility to handle null values explicitly.

2.4.3 KBMS operations

After an entity class is defined, we can insert instances into
that class. An instance can be created from scratch by in-
voking the tnew or pnew methods (defined in the meta-class
Entity of Fig. 1), followed by a list of attribute assignments,
to create a new transient or persistent object along with an
instance of this object. The following K-program block illus-
trates the basic OSAM*.KBMS operations and the concept
of object/instance by using our example parts knowledge
base:

local
p1:Part,
p2: Part,
c: CompositePart,
b: BasePart;

begin
p1 := Part.tnew(){ part id := “LS741” }; // (1)
b := basePart.pnew()

{ part id = “LS745” , cost := 25.00}; // (2)
c := p1.insert(CompositePart); // (3)
p2 := Part$c; // (4)
c.del(); // (5)
p1.destroy(); // (6)

end;

Statements (1) and (2) create two new objects, insert their
instances in the class Part and class BasePart, update their
attribute values, and return the iids to variables p1 and b,
respectively. Note that by inserting a BasePart instance, the
system object manager automatically inserts a correspond-
ing Part instance (with the same oid) because of the gener-
alization association. The difference between the instances
referred to by “b” and “p1” is that the former is a persis-
tent instance and therefore any update (using the assignment
operator) will be written to the database, while the latter
is a transient instance which resides only in main memory.
Notice that the pnew and tnew methods are invoked using
conventional dot notation following the name of the class.
This is interpreted by K as follows: return the instance of
the meta-class Entity corresponding to the given class, and
invoke the method pnew or tnew for that instance. This is
similar to SmallTalk “class methods” or C++ “static mem-
ber functions”. Statement (3) inserts a new CompositePart
instance of the object referred to by variable p1 (assume we
learn that this part is a CompositePart) and returns the iid
to variable c. Note that no new object is created and the iid
returned to c has the same oid as p1. Statement (4) casts the

CompositePart instance referred to by c as a Part instance
whose iid is then assigned to p2. In statement (5), we delete
the instance c and the object manager will automatically
delete all the instances of the object referred to by c in all
the subclasses of CompositePart (if any) following the gen-
eralization association. All the references (association links)
to these deleted instances from other object instances will be
automatically removed to maintain thereferential integrity
constraint. Note that for this particular object, even though
it lost its instance in CompositePart, it still has its instance
in Part. For example, we can use the variable p2 from state-
ment (4) to refer to its Part instance. In other words, we
allow an object to have different representations in different
classes (even spans more than one branch of the generaliza-
tion lattice), and we can insert or delete these representations
dynamically. This is a property that cannot be expressed in
most object-oriented programming languages except those
systems which support multiple views of objects [e.g., As-
pect (Richardson and Schwartz 1991), IRIS (Fishman et al.
1987; Wilkinson et al. 1990; Annevelink 1991), and Clovers
(Stein and Zdonik 1989)]. At the implementation level, it
is easier to delete an instance without extra copying data
and changing addresses. Note that we achieve this flexibil-
ity without losing the advantages of static type checking by
directly manipulating instances rather than objects. In state-
ment (6), a destroy statement will automatically delete all the
instances of the object referred to by variable p1, including
those in the superclasses of Part (if any). An implementation
of the object manager has been reported by Arroyo (1991).

3 Query processing facilities

Object retrieval in K is based on structural association pat-
terns among object classes in the form of (1) a context loop-
ing construct for querying and manipulating the knowledge
base, and (2) existential and universal quantifiers for posing
logical questions upon the knowledge base.

3.1 Association patterns

Since K serves as a high-level interface of OSAM*.KBMS,
the execution of a K program would generally involve the
processing of a persistent knowledge base. For knowledge-
base retrieval and manipulation, a knowledge-base program-
ming language should include some knowledge manipulation
constructs in addition to general programming constructs. In
our work on K, we use pattern-based querying constructs
for this purpose. We modify the context expression of OQL
(Alashqur et al. 1989; Guo et al. 1991) as the primitive
construct for specifying structural association patterns based
on which the system cannavigate through the knowledge
base to identify the correspondingcontexts(sub-knowledge-
bases) that satisfy the specifiedintensionalpatterns.

In general, each association pattern is specified by the
contextclause which has a set of classes and operators, and
optional where and selectclauses. Operators can be either
association operators like *, *>, and *<, or non-association
operators like !, !<, and !>. The> and< symbols that fol-
low the association operators are used to explicitly indicate a

188

direction, which is the defining class of a given association,
where> stands for left-to-right, and< stands for right-to-left
direction. For example, the patterncontextPart *> Compos-
itePart specifies all the Part objects that are associated with
some CompositePart objects, where Part is the defining class
of the association (in this case an unnamed Generalization
association). Similarly, the patterncontextCompositePart !<
[parent] Use specifies all the Use objects that are not asso-
ciated to any CompositePart objects through the association
link called parent, defined in the class Use.

One can also explicitly specify a range variable over
a class in an association pattern. For example,context
p1:Part *> c:CompositePart !< [parent] Use *> [child]
p2:Partwherep2.partid=’LS741’ selectp1 specifies a sub-
knowledge-base that contains all the parts that are compos-
ite parts (i.e., there is generalization link connecting a part
with a composite part) which do not use (i.e., composite
parts not connected through the parent association with any
Use instance) part number ’LS741’ (i.e., Use instances con-
nected through the child link to part whose partid equals
’LS741’). Here, p1 and p2 are variables that represent the
Part instances that satisfy the association pattern specifica-
tion. Notice that the name of an association link can be
explicitly stated within square brackets following an asso-
ciation operator. Notice also that a select clause is used to
perform a projection operation over the class Part referred
to by variable p1.

Instead of using a class notation, one can also directly
designateobjects by replacing class name with any user-
defined variable which is bound to a single or a collection
of entity class instances. For example, s : Set of Part declares
a variable s whose value will be a set of Part instances, and
s *< [parent] Use specifies a context which consists of all
the parts denoted by s that are the parents in the relation-
ship defined by the class Use. Note that bothimplicit sets
(denoted by a class name followed by an optional selection
condition in a context expression) andexplicit sets (user-
defined set variables as the above example) are supported in
K. Explicit sets can be manipulated by using set operators +
(union), & (intersection), and− (difference). One can also
use the overloaded + (add) and− (remove) operators to add
and remove a single instance to and from a set, respectively.
A more detailed description of complex association patterns
can be found by Shyy (1992).

Note that in existing object-oriented database systems,
navigation is expressed by using thedot expressionfor im-
plicit joins. However, the use of dot expressions is limited by
the following factors. Firstly, navigation is done only in one
direction unlessinverseattributes are supported and explic-
itly defined in the system. For example, suppose class Part
defines an aggregation association whose name is subPart
and whose constituent class is Part itself. Then, one can use
the association patterns (1) this *> [subPart] p:Part to iden-
tify the subparts of a particular Part denoted by this, and (2)
this *< [subPart] p:Part to identify all the parts of which this
is a subpart. Such bi-directional navigation is not possible in
a dot expression. Secondly, navigation cannot continue after
a multi-valued attribute is met. For example, the dot expres-
sion c.components.quantity is not allowed, since components
is a multi-valued aggregation association defined from Com-
positePart to Use. Thirdly, dot expressions cannot express

navigation vianegation, or thenon-associaterelationships.
For example, it is not possible to express all the parts that
composite part cdoes notuse using a simple dot expression.
K supports all the above cases using association patterns.

3.2 Context looping statement

A context corresponding to an association pattern can be
thought of as a normalized relation whose columns are de-
fined over the participating classes and each of its tuples
represents anextensionalpattern of iids that satisfy the in-
tensional pattern. After a context is identified, one can use
the context loopingdo statement provided by K to manipu-
late objects over each extensional pattern. For example, the
following statement will print the partid of each composite
part whose assembly cost is greater than the cost of any of
its components:

contextc:CompositePart *< [parent] Use *> [child] p:Part
wherec.assemblyCost> p.costselectc do

c.part id.fdisplay(”Composite part id:\n”);
end;

Note that the where-clause is used to specify the inter-class
selection condition between CompositePart and Part and the
select-clause is used to project over CompositePart column
and remove the redundant tuples so that each qualified Com-
positePart will appear only once even if it has more than one
component. Also note that c.partid returns a string and fdis-
play() is a method of the domain class String with the same
format notation as the C printf function.

Similarly, the second task of the Parts database example
(Atkinson and Buneman 1987M i.e., to print the name and
cost of all the base parts which cost more than $100) can be
expressed straight-forwardly as follows:

contextb:BasePartwhereb.cost> 100.00do
b.part id.fdisplay(“ Base Part %s);
b.cost.fdisplay(“ with cost = %5.2f\n”);

end;

As another example, the following statement will print
the name of all the parts which are not used by any com-
posite part. Note that the use of the ! non-associate operator
provides a more concise expression because, otherwise, we
have to iterate over each part and, for each looping, we have
to in turn iterate over each composite part to test if any com-
posite part uses this particular part as a subpart:

contextp:Part !<[child] Use *> [parent] CompositePartdo
p.part id.fdisplay(”Part %s is not used by any

composite part\n”);
end;

3.3 Existential and universal quantifiers

Statements for the retrieval and manipulation of a knowledge
base may involveexistentialanduniversalquantifiers. Quan-
tifiers make it much easier for the users to declaratively and
concisely pose logic questions upon the knowledge base. For

189

example, one can ask if there exists a part, used by a com-
posite part, whose cost is greater than the assembly cost of
the composite part byexistp in c:CompositePart *< [parent]
Use *> [child] p:Partwherep.cost> c.assemblyCost. Simi-
larly, one can ask ifall the CompositeParts whose assembly
cost is greater than the cost of its components have an as-
sembly cost greater than $100 byforall c in c:CompositePart
*< [parent] Use *> [child] p:Partwherec.assemblyCost>
p.cost suchthatc.assemblyCost> 100.00. Notice that the
suchthatclause in theforall expression is mandatory since,
given an association pattern, it is necessary to check that
a given condition is satisfied by all the objects that satisfy
the condition specified in thewhere clause. In the case of
exist, it is only necessary to check for the existence of at
least one object that satisfies the condition specified in the
whereclause. Note that by following theorthogonalityprin-
ciple, both the context looping statements and quantifiers are
treated as normal K statements and expressions, and they can
be nested in an arbitrary number of levels or combined with
other boolean expressions. For example, the following state-
ment will print the name of all the composite parts which
use only base parts:

contextp1:CompositePartdo
if forall p2 in p2:Part *<[child] Use *> [parent] p1

suchthat notp2.is a(BasePart)then
p1.partid.fdisplay(Part %s uses only base part\n);

endif;
end;

Note that we use an if-then-else statement inside the context
looping statement, which uses a universal quantifier as its
test condition. Also note that since the type of p2 is Part,
we invoke the isa method to test if p2 is a BasePart.

4 Object-oriented and rule-based computation facilities

Both object-oriented and rule-based computations are sup-
ported in K by the use of methods and rules as will be
described in Sects. 4.1 and 4.2, respectively. Corresponding
to each executable software system, the user has to define a
named Kprogram (similar to the “main” program of C++)
as the starting point of execution as will be described in
Sect. 4.3.

4.1 Method definition

Each method definition consists of two parts: (1) asignature
which is given in the methods section of a class definition
and specifies the name of the method, the type of the pa-
rameters, and the type of the return value, and (2) the actual
programbodywhich is given in the implementation section
of a class definition and is a sequence of K statements that
contains local variable declarations and general computa-
tions. Both method and operator overloading are allowed in
K.

As a computationally complete programming language,
K provides the basic data structures (set, list, and array) and
control structures (sequential, condition, repetition, and con-
text looping). In this section, we use the third task of the
parts knowledge base (Atkinson and Buneman 1987) as an

example to illustrate the object-oriented computation facil-
ities of K. A detailed and complete description of the lan-
guage constructs can be found in the work of Shyy (1992).
Note that since the current version of K does not support
recursive queries, we define a method getCost() of class
CompositePart, which will recursively call itself to make
a depth-first traverse of all the immediate or non-immediate
subparts of a given composite part and return the total cost.

methodCompositePart::getCost() : real is
local sum : real;
begin

sum := this.assemblyCost;
contextthis *>[components] u:Use *>[child] p:Part do

case
whenp.is a(BasePart) do

sum := sum + p.cost * u.quantity;
whenp.is a(CompositePart) do

sum := sum
+ CompositePart$p.getCost() * u.quantity;

endcase;
end;
return sum;

end;
endgetCost;

The program body of getCost is a singlelocal statement,
where we define a local variable sum to record the total cost.
We first initialize the local variable sum to be the assembly-
Cost value of the given composite part (which is the receiver
of this method and denoted by the pseudo-variable this, like
in C++). We then use a context looping statement described
in Sect. 3.2 to retrieve the immediate subparts used by this.
For each subpart, we use a case statement to compute its
contribution to the total cost (which is the multiplication of
its own cost and the quantity used) based on whether this
subpart is a base part or composite part. This condition is
tested by the use of the isa method. If it is a base part, its
own cost can be directly returned as the value of its cost at-
tribute; if it is a composite part, we recursively call getCost
to compute its own total cost. No otherwise clause is used in
the case statement because each part must be either a base
part or a composite part.

4.2 Rule definition

Rules serve as a high-level mechanism for specifying declar-
ative knowledge that governs the manipulations of objects
made by KBMS operations, updates, and user-defined meth-
ods. Note that, although the semantics represented by rules
can be implemented in methods, high-level declarative rules
make it much easier for a database designer to clearly cap-
ture the semantics instead of burying the knowledge in the
implementation codes and thus simplify the tasks of imple-
mentation, debugging, and maintenance. Moreover, rules can
be used to dynamically modify the control flow among pro-
gram modules without having to modify the codes of each
module and thus improve the system modularity.

Each rule is given a name for its identification, which
must be unique within its defining class. A rule is specified
by a set of trigger conditions and a rule body. Each trigger
condition consists of a timing specification and a sequence of

190

knowledge-base event specification. A timing specification
(or coupling mode) can bebefore, after, or immediateafter.
An event specification can be a KBMS operation described
in Sect. 2.4 or a user-defined method. Note that in the case of
a name conflict in multiple inheritance caused by a redefined
attribute or method, the user must attach the proper class
name with the attribute or method name to unambiguously
specify the knowledge-base event. The rule body consists of
a conditionclause, anactionclause, and anotherwiseclause,
both of which can be a sequence of any K computation state-
ment. Theconditionclause of a rule may contain any valid
K boolean expression, and may return eithertrue, false or
skip. If a rule condition istrue, then the action part of it is
executed. If it returnsfalse, then theotherwisepart is exe-
cuted. If skip is returned, then the whole rule is skipped. A
condition may returnskip if a guard expressionis specified.
A guard expression is in the form (guard1, guard2,...,guardN
| target). Each guard in the expression is evaluated from left
to right, and the evaluation stops as soon as one of the guards
evaluates tofalse. The evaluation of a guard expression can
return either (1) true, if all the guards and the target (all of
which are boolean expressions by themselves) are true, (2)
skip, if any of the guards are false when they are evaluated
from left to right, or (3) false, if all the guards are true but the
target is false. Although the semantics of a guard expression
can be implemented by nesting of if-then-else constructs, the
guard expression is a simpler and more concise construct to
use, particularly when the number of guards is large. Be-
sides, we feel that rules should be specified as declaratively
as possible, and we would like to make a clear distinction
among the condition, action, and otherwise parts of a rule
instead of mixing them in a nested if-then-else procedural
statement. Similarly to method invocation, rule checking is
performed at the instance level, and the pseudo-variable this
can be used in a rule body to represent a certain instance of
the defining class to which some event occurs.

Figure 3 presents examples of K rule specifications. The
rule comppart no defined in the class Part is triggered either
after a new part instance is created (or before committing
the transaction where this operation was performed), or im-
mediately after an update is done to attribute partid. It uses
a guard expression to state that if a Part is a CompositePart,
and the partid is not a null string, then the partid should
start with a C, otherwise the part will be deleted from the
knowledge base. The deletion operation is performed by in-
voking the del method.

All the rules are assumed to beactive when a user ses-
sion begins. However, during the execution of a user pro-
gram, one can invoke the activate or deactivate methods to
temporarily activate or deactivate any particular rule, respec-
tively. For each knowledge-base event occuring to instance
this of class X, all the applicable rules will be triggered
(i.e., the evaluation of the rule body) according to the trig-
ger conditions of each rule (1) before the triggering event,
(2) immediately after the triggering event, or (3) not imme-
diately after the triggering event, but at the end of the parent
event that causes the triggering event. Note that the use of
the after mode allows for temporary violation of constraints
(which is likely to happen when a constraint on an object
depends on two inter-related values and when one of the
values is updated) by deferring the rule checking until the

end of a higher level operation. In the case that multiple
rules satisfy a trigger condition, such rules will be triggered
in some unspecified order which is dependent on the imple-
mentation.

Another example of a rule specification is presented in
Fig. 3. The rule uniquePid in the class Part specifies the con-
straint that partid is the user-definedkeyof class Part, i.e.,
each part should have a unique partid. This rule will be
triggered immediately after the partid attribute value of a
Part instance denoted by the pseudo-variable this is updated.
We use a existential quantifier in the condition-clause, which
tests if there exists a part (denoted by the range variable p)
which has the same partid as this, but does not have the
same iid as this, i.e., p != this. The action clause will be
executed if the condition clause returns true, i.e., if there
exists some part with the same partid as this.

Note that rules specified in a class definition can conflict
with other rules for the same knowledge-base event or cause
infinite looping during execution. This is a knowledge-base
validation problem (Wu 1993) which is not in the scope of
this paper. We assume that it is the user’s responsibility to
make sure that such logic errors do not happen as in the
work of Gehani Jagadish (in press). We will present the rule
execution model in more detail in Sect. 5.

4.3 An example

An application can be specified and implemented in K by
uniformly modeling as object classes all the objects used by
the application, and the components (software modules) of
the application itself. For example, we can define an entity
class PartHandler as the top-level software system that ma-
nipulate the parts knowledge base as shown in Fig. 4. Each
class definition is represented by a .k file, and one can use
the include statement to include the necessary files for com-
pilation. Each schema can also be represented by a .k file
which contains a list of include statements to include all the
related classes into one module. Note that PartHandler in-
cludes a file PartSchema.k, which in turn includes all the
classes Part, BasePart, CompositePart, and Use. The func-
tionality of PartHandler is represented by a method called
main, which displays a menu and asks the user to choose
among various tasks (create a new base part, create a new
composite part, delete a part, display a part, etc.).

In addition to the definition of object classes, one also has
to define a named K program as the starting point of execu-
tion. In general, a K program contains few statements which
create instances of the entity classes that model the software
system, and invoke the main method on the newly created
instances to obtain the functionality as shown in Fig. 4. After
compilation, each K program is translated into an executable
file, which can be activated by just typing in the program
name at the Unix shell.

Note that because the user is allowed to manipulate
the knowledge base only via the interface of PartHandler,
certain system constraints can be implicitly enforced by
PartHandler. For example, by providing the user with only
the options to create a base part and a composite part, we
enforce thetotal participation and set exclusionconstraints
(Su et al. 1989) that each part must be either a base part or

191

Fig. 4. Software system specification in K

a composite part. Some other constraints and triggers can be
explicitly specified as rules. For example, as shown in Fig. 3,
a rule delDependents enforces the constraint of class Part
that, before a part is deleted, all the composite parts which
directly or indirectly use this part must also be deleted. The
following is the implementation of the method deleteDepen-
dents:

methodPart::deleteDependents()is
contextthis *< [child] u:Use *>

[parent] c:CompositePartdo
u.del();
c.del();

enddeleteDependents;

The fourth task of the parts knowledge-base example,
i.e., to create a new composite part in the knowledge base,
can now be easily expressed. When the user selects the new
composite part option from the main menu, PartHandler will
in turn invoke its private method newCompositePart to per-
form this task. The method newCompositePart will create a
new persistent CompositePart instance, and invoke the meth-
ods askPid (which is inherited from class Part) and askUse
(which is defined by class CompositePart) to ask the user to
provide the partid and subparts information. The implemen-
tation of newCompositePart and askUse is shown as follows:

methodPartHandler::newCompositePart()is
local c : CompositePart;
begin

c := CompositePart.pnew();
c.askPid();
c.askUse();

end;
endnewCompositePart;

methodCompositePart:askUse()is
local

u : Use,
more : String;

begin
Any subpart? (y/n) ==> .fdisplay(/n %s);
more.read(); /* read the input from the terminal */
case

whenmore = ydo
begin

u := Use.pnew(); /* create a new Use instance */
u.parent := this;
this.askChildPid(u); /* ask the subpart */
this.askChildQty(u); /* ask the quantity used */
this.components := this.components + u;

/* add element to a set */
this.askUse(); /* ask again */

end;
whenmore = ndo

return;
endcase;

end;
endaskUse;

Note that in the implementation of askUse, we use a
method called read, which is a method of the system-defined
domain class String, to obtained the string value typed in
by the user. Also note that we use the askChildPid and
askChildQuantity methods to record each subpart informa-
tion in a Use instance. Each Use instance will then be added
(using the + operator) to the components attribute (whose
value is a set of Use instances) of the composite part in-
stance.

5 Computation model

5.1 Overview

The computation model of K is based on an object-oriented
paradigm (Stefik and Bobrow 1986) and nested transactions
(Moss 1981) to model the behavior of the combined exe-
cution of methods and triggered rules in an object-oriented
framework. Transactions can be nested to an arbitrary num-
ber of levels by explicitly defining new transactions using the
begintrans and endtrans statements. As a result, a trans-
action may contain any number of nested transactions or
subtransactions, and all are organized as a transaction tree
whose root is the top-level transaction.

Changes to the knowledge base made by a nested trans-
action are contingent upon the successful commitment of all
of its ancestral transactions. Aborting any of its ancestors
invalidates all of its changes. If a nested transaction aborts,
the knowledge-base state seen by its parent is the same as
it was immediately prior to starting the nested transaction.
K provides the user with theabort statement toundo any
update to the knowledge base (i.e., the states of persistent
entity class instances) made between the beginning of the
current transaction and the abort statement. Note that the
abort statement has no effect on the update to the value of
any local variable itself. When a transaction is committed,
both persistent and transient objects are removed from the
memory cache, but only persistent objects are written into
secondary storage.

5.2 Rule execution model

As mentioned in Sect. 4, a knowledge-base event could be a
KBMS operation (tnew, pnew, insert, delete, and destroy),
an update, or a method invocation. The occurrence of a

192

knowledge-base event P in transaction T on instance this
of class C consists of the following steps: (1) get, bind, and
trigger all the applicable before rules of P, (2) execute the
event P itself, (3) get, bind, and trigger all the applicable
immediateafter rules of P, and (4) get, bind, but delay the
triggering of all the applicable after rules until the end of
transaction T. Note that the execution of a rule body might
invoke certain events which might in turn trigger other rules.
Notice that both the event P and the triggering of the corre-
sponding rules are considered part of transaction T.

After compilation, each triggering event is represented as
either<iid, SourceClass, operation> for both KBMS opera-
tions and method invocations, or<iid, SourceClass,update,
operand> for updates, where iid is the instance to which the
event occurs, and SourceClass could be (1) the class, one
of whose instances is being created, deleted, destroyed, or
inserted, (2) the defining class of the method which is be-
ing invoked, or (3) the defining class of the attribute which
is being updated (the operand followed by theupdatekey-
word). Note that in the case of inherited attributes or meth-
ods, SourceClass will be a superclass of the class to which iid
belongs. Name conflict in multiple inheritance and subclass-
redefined attribute/method will be explicitly resolved by the
user in the event specification as mentioned in Sect. 4.2. Sim-
ilarly, the event specifications of rules are internally repre-
sented as<SourceClass, operation> or <SourceClass,up-
date, operand>. In general,applicable rulesof event P with
certain coupling mode must satisfy the following conditions.
Firstly, the coupling mode and knowledge-base event must
match one of the trigger conditions of this rule. Secondly,
there must be an instance with the same oid as iid in the
defining class of this rule. In other words, for any triggering
event<iid, SourceClass, operation> or <iid, SourceClass,
update, operand>, we match the triggering event with all the
active rules of SourceClass and any of its subclasses which
has an instance with the same oid as iid.

The advantage of this approach is threefold. Firstly, the
search space is reduced in the sense that we start from
SourceClass instead of the root class to avoid searching those
inherited rules which are impossible to match the triggering
event. For example, the event<BasePArt, update, cost> will
never trigger any rule defined by class Part because cost is
defined by BasePart and not visible from Part. Secondly,
redefined attributes or methods can be easily identified and
thus avoid incorrectly triggering rules. For example, if class
CompositePart redefines the method deletePart of Part, then
invoking deletePart in a CompositePart instance will not
trigger any rule of Part which has<Part,deletePart> as its
trigger condition because the SourceClasses are different.
Thirdly, different from existing rule-based systems such as
ODE (Agrawal and Gehani 1989) and HiPAC (Chakravarthy
1989), the choice of applicable rules in our paradigm is not
limited to inherited rules. For example, suppose class Part
defines an attribute cost with the constraint that the cost of a
part must be greater than $10.00. As a subclass of Part, class
CompositePart inherits the cost attribute and defines a more
restrictive constraint that the cost value of a CompositePart
must be greater than $20.00. In other words, in the case that
a part is also a CompositePart, the CompositePart constraint
overwrites the Part constraint. Since cost is defined by class
Part, both rules have<Part,update,cost> as the event speci-

fication. Then, the update of the cost value of a Part instance
must triggerboth rules of Part and CompositePart as long
as this part is also a CompositePart. Failing to trigger the
CompositePart rule may leave the knowledge base in an in-
consistent state. None of the existing systems addresses this
problem adequately.

In the case that an update is made to an attribute of
some entity class instance whose underlying domain is a
complex domain class, such an update will be subjected
to the constraints of the rules specified in all the enclosed
domain classes as well as the hosting entity class via the
navigation path. For example, suppose class Part defines a
value attribute called purchasedate whose type is a com-
plex domain class Date. The class Date defines three value
attributes, month, day, and year, all of which have type in-
teger. Then, the update event p.purchasedate.year := 1992
should trigger not only any update date::year rule defined by
Date, but also any update Part:purchasedate rule defined by
Part.

6 System architecture and implementation

6.1 Overview

A prototype of the K compiler has been implemented on
Sun4 using C++. After bootstrapping, some of the system
components were implemented in the K language itself. All
the linguistic facilities described in Sects. 3–5 have been im-
plemented. The only limitation is that in our current imple-
mentation, we treat the execution of each K program as a
single transaction because the nested transaction model is
not well supported in the Storage Manager level. We are
currently extending the underlying KBMS to support nested
transactions. The specialized tools Lex and Yacc were used
to generate the lexical analyzer and parser.

The K compiler maps K code to C++ code with calls to
KBMS functions. Each K class is mapped to a C++ class.
As C++ does not support the distributed view of objects as
described in Sect. 2, we cannot use the C++ class inheritance
facilities (denoted by the keyword public) to represent a class
inheritance lattice in K. Therefore, all association links, in-
cluding generalization links, are mapped to C++ data mem-
bers that contain, for each object, thereferences(or oids) to
the associated objects.

Method declarations are directly mapped into C++ with
the same encapsulation level. Similarly, operator declara-
tions are mapped into C++ methods with special names
(e.g., KOPGT for the> operator). Each K program def-
inition is defined as a C++ class with a main method. For
every K method, two additional C++ methods are gener-
ated: (1) KBEGIN <methodname>, which contains calls
to the Rule Processor and is invoked at the beginning of
the method to trigger the applicable before rules, and (2)
KEND <methodname>, which also contains calls to the

Rule Processor and is invoked at the end of the method to
trigger the applicable immediateafter and after rules.

Rules are mapped to C++ methods with special names
(e.g., KRULE valid salary for the rule validsalary). Each
C++ method corresponding to a rule contains the C++ code
that belongs to the rule body. Amember-function pointeris

193

Fig. 5. The system architecture of K

defined for every method that corresponds to a rule. These
pointers are used by the Rule Processor to trigger rules.
For delayed (after) rules, the Rule Processor maintains a
queue of rule pointers which is processed at the end of every
transaction.

Basic control structures (block, if-then-else, for-loop,
while-loop, break, continue, and return) are mapped into
their C++ counterpart statements. Local variable declarations
are mapped into C++ variable declarations.

Most of the C++ code generated by K consists of calls
to the KBMS library functions. The K compiler generates an
executable file which is linked with a library of KBMS func-
tions. In the next section, we will present the components of
the KBMS library.

6.2 System architecture

The implementation of K and its supporting KBMS is based
on an open, modular, and extensible architecture as shown in
Fig. 5. Note that each major component of the system is rep-
resented by an object class, and we use the Using (U) associ-
ation to represent the client-server relationship among these
components. The StorageManager is currently supported by
Exodus (Richardson and Carey 1987), an object-oriented
DBMS, to provide the low-level storage management (e.g.,
access method, data organization, and file management) and

transaction management (concurrency control and recovery)
facilities to the KBMSHandler. The functionalities of the
current implementation of KHandler and KBMSHandler
are described below

The K Handler is responsible for compiling any K pro-
gram. It serves as the main interface to the K compiler. It
uses the Parser module to parse an input K specification
(which is tokenized by the Lexical Analyzer) and generate
a standard tree representation which will be used by: (1) the
Semantic Checker module, to check the semantic correctness
of a K specification, (2) the Intermediate Code Generator,
to generate corresponding C++ code, and (3) the Dictionary
Handler module, which creates the new classes, associations,
rules and methods defined in a K program as objects in the
knowledge base.

As the top-level interface class of all the KBMS compo-
nents, KBMSHandler hides all the details of its constituent
classes and serves as the controller of all incoming mes-
sages by dispatching them to appropriate KBMS compo-
nents which actually implement the corresponding methods.
KBMS Handler uses the following classes: (1)Object Man-
ager, which performs the basic KBMS operations such as
tnew, pnew, insert, delete, and destroy, described in Sect. 2.4,
as well as transaction management, (2)Query Processor,
which takes as an input a query tree and evaluates a query
returning the corresponding contexts as tables of extensional
association patterns, as described in Sect. 3.2, and (3)Rule
Processor, which performs the triggering of applicable rules,
as described in Sect. 4.2.

At the lower level, the Storage Manager provides an in-
terface to the underlying storage manager, which gives ba-
sic get/put semantics, indexing, and transaction management
functions. The interface has been designed to provide trans-
parency to the underlying storage manager interface func-
tions. This allows to easily replace the underlying storage
manager without affecting the upper layers (i.e., the Object
Manager).

7 Conclusion

In this paper, we have described the features and imple-
mentation of the object-oriented knowledge-base program-
ming language K. K serves as a high-level interface of the
OSAM*.KBMS knowledge-base management system to de-
fine, query, and manipulate the knowledge base as well as
to write codes to implement any data/knowledge-intensive
application system. Starting from a query language and rule
language, K seamlessly incorporates the query processing,
rule processing, persistence, and general computation facil-
ities within an object-oriented framework. K provides (1)
knowledge abstraction mechanisms for supporting the un-
derlying OSAM* knowledge model which captures any ap-
plication domain knowledge in terms of the structural as-
sociations, methods, and knowledge rules, (2) a strong no-
tion of address-independent oids, (3) a persistence mech-
anism for supporting both persistent and transient objects
without the dangling references problem, (4) a flexible type
system which supports both static type checking and mul-
tiple views of objects, (5) a declarative knowledge-retrieval
mechanism based on object association patterns, and (6) an

194

extended computation paradigm for supporting both proce-
dural and rule-based computations. Two versions of K and
its supporting OSAM*.KBMS have been implemented at the
Database Systems Research and Development Center of the
University of Florida. We are currently extending the lan-
guage with query optimization, generic rules, abstract class
for supporting dynamic binding, and model extensibility.
Another effort is to integrate K with the graphic user inter-
face of OSAM*.KBMS (Lam et al. 1992) toward a complete
KBMS-supported software development system.

Acknowledgements.This research is supported by the National Science
Foundation under grant CCR-9200756. The research and development ef-
fort on the KBMS technology was supported by the National Science Foun-
dation under grant DMC-8814989.

References

Agrawal R, Gehani N (1989) ODE (Object Database and Environment):
the language and the data model. In: Proc ACM SIGMOD Int Conf
Manage Data, Portland, OR, pp 36–45

Alashqur A, Su S, Lam H (1989) OQL–A Query Language for Manipulating
Object-oriented Databases. Proc 15th Int Conf Very Large Databases,
Amsterdam, Netherlands, August, pp 433–442

Alasqur AM, Su SYW, Lam, H (1990) A Rule-based Language for Deduc-
tive Object- Oriented Databases, Proc. of the sixth Int Conf on data
Engineering, Los Angeles Calif, 5–9 February

Albano A, Cardelli L, Orsini R (1985) Galileo: A strongly-typed, interactive
conceptual language ACM Trans Database Syst 10:230–260

Andrews T, Harris C (1987) Combining language and database advances
in an object- oriented development environment. In: Proc 2nd Int Conf
on OOPSLA, October, pp 430–440

Annevelink J (1991) Database programming languages: a functional ap-
proach. In: ACM SIGMOD Int Conf Manage Data, pp 318–327

Arroyo J (1991) The design and implementation of K.1: a third-generation-
database base programming language, (Technical Report), Database
Systems R&D Center, University of Florida

Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott PW, Morrison R (1983)
An approach to persistent programming. Comput J 26:360–365

Atkinson MP, Buneman PO (1987) Types and persistence in database pro-
gramming languages. ACM Comput Surv 19:105–190

Atkinson M, Bancilhon F, DeWitt D, Dittrich K, Maier D, Zdonik S (1990)
The object-oriented database system manifesto. In: Kim W, Nicolas
JM, Nishio S (eds). Deductive and object-oriented databases. Elsevier
(North-Holland), Amsterdam, pp 223–240

Blakeley JA, Thompson CW, Alasqur AM (1990) OQL[X]: extending a
programming language X with a query capability, (Technical Report
90-07-01) Information Technologies Laboratory, Texas Instruments,
Dallas, TX

Bloom T, Zdonik SB (1987) Issues in the design of object-oriented database
programming languages. In: Proc 2nd Int Conf on OOPSLA, Orlando,
FL, pp 441–451

Butterworth P, Otis A, Stein J (1991) The GemStone object database man-
agement system. In: CACM 34:64–77

Cacace F, Ceri S, Crespi-Reghizzi S, Tanca L, Zicari R (1990) Inte-
grating object-oriented data modeling with a rule-based programming
paradigm. In Proc ACM SIGMOD 1990, pp 225–236

Chakravarthy US (1989) Rule management and evaluation: an active DBMS
perspective. SIGMOD Rec 18:20–28

Chen PP (1976) The entity-relationship model - toward a unified view of
data. ACM Trans Database Syst 1:9–36

Chimenti D, Gamboa R, Krishnamurthy R, Naqvi SA, Tsur S, Zaniolo C
(1990) The LDL system prototype. IEEE J Data Knowl Eng 2:76–90

Committee for Advanced DBMS Function (1990) Third-Generation
database system manifesto. In: SIGMOD Rec 19:31–44

Copeland GP, Maier D (1984) Making Smalltalk a Database System, Proc.
1988 ACM SIGMOD Int Conf Manage Data, Boston, MA, pp 316–325

Dayal U, Blaustein BT, Buchmann AP, Chakravarthy US, Hsu M, Ledin
R, McCarthy DR, Rosenthal A, Sarin SK, Carey MJ, Livny M, Jauhari
R (1988) The HiPAC project: combining active databases and timing
constraints. In: SIGMOD Rec 17:51–70

Deux O (1991) The O2 system. CACM 34:34–48
Fishman DH, Beech D, Cate HP, Chow EC, Connors T, Davis JW, Derrett

N, Hoch CG, Kent W, Lyngbaek P, Mahbod B, Neimat MA, Ryan
TA, Shan MC (1987) IRIS: An object-oriented database management
systems. ACM Trans Off Inf Syst 5

Gehani NH, Jagadish HV (1991) Ode as an active database: constraints and
triggers. In: Proc. 17th Int Conf on Very Large Data Bases, Barcelona,
Catalonia, Spain, September 3–6, pp 327–336

Guo MS, Su SYW, Lam H (1991) An association algebra for processing
object-oriented databases. In: Proc 7th IEEE Int Conf Data Eng, Kobe,
Japan

Hammer M, Berkowitz B (1980) DIAL: A programming language for data
intensive applications. In: Proc ACM SIGMOD Conf Manage Data,
Santa Monica, CA, pp 75–92

Hanson E (1989) An initial report on the design of Ariel: a DBMS with an
integrated production rule system. SIGMOD Rec 18:12–19

Khoshfian S, Copeland G (1986) Object identity. In: Proc ACM OOPSLA,
Portland, OR, November, pp 406–414

Kim W, Ballou N, Banerjee J, Chou HT, Garza JF, Woelk D (1988) Inte-
grating an object-oriented programming system with a database system.
Proc 3rd Int Conf OOPSLA, September, pp 142–152

Lam H, Su S, Alashqur A (1989) Integrating the concepts and techniques
of semantic modeling and the object-oriented paradigm. Proc 13th Int
Comput Software Appl Conf (COMPSAC), October, pp 209–217

Lam H, Su SYW (1989) Prototype implementation of an object-oriented
knowledge base management system (extended abstract). In: Proc 2nd
Florida Conf Prod Comput Integrated Eng Manuf November, Florida,
pp 68–70

Lam H, Su SYW, Ruhela V, Pant S, Ju SM, Sharma M, Prasad N (1992)
GTOOLS: an active GUI toolset for an object-oriented KBMS. Int J
Comput Syst Sci Eng 7:69–85

Lamb C, Landis G, Orenstein J, Weinreb D (1992) The ObjectStore database
system. CACM 34:50–63

Lingat J, Rolland C (1988) Rapid application prototyping: the proquel lan-
guage. In: Proc 14th VLDB Conf, Los Angeles, Calif, USA, pp 206–
217

Lohman GM, Lindsay B, Pirahesh H, Schiefer KB (1991) Extensions to
Starburst: objects, types, functions, and rules. CACM 34:94–109

Maier D (1989) Why database languages are a bad idea. In: Bancilhon F,
Buneman P (eds) Workshop Database Program Lang, Addison-Wesley

Maier D, Stein J, Otis A, Purdy A (1986) Development of an object-oriented
DBMS. OOPSLA ’86 Proc, Portland, OR, November, pp 472–482

Moss J (1981) Nested transactions: an approach to reliable distributed
computing. MIT Laboratory for Computer Science, MIT/LCS/TR-260,
Cambridge, Mass

Mylopoulos J, Bernstein PA, Wong HKT (1980) A language facility for
designing database-intensive applications. ACM Trans Database Syst
5:185–207

Ontologic Inc (1991) ONTOS 2.0 product description. Burlington, Mass
Phipps G, Derr M (1991) Glue-Nail: a deductive database system. In: ACM

SIGMOD Int Conf Manage Data, pp 308–317
Richardson J, Carey M (1987) Programming constructs for database sys-

tem implementation in EXODUS. Proc 1987 ACM SIGMOD Int Conf
Manage Data, pp 208–219

Richardson J, Schwartz P (1991) Aspects: extending objects to support
multiple, independent roles. In: ACM SIGMOD Int Conf Manage Data,
pp 298–307

Rowe LA, Shoens KA (1979) Database abstractions, views, and updates in
RIGEL. In: Proc ACM SIGMOD Conf Manage Data, Boston, Mass.,
USA, pp 71–81

Schaffert C, Cooper T, Bullis B, Killian M, Wilpolt C (1986) An introduc-
tion to Trellis/Owl. In: Proc 3rd Int Conf on OOPSLA, Portland, OR,
November, pp 9–16

Schmidt JW (1977) Some high level language constructs for data type
relation. ACM Trans Database Syst 2:247–281

Shipman DW (1981) The functional data model and the data language
DAPLEX. ACM Trans Database Syst 6:140–173

195

Shyy YM (1992) K: an object-oriented knowledge base programming lan-
guage for software development and prototyping. PhD dissertation,
Computer and Information Science Department, University of Florida,
Gainesville

Shyy YM, Su SYW (1991) K: a high-level knowledge base programming
language for advanced database applications. In: ACM SIGMOD Int
Conf Manage Data, pp 338–347

Smith J, Smith C (1977) Database abstractions: aggregation and general-
ization. ACM Trans Database Syst 2:105–133

Smith JM, Fox S, Landers T (1983) ADAPLEX: rational and reference
manual, 2nd edn. Computer Corporation of America, Cambridge, Mass

Special issue on next-generation database systems (1991). Commun ACM
34:30–120

Stefik M, Bobrow D (1986) Object-oriented programming: themes and vari-
ations. AI Mag 6:40–64

Stein LA, Zdonik SB (1989) Clovers: the dynamic behavior of types and
instances (Technical Report CS-89-42). Brown University, Providence,
RI

Stonebraker M, Kemnitz G (1989) The POSTGRES next generation
database management system. CACM 34:78–92

Stroustrup B (1986) The C++ programming language. Reading, Mass:
Addison-Wesley

Su SYW (1983) SAM*: a semantic association model for corporate and
scientific-statistical databases. J Inf Sci 29:151–199

Su SYW (1989) Extensions to the object-oriented paradigm. Proc 13th
Int Comput Software Appl Conf (COMPSAC), October, Orlando, FL,
pp 197–199

Su SYW, Alashqur AM (1991) A pattern-based constraint specification
language for object-oriented databases. In: Proc IEEE COMPCON’91,
San Francisco, Calif, 25 February–1 March

Su SYW, Lam H (1992) An object-oriented knowledge base management
system for supporting advanced applications. In: Proc 4th Int Hong
Kong Comput Soc Database Workshop, Hong Kong, December, pp 3–
22

Su SYW, Shyy YM (1993) An object-oriented knowledge model for
KBMS-supported evolutionary prototyping of software systems. In:
Adam NR, Bhargava B (eds) Advanced database systems. Berlin Hei-
delberg New York: Springer, pp 105–125

Su SYW, Krishnamurthy V, Lam H (1989) An object-oriented semantic
association model OSAM*. In: Kumara ST, Soyster AL, Kashyap RL
(eds) Artificial intelligence manufacturing theory and practice. Ameri-
can Institute of Industrial Engineering, pp 463–494

Su SYW, Lam H, Eddula S, Arroyo J, Prasad N, Zhuang R (1993)
OSAM*.KBMS: an object-oriented knowledge-base management sys-
tem for supporting advanced applications. In: Proc 1993 ACM SIG-
MOD Int Conf Manage Data, Washington, DC, pp 540–541

Wasserman, AI, Sheretz DD, Kersten ML, Van de Riet RP, Dippe MD
(1981) Revised report on the programming language PLAIN. ACM
SIGPLAN Not 16:59–80

Wilkinson K, Lyngbaek P, Hassan W (1990) The Iris architecture and im-
plementation. IEEE Trans Knowl Data Eng 2:63–75

Wu P (1993) Rule validation in object-oriented knowledge bases. PhD dis-
sertation, Department of Electrical Engineering, University of Florida,
Gainesville

Yassen R, Su SYW, Lam H (1991) An extensible kernel object management
system. In: Proc ACM SIGPLAN OOPSLA’91, pp 247–263

