
The VLDB Journal 5: 196–214 (1996) The VLDB Journal
c© Springer-Verlag 1996

Access path support for referential integrity in SQL2
Theo Härder, Joachim Reinert

Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany; Phone: +49 631 205 4030,
Fax: +49 631 205 3558, e-mail:{haerder,jreinert }@informatik.uni-kl.de

Edited by Alain Pirotte. Received June 28, 1993 / Revised August 19, 1994 / Accepted April 26, 1995

Abstract. The relational model of data incorporates fun-
damental assertions for entity integrity and referential in-
tegrity. Recently, these so-called relational invariants were
more precisely specified by the new SQL2 standard. Accord-
ingly, they have to be guaranteed by a relational DBMS to
its users and, therefore, all issues of semantics and imple-
mentation became very important. The specification of ref-
erential integrity embodies quite a number of complications
including the MATCH clause and a collection of referen-
tial actions. In particular,MATCH PARTIALturns out to be
hard to understand and, if applied, difficult and expensive to
maintain. In this paper, we identify the functional require-
ments for preserving referential integrity. At a level free of
implementational considerations, the number and kinds of
searches necessary for referential integrity maintenance are
derived. Based on these findings, our investigation is focused
on the question of how the functional requirements can be
supported by implementation concepts in an efficient way.
We determine the search cost for referential integrity main-
tenance (in terms of page references) for various possible
access path structures. Our main result is that a combined
access path structure is the most appropriate for checking
the regular MATCH option, whereasMATCH PARTIALre-
quires very expensive and complicated check procedures. If
it cannot be avoided at all, the best support is achieved by
a combination of multiple B∗-trees.

Key words: Referential integrity – Relational databases –
SQL2 – MATCH clause – Access path support

1 Introduction

In his “historical” paper about the relational model of data,
Codd (1970) informally introduced entity integrity and refer-
ential integrity as the “relational invariants” to be automat-
ically guaranteed for each relation by a relational DBMS
(system-enforced integrity). In the meantime, several at-
tempts have been made to formalize these important data

Correspondence to:T. Härder

model properties thereby setting the semantics of these in-
tegrity assertions more precisely (Shaw 1990). Now, more
than 20 years later, the new SQL2 standard (Shaw 1990;
Database language SQL 1992) defines these relational in-
variants for the relational model in a uniform way, with the
goal of making them mandatory for all relational DBMS.

At the level of DB schema design, the new standard
provides powerful concepts for specifying key conditions as
well as referential integrity conditions. Besides the primary
key condition (PRIMARY KEY), key uniqueness can be
maintained for multiple candidate keys using the UNIQUE
option. Matching values of primary key and foreign keys are
guaranteed by the FOREIGN KEY concept which may be
endowed with different matching semantics by the MATCH
clause. However, this clause is responsible for quite a num-
ber of complications which may burden the design. Further-
more, the specification of different referential actions pro-
vides some automatic means to maintain the referential in-
tegrity for the case that some update operation violates the
matching conditions of keys related via referential integrity.

The implementation of these rich and powerful concepts
may drastically influence the DBMS performance. There-
fore, it seems urgently necessary to investigate the system
behavior at the operational level. For this purpose, the var-
ious aspects of system overhead caused by the services for
maintaining the relational invariants have to be studied in
detail. A prime contributor is the run-time overhead result-
ing from the various searches to locate tuples or keys to
be checked or compared. Moreover, update costs involving
tuples and access path data have to be considered, e.g., for
referential actions. Furthermore, additional costs may result
from locking, logging, and related services.

Our goal is to study the usefulness of various access
path types for referential integrity support. We believe that
this question should be investigated at a suitable level of ab-
straction in order to achieve a sufficient selectivity between
different possible access path types and, at the same time, to
avoid low-level modeling that may only provide a kind of
artificial accuracy. Thus, we do not want to get involved in
the intricacies of multi-user operation and of detailed access
paths and operation modeling. We focus our investigation
on the estimation of search overhead and the use of dif-

197

ferent kinds of access paths (in terms of page references).
Obviously, searching embodies the lion’s share of the oper-
ational costs. For this reason, these costs may be considered
indicative for the entire checking costs.

For the performance analysis of the relational invariants,
checking the existence of a key is a very important and fre-
quent operation. Locating the key or the tuple often implies
a search in a large data set. Since sequential scans cannot
be tolerated for apparent reasons, we assume that a suitable
index exists for every key to be specified by the options
UNIQUE, PRIMARY KEY, and FOREIGN KEY. Checking
the entity integrity and the UNIQUE option is conceptually
very simple; for each of the specified keys, an index access
has to be performed for insert and update operations to check
the uniqueness of the related key values. Therefore, we only
focus on the performance aspects of referential integrity, es-
pecially the influence of the MATCH clause.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the concepts of referential integrity as spec-
ified in the SQL2 standard. In this framework, in Sect. 3
we outline the functions to be performed whenever a rela-
tion is modified and we identify the number and kind of
searches required to accomplish this task. Section 4 investi-
gates the suitability of various access path structures when
used for these searches. Furthermore, we derive the search
costs in terms of logical page references and compare the
performance behavior of the chosen access path candidates.
Finally, Sect. 5 contains our conclusions and proposals for
future work.

2 The concepts of referential integrity

In this section, we analyze the possibilities of the new SQL2
standard (Database language SQL 1992) in the area of ref-
erential integrity. For this reason, we present an outline of
referential integrity and then introduce the syntactical clauses
for referential integrity in SQL2.

2.1 Referential integrity

The concepts of referential integrity, originally defined by
Codd (1970) and influenced by Date (1981, 1990), are in-
cluded in the new SQL2 standard which was accepted by
ANSI and ISO in 1992. To recall: referential integrity is
an integrity constraint between a setF = {f1, . . . , fn} of at-
tributes (called foreign key) of a relationC (called child) and
a setK = {k1, . . . , km} of attributes of a relationP (called
parent). The structural constraints on a database schemaS
implied by a referential integrity constraint are:

– n = m
– For eachi, the domain offi is the same as the domain

of ki
– K is the primary key ofP .

A referential integrity constraint implies the following con-
straint on the instances ofS: For every tupletC of C, there
exists a tupletP in P with tC |F = tP |K1. An exception to

1 t|X Denotes the projection oft onto the attributes inX, if t is a tuple
of relationR andX a set of attributes ofR. This is extended in a canonical
way toR|X

this general rule are null values to express unknown or inap-
plicable values. If some attribute ofF in tC has such a null
value as its value, no counterpart fortC |F is needed inP
(constraints other than referential integrity may be violated,
e.g., constraints regulating the applicability of null values).
Some modifications of these semantics are discussed later in
this section.

Since a referential integrity constraint is a static con-
straint, it may be violated by user operations. There are six
basic update operations involving one of the relationsP or
C. “Insert into P ” and “Delete fromC” do not lead to a
violation of the referential integrity whereas the remaining
four operations potentially do. We briefly review each of
these operations.

2.1.1 Delete fromP

A tuple deleted fromP may have some children referencing
this tuple. After the deletion, these children no longer have
a parent; hence, this operation may violate the referential
integrity.

2.1.2 Update attributeki of P

At this stage of discussion, an update can be viewed as a
deletion of the tuple with the old value and an insertion of
the tuple with the new value.

2.1.3 Insert intoC

If all attribute values of the attributesfi of the inserted tuple
are different from the null value, referential integrity requires
the existence of a matching tuple inP . If this tuple does not
exist, referential integrity is violated.

2.1.4 Update attributefj of C

Similar to the update ofP mentioned above, at this level
of discussion we can view an update by a deletion and an
insertion.

2.2 Referential integrity in SQL2

In this section, we introduce the syntax of SQL2 for refer-
ential integrity and include a short discussion of the various
options for referential actions.

In the SQL2 standard, referential integrity constraints are
defined when tables are created or altered. For this purpose,
a subclause of thecreate table or thealter table
statement referring to the child tableC is used. The complete
subclause is as follows:

FOREIGN KEY (<referencing columns>)
REFERENCES <table name>

(<referenced columns>)
[MATCH {FULL | PARTIAL}]
[ON UPDATE {CASCADE | SET NULL

198

| SET DEFAULT | NO ACTION}]
[ON DELETE {CASCADE | SET NULL

| SET DEFAULT | NO ACTION}]

The <referencing columns> are the attribute names
of the foreign keyF in C. The<referenced columns>
denote the attributes of the primary keyK of the parent
table<table name> . Instead of the primary key of a table
P as the referenced group of attributes, SQL2 allows so-
called candidate keys to be referenced. Codd (1970) has
introduced the term “candidate key” as a group of attributes
of a relation that allows each tuple of the relation to be
uniquely identified by these attributes, i.e., the primary key
is one of the candidate keys. But opposed to the primary key,
the value of a candidate key may be partly undefined (null
values). The implications of this extension will be discussed
in Sect. 3.3.

The semantics expressible through the subclauseMATCH
{FULL | PARTIAL } specifies the interpretation of null
values in the foreign key of a tupletC . In Sect. 3.2, we
explain the special semantics achievable with this subclause.

The subclausesON UPDATE. . . and ON DELETE. . .
allow special treatments when referential integrity is violated
by a user operation, as discussed in the previous section.
Given a DB state which fulfills referential integrity, only
four out of the six operations may violate it. According to
the SQL2 standard, the two operations “Insert intoC” and
“Update fi of C” on a child are forbidden (backed out) if
these would result in DB states where referential integrity
is not fulfilled. Therefore, only the two operations (“Delete
from P ” and “Updateki of P ”) on a parent relation are
handled in a special way:

1. ON UPDATE. If a key attribute referenced in a refer-
ential integrity constraint is updated in a tupletP , then
the following actions are carried out depending on the
specification in the schema:
– CASCADE. The new values in the key are propagated

to the referencing children.
– SET NULL. The respective foreign key attributes in

referencing tuplestC are set to the null value.
– SET DEFAULT. The corresponding foreign key at-

tributes in referencing tuplestC are set to a default
value (definable for each attribute in the schema).

– NO ACTION. The referential action is delayed on re-
lation C. Referential integrity remains violated and
if no other operation takes place to correct the mis-
match of the corresponding tuplestC , the complete
work of the transaction will finally be backed out.
This happens either at the end of the statement (if
the integrity checking is not deferred) or at transac-
tion commit (if the integrity checking is deferred). A
discussion of deferred integrity checking is beyond
the scope of this paper.

2. ON DELETE. If a tupletP is deleted, then the following
actions are carried out depending on the specification in
the schema:
– CASCADE. The referencing children are also deleted.
– SET NULL. The foreign key attributes of the chil-

dren are set to the null value.
– SET DEFAULT. The foreign key attributes of the

children are set to the given default value.

– NO ACTION. Nothing is done. Referential integrity
remains violated and if no other operation takes place
to correct this, the complete work of the transaction
will be backed out.

There is another important referential action not intro-
duced in the SQL2 standard, but in nearly all papers deal-
ing with referential integrity:RESTRICT(or RESTRICTED
depending on the author). The semantics of this referential
action is to forbid any change (update or delete) of a par-
ent tuple tP as long as there are referencing child tuples
tC . Although this action is not in the SQL2 standard [but
scheduled for SQL3 (Database language SQL3 1993)] we
will include it in our discussion.

A problem of the referential integrity constraints, as
specified in SQL2, results from the possibility of interfer-
ence when performing multiple referential actions on one
tuple. That is, a straightforward implementation may lead to
an indeterminismin the result of a user operation, i.e., an
operation in single-user mode may cause different database
states if the triggered referential actions are executed in dif-
ferent sequences on the same database state. The SQL2 stan-
dard prevents such indeterminism through the specification
of a complex test carried out during the execution of the
referential actions. A detailed discussion of this approach
may be found in the work of Markowitz (1991) and Reinert
(1993); it is beyond the scope of this presentation.

3 Functional requirements

Since we want to support efficient integrity checking, a criti-
cal question is: Which access patterns have to be supported?
In order to answer this question, we concentrate on the
searches required for observing a referential integrity con-
straint. In principle, there will be no new operations; how-
ever, in contrast to traditional relational query processing
where onlycomplexqueries result incomplexevaluations,
now such complex evaluations may be forced bysimple
queries.

3.1 Overhead of regular referential integrity

First we analyze the referential integrity in the simplest set-
ting. Therefore, we introduce the following two restrictions
on the definition of referential integrity constraints in SQL2:

1. The attributes of a foreign key are either not allowed
to be null, or foreign keys having null values for some
attributes are not taken into account when checking ref-
erential integrity, i.e., special treatment of null values is
not considered. This is expressible by the MATCH clause
(see Sect. 3.2).

2. The referenced group of attributes is the primary key
of the referenced relation. Therefore, null values are ex-
cluded.

We now discuss the operations that may raise problems
with referential integrity. As already said, this discussion in-
tends to determine the functional requirements to be met by
a system for supporting referential integrity. Thus, we fo-
cus on the different query types which should be supported

199

to achieve efficient constraint checking. As mentioned ear-
lier, efficient checking of referential integrity requires some
access paths to avoid (multiple) sequential scans on the re-
lations. On the other hand, these access paths have to be
maintained whenever the underlying relations are modified.
Therefore, the search requirements for integrity checking are
made up of two parts:

1. The costs of locating the tuples or keys which allow the
required check.

2. The old and the new locations of the tuples or keys in the
access path have to be selected, if update operations are
necessary. In our scenario, maintenance always follows
the constraint checking directly. Therefore, we assume
that the old location of the keys is already known. Thus,
the search costs for maintenance consist of the overhead
to determine the new location of the keys in the access
path if required2 (e.g., if ON DELETE SET DEFAULT
is specified).

In the following, we consider the test of whether or not
the parent key is unique as an integral part of referential in-
tegrity checking. Therefore, we include the necessary checks
and maintenance actions into our requirements.

3.1.1 Insert intoP

During the insertion of a tuplet into P , it must be checked
whether or not the primary key oft is unique withinP . To
resolve this question, a query may be issued that selects all
tuples with the same primary key ast. If the result of this
query is not empty, then another tuple with the same primary
key exists and hencet must not be inserted. We denote the
type of the mentioned query as (P,E)P to express that it
is a point query (in the space of the keys) which tests the
existence of one key. TheP subscript denotes that the query
is evaluated on the parent relation.

3.1.2 Delete fromP

To delete a tupletP from the relationP , it is located and
checked whether or not there are any related child tuples
tC . To locatetP via an access path we need a query of type
(P,T)P (point query with one resultingtuple). The query
types needed to test and maintain the children depend on
the option specified in the schema:

1. CASCADE. To access all children oftP , a point query
is issued in the foreign key space which results in aset
(there may be more than one child) of tuplestC . We will
denote this query type by (P,S)C . Together we obtain the
abstract costs of (P,T)P + (P,S)C .

2. RESTRICT. To test whether or not to perform the oper-
ation (Delete fromP), the evidence of at least one child
is sufficient. Therefore, the query type is (P,E)C . Hence,
the complete operation results in cost (P,T)P + (P,E)C .

3. SET NULL. As for CASCADE, the children are selected
through a query of type (P,S)C . In contrast to that case,

2 Deferred checking or unusual cases ofNO ACTIONdo not allow such
an approximation

we have to update the children location in the access path
because their foreign key is changed ((P,S)C). Therefore
the costs are (P,T)P + 2 · (P,S)C .

4. SET DEFAULT. Compared to theSET NULL option,
an additional query is necessary if the default values dif-
fer from the null value. In this case, the related children
get a new fully defined foreign key; thus, it has to be
tested whether or not the new (default) parent exists.
This leads to another (P,E)P query and to the entire
overhead of

(P,T)P + (P,E)P + 2 · (P,S)C .

5. NO ACTION. This option is difficult to evaluate in gen-
eral because of the following:
– If some attributes ofF serve as foreign key attributes

in more than one referential integrity constraint si-
multaneously or if the integrity checking is deferred,
other operations (initiated by the user or through
other referential integrity constraints) may resolve the
conflict introduced by the deletion oftP . Hence, op-
posed to the other options (CASCADE, SET NULL,
SET DEFAULT, and RESTRICT) which guarantee
referential integrity after the appropriate action is car-
ried out, this option will require anexplicit integrity
checking at some time in the future. The type of these
queries is (P,E)P 3.

– In all other cases, this option is identical toRE-
STRICT and therefore the query type is (P,E)C .

The above show that an efficient evaluation of query type
(P,S) is necessary for integrity checking. Sometimes, an op-
timization by a (P,E) query is possible, but for reasons of
simplicity we do not elaborate on this in the subsequent
sections and use the worst case (SET DEFAULT) which
is made up of one (P,T)P , one (P,E)P , and two (P,S)C
queries.

3.1.3 Update attributeki of P

The overhead of checking the referential integrity in this case
consists of four parts (in the worst case): First, the parent and
all related children have to be located; this requires (P,T)P +
(P,S)C . Second, the new value ofK has to be checked for
uniqueness. This is achieved through a query of type (P,E)P
(as in the insert case). The third part may be needed ifSET
DEFAULT is specified, because the children change their
parent (now it is the “default” parent), and the existence of
this parent has to be checked with another (P,E)P query.
Last but not least, the foreign key of the children is changed
and, therefore, the underlying access path is updated leading
to a (P,S)C query. Thus, the worst case consists of (P,T)P ,
2 · (P, E)P , and 2· (P,S)C , which is also the sum of a delete
and an insert.

3 At this point in time, the database may have gone through multiple
changes, and without any internal bookkeeping about referential integrity
it may be better to check it on a relation basis, i.e., to check for all tuples
in C whether there is a tuple inP with matching primary key

200

3.1.4 Insert intoC

If a tuple tC is inserted into the relationC, a check is re-
quired to determine whether there is a matching parent tu-
ple tP or not. The insertion fails if no parent exists. The
checking overhead consists of a query of the type (P,E)P .
Furthermore, the access path of the foreign key has to be
maintained. Hence, we have to locate the insertion point of
the new child requiring a query of type (P,T)C .

3.1.5 Delete fromC

The tuple to be deleted from the set of children has to be
located in the access path. This requires a query of the type
(P,T)C .

3.1.6 Update attributefj of C

If an attribute of the foreign key is updated, the existence
of a parent tuple for the new foreign key value must be
checked. This is a query of type (P,E)P . The maintenance
of the access path requires two queries of the type (P,T)C
to “move” the child from the old to the new location.

In this section, we have analyzed the query types of
regular referential integrity constraints. We have not yet
mentioned multi-attribute foreign keys explicitly because
(with the preconditions about null values stated at the begin-
ning of this section) such foreign keys can be simulated by
one super-attribute composed of the single attributes (sub-
sequently called compound attribute). In the following, we
will analyze the semantics of null values in connection with
MATCH PARTIAL.

3.2 Overhead of theMATCH PARTIALclause

The definition of theMATCHpredicate serves as the basis
of the semantics of theMATCH PARTIALsubclause for
referential integrity.

3.2.1 TheMATCHpredicate

The MATCHpredicate tests a tuplet against a set of tuples
M : a group of attributes oft is compared tuple-by-tuple with
a related group of attributes in setM (the attribute domains
have to be pairwise comparable). The definition of this predi-
cate allows the optional specification ofPARTIAL or FULL.
Givent|<f1,...,fn>MATCH[{FULL|PARTIAL}]M |<k1,...,kn>

and a tuplem of M , the result of this comparison is as fol-
lows:

1. No option specified
– If some attributefi of t has the value null, then

MATCHresults inTRUE.
– If no attributefi of t has the value null andt.fi =
m.ki (1 ≤ i ≤ n), thenMATCHresults inTRUE.

– Otherwise,MATCHresults inFALSE (for this tuple
m).

2. FULL is specified

– If all valuesfi are null, thenMATCHresults inTRUE.
– If no valuefi is null andfi = ki (1 ≤ i ≤ n), then

MATCHresults inTRUE.
– Otherwise,MATCHresults inFALSE (for this tuple
< k1, . . . , kn >).

3. PARTIAL is specified
– If all valuesfi are null, thenMATCHresults inTRUE.
– If fi = ki holds for all defined valuesfi, thenMATCH

results inTRUE.
– Otherwise,MATCHresults inFALSE (for this tuple
< k1, . . . , kn >).

Without any option or the optionFULL specified, a null
value in one attributefi determines the result of the whole
evaluation of theMATCHpredicate. IfPARTIAL is specified,
null values infi are treated as don’t-care values. There is
no symmetric concept of treating null values inki4.

3.2.2 TheMATCH PARTIALclause

The semantics of theMATCHclause in the definition of a
referential integrity constraint is according to the above def-
initions:

1. The predicate (tC .f1, . . . , tC .fn) MATCH(SELECTK
FROMP) has to be true for each tuple ofC if no MATCH
clause is specified.

2. The predicate (tC .f1, . . . , tC .fn) MATCH FULL(SE-
LECTK FROMP) has to be true for each tuple ofC if
MATCH FULLis specified.

3. The predicate (tC .f1, . . . , tC .fn) MATCH PARTIAL
(SELECTK FROMP) has to be true for each tuple
of C if MATCH PARTIALis specified.

The cases with noMATCHclause orMATCH FULLare cov-
ered in the previous section. We now analyze the implica-
tions of MATCH PARTIAL.

The main implication ofMATCH PARTIALis that a
child tuple may have more than one matching parent. Given
a foreign keyF consisting of three attributes (we will denote
null values by?), the foreign key of a tupletC |F = (x,?, z)
will match primary keys like (x, y1, z), (x, y2, z), and so
on. This implies that the referential actions must be re-
fined if such a ‘parent’ is changed or deleted. To do so,
the SQL2 standard distinguishes between unique and non-
unique matching parents. A tupletP is the unique matching
parent for a tupletC if tP is the only tuple inP with a
primary key matching the foreign key oftC . If tP has a
matching primary key but it is not the unique matching par-
ent, thentP is a non-unique matching parent.

Example: Let P = {< x1, y, z, . . . >,< x2, y, z, . . . >}
and C = {< . . . , x1, y, z, . . . >,< . . . ,?, y, z, . . . >}.
< x1, y, z, . . . > is the unique matching parent for
< . . . , x1, y, z, . . . > and a non-unique matching parent for
< . . . ,?, y, z, . . . >.

If a parent tupletP is deleted or updated, the referen-
tial actions are executed only for childrentC having tP
as their unique matching parent. Given thatON DELETE
CASCADEis defined in the example above, a deletion of

4 Note that the semantics of the three options are identical ifn = 1

201

< x1, y, z, . . . > results in a deletion of< . . . , x1, y, z, . . . >
but not of < . . . ,?, y, z, . . . >. During the execution of
a query in a tuple-at-a-time manner, a non-unique match-
ing parent may become the unique matching parent (e.g.,
< x2, y, z, . . . > for < . . . ,?, y, z, . . . > if < x1, y, z, . . . >
is deleted). If this (now) unique matching parent is deleted or
updated, the referential actions have to be performed. There-
fore even in a single-user operation, the unique matching
parent has to be evaluated dynamically. Let us now con-
sider the different operations possibly violating referential
integrity and the resulting query types ifMATCH PARTIAL
is specified. For reasons of simplicity, we concentrate on
the differences of the test for the match predicate and avoid
repeating the terms which do not change.

3.2.3 Delete fromP

If a tuple tP is deleted from the relationP , referential ac-
tions are only applied to child tuplestC having tP as their
unique matching parent. Given a primary key of tupletP
to be deleted, how can we locate the childrentC satisfy-
ing tC |FMATCH PARTIALtP |K? Since there is no MATCH
predicate directly available in standard relational DBMS, we
will substitute such a predicate by a number of simple pred-
icates. A simple predicate directly supported in all DBMS is
(attribute = value) and the conjunction of such terms. To find
all children related viaMATCH PARTIALto tP , we have to
check all possible combinations of null values (with at least
one defined value) in the foreign key ofC; for the construc-
tion of theseMATCH PARTIALkeys, the defined values
are derived from the primary key oftP . We will call these
MATCH PARTIALforeign keysF -templates. They are con-
structed by replacing all possible combinations of primary
key values by null values. TheF -template consisting of nulls
only is not relevant to referential integrity.

Example: Given a tupletP with primary keyK consisting
of three attributes< x, y, z, . . . >, the matching foreign keys
have the form< . . . , x, y, z, . . . >, < . . . ,?, y, z, . . . >,
< . . . , x,?, z, . . . >, < . . . , x, y,?, . . . >,
< . . . ,?,?, z, . . . >, < . . . ,?, y,?, . . . >, and
< . . . , x,?,?, . . . >.

Apparently, for a primary key of lengthn we obtain
2n − 1 F -templates. If the null value is represented like
any other value, the overhead to select the children with
matching foreign keys is a union of 2n − 1 queries of type
(P,S)C . To test whether or not referential integrity (with
MATCH PARTIALsemantics) is violated, requires to check
whether tP is the unique matching parent of one of the
matching childrentC . Two cases have to be distinguished:

1. The foreign key oftC has defined values only. Because
the primary key, too, has defined values only,tP is the
unique matching parent, and the specified referential ac-
tions are executed ontC .

2. Some attribute values in the foreign key oftC are null.
To decide whether or not referential integrity is violated
requires the location of at least one matching parent of
tC different fromtP . For example, in our three-attribute
foreign key, we may havetC |F =< x,?, z >. The query

to locate the number of matching parents oftC will look
like

SELECT COUNT(*)
FROMP
WHEREP.k1 = x ANDP.k3 = z,

which is a partial match query. We assume thattP is
already deleted and hence denote the type of this query
by (PMu,E)P , whereu denotes the number ofunknown
attributes5 (i.e., for the above query we have (PM1,E)P).
As shown above, a primary key of lengthn may have
2n − 1 matchingF -templates. Because the fully defined
template is handled separately, we obtain 2n − 2 partial
match queries. This set of partial match queries can be
partitioned along the number of unknown values. Given
a key of lengthn, each 1≤ u < n yields

(
n
u

)
templates

with u undefined values and therefore
(
n
u

)
partial match

queries of type (PMu,E)P . This represents the worst
case, because a specific partial match query has to be
evaluated only if some children exhibit the corresponding
template.

Putting both results together leads to a set of queries.
Given a primary key of lengthn, for each referential in-
tegrity constraint referencing this primary key withMATCH
PARTIAL, we need 2n − 1 queries of the type (P,S)C and
(in the worst case) for eachu, 1 ≤ u < n, a set of

(
n
u

)
queries of type (PMu,E)P . So, we can conclude that

(2n − 1) · (P,S)C +

(
n−1∑
u=1

(
n

u

)
· (PMu,E)P

)
is the number and the types of queries necessary to select
all children having the specified parent as the unique match-
ing parent. This set of children is subject to the referential
actions.

As mentioned before, some of these queries may be op-
timized if the referential actionRESTRICT is specified. In
this case, the first unique matching child encountered causes
the rollback of the operation. As far as referential action is
concerned, theSET DEFAULToption represents the worst
case: The existence of a “default” parent (all attributes of the
foreign key are set to the default values of these attributes)
has to be checked. Because null values are allowed as default
values, this is a (PMu,E)P query. In addition, the “default”
location in the access path of the children has to be selected
resulting in a (P,S)C query.

3.2.4 Update attributeki of P

Things get even worse when looking at the update of an at-
tribute in the primary keyK of P . One minor additional
query concerns checking whether or not the new key is
unique inP ((P,E)P). As in the case of delete, the tuple
tP has to be selected and all unique matching children have
to be computed. Here, theSET DEFAULToption is partic-
ularly complicated. In contrast to the delete case, where the
SET DEFAULToption causes all children to get the same
default foreign key and hence the same “default” parent, in

5 Note that (PM0,E) = (P,E)

202

the update case for each template only the defined attributes
of the foreign keys are set to the default values. Hence,
a different partial match query may be necessary for each
template to check whether an appropriate “default” parent
exists. In case it does not exist, the complete operation is
aborted. Because of this fact, the templates with the largest
number of defined attributes should be checked first, since it
suffices to guarantee that one other parent exists and, hence,
if a parent exists for a template withm defined attributes
f1, . . . , fm, this parent is anat least matching parentfor all
templates composed off1, . . . , fm. This observation yields
that at most(
n⌈
n
2

⌉)(PMu,E)P

additional partial match queries have to be evaluated. Fi-
nally, the foreign key of the children has to be changed.
In contrast to the delete case above ((PMu,E)P + (P,S)C),
summarizing the maintenance costs of the children yields((

n⌈
n
2

⌉)(PMu,E)P

)
+ 〈2n − 1〉 · (P,S)C

queries (eachF -template has to be checked and updated).

Example: Given a tupletP with primary keyK consisting
of three attributes< x, y, z, . . . >, let tP be the unique
matching parent of theF -templates< . . . , x, y, z, . . . >,
< . . . ,?, y, z, . . . > and< . . . , x,?, z, . . . >. Furthermore,
let us assume the default valuesf1 = a, f2 = b, f3 = c. If
the primary key changes from< x, y, z > to < g, h, i >,
then< . . . , x, y, z, . . . > is changed to< . . . , a, b, c, . . . >,
< . . . ,?, y, z, . . . > is changed to< . . . ,?, b, c, . . . >, and
< . . . , x,?, z, . . . > is changed to< . . . , a,?, c, . . . >. If
< . . . , a, b, c, . . . > can be tested successfully for another
parent, this parent is also an at least matching parent of
< . . . ,?, b, c, . . . > and< . . . , a,?, c, . . . >.

3.2.5 Insert intoC

If a tuple tC is inserted into the relationC, it has to be
checked whether or not there is a matching parent tupletP .
The checking query is of type (PMu,E)P , whereu is the
number of unknown attributes.

3.2.6 Update attributefj of C

If an attribute of the foreign key is updated, it has to be
tested whether a parent tuple for the new foreign key value
exists. The overhead is the same as in the insert case, a query
of type (PMu,E)P .

In this section, we have shown the implications of treat-
ing null values as don’t-care terms while dealing with ref-
erential integrity. The main result besides the number of
queries to be answered is that the queries themselves grow
more complex. Without this don’t-care semantics of null val-
ues, only exact match queries [type (P,S), (P,T) or (P,E)]
can occur, which keeps checking relatively simple. However,
interpreting null values as special don’t-care values changes
this behavior drastically.

3.3 Overhead of candidate keys

So far, we have considered null values in the foreign key
only. In this section, we briefly discuss the implications of
null values in the referenced group of attributesK. The
relational data model provides the concept of candidate keys
to handle unique “identifiers” with null values: while for
each tupletP its primary key has to be defined (no null
values) and to be unique, a candidate key is a set of attributes
that has to be unique only if it is fully defined. The SQL2
standard allows such candidate keys to be named as the
referenced columns in the definition of a referential integrity
constraint. We discuss the implications of this possibility in
the following paragraph.

In the SQL2 standard, fully defined candidate keys are
equivalent to primary keys (to be precise, in SQL2 a primary
key is a candidate key with nulls not allowed!). But what
about partially defined candidate keys being referenced in
a referential integrity constraint? If the constraint does not
specify any MATCH clause, then a child tuple does not ref-
erence a tupletP of P with a partially defined candidate
key because only fully defined foreign keys are considered
for referential integrity. The same is true forMATCH FULL,
where again a child tuple does not reference such a tuple
because either the foreign key of the child is fully defined
(referencing a fully defined candidate key) or it is com-
pletely null. Finally, ifMATCH PARTIALis specified, some
child tC may have a tupletP of P with a partially defined
candidate key as a matching or even the unique matching
parent and, therefore, may be accessed iftP is updated or
deleted. Hence, only ifMATCH PARTIALis specified can-
didate keys are of interest in the scope of this paper.

We are interested in the query types being supported for
efficient referential integrity checking. Due to the (asymmet-
ric) definition of the MATCH predicate (if defined symmet-
rically, it would be more like a unification than a matching)
all matching foreign keys for a partially defined candidate
key are null at least in those attributes where the referenced
attribute is null as well. The other attributes (not null in the
foreign key) are handled the same way as before. Therefore,
there is no change in the query types; only the number of
queries may decrease.

Example: Given a candidate key of lengthn and a tuple
having v undefined attributes, then then-v attributes form
the new “key” and the formulas above apply for this number.
In the worst case, this yields up to

(2n−v − 1) · (P,S)C +

(
n−1∑
u=v

(
n

u

)
· (PMu,E)P

)
queries for selecting the unique matching children.

Because handling of candidate keys does not embody
new aspects, below we will assume that the referenced at-
tributes in a referential integrity constraint constitute the pri-
mary key of the referenced relation.

3.4 Summary

So far, the purpose of our discussion has been to introduce
the specification of referential integrity in SQL2 and to de-

203

Table 1. Summary of the query requirements for supporting referential integrity (SET DEFAULT)

No MATCH clause
or MATCH FULL

MATCH PARTIAL

Insert
into P

(P,E)P (P,E)P

Delete
from P

(P,T)P + (P,E)P + 2 · (P,S)C = 2n − 2 queries

(P,T)P +

(
(2n − 1) · (P,S)C +

︷ ︸︸ ︷(n−1∑
u=1

(
n

u

)
· (PMu,E)P

))
+(PMu,E)P + (P,S)C

Update
attribute
ki of P

(P,T)P + 2 · (P,E)P + 2 · (P,S)C = 2n − 2 queries

(P,T)P +

(
(2n − 1) · (P,S)C +

︷ ︸︸ ︷(n−1∑
u=1

(
n

u

)
· (PMu,E)P

))
+(P,E)P +

(((
n

dn2 e
)

(PMu,E)P

)
+ 〈2n − 1〉 · (P,S)C

)
Insert
into C

(P,E)P + (P,T)C (PMu,E)P + (P,T)C

Delete
from C

(P,T)C (P,T)C

Update attribute
fj of C

(P,E)P + 2 · (P,T)C (PMu,E)P + 2 · (P,T)C

Table 2. Summary of the query requirements for supporting referential integrity (RESTRICT)

No MATCH clause
or MATCH FULL

MATCH PARTIAL

Delete
from P

(P,T)P + (P,E)C
(P,T)P +

(
(2n − 1) · (P,E)C +

(n−1∑
u=1

(
n

u

)
· (PMu,E)P

))
Update attribute
ki of P

(P,T)P + (P,E)P + (P,E)C
(P,T)P +

(
(2n − 1) · (P,E)C +

(n−1∑
u=1

(
n

u

)
· (PMu,E)P

))
+ (P,E)P

duce from this specification the functional requirements for
query processing in order to maintain referential integrity.
Based on the referential actionSET DEFAULT, the Table 1
summarizes the types and the number of queries needed to
select the tuples for checking and enforcing referential in-
tegrity (through referential actions).

Table 1 shows the query requirements ofSET DEFAULT
which represents the most complex case among the referen-
tial actions. Since we do not know which of the referential
actions are preferred in real world applications, we summa-
rize the differences concerning theRESTRICT case as the
most simple referential action in Table 2. The corresponding
figures can be derived from Table 1 by removing the terms
which represent the update of the children and by changing
the search for all children ((P,S)C) into a lookup of one
child given a specific foreign key ((P,E)C).

4 Access path support for referential integrity checking

So far, the discussion of the update and maintenance opera-
tions in the parent and child relations has revealed the typical
search operations necessary to locate the tuples involved in
checking key uniqueness and referential integrity. Insertion
of a new parent requires one or more UNIQUE conditions to
be checked (for primary key and each candidate key). When

a parent is deleted or its primary key is updated, the set of
related children has to be located via their foreign key to per-
form the specified referential actions which themselves may
demand primary or foreign key access. Insertion of a new
child tuple requires the examination of multiple key condi-
tions (primary, candidate, and foreign keys). Furthermore,
the modification of a foreign key in a child tuple implies
checking whether or not a parent exists with a primary key
value equal to the new foreign key value. (Subsequently, we
do not consider candidate keys; their search and maintenance
cost may be estimated from the primary key.)

In all these situations, the absence of appropriate access
paths would enforce the use of sometimes multiple sequen-
tial scans to perform uniqueness tests, existence tests, or the
search of the parent and child tuples related by the referen-
tial integrity constraint. Parallelism does not seem a panacea
to cope with these sequential scans. For large relations, only
massive parallel architectures would provide the required
speedup; such an approach, however, introduces severe I/O
and partitioning costs. As a consequence, the response time
degradation caused by searches in sufficiently large relations
is not tolerable for most applications. Therefore, DBMSs
must allocate index structures for all types of keys to ef-
ficiently maintain all relational invariants. In our case, we
only focus on the keysK andF and the referential integrity

204

Fig. 1. IDEPT(DNO) as a B∗-tree

defined between them to derive the operational search cost
of referential integrity maintenance.

Hence, suitable access paths for (P,T), (P,S) and (P,E)
as well as for (PMu,E) have to be provided to determine the
uniqueness of a primary key and the matching predicates of
the primary key and the foreign key, thereby speeding up the
search process. On the other hand, these access paths cause
additional overhead whenever an operation modifies the set
of existingK- or F -key values (shown as additional terms
in the requirements analyses). To allow the comparison of
search costs we introduce the number of logical page refer-
ences (or page references in short)CR needed to traverse the
access path data in order to perform the requested task. Since
CR is independent of the run-time environment, it should
facilitate a comparison when using different access paths.
We assume that the cost measureCR for all access-path-
related searches needed for an update operation is indicative
for the overall costs including the access-path-related update
and logging as well as the required locking of the search
paths to guarantee repeatability of reads [consistency level 3
Gray 1978)]. Including these additional costs would require
a much more detailed modeling of access paths, operations,
and multi-user environment (Mohan 1990). Since we wish
to determine only the order of the overhead related to ref-
erential integrity and to compare the usefulness of different
access paths, our simplification seems to be justified.

As shown in Sect. 3, certain search operations [(P,T),
(P,S) and (P,E)] on attributesK andF may be anticipated
very often. As a consequence, index structures for relations
P andC, denoted byIP (K) or IC(F), have to be available
supporting the following operations:

1. Direct search for a key value in the index structure for
checking the UNIQUE option, for finding the record ad-
dress, and for the insertion/deletion of entries.

2. Successive access to all keys having the same value or
belonging to a given key range.

3. Direct search for a foreign key and the corresponding
primary key or for a primary key and the related set of
foreign key values.

4.1 Support for the regular MATCH options

Because of their frequency, these search operations are very
important for the overall performance of a DBMS, and for

this reason, they have to be supported sufficiently well. Let
us first focus on the case wheren = 1 for K andF . Then,
a standard candidate for implementing an index structure is
the B∗-tree.

4.1.1 B∗-tree

The structure of a B∗-tree (Comer 1979), representing, for
example, an index for attribute DNO in relation DEPT, is
illustrated in Fig. 1. The corresponding leaf page illustrates
the format of a UNIQUE index. In addition, the leaf-page
format of a NONUNIQUE index containing TID lists is
shown. Since the key values and the related TIDs or TID
lists are allocated in a key-sorted sequence to the leaf pages
and since these pages are linked together with NEXT and
PRIOR pointers, successive access to all key values or to
a given key range is performed efficiently. According to its
definition, a page (except the root) of a B∗-tree has at least
k > 0 and at most 2k key/TID pairs, called index entries.
Hence, the height is delimited by the following formulas:

h ≥ 1 + log(2k+1)

(
N

2k

)
(1)

and

h ≤ 2 + log(k+1)

(
N

2k

)
(2)

whereN > 0 is the number of indexed tuples.
The access costs to locate a key in the B∗-tree areCR = h

page references. The expensive fraction of the overall cost
is the number of physical I/O operationsCI/O required to
perform the tree traversal. Depending on the locality of ref-
erence on such B∗-trees, the size of the database buffer, the
replacement algorithm, etc.,CI/O may be less thanCR, be-
cause some pages in the path to be traversed in the B∗-tree
may be already residing in the buffer, thereby saving phys-
ical I/Os to the disk.

According to Table 1, searches for referential integrity
maintenance are dependent on the type of operation. If both
index structuresIP (K) andIC(F) are implemented by sepa-
rate B∗-trees, the specific operations may be sketched as fol-
lows. “Insert intoP ” and “Delete fromC” are very simple,
as far as our checking task is concerned. AccessingIP (K)
andIC(F) for checking the uniqueness of theK-key value

205

Fig. 2. Leaf-page format for a CAPS

and for removal of theF -key value needs a tree traversal
of hK and hF page references, respectively. “Delete from
P ” with the referential actionSET DEFAULT(worst case)
requires a traversal ofIP (K) to locate the primary key to be
deleted and two traversals to the location of the foreign key
and the DEFAULT key inIC(F). If a DEFAULT key does
not exist inIC(F), it will be inserted. Furthermore,IP (K)
will be accessed to make sure that a DEFAULT key is inP .
Hence, the corresponding number of page references may
sum up toCR = 2hK + 2hF . Furthermore, “Insert intoC”
inserts anF -key value and checks whether or not the related
K-key value is present. Hence,CR = hK + hF . Eventually,
both update operations inP and C may be composed of
delete and insert operations as far as tree traversal is con-
cerned.

To enable a simple comparison, a synopsis of all cost
formulas is contained in Table 3.

4.1.2 Combined access path

Since the keysK andF are defined on the same domain,
it is possible to implement both index structures by a com-
mon B∗-tree, called combined access path structure (CAPS;
Härder 1978). Because of the given operational character-
istics, it seems to be advantageous to combine the index
structuresIP (K) and IC(F) to reduce I/O. The non-leaf
pages of the B∗-tree contain a unified reference structure for
both indexes. In the leaf pages, the entries forIP (K) and
IC(F) are combined according to the format of Fig. 2 (here
showing a UNIQUE and a NONUNIQUE option), whereK
andF map to domainD with valueDi.

As compared to a single-index B∗-tree for IP (K) and
hK , the heighthKF of the resulting B∗-tree is typically not
changed because the horizontal growth is dominant in B∗-
tree structures. Only in rare cases, an increment of the height
by one has to be anticipated (hKF ≤ hK + 1; see Fig. 5).
Since the subsequent access to corresponding key values
of K and F uses the same tree traversal, the locality of
reference is further improved. As a consequence, the CAPS
offers salient features for checking referential integrity as
well as a substantial cost reduction as compared to separate
B∗-trees.

Both indexesIP (K) andIC(F) supporting (P,T)P and
(P,S)C are mapped to a single B∗-tree using their domain
values. Since in various situations the same tree traversal
can be used to locate theF -key andK-key values, several
page references can be saved. For example, “Delete from
P ” with the referential actionSET DEFAULTnow requires
only CR ≤ 2hKF page references to locate the key to be
deleted and the DEFAULT key in the CAPS. The cost figures
for the remaining operations may be derived in a similar
way. They are summarized in Table 3.

Fig. 3. Leaf-page format for a generalized access path

The idea represented in Fig. 2 may be used to support
more pairs of referential relationships; it can be applied to
the situation wherem relations withj candidate and foreign
keys (m ≤ j) defined on the same domain have to be in-
dexed. Such structures are called generalized access paths
(in Härder 1978). For example, the format of the leaf page
is illustrated in Fig. 3 form = j = 4.

Of course, the benefit of such access paths for checking
referential integrity is increasing with the numberj of the
keys involved.

4.1.3 Join index

A similar structure to the combined access path was pro-
posed (Valduriez 1987) as a so-called join index, which pri-
marily aims at the optimization of the two-way join. It is
defined for two relationsP andC as follows:

JI = {(TIDP ,TIDC) | f (p.A, c.B) is TRUE, p ∈ P, c ∈ C} .
f Denotes an arbitary join predicate. Apparently, JI may
serve to embody materializedΘ-joins by surrogates or TIDs.
If an equi-join is used and the primary and foreign keys
K and F are chosen forA and B, then the parent and
child TIDs with matchingK- andF -key values are stored
together by a join index. At first sight, this information could
be useful to support referential integrity checking. However,
this is complicated since a join index does not use key values
but only TIDs. Moreover, the direct representation of the join
index JI as a binary table does not provide access support
(other than sequential) for TIDP or for TIDC .

In our evaluation, we assume that a join index is specified
for an equi-join combining primary key ofP and foreign key
of C in a (1 :n)-manner. Furthermore, symmetric and fast
access is needed to perform efficient operations on the joined
view. Hence, the logical JI table has to be implemented as
two clustered index structures (Valduriez 1987), i.e., sorted
according to TIDP and TIDC . As a consequence, we obtain
the indexesIPC(TIDP) and ICP (TIDC) with heightshPC
andhCP , respectively.

As illustrated in Fig. 4a, these index structures do not
permit access by primary or foreign key values. To use these
structures for referential integrity maintenance and for other
kinds of search requests, additional index structures are nec-
essary to map the key values to their related TIDs. Figure 4b
showsIP (K) andIC(F) which are identical to the indexes
used in the pure B∗-tree approach. Looking at Fig. 4, it
becomes immediately obvious that the join index does not
speed up the access behavior to check referential integrity
constraints sinceIPC(TIDP) andICP (TIDC) are redundant
as far as referential integrity is concerned. To compare this
solution with the pure B∗-tree and the CAPS, we have listed
the search costs for the update operations onP andC in

206

Fig. 4a,b.Mapping of a join index to a set of B∗-trees.a Representation of JI by two clustered indexes.b Representation of the key value mapping to TIDs

terms of page references in Table 3. In this case, the eval-
uation of (P,T)P and (P,S)C has to be mapped to the four
B∗-trees of Fig. 4. In our discussion, we only sketch some
operations and leave the cost modeling of the remaining op-
erations to the reader. Our cost formulas are listed in Table 3.

The worst effect on search costs has “Delete fromP ”
with the referential actionSET DEFAULT. In the first step,
the location of theK-key value, e.g.,P1, to be deleted has
to be identified inIP (K) delivering TIDP1 which is, in turn,
used to search (TIDC1, . . . ,TIDCm) via IPC(TIDP). So far,
we have accomplishedhK + hPC page references. Note the
tuples tC1 are not deleted but allocated to a parenttPdef
incorporating the DEFAULT key. For this reason, we have to
assure the existence of that key viaIP (K) (hK) and to move
the set of (TIDC1, . . . ,TIDCm) to the corresponding entry
TIDDEF of tPdef in IPC(TIDP) (hPC). In IC(F), the location
of the matching foreign key value (C1) and the location of
the DEFAULT value have to be found in order to delete
the key entry and to move the corresponding list of TIDs.
Hence, we additionally obtain 2hF page references. Finally,
we have to copy the TIDDEF to m entries inICP (TIDC)
which requiresm · hCP page references in the worst case.

4.1.4 Comparison of access path structures

Table 3 compares the search costs for referential integrity
maintenance when different index implementations are used.
Apparently, the join index is not appropriate at all. This
structure guarantees fast and symmetric access clustered by
surrogate values to the entire joined relations. These access
characteristics, however, have to be maintained when both
base relations are modified. As a consequence, update oper-
ations referring to elements involved in referential integrity
checking automatically lead to a modification of the mate-
rialized join structure. The indirection of key to TID incor-
porates an additional penalty for this structure.

As already discussed, the CAPS not only supports two
indexes on one B∗-tree; it further accomplishes the joining
and checking of the relatedK-key andF -key values freely.
In addition to theCR values shown, because of the much
better locality of reference, the “real performance” measured

in physical I/Os is even superior for the CAPS as compared
to the B∗-tree. The values given in Table 3 are derived for
the referential actionSET DEFAULT. The support of the
RESTRICT option does not change the cost formulas dra-
matically for the B∗-tree and CAPS solutions, e.g., “Delete
from P ” yields hK + hF or hKF .

A problem complicating the interpretation of Table 3 are
the various cost parameters. To relate the various heights, let
us consider the critical factors which determine the height
of a B∗-tree, namely the number of tuples to be indexed
(N) and the number of index entries (TID/key pairs) per
page. The latter is dependent on the page size itself and
the average length of an entry (e). Obviously, e critically
determines the fan-out of the tree. With a TID length of
5 B, 4 B as thepage pointer, and 1 B as an offset, we can
access 232 pages and 256 tuples within a page which are
reasonable numbers. In contrast, the sizes of the keys may
vary over a considerable range, e.g., an employee number
needs 4 B, whereas a name may require 40 B or more.
To improve fan-out in such cases, key compression may be
used successfully, i.e., as reported by Wagner (1973) and
Nevalainen (1979) front and rear compression resulted in an
average length for compressed keys of 1.78 B (+ 2 B of
organizational data) having originally 20 B keys.

In order to derive stable estimations for the various
heights, we attempt to express the sensitivity of height
changes depending onN ande. The range in which a given
value ofh occurs is delimited by the two situations where
each node of the B∗-tree has a minimum or maximum num-
ber of index entries, i.e.,k (except for the root) or 2k entries.
These delimiting conditions are characterized byhNmin and
hNmax. As indicated by Formulas (1) and (2), these values
are determined byNmin or Nmax and k which, in turn, is
given by the page sizep and the average entry lengthe, i.e.,
for a given p, hNmin and hNmax are functions inN and e.
Figure 5 illustrates the isolines for various values ofhNmin

andhNmax within practical ranges forN ande given a page
size of 4 KB. For example, the area between the isolines of
hNmin = 3 andhNmax = 3 is further divided into three subareas
by hNmax = 2 andhNmin = 4. Area 1 represents (N/e) pairs
with h = 3 or better, whereash = 3 results from all (N/e)

207

Table 3. Summary of the results (page references) forMATCH FULLand missing MATCH clause

Two B∗-trees CAPS Join index

Insert intoP hK hKF hK

Delete fromP 2 · hK + 2 · hF 2 · hKF 2 · (hK + hF) + 2 · hPC +m · hCP
Update attributeki of P 3 · hK + 2 · hF 3 · hKF 3 · hK + 2 · hPC + 2 · hF +m · hCP
Insert intoC hK + hF hKF hK + hCP + hF + hPC

Delete fromC hF hKF hK + hCP + hPC

Update attributefi of C hK + 2 · hF 2 · hKF 2 · hK + 2 · hCP + hK + 2 · hPC

Fig. 5. RelatingN , e andh of a B∗-tree

pairs in area 2. Finally, (N/e) pairs in area 3 may reach
heights of 3 or 4.

We assume a minimum index entry lengthe of 9 B which
results from a TID length of 5 B and the use of key com-
pression (Wagner 1973). As shown in Fig. 5, fore = 9 a
difference of two orders of magnitude inN may yield B∗-
trees of the same heighth, or in an increase toh + 1, at the
most. For example, when the parent and the child relations
contain 106 or up to 108 tuples, respectively,hK = hF (= 3)
or hF = hK + 1(= 4). The same observation is true for other
practical values ofe. Note that the use of TID lists for mul-
tiple references of the same key value saves additional space
in the leaf pages of a B∗-tree, especially for larger values of
e, thus keepingh constant for even larger ranges ofN . Fur-
thermore, increasing the page size (e.g., top = 8 KB) will
dramatically increase the fan-out thereby making the height
of a B∗-tree much more insensitive to the growth ofN .
These considerations justify the following approximation:

For symbolic manipulations of the cost formulas, we as-
sumehF = hK = hKF = hCP = hPC or hF = hKF =
hCP = hPC = hK + 1. As a result of this approximation,
we get cost formulas depending on one parameterh. The
variance of the height is denoted by [+1].

To achieve indicative numbers we will useh = 3, as-
suming a scenario as depicted in Fig. 5. Apparently, Table 4
clearly illustrates the advantages of the CAPS solution: cost-
effective access and insensitivity to growth of the underlying

Table 4. Summary of the approximated results

Two B∗-trees CAPS Join index

Insert intoP h h[+1] h

3 3–4 3

Delete fromP 4 · h[+2] 2 · h[+2] h · (6 +m)[+m + 4]

12–14 6–9 (18 + 3m)–(22 + 4m)

Update attribute 5· h[+2] 3 · h[+3] h · (7 +m)[+m + 4]

ki of P 15–17 9–12 (21 + 3m)–(25 + 4m)

Insert intoC 2 · h[+1] h[+1] 4 · h[+3]

6–7 3–4 12–15

Delete fromC h[+1] h[+1] 3 · h[+2]

3–4 3–4 9–11

Update attribute 3· h[+2] 2 · h[+2] 7 · h[+4]

fi of C 9–11 6–8 21–25

relation. For these reasons,it is the superior alternative to
support the regular MATCH option.

So far, we have discussed access path solutions for op-
erations requiring only point queries (P,T) and (P,S). Al-
though the examples were shown forn = 1, B∗-trees and
CAPSs allow simple extensions to largern. In these cases,
then values of a key are encoded as a compound-key value

208

(Blasgen et al. 1977) such that the point queries can be sup-
ported easily. As a result, the relative cost figures remain
stable whereas the heights of the various trees may change
slightly (see Fig. 5).

4.2 Support of theMATCH PARTIALoption

Maintenance of the referential integrity becomes much more
complicated when theMATCH PARTIALoption is used,
since partial match queries in addition to point queries are
then required.

Two types of operations are discussed in some detail to
cover the requirements of access path support: “Insert into
C” and “Delete fromP ”. For the remaining operations, the
analysis of search costs for referential integrity maintenance
is left to the reader. Update ofC is just the combination
of the delete and insert operations, whereas update ofP
is much more complicated because of the non-symmetrical
semantics of the referential actions (see Sect. 3.2).

We assume thatK andF consist ofn attributes (n > 1)
and thatu attributes inF (u < n) may be undefined;K
is a primary key and all its attributes have defined values6.
Furthermore, we focus the discussion on the costs for the
support ofMATCH PARTIALwith the optionRESTRICT,
i.e., the costs for selecting the parenttP and those children
with tP as their unique matching parent (thereby disregard-
ing further update overhead provoked by other referential
actions which may even double the cost in case ofSET
DEFAULT). For this reason, we often refer to partially de-
fined foreign keys, e.g.,< x,?, z >, using a point query to
determine whether a corresponding tuple exists inC, and a
partial match query to check whether matching parents exist
in P ; these are found by applying the related search key
< x,−, z >, where ‘−’ denotes the don’t-care value.

4.2.1 General aspects of the evaluation

Before discussing access support for theMATCH PARTIAL
option, we will recall the most important steps of our refer-
ence operations in a more abstract way.

Insert intoC To check referential integrity when inserting a
tupletC is simple, as long as theF -key value is fully defined
(e.g.,< x, y, z >) or fully undefined (e.g.,< ?,?,? >).
The former case is handled by a point query to theP relation,
whereas the latter case does not need a check. All other
templates of theF -key are more difficult and imply a partial
match query to identify matching parents. As soon as the first
matching parent is found, the check condition is satisfied and
the tupletC can be inserted.

Delete fromP The deletion operation locates the parent tu-
ple tP with primary key< x, y, z >. If it exists, it is deleted
which may cause a violation of thePARTIAL MATCHse-
mantics of referencing tuples inC. All unique matching chil-
dren oftP have to be determined inC to apply the specified
referential actions.

6 We will usen = 3 for illustration purposes

Obviously, all children with foreign key< x, y, z >
match uniquely. In addition to this ‘full match’ relationship,
tuples with partially matching foreign keys may be affected
by the deletion oftP . A child tuple may have more than one
parent tuple and vice versa (n : m) which introduces sub-
stantial complications. All children havingF -keys partially
defined with respect to< x, y, z > may match eithertP
uniquely or match multiple parents. Hence, in order to de-
cide whether referential actions have to be applied, we have
to inspect whether besidestP some other parent exists. For
this reason, all partially definedF -keys have to be inves-
tigated. Roughly, two different approaches are conceivable.
A straightforward methodwould proceed as follows: In the
first method, the potentially affected tuples inC are deter-
mined by 2n − 1 point queries using all possible templates
for theF -key. Each successful query requires a check for a
matching parent. This can be decided directly for the fully
definedF -key whereas other templates have to be trans-
formed to search keys for partial match (by replacing ‘?’
by ‘−’) to check for matching parents inP . In the second
method,m1 (0 ≤ m1 ≤ 2n − 2) partial match queries are
evaluated inP (a single hit suffice). All unsuccessful queries
indicate the templates and, in turn, the tuples inC for which
referential actions have to be applied. Apparently, this pro-
cedure is very expensive, requiring 2n−1 point queries and
in the worst case 2n − 2 partial match queries. Moreover,
since multiple tuples inP may match a given template, it
may happen that matching tuples inP exist for all templates.
In this case, further referential actions are avoided. To ex-
ploit such anticipated situations, we propose the following
inverse check procedure: all applicable 2n− 2 templates are
generated from< x, y, z >, transformed to respective search
keys, and executed as partial match queries onP . Each of
them2 (0 ≤ m2 ≤ 2n − 2) unsuccessful queries requires a
point query toC to determine whether tuples exist for the
corresponding templates. In addition,C has to be accessed
for the fully definedF -key. Hence, 1 up to 2n − 1 point
queries toC may result.

In both approaches, the evaluation of up to 2n − 2 par-
tial match queries inP is a key factor of the overall costs.
Their sequential evaluation would introduce a considerable
share of redundant processing, since some queries are not
independent from one other. Forn = 3, assume the queries

q1: x, y,−
q2: x,−, z
q3: x,−,−

Then,q1 andq2 are special cases ofq3, or in other words, if
we evaluateq3, we can use the derived set of keys to check
whetherq1 andq2 can be satisfied. Hence, we only have to
determine the key sets qualified by all partial match queries
havingu = n−1 don’t-care values. Note that these are only
n queries; however, they are the most expensive among the
qi (i ≤ 2n − 2), because they show the least selectivity. If
we buffer the resulting key lists, we can answer the 2n − 2
partial match queries by processing only then queries hav-
ing a single key component defined. Of course, this search
optimization has to be adjusted to the characteristics of the
access paths used. The inverse check procedure has to eval-
uate all possible partial match queries, since all templates
are generated disregarding the actual tuples inC. However,

209

the search optimization will save much effort. On the other
hand, the straightforward procedure has to perform 2n − 1
point queries. Figure 6 shows the different evaluation paths
of the procedures. The question of which procedure is su-
perior depends on the relation between the following cost
functions:

1. The straightforward method
(©1) results in (2n − 1) ·

(P,S)C +m1 · (PMu,E)P , wherem1 represents the num-
ber of templates found inC which have to be checked
for parents.

2. The alternative method
(©2) yields (2n−2)·(PMu,E)P +

(m2 + 1) · (P,S)C , wherem2 represents the number of
templates for which no parents were found inP and,
therefore, possibly existing children have to be located
to carry out the referential action.

In the worst case,m1 = m2 = 2n − 2 and hence©1 and©2
are equally expensive. An exact analysis is almost impossi-
ble since data distribution and usage of null values within
the foreign keys have to be known. In real applications, we
expect very small numbers form1 and m2. Due to space
limitations, we restrict ourselves on the further inspection of
©2 and usem = m2 within the cost formulas.

4.2.2 Use of compound-key B∗-trees

Two compound-key B∗-trees are used to implementIP (K)
andIC(F). In both trees, then attribute values belonging to a
key are concatenated and encoded as a single field (Blasgen
et al. 1977). Note, since null values are treated as special
values, keys (e.g.,< x,?, z >) can be represented as regular
values in the B∗-tree. Hence,F -keys with null values are
stored in an encoded form, too. Key comparison is achieved
by special encoding procedures.

The most difficult action in the “Insert intoC” operation
is the partial match search inP . How can we perform such
a search, if search keys like< x,−, z > or < −, y,− > are
given? In such cases, a search on all fully definedK-key val-
ues ofIP (K) has to be accomplished to determine matching
parents according to theMATCH PARTIALsemantics.

Note that scanning all compound keys cannot be avoided,
since entering the B∗-tree using partially defined search keys
is hardly possible. A specialized search procedure based
on some kind of prefix comparison could be designed only
for the case where the first search key components are de-
fined. Therefore in other cases, a reasonable search proce-
dure would be a leaf-page scan onIP (K) starting from the
leftmost leaf to the rightmost leaf. Each encodedK-key is
compared with the search key until a valid substitution is
found for the partial match predicate. Hence, the access over-
head is limited toCR = hK + NK leaf − 1 (NK leaf = number
of leaf pages). Furthermore, the insertion point inIC(F) has
to be located (hF).

“Delete fromP ” comprises the deletion oftP and the
corresponding children having fully matching foreign keys.
Locating the deletion point inIP (K) requireshK page ref-
erences. According to the inverse check procedure, 2n − 2
partial match queries have to be evaluated onP . With the
compound-key B∗-tree forIP (K), each partial match query
can be effectively executed by a leaf-page scan. Each scan

can be finished as soon as a valid substitution of theF -key
is found in theK-key. Hence, the worst case overhead of
page references is

CR = (2n − 2) · (hK +NK leaf − 1).

As indicated above, the number of queries can be reduced to
n when the list of qualifyingK-keys can be cached in main
memory for further tests. Moreover, it should be possible to
design an optimized search and check procedure performing
a single leaf-page scan which searches for alln keys, thereby
limiting the worst case overhead of page references to

CR = (hK +NK leaf − 1).

Depending on the outcome of these tests, an inspection ofC
is necessary to find out whether certainF -keys (templates)
exist or not. Hence,m+1 point queries toC have to be taken
into account. UsingIC(F) for their evaluation, the sum of
page references isCR = (m + 1) · hF .

Obviously, the compound-key solution could be imple-
mented by a CAPS with the concatenated key values rep-
resenting an artificial domain. Although the height of the
resulting B∗-tree is similar tohF , the number of leaf pages
may be much more than doubled as compared toNK leaf due
to the added foreign key entries of relationC. SinceNK leaf
is already a very large factor, most operations would deteri-
orate drastically (see Table 5). Thus, the solution based on
a CAPS is not favorable for such a use of compound keys.

4.2.3 Use of single-key B∗-trees

Apparently, compound-key B∗-trees are inappropriate for
partial match search. To explore a better solution we pro-
pose an opposite approach by representing then attributes
of K (or F) by n single-key B∗-trees for allki of K andfi
of F . Since all attributes may be accessed separately or in
combination, a much greater flexibility for query processing
may be achieved. However, referential integrity checking
seems to become more complicated. Since the reference in-
formation is distributed across multiple B∗-trees, the basic
checking mechanism is to fetch the qualifying TID lists for
ki or fi values and to merge them in order to identify the
TIDs of the parents or children.

Insertion of a tupletC has to determine the existence of
a matching tupletP . As explained in Sect. 3.2, this task can
be accomplished by finding at least one tupletP whose key
is a valid substitution for the newly insertedF -key of the
tuple tC . Assumen − u (0 ≤ u < n) attributesfi have a
defined value (e.g.,f =< x,?, z >). Then, all defined val-
ues (excluding null) are used for the search in the B∗-trees
for the corresponding attributeski. Each of these (n − u)
TID lists [e.g.,L(k1 = x)] with length lki , 1 ≤ i ≤ n − u,
is brought to main memory for an existence test of some
tuple tP (for simplicity let the first n-u attributes of the for-
eign key be those with defined values). If the intersection
L(k1 = x) ∩ . . . ∩ L(kn−u = z) is not empty, a tupletP
exists whose keyK coincides in the defined values with
theF -key values. Since the remainingK-key values are de-
fined and since any key value is a valid substitution for a
null value, the identifiedK-key values, in turn, satisfy the in-
tegrity constraint. Obviously, the number of page references
is

210

Fig. 6. Evaluation alternatives forMATCH PARTIALsupport

CR =
n−u∑
i=1

(
hki +

lki · e
p

)
,

wheree is the length of a TID andp is the page size.
In the following, we approximatehki , lki or hfi , lfi by

the corresponding average values for the heights and list
lengths, i.e.,

CR = (n− u) ·
(
hk +

(
lK · e
p

))
.

Furthermore, locating then insertion points for the foreign
key of tC requiresn single-key B∗-tree traversals and the
manipulation of the resulting lists which sums up ton ·(hF +
(lF · e/p)). Hence, the entire overhead is

CR = n ·
(
hF +

(
lF · e
p

))
+ (n− u) ·

(
hK +

(
lK · e
p

))
page references.

Deletion of a tupletP is more complicated. After the
n deletion points in the B∗-trees of theK-key are located
causingn·(hK+(lK ·e/p)) pages referenced to propagate the
deletion oftP , in a next step, 2n − 2 partial match queries
are to be evaluated inP . Therefore, the following test is
carried out for each search key: letu be the number of
don’t-care values and (for simplicity)ki, 1 ≤ i ≤ n − u,
the defined attributes, e.g., the search key has the form
< x, . . . , z,−, . . . ,− >. If the intersection of the already
selected listsL(k1 = x) ∩ . . . ∩ L(kn−u = z) is not empty,
then there is at least one matching parent. For our evalu-
ation, we anticipatem queries having empty intersections.
Consequently, for the related templates and, in addition, for
the fully matching foreign key, we have to check whether or
not any children exist. This step requiresm+1 point queries
onC which can be executed by subsequently accessing each
B∗-tree7 to fetch the TID lists and carry out the intersection,
e.g.,L(f1 = x)∩L(f2 = ?)∩ . . .∩L(fn = z). This approach
would result in

CR = (m + 1) ·
(
n ·
(
hF +

(
lF · e
p

)))
page references. A closer inspection of the TID lists used
to perform the tests shows that at most 2· n TID lists are
involved in all (possibly 2n−1) queries onC (a defined value
and the null value for eachfi). Hence, keeping the TID lists
in a working buffer limits the cost to page references in the
worst case. Thus, the support ofMATCH PARTIALwith the
option RESTRICT for the “Delete fromP ” operation costs

CR = 2 · n ·
(
hF +

(
lF · e
p

))
+ n ·

(
hK +

(
lK · e
p

))
.

7 The null value is considered as a special value, that is, null is used as
a key value in all B∗-trees of theF -key

Up to now we have not elaborated these check proce-
dures regarding the sizes of B∗-trees occurring in practical
applications. A dependency analysis between the number of
tuplesN and the number of key attributesn shows a major
problem of the sketched approach. Given a parent table with
106 tuples and 10 children per parent (resulting in about 107

child tuples) with a primary/foreign key made up out of three
attributes with independent and uniform value distribution,
we obtain 100 different values per attribute, i.e., the B∗-trees
only have 100 entries. This small number of entries has a
significant impact on the partial match results of queries with
only one attribute: in the parent relation, such a query results
in 104 tuples and in the child relation up to 105 tuples, i.e.,
the TID lists in the leaf pages of the corresponding B∗-trees
are very long8. If we assume that we manage these results
as lists of TIDs with an entry length of 5 B these numbers
result inlK ·e = 5·104 B (roughly 50 KB) orlF ·e = 5·105 B
(about 500 KB). While the former is manageable within a
multi-user environment, the latter is hardly possible. Hence,
this approach of usingn B∗-trees seems only conceivable
for the parent relation. This, however, is no severe prob-
lem because the supported partial match queries are needed
for the parent only. To remove this difficulty, we propose a
hybrid approach: a compound B∗-tree for theF -key of C
andn single attribute B∗-trees for theK-key of P . By this
combination, the cost for inserting a tuple intoC is reduced
to

CR = hF + (n− u) ·
(
hK +

(
lK · e
p

))
.

The cost of “Delete fromP ” is given by

CR = (m + 1) · hF + n ·
(
hK +

(
lK · e
p

))
.

Note that in this case, 2· n is not an upper bound form,
which, in turn, may reach the value 2n−2. Furthermore, we
assume that the TID lists in the B∗-tree of the child relation
do not exceed one leaf page.

In principle, the access path for theK- andF -key could
be combined using the CAPS approach. However, such a
combination is useless or even impractical: a CAPS for the
compound keys does not provide any improvement concern-
ing MATCH PARTIAL. Used for then single B∗-trees, it
quickly suffers from unmanageable TID lists.

4.2.4 Use of grid files

So far, we have simulated multi-key access and partial match
queries to the relationsP andC by “linear” access paths, that
is, B∗-trees designed for one-dimensional access. In order to

8 In this situation, the B∗-trees degenerate to inverted lists because the
height of those trees will not exceed 1

211

Fig. 7. Mapping principle of a grid file

investigate the question whether or not multi-dimensional ac-
cess paths are better suited for checking the demands of the
MATCH PARTIALoption, we consider the grid file (Niev-
ergelt et al. 1984) as the best known multi-key access struc-
ture. The mapping principle of the grid file is sketched in
Fig. 7 for two dimensions. The point objects in data space D
are mapped by means of the grid directory GD into the buck-
ets of the grid file. For each of then dimensions originating
from then attributes (keys), the grid file offers symmetric
and uniform access, thereby guaranteeing a balanced access
structure independent from key distribution as well as inser-
tion and deletion sequences.

The dimensions of D are represented by the ordered val-
ues of the attributeski andfi (i ≤ n); null is considered a
special value forfi attributes. Each dimension is described
by a scale vectorSVi used to map the search predicate of a
query to the GD. The set of specified scale values qualifies
the GD entries which point to the buckets containing the
records meeting the search condition. In order to compare
the structure with the B∗-tree, we assume that the buckets
exclusively store theK- or F -key values (withn compo-
nents) together with the corresponding TID or TID list. Fur-
thermore, we assume uniform distribution of allki and fi
attribute values (i ≤ n).

In order to describe the cost of accessing a grid file, some
additional parameters are required:

Si number of scale values (intervals) inSVi
EGD number of GD entries:EGD =

∏n
i=1Si

B number of bucketsBi: B = N/(b ∗ βavg)9 where
b is the bucket size andβavg the average load fac-
tor of a bucket

α average number of GD entries mapping to a
bucket,α ≥ 1: henceEGD = α∗B

PGD number of pages covered by GD:PGD =
EGD

∗ eBID/p, where eBID is the length of a
bucket-ID andp the page size

Then scale vectorsSVi are represented as one-dimensional
arrays; they are always kept in main memory such that they
do not provoke extra page references. Our access model
further assumes that a point query requires a single-disk ac-
cess to the GD. For partial match queries, however, sets of
GD entries, which may be mapped to pages in sophisticated
ways, have to be located. To reflect this mapping in our ac-
cess model, we use the following heuristic approximation
for the cost of GD access:CGD = PGD

∗ u/n. The set of
qualified GD entries determines the number of buckets to be

9 A ceiling function has to be applied to the computed access cost or
storage size because disk access or pages (buckets) cannot occur in fractions

selected (by applying the givenα). Moreover, all buckets
fully contain the allocated key/TID or key/TID list pairs.

Apparently, the lion’s share of the query processing costs
using grid files is caused by the set of buckets to be accessed.
For GDP , there are only two kinds of search-key terms:
ki = v and ki = ’−’; for a don’t-care value in the search
predicate, all existing values of the respective key qualify.
Hence, a point query delivers a single GD entry. Partial
match queries with one don’t-care value (ki = ’−’) select
SPi GD entries; two don’t-care valueski and kj lead to
SPi · SPj GD entries and so on.

“Insert into C” with u undefined values in theF -key
requires a partial match query on GDP with u don’t-care
values in the attributes of keyK. If the set of attributeski
indexed bymi, i = 1, . . . , u, we obtain the following costs
of page references (worst case):

CR = PGD · u
n

+

∏u
i=1Smi

α
,

where the first term stands for the GD access and the second
for fetching the buckets. If the number of scale valuesS is
equal in all dimensions, the cost formula can be simplified
to the following form

CR = PGD · u
n

+
Su

α
,

which makes apparent the dominant influence of parameter
u. For our convenience, we will use this simplified formula
in what follows; however, it may deliver only approximate
numbers of page references. To make the cost factors clear,
assume the following situation:N = 106, b = 200, βavg =
0.75, S = 20, u = 2, andα = 1.2, and then we potentially
referenceCR = (7 + 334) pages to check whether there is a
partially matching tupletP for the inserted tupletC . Since
we can stop the evaluation of the buckets as soon as we have
found a valid tupletP , the given cost formula describes the
worst case. To complete the “Insert intoC” operation, we
have to locate the insertion point fortC in GDC which needs
a point query (2 page references).

“Delete fromP ” is the second critical operation which
has to be supported by partial match access. The inverse
check procedure is applied to test the existence of tuples
having partially matching foreign keys. If we execute a par-
tial match query, e.g.,< x,−,− >, on GDP , all keys can be
derived including the defined componentx. For this purpose,
all buckets qualified by< x,−,− > have to be accessed
and filtered (using thex-value in our example). The list of
keys derived allows for all templates with componentx to
test whether or not the parent exists. Optimization requires

212

to cache the list of keys in main memory; otherwise, the
full set of partial match queries has to be applied sequen-
tially. Hence, by applying our optimized search and check
procedure we obtain the following cost formula for page
references:

CR = n ·
(
PGD · n− 1

n
+

∏n−1
i=1 Smi

α

)
or

CR = n ·
(
PGD · n− 1

n
+
Sn−1

α

)
for uniform numbers of allSi. Unsuccessful inspections in
GDP require checks in GDC to determine whether children
exist for the respective templates. Since we assumem such
tests,m + 1 point queries have to be performed using GDC

resulting inCR = (m + 1) · 2 page references.

4.2.5 Comparison of access path structures

Table 5 compares the search costs for the basic support of
MATCH PARTIALwith the optionRESTRICT. Remember
that these costs represent the required accesses to determine
which children are subject to referential actions, but not the
entire costs to accomplish them (such an analysis would have
to take the referential actionSET DEFAULTinto considera-
tion to deliver worst case costs). Obviously, a comparison of
the search costs is difficult at the chosen level of abstraction
due to the fact that some cost factors apply to only one or
two of the implementation alternatives (e.g.NK leaf applies
only to the compound-key solution). To get some hints about
the relative costs of theMATCH PARTIALsupport, we elab-
orate some practical cases by using numbers approximating
large applications (in the order of magnitude of Sect. 4.1):

1. The number of tuplesNP is 106, and theK-keys orF -
keys consist ofn = 3 attributes. We useu = 2 for the
“Insert intoC” operation.

2. A key/TID pair needs 10 B if the key is simple or 15 B if
it is compound. In both cases, we assume key compres-
sion. Note that the front/rear-compression is not applica-
ble for grid files. Therefore, the key/TID pairs managed
in the buckets of a grid file are assumed to have a length
of 25 B. The page or bucket size is 4 KB. Further pa-
rameters:βavg = 1, eBID = 4 B.

3. EGD = S3 = α∗B; a minimum value ofS is chosen
which also minimizesα for the givenB.

4. The heights of the B∗-trees are derived from Fig. 5. For
the computation ofNK leaf, completely filled leaf pages
are assumed (best case!).

The grid-file performance depends heavily on the number
of buckets and directory entries. Here, we suppose the best
mapping of GD to the buckets minimizing the number of
buckets and GD entries. Nevertheless, we obtain substantial
costs as shown in Table 6. Note thatβavg = 0.75 would
increase the number of page references roughly by 21%.

As discussed previously, the inverse and the straightfor-
ward check procedures provoke the same cost in the worst
case (m = 2n − 2). Tables 5 and 6 reveal, however, that the
lion’s share of the page references arises from the partial

match queries. Therefore, it seems to be advisable in prac-
tical cases to execute the cheap point queries first, thereby
hoping to find no or only a few foreign keys. This may
greatly reduce the number of partial match queries required.
The solution based on two compound B∗-trees is not com-
petitive at all, because the cost of the leaf-page scan grows
linearly with N . Only for very smallN or for special par-
tial match search keys (having the leftmost values defined)
would this solution be a good contender for the task consid-
ered. Our best solution relies onn single B∗-trees for the par-
tial match queries and on a compound B∗-tree for the point
queries. A combination based on a CAPS solution (the best
alternative for the regular MATCH clause) is not feasible
here because of extreme TID list lengths for larger numbers
of N . As indicated in Table 6, for the given scenario the other
two approaches are outperformed by factors of 15–20 or 50–
80. Nevertheless, our hybrid approach remains expensive,
that is, the usage ofMATCH PARTIALseems prohibitive in
any time-critical application (e.g., OLTP). Note that in our
cost measures, we have neglected the computation costs for
the TID list intersections. These costs, however, will become
substantial if the lists grow beyond some threshold which,
in turn, depends on other parameters (e.g., hardware capa-
bilities), and, therefore, this alternative may reach its limits,
too.

The most elegant approach is the usage of an access path
which supports the costly partial match queries directly. As
an example we presented the grid file. In contrast to the ex-
pected result, however, the analysis obtained relatively bad
numbers for the grid file performance. This is mainly caused
by the fact that we are not interested in all resulting tu-
ples of a given partial match query, but only in whether or
not at least one tuple exists. While the former is the clas-
sical application for grid files, the latter is not. In addition
to the performance argument, other problems are yet to be
solved to provide grid files for large applications: referential
integrity maintenance is typically performed in multi-user
environments with a high degree of concurrent access. To
cope with such situations, optimal locking protocols were de-
signed for B∗-trees (Mohan 1990; Mohan and Levine 1992),
giving direct access for keys and key ranges, whereas com-
petitive locking protocols for grid files (Salzberg 1986) are
not known so far. For this reason and because of the perfor-
mance figures derived, our best candidate to supportMATCH
PARTIAL remains the hybrid solution based on B∗-trees.
Nevertheless, our best advice is to avoid the use ofMATCH
PARTIAL completely.

5 Conclusions and outlook

We have presented an investigation of referential integrity
support in relational DBMS. The focus of our paper has pri-
marily been on determining the functional requirements of
referential integrity maintenance caused by modification op-
erations on the parent relationP and the child relationC.
Furthermore, an extensive study has been performed to an-
swer the question: Which access paths should be provided in
a DBMS to effectively and efficiently meet these functional
requirements?

213

Table 5. Summary of the results (page references) forMATCH PARTIALwith the optionRESTRICT

Two compound-key
B∗-trees

n single-key B∗-trees forP ,
compound B∗-tree forC

Two grid files

Insert hK n · hK 2

into P

Delete
from P

hK

+ (hK +NK leaf − 1)

+ (m + 1) · hF

n ·
(
hK +

(
IK ·e
p

))
+ (m + 1) · hF

2

+ n ·
(
PGD · n−1

n
+ Sn−1

α

)
+ 2 · (m + 1)

Update
attribute
ki of P

hK

+ (hK +NK leaf − 1)

+ (m + 1) · hF
+ hK

n ·
(
hK +

(
IK ·e
p

))
+ (m + 1) · hF
+ n ·

(
hK +

(
IK ·e
p

)) 2

+ n ·
(
PGD · n−1

n
+ Sn−1

α

)
+ 2 · (m + 1)

+ 2

Insert
into C

hK

+ (hK +NK leaf − 1)
hF

+ n ·
(
hK +

(
IK ·e
p

)) 2

+
(
PGD · u

n
+ Su

α

)
Delete
from C

hF hF 2

Update
attribute
fi of C

hF

+ (hK +NK leaf − 1)

+ hF

hF

+ n ·
(
hK +

(
IK ·e
p

))
+ hF

2

+
(
PGD · u

n
+ Su

α

)
+ 2

Table 6. Exemplary access costs for referential integrity withMATCH PARTIAL

Two compound-key n single-key B∗-trees forP , Two grid files

B∗-trees compound B∗-tree forC

Delete fromP 3759 + 4·m 46 + 4·m 1006 + 2·m
3759–3783 46–70 1006–1018

Insert intoC 3755 46 336

Our initial discussion outlined the specification of the
SQL2 standard and its semantics as far as referential in-
tegrity is concerned. As an outcome, we have derived the
query types which are necessary to maintain referential in-
tegrity. If the regular MATCH option is used, then the com-
plexity of all queries required is at most of type (P,S) which
represents a point query in the key space and results in a set
of elements (TIDs or tuples). This type of query is well sup-
ported through a B∗-tree (either for the foreign key or for
the primary key). An optimization can be achieved using
only a single CAPS jointly used for the primary key and the
foreign key.

This relatively simple situation gets much more com-
plicated if theMATCH PARTIALoption of the referential
integrity constraint definition is considered. In such a case,
the query type needed is (PMu,E) which denotes a partial
match query (withu unknown values) in the respective key
space resulting in a set of tuples or TIDs. Another complica-
tion arises through the exponential growth of the number of
point queries to be tested. As it turns out, the latter does not
contribute the major share to the costs of all access paths ex-
plored. Therefore, support of partial match queries becomes
the most critical factor. For this reason, the solution based on
compound keys is inappropriate. Although the access costs
using a grid file are very low for some operations, others
are remarkably more expensive than those of the hybrid so-
lution based on B∗-trees. Accordingly, we recommend the
latter solution whenMATCH PARTIALis used.

The presented results rely on the assumption that the
search costs are indicative of the entire costs of referential
integrity maintenance. This assumption has to be justified
through further research especially at the system level. An-
other interesting question to be answered is whether or not
MATCH PARTIALis useful for a real world application. To
do so, existing applications have to be evaluated to reveal
the practical relevance ofMATCH PARTIAL. Furthermore,
it may be interesting to analyze real world applications to see
whether or not the various MATCH options interfere with
parent relation. For such cases, a combination of our ideas
has to be investigated.

AcknowledgementsWe would like to thank C. Huff, E. Rahm, and H. Schö-
ning for their helpful comments on an earlier version of this paper. The
comments and questions of the referees are appreciated.

References

Blasgen MW, Casey RG, Eswaran KP (1977) An encoding method for
multified sorting and indexing. Commun ACM 20: 874–876

Codd EF (1970) A relational model of data for large shared data banks.
Commun ACM 13: 377–387

Comer D (1979) The ubiquitous B-tree. ACM Comput Surv 12: 121–137
Database Language SQL (1992) ISO/IEC 9075
Database Language SQL3 (1993) ISO/ANSI Working Draft. X3H2-93-091/

YOK-003 ISO/IEC JTC1
Date CJ (1981) Referential integrity. In: Proc 7th Int Conf VLDB, Cannes,

France, pp 2–12

214

Date CJ (1990) Relational databases: selected writings 1985–1990.
Addison-Wesley, Reading, Mass

Gray JN (1978) Notes on data base operating systems. In: Bayer R, Gra-
ham RN, Seegm̈uller G (eds) Operating systems: an advanced course.
(Lecture Notes Computer Science, vol 60) Springer, Berlin Heidelberg
New York, pp 393–481

Härder T (1978) Implementing a generalized access path structure for a
relational data base system. ACM TODS 3: 285–298

Markowitz VM (1991) Safe referential structures in relational databases.
In: Proc 17th Int Conf VLDB, Barcelona, Spain, pp 123–132

Mohan C (1990) ARIES/KVL: a key-values locking method for concur-
rency control of multiaction transactions operating on B-tree indexes.
In: Proc 16th Int Conf VLDB, Brisbane, Australia, August, pp 392–405

Mohan C, Levine F (1992) ARIES/IM: an efficient and high concurrency
index management method using write-ahead logging. In: Proc ACM
SIGMOD, San Diego, pp 371–380

Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable,
symmetric multi-key file structure. ACM TODS 9: 38–71

Nevalainen O, Muurinen K, Rantala S (1979) A note on character compres-
sion. (Angewandte informatik, vol 21) Vieweg, Braunschweig Wies-
baden, pp 313–318

Reinert J (1993) Ensuring referential integrity in SQL2 and SQL3, Internal
report, Department of Computer Science, University of Kaiserslautern,
Germany

Salzberg B (1986) Grid file concurrency. Inf Syst 11: 235–244
Shaw P (1990) Database language standards: past, present, future. In: Blaser

A (ed), Database systems of the 90s. (Lecture Notes Computer Science,
vol 466) Springer, Berlin Heidelberg New York, pp 50–88

Valduriez P (1987) Join indices. ACM TODS 12: 218–246
Wagner RE (1973) Indexing design considerations. IBM Syst J 12: 351–367

