The VLDB Journal 5: 196-214 (1996) The VLDB Journal
© Springer-Verlag 1996

Access path support for referential integrity in SQL2

Theo Harder, Joachim Reinert

Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany; Phone: +49 631 205 4030,
Fax: +49 631 205 3558, e-maifhaerderjreinert }@informatik.uni-kl.de

Edited by Alain Pirotte. Received June 28, 1993 / Revised August 19, 1994 / Accepted April 26, 1995

Abstract. The relational model of data incorporates fun- model properties thereby setting the semantics of these in-
damental assertions for entity integrity and referential in-tegrity assertions more precisely (Shaw 1990). Now, more
tegrity. Recently, these so-called relational invariants werghan 20 years later, the new SQL2 standard (Shaw 1990;
more precisely specified by the new SQL2 standard. AccordbDatabase language SQL 1992) defines these relational in-
ingly, they have to be guaranteed by a relational DBMS tovariants for the relational model in a uniform way, with the
its users and, therefore, all issues of semantics and implegoal of making them mandatory for all relational DBMS.
mentation became very important. The specification of ref- At the level of DB schema design, the new standard
erential integrity embodies quite a humber of complicationsprovides powerful concepts for specifying key conditions as
including the MATCH clause and a collection of referen- well as referential integrity conditions. Besides the primary
tial actions. In particulatMATCH PARTIALturns outto be key condition (PRIMARY KEY), key uniqueness can be
hard to understand and, if applied, difficult and expensive tomaintained for multiple candidate keys using the UNIQUE
maintain. In this paper, we identify the functional require- option. Matching values of primary key and foreign keys are
ments for preserving referential integrity. At a level free of guaranteed by the FOREIGN KEY concept which may be
implementational considerations, the number and kinds oendowed with different matching semantics by the MATCH
searches necessary for referential integrity maintenance aause. However, this clause is responsible for quite a num-
derived. Based on these findings, our investigation is focusetier of complications which may burden the design. Further-
on the question of how the functional requirements can banore, the specification of different referential actions pro-
supported by implementation concepts in an efficient wayvides some automatic means to maintain the referential in-
We determine the search cost for referential integrity main-tegrity for the case that some update operation violates the
tenance (in terms of page references) for various possiblenatching conditions of keys related via referential integrity.
access path structures. Our main result is that a combined The implementation of these rich and powerful concepts
access path structure is the most appropriate for checkinghay drastically influence the DBMS performance. There-
the regular MATCH option, whereddATCH PARTIALre- fore, it seems urgently necessary to investigate the system
quires very expensive and complicated check procedures. lhehavior at the operational level. For this purpose, the var-
it cannot be avoided at all, the best support is achieved byous aspects of system overhead caused by the services for
a combination of multiple B-trees. maintaining the relational invariants have to be studied in
detail. A prime contributor is the run-time overhead result-
Key words: Referential integrity — Relational databases —ing from the various searches to locate tuples or keys to
SQL2 — MATCH clause — Access path support be checked or compared. Moreover, update costs involving
tuples and access path data have to be considered, e.g., for
referential actions. Furthermore, additional costs may result
from locking, logging, and related services.
Our goal is to study the usefulness of various access
1 Introduction path types for referential integrity support. We believe that
this question should be investigated at a suitable level of ab-
In his “historical” paper about the relational model of data, Straction in order to achieve a sufficient selectivity between
Codd (1970) informally introduced entity integrity and refer- different possible access path types and, at the same time, to
ential integrity as the “relational invariants” to be automat- avoid low-level modeling that may only provide a kind of
ically guaranteed for each relation by a relational DBMS artificial accuracy. Thus, we do not want to get involved in
(system-enforced integrity). In the meantime, several atthe intricacies of multi-user operation and of detailed access
tempts have been made to formalize these important datgaths and operation modeling. We focus our investigation

on the estimation of search overhead and the use of dif-
Correspondence to:T. Harder

197

ferent kinds of access paths (in terms of page references)his general rule are null values to express unknown or inap-
Obviously, searching embodies the lion’s share of the operplicable values. If some attribute @f in ¢~ has such a null
ational costs. For this reason, these costs may be consideredlue as its value, no counterpart fof| » is needed inP
indicative for the entire checking costs. (constraints other than referential integrity may be violated,
For the performance analysis of the relational invariants,e.g., constraints regulating the applicability of null values).
checking the existence of a key is a very important and fre-Some modifications of these semantics are discussed later in
guent operation. Locating the key or the tuple often impliesthis section.
a search in a large data set. Since sequential scans cannot Since a referential integrity constraint is a static con-
be tolerated for apparent reasons, we assume that a suitatderaint, it may be violated by user operations. There are six
index exists for every key to be specified by the optionsbasic update operations involving one of the relatiéher
UNIQUE, PRIMARY KEY, and FOREIGN KEY. Checking C. “Insert into P” and “Delete fromC” do not lead to a
the entity integrity and the UNIQUE option is conceptually violation of the referential integrity whereas the remaining
very simple; for each of the specified keys, an index accesfour operations potentially do. We briefly review each of
has to be performed for insert and update operations to chedkese operations.
the uniqueness of the related key values. Therefore, we only
focus on the performance aspects of referential integrity, es-
pecially the influence of the MATCH clause. 2.1.1 Delete fromP
The remainder of the paper is organized as follows. Sec-
tion 2 discusses the concepts of referential integrity as sped? tuple deleted fromP” may have some children referencing
ified in the SQL2 standard. In this framework, in Sect. 3this tuple. After the deletion, these children no longer have
we outline the functions to be performed whenever a rela-a parent; hence, this operation may violate the referential
tion is modified and we identify the number and kind of integrity.
searches required to accomplish this task. Section 4 investi-
gates the suitability of various access path structures when
used for these searches. Furthermore, we derive the searéal.2 Update attributé; of P
costs in terms of logical page references and compare the
performance behavior of the chosen access path candidatedt this stage of discussion, an update can be viewed as a

Finally, Sect. 5 contains our conclusions and proposals fofleletion of the tuple with the old value and an insertion of
future work. the tuple with the new value.

2 The concepts of referential integrity 2.1.3 Insert intoC'

In this section, we analyze the possibilities of the new SQL2jf 3| attribute values of the attributeg of the inserted tuple
standard (Database language SQL 1992) in the area of refyre different from the null value, referential integrity requires

erential integrity. For this reason, we present an outline ofthe existence of a matching tuple in If this tuple does not
referential integrity and then introduce the syntactical clausegxist, referential integrity is violated.

for referential integrity in SQL2.

2.1 Referential integrity 2.1.4 Update attributg; of C

The concepts of referential integrity, originally defined by S|m|_lar to _the update O.P mentioned above, at t.h's level
Codd (1970) and influenced by Date (1981, 1990), are in-_Of d|spu33|on we can view an update by a deletion and an
cluded in the new SQL2 standard which was accepted bySertion.

ANSI and I1SO in 1992. To recall: referential integrity is
an integrity constraint between a 98t= {f1, ..., f,,} of at-
tributes (called foreign key) of a relatiari (called child) and

a setK ={k,...,k,} of attributes of a relatio” (called
parent). The structural constraints on a database sclttma
implied by a referential integrity constraint are:

2.2 Referential integrity in SQL2

In this section, we introduce the syntax of SQL2 for refer-
ential integrity and include a short discussion of the various
options for referential actions.

-n=m In the SQL2 standard, referential integrity constraints are

— For eachi, the domain off; is the same as the domain defined when tables are created or altered. For this purpose,
of k; a subclause of thereate table or thealter table

— K is the primary key ofP. statement referring to the child takigis used. The complete

A referential integrity constraint implies the following con- Subclause is as follows:
straint on the instances 6f. For every tuplet¢ of C, there FOREIGN KEY (<referencing columns>)
exists a tupletp in P with tc|r = tp|xt. An exception to REFERENCES <table name>

1 t|x Denotes the projection afonto the attributes i, if ¢ is a tuple (<r9ferenced COIumnS>)

of relation R and X a set of attributes oR. This is extended in a canonical [MATCH {FU LL | PARTlAL}]
way to R|x [ON UPDATE {CASCADE | SET NULL

198

| SET DEFAULT | NO ACTION}] — NO ACTION Nothing is done. Referential integrity
[ON DELETE {CASCADE | SET NULL remains violated and if no other operation takes place
| SET DEFAULT | NO ACTION}] to correct this, the complete work of the transaction
The <referencing columns> are the attribute names will be backed out.

of the foreign keyF' in C. The<referenced columns> There is another important referential action not intro-
denote the attributes of the primary kdy of the parent duced in the SQL2 standard, but in nearly all papers deal-
table<table name> . Instead of the primary key of a table ing with referential integrityRESTRICT (or RESTRICTED
P as the referenced group of attributes, SQL2 allows so-depending on the author). The semantics of this referential
called candidate keys to be referenced. Codd (1970) hagction is to forbid any change (update or delete) of a par-
introduced the term “candidate key” as a group of attributesent tupletp as long as there are referencing child tuples
of a relation that allows each tuple of the relation to betc. Although this action is not in the SQL2 standard [but
uniquely identified by these attributes, i.e., the primary keyscheduled for SQL3 (Database language SQL3 1993)] we
is one of the candidate keys. But opposed to the primary keywill include it in our discussion.
the value of a candidate key may be partly undefined (null A problem of the referential integrity constraints, as
values). The implications of this extension will be discussedspecified in SQL2, results from the possibility of interfer-
in Sect. 3.3. ence when performing multiple referential actions on one
The semantics expressible through the subclais@&@CH tuple. That is, a straightforward implementation may lead to
{FULL | PARTIAL } specifies the interpretation of null an indeterminismin the result of a user operation, i.e., an
values in the foreign key of a tupl&-. In Sect. 3.2, we operation in single-user mode may cause different database
explain the special semantics achievable with this subclausetates if the triggered referential actions are executed in dif-
The subclause®©N UPDATE.. and ON DELETE.. ferent sequences on the same database state. The SQL2 stan-
allow special treatments when referential integrity is violateddard prevents such indeterminism through the specification
by a user operation, as discussed in the previous sectiof a complex test carried out during the execution of the
Given a DB state which fulfills referential integrity, only referential actions. A detailed discussion of this approach
four out of the six operations may violate it. According to may be found in the work of Markowitz (1991) and Reinert
the SQL2 standard, the two operations “Insert igtband (1993); it is beyond the scope of this presentation.
“Update f; of C” on a child are forbidden (backed out) if
these would result in DB states where referential integrity
is not fulfilled. Therefore, only the two operations (“Delete 3 Functional requirements

from P” and “Updatek; of P”) on a parent relation are o]] -
handled in a special way: Since we want to support efficient integrity checking, a criti-

)) cal question is: Which access patterns have to be supported?
1. ON UPDATEIf a key attribute referenced in a refer- |n order to answer this question, we concentrate on the
ential integrity constraint is updated in a tugle, then searches required for observing a referential integrity con-
the following actions are carried out depending on thestraint. In principle, there will be no new operations; how-

specification in the schema: ever, in contrast to traditional relational query processing
— CASCADEThe new values in the key are propagatedhere onlycomplexqueries result ircomplexevaluations,
to the referencing children. now such complex evaluations may be forced dignple

— SET NULL The respective foreign key attributes in queries.
referencing tuplegqc are set to the null value.

— SET DEFAULT The corresponding foreign key at-
tributes in referencing tuple> are set to a default 3.1 Overhead of regular referential integrity
value (definable for each attribute in the schema).

— NO ACTIONThe referential action is delayed on re- First we analyze the referential integrity in the simplest set-
lation C. Referential integrity remains violated and ting. Therefore, we introduce the following two restrictions
if no other operation takes place to correct the mis-on the definition of referential integrity constraints in SQL2:
match of the corresponding tuples, the complete
work of the transaction will finally be backed out.
This happens either at the end of the statement (if
the integrity checking is not deferred) or at transac-
tion commit (if the integrity checking is deferred). A
discussion of deferred integrity checking is beyond
the scope of this paper.

2. ON DELETEIf a tupletp is deleted, then the following
actions are carried out depending on the specification in
the schema:

— CASCADEThe referencing children are also deleted. We now discuss the operations that may raise problems

— SET NULL The foreign key attributes of the chil- with referential integrity. As already said, this discussion in-
dren are set to the null value. tends to determine the functional requirements to be met by

— SET DEFAULT The foreign key attributes of the a system for supporting referential integrity. Thus, we fo-
children are set to the given default value. cus on the different query types which should be supported

1. The attributes of a foreign key are either not allowed
to be null, or foreign keys having null values for some
attributes are not taken into account when checking ref-
erential integrity, i.e., special treatment of null values is
not considered. This is expressible by the MATCH clause
(see Sect. 3.2).

2. The referenced group of attributes is the primary key
of the referenced relation. Therefore, null values are ex-
cluded.

199

to achieve efficient constraint checking. As mentioned ear- we have to update the children location in the access path
lier, efficient checking of referential integrity requires some because their foreign key is changel,®)). Therefore
access paths to avoid (multiple) sequential scans on the re- the costs areR, T)p +2- (P, S)c.

lations. On the other hand, these access paths have to b& SET DEFAULT Compared to theSET NULL option,
maintained whenever the underlying relations are modified. an additional query is necessary if the default values dif-
Therefore, the search requirements for integrity checking are fer from the null value. In this case, the related children
made up of two parts: get a new fully defined foreign key; thus, it has to be
tested whether or not the new (default) parent exists.
This leads to anotherP(E)p query and to the entire
overhead of

1. The costs of locating the tuples or keys which allow the
required check.

2. The old and the new locations of the tuples or keys in the
access path have to be selected, if update operations are (P, T)p +(P,E)p +2- (P, ¢
necessary. In our scenario, maintenance always follows ’ ’ e

the constraint checking directly. Therefore, we assumes NO ACTION This option is difficult to evaluate in gen-
that the old location of the keys is already known. Thus, gral pbecause of the following:

the search costs for maintepance consist of the overhead _ |f some attributes of” serve as foreign key attributes
to determine the new location of the keys in the access in more than one referential integrity constraint si-
path if required (e.g., fON DELETE SET DEFAULT multaneously or if the integrity checking is deferred,
is specified). other operations (initiated by the user or through
In the following, we consider the test of whether or not other referential integrity constraints) may resolve the
the parent key is unique as an integral part of referential in- conflict introduced by the deletion ¢f.. Hence, op-
tegrity checking. Therefore, we include the necessary checks posed to the other option€ASCADESET NULL,
and maintenance actions into our requirements. SET DEFAULT and RESTRICT) which guarantee

referential integrity after the appropriate action is car-
ried out, this option will require aexplicit integrity

3.1.1 Insert intoP checking at some time in the future. The type of these
queries is P, E) p°.

During the insertion of a tupleinto P, it must be checked — In all other cases, this option is identical RE-

whether or not the primary key dfis unique withinP. To STRICT and therefore the query type iB,E)c.

resolve this question, a query may be issued that selects all - .

tuples with the same primary key aslf the result of this "€ above show that an efficient evaluation of query type
query is not empty, then another tuple with the same primankP») IS necessary for integrity checking. Sometimes, an op-
key exists and hencemust not be inserted. We denote the timization by a ,E) query is possible, but for reasons of
type of the mentioned query a®,E)p to express that it simplicity we do not elaborate on this in the subsequent
is a point query (in the space of the keys) which tests theS€ctions and use the worst casgET DEFAULJ which
existence of one key. Th& subscript denotes that the query 1S made up of oneR;T)p, one €,E)p, and two ,9c

is evaluated on the parent relation. queries.

3.1.2 Delete fromP 3.1.3 Update attributé; of P

To delete a tuplép from the relationP, it is located and

checked whether or not there are any related child tupleshe overhead of checking the referential integrity in this case
tc. To locatet p via an access path we need a query of typeconsists of four parts (in the worst case): First, the parent and
(P, T)p (point query with one resultinguple). The query gl related children have to be located; this requiRsT() » +
types needed to test and maintain the children depend ofp s).. Second, the new value @ has to be checked for
the option specified in the schema: uniqueness. This is achieved through a query of tfh&)p

1. CASCADETo access all children ofp, a point query (@S in the insert case). The third part may be need&ETF
is issued in the foreign key space which results iset DEFAULTIs specified, because the children change their

(there may be more than one child) of tuptes We will parent (now it is the “default” parent), and the existence of
denote this query type by(S)c. Together we obtain the this parent has to be checked with another&) query.
abstract costs off(T)p + (P, S)c. Last but not least, the foreign key of the children is changed

2. RESTRICT. To test whether or not to perform the oper- and, therefore, the underlying access path is updated leading
ation (Delete fromP), the evidence of at least one child 10 @ P, S)c query. Thus, the worst case consists®RfT) r,
is sufficient. Therefore, the query type B E)¢. Hence, 2-(P, E)_p, and 2 (P, S)¢, which is also the sum of a delete
the complete operation results in coBtT)p + (P,E)c. ~ and an insert.

3. SET NULL As for CASCADEthe children are selected

through a query of typel% S)C_ In contrast to that case, 3 At this point in time, the database may have gone through multiple

changes, and without any internal bookkeeping about referential integrity

2 Deferred checking or unusual casedN® ACTIONdo not allow such it may be better to check it on a relation basis, i.e., to check for all tuples
an approximation in C whether there is a tuple i with matching primary key

200

3.1.4 Insert intoC

If a tuple t¢ is inserted into the relatiod’, a check is re-
quired to determine whether there is a matching parent tu-
ple tp or not. The insertion fails if no parent exists. The
checking overhead consists of a query of the tyPe=(p. 3.
Furthermore, the access path of the foreign key has to be
maintained. Hence, we have to locate the insertion point of
the new child requiring a query of typ®,(T)c.

3.1.5 Delete fromC”

— If all values f; are null, therMATCHesults inTRUE

— If no value f; is null and f; = k; (1 <14 < n), then
MATCHesults inTRUE

— Otherwise, MATCHresults inFALSE (for this tuple
< k1, kn >).

PARTIAL is specified

— If all values f; are null, therMATCHesults inTRUE

— If f; = k; holds for all defined valueg;, thenMATCH
results iINnTRUE

— Otherwise, MATCHresults inFALSE (for this tuple
< ki, ... kn>).

Without any option or the optioffULL specified, a null

The tuple to be deleted from the set of children has to bevalue in one attribute; determines the result of the whole
located in the access path. This requires a query of the typgvaluation of theATChpredicate. fPARTIAL is specified,

P, e

3.1.6 Update attributg; of C

If an attribute of the foreign key is updated, the existence

null values inf; are treated as don’t-care values. There is
no symmetric concept of treating null valueskt.

3.2.2 TheMATCH PARTIALclause

of a parent tuple for the new foreign key value must pe The semantics of th#MATCHclause in the definition of a

checked. This is a query of typ®,(E)r. The maintenance
of the access path requires two queries of the typd)¢
to “move” the child from the old to the new location.

In this section, we have analyzed the query types of
regular referential integrity constraints. We have not yet
mentioned multi-attribute foreign keys explicitly because 2.
(with the preconditions about null values stated at the begin-
ning of this section) such foreign keys can be simulated by
one super-attribute composed of the single attributes (subg.

1.

referential integrity constraint is according to the above def-
initions:

The predicatett.f1,...,tc.fn) MATCH(SELECT K
FROMP) has to be true for each tuple 6fif no MATCH
clause is specified.

The predicatett.f1,...,tc.fn) MATCH FULL(SE-
LECT K FROMP) has to be true for each tuple 6f if
MATCH FULLs specified.

The predicate t¢.f1,...,tc.fn) MATCH PARTIAL

sequently called compound attribute). In the following, we
will analyze the semantics of null values in connection with
MATCH PARTIAL

3.2 Overhead of thi!/ATCH PARTIALclause

The definition of theMATCHpredicate serves as the basis
of the semantics of thtMATCH PARTIALsubclause for
referential integrity.

3.2.1 TheMATCHoredicate

The MATCHpredicate tests a tupleagainst a set of tuples

M: a group of attributes afis compared tuple-by-tuple with
a related group of attributes in skf (the attribute domains

(SELECT K FROMP) has to be true for each tuple
of C'if MATCH PARTIALs specified.

The cases with nMATCHlause otMATCH FULlare cov-
ered in the previous section. We now analyze the implica-
tions of MATCH PARTIAL

The main implication of MATCH PARTIALIs that a
child tuple may have more than one matching parent. Given
a foreign keyF" consisting of three attributes (we will denote
null values byw), the foreign key of a tupléc|r = (z, &, 2)
will match primary keys like £, y1, 2), (x,y2,2), and so
on. This implies that the referential actions must be re-
fined if such a ‘parent’ is changed or deleted. To do so,
the SQL2 standard distinguishes between unique and non-
unigue matching parents. A tupie is the unique matching
parent for a tuplete if ¢p is the only tuple inP with a
primary key matching the foreign key at.. If tp has a

have to be pairwise comparable). The definition of this predi-matching primary key but it is not the unique matching par-

cate allows the optional specificationBARTIAL or FULL.
Givent|<y,, .. f,>MATCIH{FULL|PARTIAL}IM | <1, ... k>
and a tuplem of M, the result of this comparison is as fol-
lows:

1. No option specified
— If some attributef; of ¢t has the value null, then
MATCHesults inTRUE
— If no attribute f; of ¢ has the value null and f; =
m.k; (1 <1i<n), thenMATCHesults inTRUE
— Otherwise, MATCHresults inFALSE (for this tuple
m)

2. FULL is specified

ent, thentp is a non-unique matching parent.

Example:Let P = {< z1,9,2,... >,< T2,9,2,... >}
and C = {< ... 21,y,2,... >, < ..., B,Y,2,... >}

< m1,Y,%,... > is the uniqgue matching parent for
<...,21,¥,%,... > and a non-unique matching parent for
<. . .,8,Y,Z,...>.

If a parent tupletp is deleted or updated, the referen-
tial actions are executed only for childreg having tp
as their unique matching parent. Given tif@N DELETE
CASCADESs defined in the example above, a deletion of

4 Note that the semantics of the three options are identicalsf1

<r1,9,%,...>resultsinadeletionof ... x1,y,2,... >

but not of < ..., @,y,2,... >. During the execution of

a query in a tuple-at-a-time manner, a non-unique match-
ing parent may become the unique matching parent (e.g.,
< X2, Y, 2,...>Ffor< ... @y 2. >0 <x,y,2,...>

is deleted). If this (now) unique matching parent is deleted or
updated, the referential actions have to be performed. There-
fore even in a single-user operation, the uniqgue matching
parent has to be evaluated dynamically. Let us now con-
sider the different operations possibly violating referential
integrity and the resulting query typesNfATCH PARTIAL

is specified. For reasons of simplicity, we concentrate on
the differences of the test for the match predicate and avoid
repeating the terms which do not change.

3.2.3 Delete fromP

If a tuple tp is deleted from the relatio®, referential ac-
tions are only applied to child tuples: havingtp as their
unigue matching parent. Given a primary key of tupje
to be deleted, how can we locate the childrgn satisfy-

201

to locate the number of matching parentg @fwill look
like

SELECT COUNT(¥)

FROMP

WHEREP.k1 =2 ANDP.k3 =z,

which is a partial match query. We assume thatis
already deleted and hence denote the type of this query
by (PM,, E)p, whereu denotes the number ahknown
attributes (i.e., for the above query we haveN!;, E) p).

As shown above, a primary key of lengthmay have

2" — 1 matchingF'-templates. Because the fully defined
template is handled separately, we obtdain-22 partial
match queries. This set of partial match queries can be
partitioned along the number of unknown values. Given
a key of lengthn, each 1< u < n yields (Z) templates
with « undefined values and therefo@) partial match
queries of type RM,E)p. This represents the worst
case, because a specific partial match query has to be
evaluated only if some children exhibit the corresponding
template.

Putting both results together leads to a set of queries.

ingtc|FMATCH PARTIALp|x ? Since there is no MATCH Give_zn a primgry key of I_engthz_, for_ each referential in-
predicate directly available in standard relational DBMS, wetegrity constraint referencing this primary key wiktATCH
will substitute such a predicate by a number of simple pred-PARTIAL, we need 2 — 1 queries of the typeR;)¢ and

icates. A simple predicate directly supported in all DBMS is (in the worst case) for each, 1 < u < n, a set of(7)

u

(attribute = value) and the conjunction of such terms. To findqueries of type ®M,,, E) p. So, we can conclude that

all children related viMATCH PARTIALo ¢p, we have to

check all possible combinations of null values (with at Ieast(zn

one defined value) in the foreign key 6f, for the construc-
tion of theseMATCH PARTIALKkeys, the defined values
are derived from the primary key of-. We will call these

n—1 n
—1)-(P,9c + (Z (u) .(PMu,E)p)

u=1

is the number and the types of queries necessary to select

MATCH PARTIAlforeign keysF-templates. They are con- all children having the specified parent as the unique match-
structed by replacing all possible combinations of primarying_parent. This set of children is subject to the referential
key values by null values. ThE-template consisting of nulls ~actions.

only is not relevant to referential integrity.

As mentioned before, some of these queries may be op-

timized if the referential actioRESTRICT is specified. In

Example: Given a tupletp with primary key K consisting
of three attributesc z,y, z, . .

have the form<x,y,2,... >, < ..., &,y,2,... >,
< T B2, >, < e T Y, Dy >,
< L LB,P.2,... >, < ..., 0,y,9,... >, and

<2, 0,8, >,

Apparently, for a primary key of lengtlhh we obtain
2" — 1 F-templates. If the null value is represented like

3 ! this case, the first unique matching child encountered causes
. >, the matching foreign keys the rollback of the operation. As far as referential action is
concerned, th&ET DEFAULToption represents the worst
case: The existence of a “default” parent (all attributes of the
foreign key are set to the default values of these attributes)
has to be checked. Because null values are allowed as default
values, this is aRM,,, E) p query. In addition, the “default”
location in the access path of the children has to be selected

any other value, the overhead to select the children witH€SUlting in a B, S)c query.

matching foreign keys is a union of'2- 1 queries of type
(P,S)¢. To test whether or not referential integrity (with

MATCH PARTIALsemantics) is violated, requires to check 3.2.4 Update attributé; of P

whethertp is the unique matching parent of one of the

matching childrert. Two cases have to be distinguished: Things get even worse when looking at the update of an at-
) i tribute in the primary keyK of P. One minor additional
1. The foreign key of¢ has defined values only. Because gquery concerns checking whether or not the new key is
the primary key, 0o, has defined values orily,is the ynique in P ((P,E)p). As in the case of delete, the tuple
unique matching parent, and the specified referential ac , has to be selected and all unique matching children have
tions are executed ofy. , to be computed. Here, tHET DEFAULToption is partic-
2. Some attribute values in the foreign keytef are null. yjarly complicated. In contrast to the delete case, where the
To decide whether or not referential integrity is violated SET DEFAULToption causes all children to get the same

requires the location of at least one matching parent ofyefault foreign key and hence the same “default” parent, in
to different from¢p. For example, in our three-attribute

foreign key, we may have:|r =< z, @, z >. The query 5 Note that PMo, E) = (P, E)

202

the update case for each template only the defined attribute%3 Overhead of candidate keys

of the foreign keys are set to the default values. Hence, _))

a different partial match query may be necessary for eacl$0 far, we have considered null values in the foreign key
temp|ate to check whether an appropriate “default” parenpnly. In this .SeCtlon, we brleﬂy discuss the |.mpllcat|0ns of
exists. In case it does not exist, the complete operation i§ull values in the referenced group of attributés The
aborted. Because of this fact, the templates with the largedelational data model provides the concept of candidate keys
number of defined attributes should be checked first, since if0 handle unique “identifiers” with null values: while for
suffices to guarantee that one other parent exists and, henc@ach tupletp its primary key has to be defined (no null

if a parent exists for a template with. defined attributes Vvalues) and to be unique, a candidate key is a set of attributes
fl’ e fm, this parent is amt least matching parerfbr all that has to be unique Only if it is fU”y defined. The SQLZ

templates composed df, ..., f.,. This observation yields standard allows such candidate keys to be named as the
that at most referenced columns in the definition of a referential integrity
constraint. We discuss the implications of this possibility in
(Z)(PMu, E)p the following paragraph.
M In the SQL2 standard, fully defined candidate keys are

additional partial match queries have to be evaluated. Fi€quivalentto primary keys (to be precise, in SQL2 a primary
nally, the foreign key of the children has to be changed.KeY is @ candidate key with nulls not allowed!). But what
In contrast to the delete case aboveN\,, E)p + (P,S)), about partially defined candidate keys being referenced in
summarizing the maintenance costs of the children yields @ referential integrity constraint? If the constraint does not
specify any MATCH clause, then a child tuple does not ref-
n n_ 1\ erence a tuplép of P with a partially defined candidate
(([”O(PM“’ E)P> H2 =1 (P Se key because only fully defined foreign keys are considered

2
. for referential integrity. The same is true S ATCH FULL
queries (eact-template has to be checked and updated). where again a child tuple does not reference such a tuple

Example: Given a tuplet, with primary key K consisting because either the foreign key of the child is fully defined
of three attributes< z,v,z,... >, let tp be the unique (referencing a fuIIy. defined candldate. key) or it is com-
matching parent of the"-templates< ...z, y,z,... >, plgtely null. Finally, fMATCH PARTIALs specified, some
<....@,yz...>and<...,z,0,z,...>. Furthermore, child tc may have a tuplep of P with a partially defined
let us assume the default valugs=a, f> = b, f3 = c. If candidate key as a matching or even theT unique matching
the primary key changes from z,y,z > to < ¢, h,i >, parent and, therefore3 may be accesse&_jslis upd_ated or
then< ...,z,y,z, ... > is changed to< ...,a,b,c,... >, deleted. Hence, only IMATCH PARTIALs specified can-
<....@,y,2...>ischanged to< ...,@,b,c,... > and didate keys are of interest in the scope of this paper.

< ...,x,9,z...>is changed to< ...,a,@,c,... >. If We are interested in the query types being supported for
< ...,a,bc,... > can be tested successfully for another efficient referential integrity checking. Due to the (asymmet-
parent, this parent is also an at least matching parent ofic) definition of the MATCH predicate (if defined symmet-
<...,@,bec...>and<...,a,@,c,...>. rically, it would be more like a unification than a matching)

all matching foreign keys for a partially defined candidate

key are null at least in those attributes where the referenced
3.2.5 Insert intoC attribute is null as well. The other attributes (not null in the

foreign key) are handled the same way as before. Therefore,

If a tuple tc is inserted into the relatio@, it has to be there is no change in the query types; only the number of
checked whether or not there is a matching parent tuple dueries may decrease.

The checking query is of typePM., E)p, wherew is the Eyample: Given a candidate key of length and a tuple
number of unknown attributes. having v undefined attributes, then thev attributes form
the new “key” and the formulas above apply for this number.

) In the worst case, this yields up to
3.2.6 Update attributg; of C

n—1
n—uv n
If an attribute of the foreign key is updated, it has to be (2 —1)-(P,9c + <Z_: (u) - (PMy, E)P>

tested whether a parent tuple for the new foreign key value _ _ _ _
exists. The overhead is the same as in the insert case, a quediyeries for selecting the unique matching children.

of type (PM“’E)P' L Because handling of candidate keys does not embody
: In this section, we r,lave shown the |mpllcat!ons O.f treat- e,y aspects, below we will assume that the referenced at-
Ing n_uII _/alues_ as don t-care terms wh|_le dealing with ref- tributes in a referential integrity constraint constitute the pri-
eren.tlal integrity. The main result besu;ies the number Ofmary key of the referenced relation.
queries to be answered is that the queries themselves grow
more complex. Without this don’t-care semantics of null val-
ues, only exact match queries [type §), (P, T) or (P, E)] 3.4 Summary

can occur, which keeps checking relatively simple. However,

interpreting null values as special don’t-care values changeSo far, the purpose of our discussion has been to introduce

this behavior drastically. the specification of referential integrity in SQL2 and to de-

203

Table 1. Summary of the query requirements for supporting referential intedsiT(DEFAULY

No MATCH clause

or MATCH FULL MATCH PARTIAL

Insert (P,E)p (P,B)p
into P
Delete P,T)p+P,E)p+2-(P,9c = 2" — 2 queries
from P
n—1
(P.T)p + <(2" ~1)-(P.9c + (Z (n) '("Mqu>P>)
u
u=1
+(PMy,E)p +(P,Sc
Update P,T)p+2-(P,E)p+2-(P,9¢ = 2" — 2 queries
attribute
k; of P n-t
K n
(P.T)p + ((2" ~1) P9+ (Z (%) em., E>p>)
u
u=1
+(P,E)p + (((e)(PMu, E)p) @2 1) (P, S)C)
2
Insert (P.Bp+(P,T)c (PMo, E)p + (P, T)c
into C
Delete P, e P, T
from C
Update attribute P,E)p+2-(P,T)¢c (PMy,E)p+2-(P,T)c
fj of C
Table 2. Summary of the query requirements for supporting referential integRESTRICT)
No MATCH clause
or MATCH FULL MATCH PARTIAL
Delete (P, Tp +(P,E)c = /n
from P P.T)p+ <(2n ~1)-(P,E)c + (Z () - (PM., E)p>)
u
u=1
Update attribute (P, T)p +(P,E)p +(P,E)c L,
ki of P P.T)p+ ((2" “1). P+ (Z (%) em., E)p>) +(P.E)p
1 u
u=

duce from this specification the functional requirements fora parent is deleted or its primary key is updated, the set of
query processing in order to maintain referential integrity.related children has to be located via their foreign key to per-
Based on the referential acti@ET DEFAULTthe Table 1 form the specified referential actions which themselves may
summarizes the types and the number of queries needed ttemand primary or foreign key access. Insertion of a new
select the tuples for checking and enforcing referential in-child tuple requires the examination of multiple key condi-
tegrity (through referential actions). tions (primary, candidate, and foreign keys). Furthermore,
Table 1 shows the query requirementS&T DEFAULT the modification of a foreign key in a child tuple implies
which represents the most complex case among the referehecking whether or not a parent exists with a primary key
tial actions. Since we do not know which of the referential value equal to the new foreign key value. (Subsequently, we
actions are preferred in real world applications, we summas#o not consider candidate keys; their search and maintenance
rize the differences concerning tlRRESTRICT case as the cost may be estimated from the primary key.)
most simple referential action in Table 2. The corresponding In all these situations, the absence of appropriate access
figures can be derived from Table 1 by removing the termspaths would enforce the use of sometimes multiple sequen-
which represent the update of the children and by changingial scans to perform uniqueness tests, existence tests, or the
the search for all children B S)¢) into a lookup of one search of the parent and child tuples related by the referen-
child given a specific foreign keyR(E)¢). tial integrity constraint. Parallelism does not seem a panacea
to cope with these sequential scans. For large relations, only
massive parallel architectures would provide the required
4 Access path support for referential integrity checking speedup; such an approach, however, introduces severe I/O
and partitioning costs. As a consequence, the response time
So far, the discussion of the update and maintenance operaegradation caused by searches in sufficiently large relations
tions in the parent and child relations has revealed the typicak not tolerable for most applications. Therefore, DBMSs
search operations necessary to locate the tuples involved imust allocate index structures for all types of keys to ef-
checking key uniqueness and referential integrity. Insertiorficiently maintain all relational invariants. In our case, we
of a new parent requires one or more UNIQUE conditions toonly focus on the key# and F' and the referential integrity
be checked (for primary key and each candidate key). When

204

[;IK2s]; [k75];] |

T e \FF
[;1Ke];[K13[;[kes[.[| [:]K35[;]K75];] | [;]Keo[;[Ke9[-] |
4 N S

K;t;i;rlD1| K51|TID,|K55[TID4|K56|TID,| K75|TID5|\

UNIQUE

NONUNIQUE [.[ks1]2] TID, TID,[K55]n| TID, i TID,}...TID,

kss[1[riD,] .. .[{]
A

Fig. 1. Ipept(DNO) as a B-tree

defined between them to derive the operational search coshis reason, they have to be supported sufficiently well. Let
of referential integrity maintenance. us first focus on the case whene= 1 for K and F'. Then,
Hence, suitable access paths BrT), (P, S) and @, E) a standard candidate for implementing an index structure is
as well as forPM,,, E) have to be provided to determine the the B*-tree.
uniqueness of a primary key and the matching predicates of
the primary key and the foreign key, thereby speeding up the
search process. On the other hand, these access paths cadskl B'-tree
additional overhead whenever an operation modifies the set
of existing K- or F-key values (shown as additional terms The structure of a Btree (Comer 1979), representing, for
in the requirements analyses). To allow the comparison ofxample, an index for attribute DNO in relation DEPT, is
search costs we introduce the number of logical page referllustrated in Fig. 1. The corresponding leaf page illustrates
ences (or page references in shétf) needed to traverse the the format of a UNIQUE index. In addition, the leaf-page
access path data in order to perform the requested task. Sinéermat of a NONUNIQUE index containing TID lists is
Cr is independent of the run-time environment, it should shown. Since the key values and the related TIDs or TID
facilitate a comparison when using different access pathdlists are allocated in a key-sorted sequence to the leaf pages
We assume that the cost measitg for all access-path- and since these pages are linked together with NEXT and
related searches needed for an update operation is indicati@RIOR pointers, successive access to all key values or to
for the overall costs including the access-path-related updat@ given key range is performed efficiently. According to its
and logging as well as the required locking of the searchdefinition, a page (except the root) of &-Bee has at least
paths to guarantee repeatability of reads [consistency level 8 > 0 and at most 2 key/TID pairs, called index entries.
Gray 1978)]. Including these additional costs would requireHence, the height is delimited by the following formulas:
a much more detailed modeling of access paths, operations, N
and multi-user environment (Mohan 1990). Since we wishf > 1 +10gy;.1 (2k> (1)
to determine only the order of the overhead related to ref-
erential integrity and to compare the usefulness of differentind
access paths, our simplification seems to be justified. N
As shown in Sect. 3, certain search operatio®s T), 7 < 2+10g;.1) <2k> 2)
(P,S) and @, E)] on attributesk” and F' may be anticipated
very often. As a consequence, index structures for relation¥vhere N > 0 is the number of indexed tuples.

P andC, denoted byl p(K) or I(F), have to be available The access costs to locate a key in thetiee areCr = h

supporting the following operations: page references. The expensive fraction of the overall cost

is the number of physical I/O operatioidg o required to

. ; - perform the tree traversal. Depending on the locality of ref-
gt]ees(;é(lr;gnélhforUt'F::eQiLr:sEe(r)tiF:)tlr?/g’e{gtri(];IQ%Pgrtm?r(iaersecord ad- erence on such *Bt'rees, the size of the database buffer, the

2. Successive access to all keys having the same value replacement algorithm, eta;; o may be less thad'y, be-

' ; ; Buse some pages in the path to be traversed in tkeeB

belonging to a given key range.

3. Direct search for a foreign key and the correspondingir?;y”tgsa}[giigydrigild'ng in the buffer, thereby saving phys-

primary key or for a primary key and the related set of
foreign key values.

1. Direct search for a key value in the index structure for

According to Table 1, searches for referential integrity
maintenance are dependent on the type of operation. If both
index structuredp(K) andI-(F) are implemented by sepa-
4.1 Support for the regular MATCH options rate B'-trees, the specific operations may be sketched as fol-

lows. “Insert intoP” and “Delete fromC” are very simple,
Because of their frequency, these search operations are veas far as our checking task is concerned. Accessj(d<)
important for the overall performance of a DBMS, and for and I (F’) for checking the uniqueness of tlié-key value

205

TIDforKin P TID for R1 TID for R3
N M M
L) t 1 n |T|D0 TID, {TID,| ... | TID,| ... l | .. | D |1§3§1§2| TID| TID %TIDETIDITIDITIDE TlD| |
—] ~— ~— —
length info. TID-list for F in C length info. TID-list for R2 TID-list for R4
Fig. 2. Leaf-page format for a CAPS Fig. 3. Leaf-page format for a generalized access path

and for removal of thef'-key value needs a tree traversal The idea represented in Fig. 2 may be used to support
of hi and hyp page references, respectively. “Delete from more pairs of referential relationships; it can be applied to
P with the referential actiorSET DEFAULT(worst case) the situation wheren relations withj candidate and foreign
requires a traversal dip(K) to locate the primary key to be keys (n < j) defined on the same domain have to be in-
deleted and two traversals to the location of the foreign keydexed. Such structures are called generalized access paths
and the DEFAULT key inlc(F'). If a DEFAULT key does (in Harder 1978). For example, the format of the leaf page
not exist inIc(F), it will be inserted. Furthermord,p(K) is illustrated in Fig. 3 forn = j = 4.

will be accessed to make sure that a DEFAULT key i$in Of course, the benefit of such access paths for checking
Hence, the corresponding number of page references maferential integrity is increasing with the numbgiof the
sum up toCr = 2hg + 2hp. Furthermore, “Insert inta” keys involved.

inserts anf-key value and checks whether or not the related

K-key value is present. Henc€r = hx + hp. Eventually,

both update operations iR and C may be composed of 4.1.3 Join index
delete and insert operations as far as tree traversal is con-

cerned. ,)) A similar structure to the combined access path was pro-
To enable a simple comparison, a synopsis of all cosyosed (Valduriez 1987) as a so-called join index, which pri-
formulas is contained in Table 3. marily aims at the optimization of the two-way join. It is

defined for two relationd® and C as follows:

4.1.2 Combined access path J={(TIDp,TID¢) | f(p.-4,¢.B)is TRUEp € P,c € C} .

f Denotes an arbitary join predicate. Apparently, JI may

Since the keyg(and F' are defined on the same domain, serve to embody materializ&gjoins by surrogates or TIDs.
it is possible to implement both index structures by a com-If an equi-join is used and the primary and foreign keys
mon B*-tree, called combined access path structure (CAPSK and F are chosen forA and B, then the parent and
Harder 1978). Because of the given operational characterchild TIDs with matchingK - and F-key values are stored
istics, it seems to be advantageous to combine the indetogether by a join index. At first sight, this information could
structures/p(K) and Io(F) to reduce I/0O. The non-leaf be useful to support referential integrity checking. However,
pages of the B-tree contain a unified reference structure for this is complicated since a join index does not use key values
both indexes. In the leaf pages, the entries fp(K) and but only TIDs. Moreover, the direct representation of the join
1(F) are combined according to the format of Fig. 2 (hereindex JI as a binary table does not provide access support
showing a UNIQUE and a NONUNIQUE option), whefé (other than sequential) for TIP or for TID¢.
and F' map to domainD with value D;. In our evaluation, we assume that a join index is specified

As compared to a single-index*Bree for Ip(K) and for an equi-join combining primary key d? and foreign key
hk, the heighth i of the resulting B-tree is typically not of C' in a (1 :n)-manner. Furthermore, symmetric and fast
changed because the horizontal growth is dominant”in B access is heeded to perform efficient operations on the joined
tree structures. Only in rare cases, an increment of the heightiew. Hence, the logical Jl table has to be implemented as
by one has to be anticipated{r < hx +1; see Fig. 5). two clustered index structures (Valduriez 1987), i.e., sorted
Since the subsequent access to corresponding key valuegcording to TID> and TID.. As a consequence, we obtain
of K and F' uses the same tree traversal, the locality ofthe indexeslpc(TIDp) and Icp(TID) with heightshpe
reference is further improved. As a consequence, the CAP&nd h¢ p, respectively.
offers salient features for checking referential integrity as As illustrated in Fig. 4a, these index structures do not
well as a substantial cost reduction as compared to separapermit access by primary or foreign key values. To use these
B*-trees. structures for referential integrity maintenance and for other

Both indexeslp(K) and I (F) supporting P, T)p and kinds of search requests, additional index structures are nec-
(P, S)¢ are mapped to a single*Bree using their domain essary to map the key values to their related TIDs. Figure 4b
values. Since in various situations the same tree traversahows/p(K) and Io(F) which are identical to the indexes
can be used to locate the-key and K-key values, several used in the pure Btree approach. Looking at Fig. 4, it
page references can be saved. For example, “Delete frothecomes immediately obvious that the join index does not
P” with the referential actiorBET DEFAULThow requires speed up the access behavior to check referential integrity
only Cr < 2hkr page references to locate the key to be constraints sincépc(TID p) and I p(TID¢) are redundant
deleted and the DEFAULT key in the CAPS. The cost figuresas far as referential integrity is concerned. To compare this
for the remaining operations may be derived in a similarsolution with the pure B-tree and the CAPS, we have listed
way. They are summarized in Table 3. the search costs for the update operationsFoand C' in

206

Ipc(TIDp) lep(TIDc)
[[TIDp [TIDG [... [TIDg, [... | [[TIDg [TIDs [- |[. [TIDgy [TIDs] ... |
Ip(K) lc(F)
[. [P1LTIDs [..] [TC1]TIDg [... [TIDgy |

Fig. 4a,b.Mapping of a join index to a set of Btrees.a Representation of JI by two clustered indexefepresentation of the key value mapping to TIDs

terms of page references in Table 3. In this case, the evain physical I/Os is even superior for the CAPS as compared
uation of P, T)p and P, S)¢ has to be mapped to the four to the B'-tree. The values given in Table 3 are derived for
B*-trees of Fig. 4. In our discussion, we only sketch somethe referential actioSET DEFAULT The support of the
operations and leave the cost modeling of the remaining opRESTRICT option does not change the cost formulas dra-
erations to the reader. Our cost formulas are listed in Table 3matically for the B-tree and CAPS solutions, e.g., “Delete
The worst effect on search costs has “Delete fre¥h from P” yields hx + hg or hxp.
with the referential actioSET DEFAULT In the first step, A problem complicating the interpretation of Table 3 are
the location of theK'-key value, e.g.P1, to be deleted has the various cost parameters. To relate the various heights, let
to be identified in/ p(K) delivering TIDp1 which is, in turn, us consider the critical factors which determine the height
used to search (TIBy, ..., TID¢g,,) ViaIpo(TIDp). So far, of a B-tree, namely the number of tuples to be indexed
we have accomplishell + hpc page references. Note the (N) and the number of index entries (TID/key pairs) per
tuplestc; are not deleted but allocated to a parépes page. The latter is dependent on the page size itself and
incorporating the DEFAULT key. For this reason, we have tothe average length of an entry)(Obviously, e critically
assure the existence of that key Vig(K) (hx) and to move determines the fan-out of the tree. With a TID length of
the set of (TIQ:,...,TID¢,,) to the corresponding entry 5 B, 4 B as thepage pointer, ath 1 B as an dbet, we can
TIDper Of tpger in Ipc(TID p) (hpe). In Io(F), the location access ¥ pages and 256 tuples within a page which are
of the matching foreign key value”’(l) and the location of reasonable numbers. In contrast, the sizes of the keys may
the DEFAULT value have to be found in order to delete vary over a considerable range, e.g., an employee number
the key entry and to move the corresponding list of TIDs.needs 4 B, whereas a name may require 40 B or more.
Hence, we additionally obtaink2- page references. Finally, To improve fan-out in such cases, key compression may be
we have to copy the TIB:r to m entries inIop(TID¢) used successfully, i.e., as reported by Wagner (1973) and
which requiresm - hop page references in the worst case. Nevalainen (1979) front and rear compression resulted in an
average length for compressed keys of 1.78+B2(B of
] organizational data) having originally 20 B keys.

4.1.4 Comparison of access path structures In order to derive stable estimations for the various
heights, we attempt to express the sensitivity of height

hanges depending a¥ ande. The range in which a given
alue of h occurs is delimited by the two situations where

ach node of the Btree has a minimum or maximum num-
r of index entries, i.ek (except for the root) orRentries.

Table 3 compares the search costs for referential integrit
maintenance when different index implementations are use
Apparently, the join index is not appropriate at all. This
structure guarantees fast and symmetric access clustered

surrogate values to the entire joined relations. These accesy oce delimiting conditions are characterized’by and

characteristics, however, have to be maintained when botrﬂLN _ As indicated by Formulas (1) and (2), théﬂge values

base relations are modified. As a consequence, update OPElra" Yetermined DWinin OF Nax @nd & which, in turn, is
min max ’ ’

ations referring to elements involved in referential integrity _. - :
checking automatically lead to a modification of the mate-?c')\r/e: gi)\//é?&p?ﬁve Slgﬁg Z?Vthea?\éefrfr?gigﬂgﬁ?\?g:%i"
rialized join structure. The indirection of key to TID incor- Figure 5 iIIus’tratemg the isolines for various valueshaf

porates an additional penalty for this structure. andh _ : -

. N... Within practical ranges folNV ande given a page
. As already dlscus§ed, the CAPS not _onIy SUPF’_OFL? tWOsize of 4 KB. For example, the area between the isolines of
indexes on one Btree; it further accomplishes the joining

and checking of the relatell-key andF-key values freely. foNy = 3 N0, = 318 Turther divided into three subareas
In addition to theCr values shown, because of the much

by hn,. = 2 andhy,, = 4. Area 1 represents\V/e) pairs
better locality of reference, the “real performance” measured” ith = 3 or better, whereah = 3 results from all V/¢)

207

Table 3. Summary of the results (page references)MXTCH FULLland missing MATCH clause

Two B*-trees CAPS Join index
Insert into P hi hxr hi
Delete fromP 2-hg+2-hp 2-hgrp 2~(hK+hF)+2'hpc+m-hcp
Updateattributeki of P 3-hg+2-hp 3-hgr 3-hg+2-hpc+2-hp+m-hgp
Insert intoC' hg +hp hxrF hx +hcp +hrp +hpc
Delete fromC' hr hiF hk +hcp +hpc
Update attributef; of C hg +2-hp 2-hgrp 2-hg+2-hgpthg+2-hpc
e
60 . _ .
\\ NNmax =2 —
55} N ~ Anmin =3~ 4
rr:Nmax = 3
50t “‘~~:|1Nmin=4 \thax=3 \‘~hﬁlmin=5 z::: = 5
45| '
40|
35|
5 N
<
g 3o} "
$ 251 S
© T, aread N
20} \
151 area 2 k -
1ol o ,) \m\
sl S
0 - N
10° 108 Fig. 5. Relating N, e andh of a B*-tree

pairs in area 2. Finally,){/e) pairs in area 3 may reach '201€ 4 Summary of the approximated results

heights of 3 or 4. Two B*-trees CAPS Join index
We assume a minimum index entry lengtbf 9 B which

Insert into P h h[+1] h
results from a TID length fo5 B and the use of key com- 3 3.4 3
pression (Wagner 1973). As shown in Fig. 5, fo= 9 a
difference of two orders of magnitude iN may yield B'- Delete fromP 4. h[+2] 2-h[+2] k- (6+m)[+m +4]
trees of the same height or in an increase td + 1, at the 12-14 6-9 (18 +81)—(22 + 4m)
most. For example, when the parent and the child relations
contain 16 or up to 1§ tuples, respectivelyhx = hr(= 3) Update attribute ~ 5h[+2] 3-h[+3] h-(7+m)[+m+4]
or hr = hx +1(= 4). The same observation is true for other &; of P 15-17 9-12 (21 +@)—(25 + 4m)

practical values oé. Note that the use of TID lists for mul-)
tiple references of the same key value saves additional spacd"" ¢ 2 h+] R+l 4-hl+g
in the leaf pages of a Btree, especially for larger values of 67 34 12-15
e, thus kee_plng‘z constant for even larger ranges &t qu— Delete fromC A[+1] h[+1] 3. h[+2]
thermore, increasing the page size (e.g.pte 8 KB) will

dramatically increase the fan-out thereby making the height 34 34 -1t
of a B*-tree much more insensitive to the growth f. Update attribute 3 h[+2] 2.R[+2] 7 h[+4]
These considerations justify the following approximation: 4 of ¢ 9-11 6-8 2125

For symbolic manipulations of the cost formulas, we as-
sumehr = hxg = hgp = hgp = hpeo Of hp = hgp =
hcep = hpe = hx + 1. As a result of this approximation, . o) _
we get cost formulas depending on one paramétefhe relation. For these reasons,is the superior alternative to
variance of the height is denoted by [+1]. support the regular MATCH option '

To achieve indicative numbers we will uge= 3, as- So far, we have discussed access path solutions for op-
suming a scenario as depicted in Fig. 5. Apparently, Table £rations requiring only point querie®,(T) and @,3). Al-
clearly illustrates the advantages of the CAPS solution: costthough the examples were shown for= 1, B'-trees and

effective access and insensitivity to growth of the underlyingCAPSs allow simple extensions to largerin these cases,
then values of a key are encoded as a compound-key value

208

(Blasgen et al. 1977) such that the point queries can be sup- Obviously, all children with foreign ke z,y,z >
ported easily. As a result, the relative cost figures remairmatch uniquely. In addition to this ‘full match’ relationship,
stable whereas the heights of the various trees may changaples with partially matching foreign keys may be affected
slightly (see Fig. 5). by the deletion of . A child tuple may have more than one
parent tuple and vice versa (m) which introduces sub-

. stantial complications. All children having-keys partially
4.2 Support of theATCH PARTIALoption defined with respect te< z,y,z > may match eithet p
uniguely or match multiple parents. Hence, in order to de-
€ide whether referential actions have to be applied, we have
to inspect whether besides some other parent exists. For
&his reason, all partially defined'-keys have to be inves-
. tigated. Roughly, two different approaches are conceivable.

A straightforward methodvould proceed as follows: In the

cover the requirements of access pa_th_ support: _“Insert int(i’irst method, the potentially affected tuplesdhare deter-
C ano! Delete fromP”. For the remaining operations, the mined by 2 — 1 point queries using all possible templates
analysis of search costs for referential integrity maintenance . . o F-key. Each successful query requires a check for a
is left to the reade_r. Update C@. is just the combination matching parent. This can be decided directly for the fully
of the delete and insert operations, whereas updat® of efiney F-key whereas other templates have to be trans-
is much more complicated because of the non—symmetnca?Ormed to search keys for partial match (by replacieg *

semantics of the referential actions (see Sect. 3.2). by ‘_’ : .
; ' y ‘—") to check for matching parents iR. In the second
We assume thak’ and F' consist ofn attributes ¢ > 1) method,m; (0 < ms < 2" — 2) partial match queries are

and thatu attributes in#" (u < n) may be undefinedk’ o) 1a1ed inP (a single hit suffice). All unsuccessful queries
is a primary key and all its attributes have defined vdlues indicate the templates and, in turn, the tuple€ifor which

Furthermore, we focus the discussion on the costs for thg : - : :

' X . eferential actions have to be applied. Apparently, this pro-
support ofMATCH PAR.TIAUN'th the oonnRESTR!CT, cedure is very expensive, requirin§ 2 1 point queries and
€., the costs _for ;electlng th? pareptand those chﬂdren in the worst case '2— 2 partial match queries. Moreover,
Wlth tp as their unique matching parent (thereby dlsregar'd— ince multiple tuples inP may match a given template, it
ing further update overhead provoked by other referentia ay happen that matching tuplesfnexist for all templates.

g‘é'ggaﬁ'\’ h'IC:h Tﬁy even dauble f:[[he C?(St Itn casESIFfT d In this case, further referential actions are avoided. To ex-
7. For this reason, we often refer to partially de- ploit such anticipated situations, we propose the following

fined fo_re|gn keys, e.9x 2,9, 2 >, Using a point qUery to .\ arqe check procedurall applicable 2 — 2 templates are
dete_rmlne whether a corresponding tuple exlst§|rand & generated from x,y, z >, transformed to respective search
_partlgl match query to check whether matching parents exi eys, and executed as partial match queriesPorEach of

in P; these are fOl‘Jn'd by applying th? related search ke){he ms (0 < my < 2" — 2) unsuccessful queries requires a
< ®,—,z >, Where =" denotes the don't-care value. point query toC' to determine whether tuples exist for the
corresponding templates. In additiof, has to be accessed
for the fully defined F'-key. Hence, 1 up to'2— 1 point
gueries toC' may result.

Maintenance of the referential integrity becomes much mor
complicated when theATCH PARTIALoption is used,

since partial match queries in addition to point queries ar
then required.

4.2.1 General aspects of the evaluation

Before discussing access support for WATCH PARTIAL ~ In both approaches, the evaluation of up to-22 par-
option, we will recall the most important steps of our refer- tial match queries iP is a key factor of the overall costs.
ence operations in a more abstract way. Their sequential evaluation would introduce a considerable

share of redundant processing, since some queries are not
independent from one other. Far= 3, assume the queries
InsertintoC' To check referential integrity when inserting a

tupletc is simple, as long as the-key value is fully defined Q- Y, —
(e.9.,< z,y,z >) or fully undefined (e.g.< @, @, @ >). d2- &, = 2
The former case is handled by a point query tokheelation, 4=

whereas the latter case does not need a check. All otheThen,q; andg, are special cases @, or in other words, if
templates of thé"-key are more difficult and imply a partial we evaluateys, we can use the derived set of keys to check
match query to identify matching parents. As soon as the firsivhetherg; andg, can be satisfied. Hence, we only have to
matching parent is found, the check condition is satisfied andietermine the key sets qualified by all partial match queries
the tupletc can be inserted. havingu = n — 1 don’'t-care values. Note that these are only
n queries; however, they are the most expensive among the
)) g; (i < 2" — 2), because they show the least selectivity. If
Delete fromP_ The deletion operation Ioc.ates.the parent tu-\ye puffer the resulting key lists, we can answer tfie-22
pleltp with primary key< T,y,2 > If it exists, it is deleted partial match queries by processing only theueries hav-
which may cause a violation of tRARTIAL MATCHse- 4 5 single key component defined. Of course, this search
mantics of referencing tuples @. All unique matching chil- — ,5imization has to be adjusted to the characteristics of the
dren ofp have to be determined ifi to apply the specified 5ccess paths used. The inverse check procedure has to eval-
referential actions. uate all possible partial match queries, since all templates
6 We will usen = 3 for illustration purposes are generated disregarding the actual tupleS'itHowever,

209

the search optimization will save much effort. On the othercan be finished as soon as a valid substitution of iHeey
hand, the straightforward procedure has to perfofim-21 is found in the K-key. Hence, the worst case overhead of
point queries. Figure 6 shows the different evaluation pathgage references is

of the procedures. The question of which procedure is SUr. = (2" — 2)- (hx + Niteat — 1).

perior depends on the relation between the following cost = °]
functions: As indicated above, the number of queries can be reduced to

1. The straightforward metho@@) results in (2 — 1) -
(P, S)¢ +my-(PMy, E)p, wherem; represents the num-
ber of templates found id' which have to be checked
for parents.

. The alternative metho(2) yields (2" —2)-(PM,, E) p+
(mg + 1) - (P, S)¢, wherem; represents the number of
templates for which no parents were found ihand,
therefore, possibly existing children have to be located
to carry out the referential action.

In the worst casem, = mpy = 2" — 2 and henc@ and@
are equally expensive. An exact analysis is almost impossi
ble since data distribution and usage of null values within

the foreign keys have to be known. In real applications, we

expect very small numbers fon, and m,. Due to space
limitations, we restrict ourselves on the further inspection of

@ and usem = m, within the cost formulas.

4.2.2 Use of compound-key*BRrees

Two compound-key B-trees are used to implemeht(K)
and/c(F). In both trees, the attribute values belonging to a

n when the list of qualifyingi-keys can be cached in main
memory for further tests. Moreover, it should be possible to
design an optimized search and check procedure performing
a single leaf-page scan which searches fon &éys, thereby
limiting the worst case overhead of page references to

Cr = (hx + Nglear — 1).

Depending on the outcome of these tests, an inspectiéh of
is necessary to find out whether certdirkeys (templates)
exist or not. Hencepn +1 point queries t@' have to be taken
into account. Using ¢ (F) for their evaluation, the sum of
page references B = (m+1)- hp.

" Obviously, the compound-key solution could be imple-
mented by a CAPS with the concatenated key values rep-
resenting an artificial domain. Although the height of the
resulting B'-tree is similar toh, the number of leaf pages
may be much more than doubled as comparedy .5 due

to the added foreign key entries of relatiGh Since N eat

is already a very large factor, most operations would deteri-
orate drastically (see Table 5). Thus, the solution based on
a CAPS is not favorable for such a use of compound keys.

4.2.3 Use of single-key Btrees

key are concatenated and encoded as a single field (Blasgen
et al. 1977). Note, since null values are treated as specidhpparently, compound-key Btrees are inappropriate for

values, keys (e.g« x, &, z >) can be represented as regular
values in the B-tree. Hence F'-keys with null values are

partial match search. To explore a better solution we pro-
pose an opposite approach by representingrttadtributes

stored in an encoded form, too. Key comparison is achieve@f K (or F') by n single-key B-trees for allk; of K and f;

by special encoding procedures.

The most difficult action in the “Insert int6” operation
is the partial match search iR. How can we perform such
a search, if search keys like z, —, z > or < —,y, — > are
given? In such cases, a search on all fully defikedtey val-
ues of Ip(K) has to be accomplished to determine matching
parents according to tHdATCH PARTIALsemantics.

of F. Since all attributes may be accessed separately or in
combination, a much greater flexibility for query processing
may be achieved. However, referential integrity checking
seems to become more complicated. Since the reference in-
formation is distributed across multiple* Brees, the basic
checking mechanism is to fetch the qualifying TID lists for
k; or f; values and to merge them in order to identify the

Note that scanning all compound keys cannot be avoidedTIDs of the parents or children.

since entering the Btree using partially defined search keys
is hardly possible. A specialized search procedure base

Insertion of a tuple has to determine the existence of
d matching tupleé . As explained in Sect. 3.2, this task can

on some kind of prefix comparison could be designed onlybe accomplished by finding at least one tugglewhose key
for the case where the first search key components are dés a valid substitution for the newly insertdd-key of the
fined. Therefore in other cases, a reasonable search proceiple t. Assumen — u (0 < u < n) attributesf; have a

dure would be a leaf-page scan dp(K) starting from the
leftmost leaf to the rightmost leaf. Each encodgekey is
compared with the search key until a valid substitution is
found for the partial match predicate. Hence, the access ove
head is limited toCg = hx + Nikjeat — 1 (N kiear = NUMber

of leaf pages). Furthermore, the insertion poinf#(F) has

to be located /).

“Delete from P” comprises the deletion ofp and the
corresponding children having fully matching foreign keys.
Locating the deletion point idp(K) requiresh page ref-
erences. According to the inverse check procedute; 2
partial match queries have to be evaluatedranwith the
compound-key B-tree forIp(K), each partial match query

defined value (e.g.f =< z, 9,z >). Then, all defined val-
ues (excluding null) are used for the search in tHeti@es

for the corresponding attributés. Each of theser(— u)

iFID lists [e.g., L(k1 = x)] with lengthl,, 1 < i < n — u,

is brought to main memory for an existence test of some
tupletp (for simplicity let the first n-u attributes of the for-
eign key be those with defined values). If the intersection
L(ky = z)n...N L(k,—, = 2) is not empty, a tuplep
exists whose keyK coincides in the defined values with
the F-key values. Since the remainirig-key values are de-
fined and since any key value is a valid substitution for a
null value, the identified(-key values, in turn, satisfy the in-
tegrity constraint. Obviously, the number of page references

can be effectively executed by a leaf-page scan. Each scas

210

(2"-2) - (PM,, E)p

parent relation

@ -1)- (P, S)e $®

- parent relation

®+ (M, +1)- (P, S)o

@

“m, - (PM,, E);

child relation ** child relation Fig. 6. Evaluation alternatives falATCH PARTIALsupport
— lg, - e Up to now we have not elaborated these check proce-
Cr = Z <hkz‘ * p) ’ dures regarding the sizes of Brees occurring in practical
=1 applications. A dependency analysis between the number of
wheree is the length of a TID ang is the page size. tuples N and the number of key attrib'utesshows a major .
In the following, we approximatéy,, I, or hy,, Iy, by problem of the sketc_hed approach. Given a parent table with
the corresponding average values for the heights and list(® tuples and 10 children per parent (resulting in abodt 10
lengths, i.e., child tuples) with a primary/foreign key made up out of three
attributes with independent and uniform value distribution,
Cr = (n— u)- <hk N (ZK - 6>> ' we obtain 100 different values per attribute, i.e., tHet®es
only have 100 entries. This small number of entries has a

significant impact on the partial match results of queries with
only one attribute: in the parent relation, such a query results
in 10* tuples and in the child relation up to % €uples, i.e.,
the TID lists in the leaf pages of the correspondirigtRes
are very lon§. If we assume that we manage these results

Furthermore, locating the insertion points for the foreign
key of ¢t requiresn single-key B-tree traversals and the
manipulation of the resulting lists which sums upitdh g +
(IF - ¢/p)). Hence, the entire overhead is

lp-e i - e as lists of TIDs with an entry lengthf & B these numbers
Cr=n- (hF+<))+(n—u)- (hK"'()) resultinlx -e = 5-10* B (roughly 50 KB) oriz-e¢ = 5-10° B
p p (about 500 KB). While the former is manageable within a
page references. multi-user environment, the latter is hardly possible. Hence,

Deletion of a tupletp is more complicated. After the this approach of using B*-trees seems only conceivable
n deletion points in the Btrees of theK-key are located for the parent relation. This, however, is no severe prob-
causingn- (hx +(x -€/p)) pages referenced to propagate the lem because the supported partial match queries are needed
deletion oftp, in a next step, 2 — 2 partial match queries for the parent only. To remove this difficulty, we propose a
are to be evaluated i®. Therefore, the following test is hybrid approach: a compound*Bree for the F-key of C
carried out for each search key: letbe the number of andn single attribute B-trees for theK-key of P. By this
don’t-care values and (for simplicityy;, 1 < ¢ < n — u, combination, the cost for inserting a tuple intbis reduced
the defined attributes, e.g., the search key has the fornto
<xz...,z,—...,— >. If the intersection of the already I e
selected listsL(ky = 2) N ... N L(k,_, = 2) is not empty, Cr=hp+(n—u)- (hK + ()) :
then there is at least one matching parent. For our evalu-
ation, we anticipaten queries having empty intersections. The cost of “Delete fromP” is given by
Consequently, for the related templates and, in addition, for I
the fully matching foreign key, we have to check whether orC', = (m+1)- hp +n - (hK + < K- e)) .
not any children exist. This step requires+ 1 point queries p
on C' which can be executed by subsequently accessing eaqfote that in this case, 2n is not an upper bound fom,
B*-tre€ to fetch the TID lists and carry out the intersection, which, in turn, may reach the valué 2 2. Furthermore, we
e.9.L(f1=z)NL(f2=@)N...N L(fn = 2). This approach assume that the TID lists in the*Bree of the child relation

would result in do not exceed one leaf page.
Ip-e In principle, the access path for tiié- and F-key could
Cr=(m+1)- (n (hF + ())) be combined using the CAPS approach. However, such a

combination is useless or even impractical: a CAPS for the
page references. A closer inspection of the TID lists useccompound keys does not provide any improvement concern-
to perform the tests shows that at most/2TID lists are ing MATCH PARTIAL Used for then single B'-trees, it
involved in all (possibly 2—1) queries orC' (a defined value quickly suffers from unmanageable TID lists.
and the null value for eacfi). Hence, keeping the TID lists
in a working buffer limits the cost to page references in the
worst case. Thus, the supportdATCH PARTIAlwith the 4.2.4 Use of grid files
option RESTRICT for the “Delete fromP” operation costs
. I So far, we have simulated multi-key access and partial match
Cr=2-n- (hF + (F e)) +n- <hK + (K 6)) . queries to the relation® andC by “linear” access paths, that
p p is, B*-trees designed for one-dimensional access. In order to

7 The null value is considered as a special value, that is, null is used as 8 In this situation, the B-trees degenerate to inverted lists because the
a key value in all B-trees of theF'-key height of those trees will not exceed 1

211

D Buckets
SV n
2 X GD //—> X X
Ay |
X|X X = el KB
X \ N
o > . % ’ X
sv, | — .
0 m Fig. 7. Mapping principle of a grid file

investigate the question whether or not multi-dimensional acselected (by applying the givem). Moreover, all buckets
cess paths are better suited for checking the demands of ttfally contain the allocated key/TID or key/TID list pairs.
MATCH PARTIALoption, we consider the grid file (Niev- Apparently, the lion’s share of the query processing costs
ergelt et al. 1984) as the best known multi-key access strucdsing grid files is caused by the set of buckets to be accessed.
ture. The mapping principle of the grid file is sketched in For GDp, there are only two kinds of search-key terms:
Fig. 7 for two dimensions. The point objects in data space Dk; = v and k; = '—"; for a don't-care value in the search
are mapped by means of the grid directory GD into the buck-predicate, all existing values of the respective key qualify.
ets of the grid file. For each of thedimensions originating Hence, a point query delivers a single GD entry. Partial
from the n attributes (keys), the grid file offers symmetric match queries with one don’t-care valug & '—’) select
and uniform access, thereby guaranteeing a balanced acceSs, GD entries; two don't-care valuek; and k; lead to
structure independent from key distribution as well as inser-Sp, - Sp; GD entries and so on.
tion and deletion sequences. “Insert into C” with « undefined values in thé-key

The dimensions of D are represented by the ordered valrequires a partial match query on @Dwith «» don’t-care
ues of the attribute; and f; (¢ < n); null is considered a values in the attributes of kei(. If the set of attributes;
special value forf; attributes. Each dimension is described indexed bym;, i = 1,...,u, we obtain the following costs
by a scale vectof'V; used to map the search predicate of aof page references (worst case):
query to the GD. The set of specified scale values qualifies "
the GD entries which point to the buckets containing thec:, = pgy . + [Ti1 Sms
records meeting the search condition. In order to compare n o
the structure with the Btree, we assume that the buckets where the first term stands for the GD access and the second
exclusively store the(- or F-key values (withn compo- for fetching the buckets. If the number of scale val$eis
nents) together with the corresponding TID or TID list. Fur- equal in all dimensions, the cost formula can be simplified
thermore, we assume uniform distribution of &Jl and f; to the following form
attribute valuesi(< n).

7

In order to describe the cost of accessing a grid file, some>, = pp, - u + St ,

additional parameters are required: o
S number of scale values (intervals) &V; which makes apparent the dominant influence of parameter
Egp number of GD entriesEgp =[]~ S; u. For our convenience, we will use this simplified formula

B number of buckets3;: B = N/(b* Bavg)® Where in what follows; however, it may deliver only approximate
b is the bucket size anflyg the average load fac- numbers of page references. To make the cost factors clear,

tor of a bucket assume the following situationy = 1(f, b = 200, Bavg =
e average number of GD entries mapping to a0.75, S = 20, u = 2, anda = 1.2, and then we potentially
bucket,a > 1: henceEgp = a*B referenceCr = (7 + 334) pages to check whether there is a
Psp number of pages covered by GDPsp = partially matching tuplég p for the inserted tuplé.. Since
Ecp * emip/p, Where egp is the length of a we can stop the evaluation of the buckets as soon as we have
bucket-ID andp the page size found a valid tuplefp, the given cost formula describes the

Then scale vectors$'V; are represented as one-dimensionalworst case. To complete the “Insert inf§ operation, we
arrays; they are always kept in main memory such that theyave to locate the insertion point fa# in GD- which needs

do not provoke extra page references. Our access model point query (2 page references).

further assumes that a point query requires a single-disk ac- “Delete from P” is the second critical operation which
cess to the GD. For partial match queries, however, sets diias to be supported by partial match access. The inverse
GD entries, which may be mapped to pages in sophisticatedheck procedure is applied to test the existence of tuples
ways, have to be located. To reflect this mapping in our achaving partially matching foreign keys. If we execute a par-

cess model, we use the following heuristic approximationtial match query, e.gs: «, —, — >, on GDp, all keys can be
for the cost of GD accessicp = Psp * u/n. The set of derived including the defined componeant~or this purpose,
qualified GD entries determines the number of buckets to ball buckets qualified by =, —, — > have to be accessed

and filtered (using the:-value in our example). The list of

9 A ceiling function has to be applied to the computed access cost okeys derived allows for all templgtes With_cc_)mp_onento)
storage size because disk access or pages (buckets) cannot occur in fractidi@st whether or not the parent exists. Optimization requires

212

to cache the list of keys in main memory; otherwise, thematch queries. Therefore, it seems to be advisable in prac-
full set of partial match queries has to be applied sequentical cases to execute the cheap point queries first, thereby
tially. Hence, by applying our optimized search and checkhoping to find no or only a few foreign keys. This may

procedure we obtain the following cost formula for page greatly reduce the number of partial match queries required.

references: The solution based on two compound-Bees is not com-
n_1 Hn—l g petitive at all, because the cost of the leaf-page scan grows

Cr=n- (pGD . + 1=l mi) linearly with N. Only for very smallN or for special par-
n @ tial match search keys (having the leftmost values defined)
or would this solution be a good contender for the task consid-

ered. Our best solution relies arsingle B'-trees for the par-
tial match queries and on a compount-Bee for the point
queries. A combination based on a CAPS solution (the best

for uniform numbers of allS;. Unsuccessful inspections in alternative for the regular MATCH clause) is not feasible
GDp require checks in GP to determine whether children here because of extreme TID list lengths for larger numbers
exist for the respective temp|ates_ Since we assuirgich of N. As indicated in Table 6, for the given scenario the other

tests,m + 1 point queries have to be performed using&D two approaches are outperformed by factors of 15-20 or 50—
resulting inCr = (m + 1) - 2 page references. 80. Nevertheless, our hybrid approach remains expensive,

that is, the usage MIATCH PARTIALseems prohibitive in

any time-critical application (e.g., OLTP). Note that in our
4.2.5 Comparison of access path structures cost measures, we have neglected the computation costs for

the TID list intersections. These costs, however, will become
Table 5 compares the search costs for the basic support aubstantial if the lists grow beyond some threshold which,
MATCH PARTIALwith the optionRESTRICT. Remember in turn, depends on other parameters (e.g., hardware capa-
that these costs represent the required accesses to determiriities), and, therefore, this alternative may reach its limits,
which children are subject to referential actions, but not thetoo.
entire costs to accomplish them (such an analysis would have The most elegant approach is the usage of an access path
to take the referential actidBET DEFAULTInto considera- which supports the costly partial match queries directly. As
tion to deliver worst case costs). Obviously, a comparison ofan example we presented the grid file. In contrast to the ex-
the search costs is difficult at the chosen level of abstractiopected result, however, the analysis obtained relatively bad
due to the fact that some cost factors apply to only one onumbers for the grid file performance. This is mainly caused
two of the implementation alternatives (e §xear applies by the fact that we are not interested in all resulting tu-
only to the compound-key solution). To get some hints abouples of a given partial match query, but only in whether or
the relative costs of theIATCH PARTIALsupport, we elab- not at least one tuple exists. While the former is the clas-
orate some practical cases by using numbers approximatingical application for grid files, the latter is not. In addition
large applications (in the order of magnitude of Sect. 4.1): to the performance argument, other problems are yet to be

1. The number of tupled’» is 1. and thek -kevs or F- solved to provide grid files for large applications: referential
: kevs consist of f3 altptributes' We use = 2yfor the integrity maintenance is typically performed in multi-user
“In);ert into " operation ' environments with a high degree of concurrent access. To
. . I .. cope with such situations, optimal locking protocols were de-
2. A key/TID pair needs 10 B if the key is simple or 15 B if signed for B-trees (Mohan 1990; Mohan and Levine 1992).

it is compound. In both cases, we assume key compres-ivin direct access for keys and key ranges, whereas com-
sion. Note that the front/rear-compression is not applica—g g Y y ranges,

ble for grid files. Therefore, the key/TID pairs managed petitive locking protocols for grid files (Salzberg 1986) are

; o t known so far. For this reason and because of the perfor-
in the buckets of a grid file are assumed to have a IengtI{10 ' . .
of 25 B. The page or bucket size is 4 KB. Further pa_mance figures derived, our best candidate to supgétCH

rametersfiavg = 1, eip = 4 B. PARTIAL remains the hybrid solution based ori-Bees.

3 Fen = S8 = o' B L | £ is ch Nevertheless, our best advice is to avoid the us®ATCH
. Egp = = a”B; a minimum value ofS is chosen pARTIAL completely.

which also minimizesy for the givenB.
4. The heights of the Btrees are derived from Fig. 5. For
the computation ofVkeqr, completely filled leaf pages
are assumed (best case!). 5 Conclusions and outlook

-1 Sn—l
Cr=n- <PGD' " +)
n o

The grid-file performance depends heavily on the number
of buckets and directory entries. Here, we suppose the bestle have presented an investigation of referential integrity
mapping of GD to the buckets minimizing the number of support in relational DBMS. The focus of our paper has pri-
buckets and GD entries. Nevertheless, we obtain substantiaharily been on determining the functional requirements of
costs as shown in Table 6. Note théf,y = 0.75 would referential integrity maintenance caused by modification op-
increase the number of page references roughly by 21%. erations on the parent relatiaf and the child relatiorC.

As discussed previously, the inverse and the straightforfurthermore, an extensive study has been performed to an-
ward check procedures provoke the same cost in the worstwer the question: Which access paths should be provided in
case fn = 2" — 2). Tables 5 and 6 reveal, however, that the a DBMS to effectively and efficiently meet these functional
lion's share of the page references arises from the partialequirements?

213

Table 5. Summary of the results (page references)NXTCH PARTIALwith the optionRESTRICT

Two compound-key n single-key B'-trees forP, Two grid files
B*-trees compound B-tree forC'
Insert hi n-hg 2
into P
Delete hx n- (hK + (11;@)) 2
from P _ n—1
+ (hx + Nileat — 1) +(m+1)-hp +n'<PGD'nnl+Sa)
+(m+1)-hp +2-(m+1)
Update b (e () z
Zt_"(')?lge +(hx + Nileat — 1) +(m+1) hp +n- (PGD Snoly 5’;71)
' +(m+1)-hp - (h+ (7579)) +2.(m+1)
+hg +2
Insert hi hp 2
into C . u
i N = o (e () (oo 1+)
Delete hr hr 2
from C'
Update hp hp 2
attribute _ Ig-e su
fiofC + s+ Nictoat = 1) tne (e + (157)) +(Peo 5+ %))
+hp +hp +2

Table 6. Exemplary access costs for referential integrity WWATCH PARTIAL

Two compound-key n single-key B-trees forP, Two grid files
B*-trees compound Btree forC
Delete fromP 3759 +4-m 46+4-m 1006 +2-m
3759-3783 46-70 1006-1018
Insert intoC' 3755 46 336

Our initial discussion outlined the specification of the The presented results rely on the assumption that the
SQL2 standard and its semantics as far as referential insearch costs are indicative of the entire costs of referential
tegrity is concerned. As an outcome, we have derived théntegrity maintenance. This assumption has to be justified
guery types which are necessary to maintain referential inthrough further research especially at the system level. An-
tegrity. If the regular MATCH option is used, then the com- other interesting question to be answered is whether or not
plexity of all queries required is at most of type, §) which MATCH PARTIALs useful for a real world application. To
represents a point query in the key space and results in a sdb so, existing applications have to be evaluated to reveal
of elements (TIDs or tuples). This type of query is well sup- the practical relevance dIATCH PARTIAL Furthermore,
ported through a Btree (either for the foreign key or for it may be interesting to analyze real world applications to see
the primary key). An optimization can be achieved usingwhether or not the various MATCH options interfere with
only a single CAPS jointly used for the primary key and the parent relation. For such cases, a combination of our ideas
foreign key. has to be investigated.

This relatively simple situation gets much more com-

.pllcat?d if the M.ATCH . F_’ART_lALOptIQn of the referential Acknowledgement$§Ve would like to thank C. Huff, E. Rahm, and H. Seh

integrity constraint definition is considered. In such a casejng for their helpful comments on an earlier version of this paper. The

the query type needed i®,, E) which denotes a partial comments and questions of the referees are appreciated.

match query (withu unknown values) in the respective key

space resulting in a set of tuples or TIDs. Another complica-

tion arises through the exponential growth of the number ofReferences

point queries to be tested. As it turns out, the latter does not

contribute the major share to the costs of all access paths €¥%jasgen Mw, Casey RG, Eswaran KP (1977) An encoding method for

plored. Therefore, support of partial match queries becomes multified sorting and indexing. Commun ACM 20: 874-876

the most critical factor. For this reason, the solution based or€odd EF (1970) A relational model of data for large shared data banks.

compound keys is inappropriate. Although the access cost(s: CO“S”Z;S7/3)C¥h13Ib377_?387Bt ACM G CSurv 12. 121137
: .)) omer € ubiquitous b-tree. ompu urv . -

using a grid file are very Iovy for some operations, ot.hersDatalbase Language SQS (1992) ISO/IEC 9075 P

are remarkably more expensive than those of the hybrid S0p.p.ce | anguage SOL3 (1993) ISO/ANSI Working Draft. X3H2-93-091/

lution based on B-trees. Accordingly, we recommend the YOK-003 ISO/IEC JTC1

latter solution wherMATCH PARTIALSs used. Date CJ (1981) Referential integrity. In: Proc 7th Int Conf VLDB, Cannes,

France, pp 2-12

214

Date CJ (1990) Relational databases: selected writings 1985-199(Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable,
Addison-Wesley, Reading, Mass symmetric multi-key file structure. ACM TODS 9: 38-71
Gray JN (1978) Notes on data base operating systems. In: Bayer R, GraNevalainen O, Muurinen K, Rantala S (1979) A note on character compres-
ham RN, Seegiiller G (eds) Operating systems: an advanced course. sion. (Angewandte informatik, vol 21) Vieweg, Braunschweig Wies-
(Lecture Notes Computer Science, vol 60) Springer, Berlin Heidelberg baden, pp 313-318
New York, pp 393-481 Reinert J (1993) Ensuring referential integrity in SQL2 and SQL3, Internal
Harder T (1978) Implementing a generalized access path structure for a report, Department of Computer Science, University of Kaiserslautern,
relational data base system. ACM TODS 3: 285-298 Germany
Markowitz VM (1991) Safe referential structures in relational databases.Salzberg B (1986) Grid file concurrency. Inf Syst 11: 235-244
In: Proc 17th Int Conf VLDB, Barcelona, Spain, pp 123-132 Shaw P (1990) Database language standards: past, present, future. In: Blaser
Mohan C (1990) ARIES/KVL: a key-values locking method for concur- A (ed), Database systems of the 90s. (Lecture Notes Computer Science,
rency control of multiaction transactions operating on B-tree indexes. vol 466) Springer, Berlin Heidelberg New York, pp 50-88
In: Proc 16th Int Conf VLDB, Brisbane, Australia, August, pp 392—405 Valduriez P (1987) Join indices. ACM TODS 12: 218-246
Mohan C, Levine F (1992) ARIES/IM: an efficient and high concurrency Wagner RE (1973) Indexing design considerations. IBM Syst J 12: 351-367
index management method using write-ahead logging. In: Proc ACM
SIGMOD, San Diego, pp 371-380

