The VLDB Journal (1996) 5: 264-275 The VLDB Journal
© Springer-Verlag 1996

An asymptotically optimal multiversion B-tree

Bruno Becker?, Stephan Gschwind, Thomas Ohler, Bernhard Seegef, Peter Widmayer*

1 |nstitut fur Theoretische Informatik, ETH Zentrum, CH-8092rith, Switzerland

Tel. ++41-1-63-27400, Fax ++41-1-63-21172, email: widmayer@inf.ethz.ch

2 isys software gmbh, Ensisheimer Str. 2a, D-79110 Freiburg, Germany

3 Philipps-Universiat Marburg, Fachbereich Mathematik, Fachgebiet Informatik, Hans-Meerwein-Strasse, D-35032 Marburg, Germany

Abstract. In a variety of applications, we need to keep track of creating a new version after each update turns out not to
of the development of a data set over time. For maintain-be restrictive, in the sense that the data-structuring method
ing and querying these multiversion data efficiently, externalwe propose can be easily adapted to create versions only on
storage structures are an absolute necessity. We proposerequest, without loss of efficiency.

multiversion B-tree that supports insertions and deletions of \ye are interested insymptotically worst-casefficient

data items at the current version and range queries and exagt ess structures fexternal storagehat support at least-
match queries for any version, current or past. Our multi-gertiong deletions exact-match queriegassociative search)
version B-tree is asymptotically optimal in the sense that_ thedictionary operationgSedgewick 1988; Mehlhorn and
the time and space bounds are asymptotically the same ag;akalidis 1990; Gonnet and Baeza-Yates 1991) —rande
those of the (single-version) B-tree in the worst case. Theyyeriesin addition to application-specific operations such as
technique we present for transforming a (single-version) B rging of old enough versions in concurrency control. That
tree into a multiversion B-tree is quite general: it appliesjs \ve aim at a theoretical understanding of the fundamentals
to a number of hierarchical external access structures withys muitiversion access to data, with little attention to con-
certain properties directly, and it can be modified for others.gant factors [studies with this flavor have attracted interest
.) , in other areas, too (Kanellakis et al. 1993, Vitter 1991)]. We

Key words: Information systems — Physical design — Access|imit our discussion to the situation in which a change can
methods — Versioned data only be applied to the current version, whereas queries can

be performed on any version, current or past. Some authors

call this a management problem foartially persistentata;

we call an access structure that supports the required oper-
1 Introduction ations efficiently amultiversionstructure.

) o)) The problem in designing a multiversion access structure
The importance of not only maintaining data in their latest|jes in the fact that data are on external storage. fian
version, but also keeping track of their development overmemory there is a recipe for designing a multiversion struc-
time, has been widely recognized (Tansel et al. 1993). Veryre, given a single-version structure. More precisely, any
sion data in engineering databases (Katz 1990) and timesjngle-version main memory data structure in a very general
oriented data (Clifford and Ariav 1986) are two prime ex- c|ass, based on pointers from record to record, can be trans-
amples for situations in which the concepts of versions angormed into a multiversion structure, with no change in the
time are visible to the user. In multiversion concurrency con-gmortized asymptotic worst-case time and space costs, by
trOI (Barghouti and Kaisel’ 1991, Bernstein et al. 1987), thes%pp|y|ng a general technique (Drisco” et a|. 1989) For the
concepts are transparent to the user, but they are used by tQgecial case of balanced binary search trees, this efficiency

system (e.g. the scheduler) for concurrency control and rejs achieved even in the worst case per operation — clearly a
covery purposes. In this paper, we are concerned with accesserfect result.

structures that support version-based operations on external
storage efficiently. We follow the convention of Bernstein et G_|ven quite a general recipe for_ transformlng single-
al. (1987) and Driscoll et al. (1989) in that each update toVersion main memory data structures into multiversion struc-

the data creates a new version; note that this differs from théures, it is an obvious temptation to apply that recipe ac-

terminology in engineering databases, where an explicit Opg:ordlngly to external access structures. This can be done

eration exists for creating versions, and versions of desigrpy S|dmplytxlewmg a block mtthet exte'rAnta]L sttruclture atsh_a
objects are equipped with semantic properties and mechd£cord In the main memory structure. Irst glance, this

nisms, such as inheritance or change propagation. Our choié@c’deIS block access operations vv_eII; unf_ortunately, it_does
' not model storage space appropriately, in that the size of

Correspondence toP. Widmayer a block is not taken into consideration. That is, a block is

265

viewed to store a constant number of data items, and theés state the strongest efficiency requirements that a multiver-
constant is of no concern. Even worse, the direct applicasion B-tree can be expected to satisfy. To this end, consider
tion of the recipe consumes one block of storage space foa sequence oV update operations (insert or delete), applied
each data item. However, no external data structure can eveo the initially empty structure, and let; be the number of
be satisfactory unless it stores significantly more than onelata items present after thi¢h update (we say, in versiaj,
data item in a block on average; balanced structures, such < i < N. Then a multiversion B-tree with the following
as the B-tree variants, actually require to store in each bloclproperties holding for each (all bounds are for the worst
at least some constant fraction of the number of items thease) is the best we can expect:
block can hold (the latter being called the block capagjty — . L
As a consequence, the space efficiency of this approach is~ For the first; versions, altogether the tree requi§/b)
clearly unacceptable, and this also entails an unacceptable blOCk.S of storage space. :
. . — The ¢+ 1)-th update (insertion or deletion) accesses and
time complexity. !
It is the contribution of this pap&to propose a technique modifies O(log, m;) bIoc_ks. -
for transformina sinale- ; ¢ | fruct — An exact-match query in versiohaccesse$)(log, m;)
_ _ ing single-versiomxternal access structures blocks.
into multiversion structures, at the cost of a constant faqtor — Arange query in versionthat returns- records accesses
in time and space requirements, where the block capéacity O(log, m, +r/b) blocks
is not considered to be a constant. That is, the asymptotic b '
bounds for the worst case remain the same as for the corre- The reason why these are lower bounds is the following.
sponding single-version structure, but the involved constant&or a query to any versiofy the required efficiency is the
change. We call such a multiversion structasymptotically same as if the data present in versibmvere maintained
optimal, because the asymptotic worst-case bounds certainlgeparately in their own B-tree. For insertions and deletions
cannot decrease by adding multiversion capabilities to a datan the current version, the required efficiency is the same as
structure. Our result holds for a certain class of hierarchicafor a (single-version) B-tree maintaining the data set valid
external access structures. It is worth noting that this clas$or the current version. In other words, a better multiversion
contains the B-tree and its variants, not only because th&-tree would immediately yield a better B-tree.
B-tree is an ubiquitous external data structure, but also be- This paper presents a multiversion B-tree structure sat-
cause an asymptotically optimal multiversion B-tree has noisfying these efficiency requirements, under the assumption
been obtained so far, despite the considerable interest thikat in a query, access to the root of the requested B-tree
problem has received in the literature. Since we are interhas only constant cost [we could even tolerate a cost of
ested primarily in the asymptotic efficiency, we will discuss O(log, m;), to be asymptotically precise]. We have thus sep-
the involved constants only later in the paper. Multiversionarated the concerns of, first, identifying the requested ver-
structures with excellent asymptotic worst-case bounds fosion, and, second, querying the requested version (that is,
insert and exact-match operations (mat for delete) and the root of the appropriate B-tree). This separation of con-
for related problems have been obtained previously; we willcerns makes sense because in an application of a multiver-
discuss them in some detail later in the paper. sion structure, access to the requested version may be sup-
For the sake of concreteness, we base the presentatigrorted from the context, such as in concurrency control. For
of our technique in this paper on B-trees; it is implicit how instance, the block address of the requested root block may
to apply our technique to other hierarchical structures. Eachdirectly be known (possibly from previous accesses) or only
data item stored in the tree consists dfey and aninforma- a constant number of versions might be relevant for queries,
tion part; access to data items is by key only, and the keysuch that the root block can be accessed in tinfg). This
are supposed to be taken from some linearly ordered set. Letssumption has been made in other papers (Driscoll et al.
us restrict our presentation to the following operations: 1989; Lanka and Mays 1991), allowing the investigation to
)) L _ concentrate on gquerying within a version. In this paper, we
— Insert (key,info)insert a record with givekey andinfo 50w this view and try to take advantage of a possibly
component into theurrent version; this operation cre- gjirect version access for querying a version. We therefore
ates a new version. . o concern ourselves with ways to identify the requested ver-
— Delete (key) delete the (unique) record with givé®y gion only later, with little emphasis, since any of a number
from the current version; this operation creates a New f search techniques can be applied for this purpose. Note
version. _ _ that if we do not separate these issues, but instead assume
— Exact-match query (key,versiomgturn the (unique) rec- that the root of the requested B-tree needs to be identified
ord with givenkey in the givenversion this operation through a search operatiofi(log, N) instead of2(log, ;)

does not create a new version. is a lower bound on the run-time of a query, since one item
— Range query (lowkey, highkey,versiorgturn all records oyt of as many asv items needs to be found.

whose key lies between the givéswkeyand the given In building multiversion structures, there is a general

highkey in the givenversion this operation does not tradeoff between storage space, update time and query time.

create a new version. For instance, building an extra copy of the structure at each

update is extremely slow for updates and extremely costly in
pace, but extremely fast for queries. Near the other extreme,
olovson and Stonebraker (1989) view versions (time) as an
L A preliminary version of this paper has been published (Becker et al.eXtra dimension and store one-dimensional version intervals
1993). in two-dimensional space in an R-tree. As a consequence of

Before briefly reviewing the previous approaches of de-
signing a B-tree that supports these operations efficiently, le

266

using an R-tree, they can also maintain one-dimensional keyo belive if it has not been copied, ardead otherwise. In
intervals (and not only single keys). This gives good storagea live block, deletion versiom for an entry denotes that the
space efficiency, but query efficiency need not be as goodgntry has not yet been deleted at present; in a dead block, it
because the R-tree gives no guarantee on selectivity. Thandicates that the entry has not been deleted before the block
is, even if access to versiarns taken care of in the context, died. For each versiohand each blockd except the roots
the time to answer a query on versiordoes not depend of versions, we require that the number of entries of version
on the number of items in that version only, but instead: in block A is either zero or at least, whereb = k - d for
on the total number of all updates. We will discuss otherblock capacityp and some constait (assume for simplicity
multiversion B-trees suggested in the literature in Sect.5that b, k, d are all integers and is the same for directory
none of them achieves asymptotically optimal performanceand data blocks); we call this thveeak version condition
in time and space. Operations that do not entail structural changes are per-
In Sect.2, we present an optimal multiversion B-tree.formed in the straightforward way that can be inferred from
Our description suggests a rather general method for tranghe single-version structure by taking the lifespan of entries
forming hierarchical external data structures into optimalinto account. That is, an entry inserted by update operation
multiversion structures, provided that operations proceed in into a block carries a lifespan of, <) at the time of inser-
a certain way along paths between the root and the leavesion; deletion of an entry by update operatiofiom a block
But even if the external single version data structure doeghanges itglel versionfrom x to i.
not precisely follow the operation pattern we request (as in Structural changes are triggered in two ways. First, a
the case of R-trees, for instance), we conjecture that the balock overflowoccurs as the result of an insertion of an
sic ideas carry over to an extent that makes a correspondingntry into a block that already contaibsentries. A block
multiversion structure competitive and useful. Section 3 pro-underflow, as in B-trees, for example, cannot occur, since
vides an efficiency analysis of our multiversion B-tree, andentries are never removed from blocks. However, the weak
Sect. 4 adds some thoughts around the main result. Sectiorersion condition may be violated in a non-root block as a
5 puts the obtained result into perspective, by comparing iresult of a deletion; suchwaeak version underflowccurs if
with previous work, and Sect. 6 concludes the paper. an entry is deleted in a block with exactycurrent entries.
Moreover, we say that a weak version underflow occurs in
the root of the present version if there is only one live entry
2 An optimal multiversion B-tree (except for the pathological case in which the tree contains
only one record in the present version).
We present our technique to transform single-version exter- The structural modification after a block overflow copies
nal access structures into multiversion structures using théhe block and removes all but the current entries from the
example of the leaf-oriented B-tree. copy. We call this operation &ersion splif it is com-
parable to a time split at the current time in Lomet and
Salzberg (1989); equivalently, it may be compared to the
2.1 The basic idea node-copying operation of Driscoll et al. (1989). In general,
a copy produced by this version split may be an almost full
To achieve the desired behavior, we associate insertion anldlock. In that case, a few subsequent insertions would again
deletion versions with items, since items of different life- trigger a version split, resulting in a space cos&xgi) block
spans need to be stored in the same block. kekey, per insertion. To avoid this and the similar phenomenon of
in version, delversion, info> denote a data item, stored an almost empty block, we request that immediately after
in a leaf, with akey that is unique for any given version, a version split, at least - d + 1 insert operations or delete
an associatednformation, and a lifespan from its inser- operations are necessary to arrive at the next block overflow
tion versionin version to its deletion versiordel version or version underflow in that block, for some constam be
Similarly, an entry in an inner node of the tree is de- defined more precisely in the next section (assume for sim-
noted by< router, inversion, delversion, reference-; the plicity that ¢ - d is integer). As a consequence, the number
router, together with then version and del version infor- of current entries after a version split must be in the range
mation on thereferencedsubtree, guides the search for a from (1 +¢)-d to (k — €) - d; we call this thestrong version
data item. For example, the B-tree uses a separator key armbndition If a version split leads to less than (&+d entries
the R-tree uses a rectangle as a router. — we say: astrong version underflovoccus — a merge is
From a bird's eye view, the multiversion B-tree is a attempted with a copy of a sibling block containing only its
directed acyclic graph of B-tree nodes that results from cercurrent entries. If necessary, this merge must be followed by
tain incremental changes to an initial B-tree. In particular,a version-independent split according to the key values of
the multiversion B-tree embeds a number of B-trees; it has dhe items in the block — &ey split Similarly, if a version
number of B-tree root nodes that partition the versions fromsplit leads to more thark(«¢)-d entries in a block — we say:
the first to the current one in such a way that each B-tree strong version overflovwoccus — a key split is performed.
root stands for an interval of versions. A query for a given
version can then be answered by entering the multiversion
B-tree at the corresponding root. 2.2 An example
Each update (insert or delete operation) creates a new
version; thei-th update creates versian An entry is said To illustrate the basic ideas described above, let us discuss
to be of version if its lifespan contains. A block is said the following example of a multiversion B-tree that orga-

267

R R
<10,1,: A> <10,1,8,A>
<5178 2nd version 3rd version <45,1,8,8>
<10,8,*,C>
A B <70,8*,D>
<10,1,*> <45,1*>
<15,1,*> <55,1,*>
A B <25/1*> <65,1,3>
<10,1,%> <45,1+> <30,1*> <70,1*> A & c >
i | | B 17> || <TsLe <1015 |[<asar> |[<w0ar> |[0>
<251%> <65,1%> <40.2*> <80,1*> <1515> || <551*> || <451%> || <751*>
<30,1*> <70,1*> <25,1,7> <65,1,3> <55,1,*> <80,1,*>
<35,1,*> <75,1%> <30,1,6> <70,1,*>
<80,1,*> <35,1,4> <75,1*>
<40,2,8> <80,1,*>

@ (b)

.)) .) Fig. 3. Structural changes after weak version underflow of bldck
Fig. 1. Development of the multiversion B-tree up to the third version

R R R1 R1 R2
<101*A> <1018A> <10,1,8A> <10,1,8A> <10,11* E>
<451%.B> <451%B> <45,1,8,B> <45,1,8,B> <70,18* ,G>
* *
<58%AM> <10,811,C> <10,811,C>
<70,8,15,D> - <70,8,15,D>
<10,11*,E> <10,11*,E>
<70,15,18,F> <70,15,18,F>
A B A A* B
*
<10,1*> <451> <101*> | | <101%> | | <451%> <7018*,G>
<151,5> <55,1,*> <15,1,5> <40.2,*> <55,1*> Fig. 4. Creation of two rootsk1, R2 by version split of root block?1
<25,1,7> <65,1,3> <25,1,7> <58*> <65,1,3>
<30,1,6> <70,1,*> <30,1,6> <70,1,*>
<35,1,4> <75,1*> <35,1,4> <75,1*>
40,2,* 80,1,* 40,2,* 80,1,* . f P
=0 | =L =0e =0 block A* fulfills the strong version condition, no further

restructuring is needed. Eventually, the parent blétks

@ (b . -
Fig. 2. aThe seventh version of the multiversion B-tréethe multiversion updated accordingly (Fig. Zb?' L
B-tree after version split of block A In the second case, the eighth version is created by oper-

ation deletg40), which leads to a weak version underflow,
i.e. the number of current entries in bloekis less thani
nizes records with an integer key. The initial situation (i.e.(=2). Then, a version split is performed on bladk copying
first version) of our multiversion B-tree is given in Fig.1la. the current entries of blockl into a new blockA*. Now
For the sake of simplicity of our example, we assumea strong version underflow occurs i, which is treated
that already 11 data records are in the first version. Thdy merging this block with a block resulting from version
multiversion B-tree consists of three blocks: a rdotand split of a sibling block. In our examplé3 is found to be a
two leavesA and B. The parameters of the multiversion sibling. Accordingly, by version split a temporary blogk

B-tree are set up in the following way:= 6, d = 2, ande = is created fromB and blocksA* and B* are merged. As in
0.5. Hence, after a structural change, a new block containgur example, a block resulting from a merge can violate the
at least three and at most five current entries. strong version condition. To treat the strong version over-

The second version is created by the operatisert(40), ~ flow, a key split is performed, creating two new bloaks
adding a new entry to blocK. In Figure 1b, for the second andD. Because a key split is always balanced for a B-tree,
and the third version, the result of the corresponding updat®locks C" and D fulfill the strong version condition. Even-
operation is shown by depicting the block which has beerfually, the parent block? has to be updated by overwriting
modified. The next operatictielete65) creates the third ver- the = of the entries which refer to block and B and in-
sion. As shown in Fig. 1b, for the deletion of a record, the S€rting two new current entries, referring to blockaind D
deletion version of the corresponding entry is set to the cur{Fig. 3). Now, blocksA and B are dead and block§' and
rent version, overwriting the marker. D are live.

To be able to illustrate different underflow and over- Now let us consider an exact match query in the multi-
flow situations, let us assume further updatedelet€35), version B-tree of Fig. 3. A record with key 25 is requested
deletd15), delet30) anddeletg25) — resulting in the sev- in version 5. First, the root of version 5 is accessed; in our
enth version of the multiversion B-tree (Fig. 2a). example this is bloci?. We consider only the entries in the

Now, let us consider two different cases for creating root that belong to version 5. Among these entries we choose
the eighth version of the multiversion B-tree, illustrating the the one whose separator key is the greatest key lower than
various types of structural changes. the search key 25 and follow the corresponding reference

In the first case, we consider the operatinsert(5) to to the next block. In our example, the search is directed to
create the eighth version of the multiversion B-tree. Thisblock A. Eventually, the desired entry25,1,7> is found in
results in a block overflow of blocK that is eliminated by ~ block A.
performing a version split on that block. All current entries ~ As mentioned before, our multiversion B-tree is not a
of block A are now copied into a new live block*. Because tree, but a directed acyclic graph. In general, several root

268

R2 in the single-version structure returns a block in which the
<10,25,*,R3> searched item is stored if it is present in the structure. For
<40,25* R4> the same reason, we ignore the treatment of the end of the
R1 recursion in our operations, when a change propagates up to
<1018% A> the root of the tree.
<25,18* B> To insert a data item, we proceed as follows:
<30,21,*,C> . R3 R4 , Lo Lo
<40,21,* D> insert key k, current version, informationinfo :
<55,14,25 E> <10,18%A> <40.21,:,D> {assumek is not yet presernt
<1047 P> oD | | o exact-match query fok in versioni leads to block4;
<55257.G> o o blockinsert < k, 4, %, info > into A.

_ _ , Here, blockinsert is defined as follows:
Fig. 5. Key split after strong version overflow of root blodkl

blockinsert entry e into block A:

R2 entere into A;
<10,25,32,R3> {this may momentarily lead to a block overflow i
<40,25,32,R4> conceptually; such an overflow is eliminated immedi-
R5 ately}
<1032% > if block overflowof A then
<4021,* D> version split: copy current entries ofl into a new
@ w — |==e block o
<101829A>| [<4021* D> o blockinsert entry referencing3 into father of 4;
<25,18,29B>| |<5525* G> if strong version underflovef B then
<30,21,32,C>| |<70,14,* F>
<10,29,32,H> merge B '
<10,32% 1> elsif strong version overflovof B then
treat strong version overflow of B.
Fig. 6. Weak version underflow of root block2 Note that after a version split, the deletion version stored

in the father entry referring to the dead block must be ad-
justed to represent the version of the version split, in order
blocks may exist. This and the effect of structural changego guide subsequent searches correctly.
in root blocks is illustrated in Figs. 4—6. Merging a block makes use of the fact that a suitable
Figure 4 shows an overfull root block1l and the two sibling can always be found in the access structure:
new rootsR1, R2 resulting from version split of bloclk1.
Block R2 is the root of the current version, version 18, Mmergeblock B:
whereas blockR1 is the root of versions 1-17. References identify a siblingD of B to be merged;
to roots R1 and R2 can be stored in an appropriate data ~ Version split: copy current entries ob into a new
structure, supporting access to the root blocks over versions, Plock E; unite B and E into B and discardt;
Figure 5 illustrates the case that after the version split T Strong version overflovof B then

a strong version overflow occurs and a key split becomes treat strong version overflowof B
necessary. In this case, a new root blo@&) is allocated, {no weak version underflow possible in father/®f
which stores entries referring to the two block8 and R4 else)

resulting from key split of the copy of rodt1. By that, the adapt router ta3 in father of B;

height of the subtree valid for the current version, version check weak version underflowof father of B.

25, has grown. Essentially, a strong version overflow is treated by a key

Figure 6 shows the shrinking of a subtree. By severalgyit of the entries according to their key or router values:
data block merges, the number of current entriesRiB

has shrunk, a weak version underflow occurred. To handle treat strong version overflow of block A:

this underflow, block copies aR3 and R4 are created and key split: distribute entries ofA evenly among4 and
merged into a blockR5. Since this causes a weak version B; adapt router ta4 in father of A4;
underflow of block R2, R5 becomes the new root block blockinsert entry referencing3 into father of A.

valid for the current version.)))
A weak version underflow leads to a version split and a

merge:

2.3 The multiversion operations in detail check weak version underflowof block A:

if weak version underflowf A then
To make these restructuring operations more precise, let us version split: copy current entries ofl into a new
now present the main points in a semi-formal algorithmic block B;
notation. In order to present the main idea without obstruct- blockinsert entry referencing3 into father of 4;
ing irrelevant details, we assume that an exact-match query merge B.

This completes the description of the insertion of an item
into a block. To delete an item, we proceed as follows:

deletekey k, current versiont {assumek is preseny:
exact match query fok in versioni leads to blockA4;
blockdelete k, ¢ from A.

blockdeletekey k, version: from block A:
change entr k,i , *,info > into < k,i ,i,info >
in A;
check weak version underflowof A.

269

Recall that our multiversion structures are based on leaf-
oriented balanced-access structures. The data blocks are on
level 0, the directory blocks are on level 1,2,. Then the
number of block accesses for searching a data itein
versioni is at most[log, m;]|, because each directory block
on the path from the root of versiano the leaf wherex is
stored has at least references of. Given direct access to
the root of the version in question, we conclude:

Theorem 1 The number of block accesses for searching a
data item in versiori is [log, m;] in the worst case.

This completes the more detailed presentation of updatdhe arguments above can be extended to range queries that
operations. Let us repeat that the multiversion structure deare answered by traversing the corresponding umbrella-like
fined in this way is not a tree, but a directed acyclic graph. Inpart of a subtree of the tree for the queried version:

general, more than orreot block may exist. Since the num-
ber of root blocks to be expected is very small, maintaining
these blocks is not a major data organization problem; se
Sect. 4 for a suggestion.

In the next section, we show in an analysis that the basi
operations actually do lead to the desired behavior.

3 Efficiency analysis

Recall that a block idive if it was not copied up to the
current versiondead otherwise.N is the number of update

Theorem 2 The number of block accesses for answering
a range query in versiont that returnsr data items is

%([Iogd m;| +r/d) in the worst case.

The @+ 1)-th update operation first performs an exact match

query in versioni and then modifies at least one data block
A. If Aviolates the weak version condition, up to three other
data blocks have to be created or modified. In this case, the
parent ofA — say A’ — has to be modified. Again, this can
lead to a violation of the weak version conditionA4f. In the
worst case, this situation occurs on each directory level up
to the root of versioni. On each directory level, at most five

operations performed on the data structure from the begingirectory blocks have to be accessed, modified or created.

ning up to the current versionp; is the number of data
items present in version

What are the restrictions for the choicetonde? First,
after akey split the resulting blocks must fulfill the strong
version condition. Before a key split on a blockis per-
formed, A contains at leasti(—¢)-d+1 entries. After the key
split operation that distributes the entries 4famong two
blocks, both blocks must contain at least (&)+ d entries.
Therefore, the following inequality must hold:

(k—¢e)-d+1> 1 (1+e)-d
or, equivalently k > > +(1+1). e —

1)

1
d

Here, o depends on the underlying access structure. It de

Therefore we have:

Theorem 3 The number of block accesses and modifications
for the (i +1)-th update operation i§- [log, m;] in the worst
case.

3.2 Space analysis

We analyze the worst-case space utilization over the se-
quence of theN update operations. The crucial factor in
the analysis is the fact thatwersion split if necessary fol-
lowed by amergeor akey split leads to new blocks which
fulfill the strong version condition. Therefore we need a cer-

notes the constant fraction of data entries that are guaranteqgin number of update operations on these blocks before the

to be in a new node. For example,= 0.5 is fulfilled for

B-trees, i.e. inequality 1 is equivalent 0> 2+ 3- ¢ — (11-
Second, no strong version underflow is allowed for a

block A resulting from amergeoperation. Before a merge

operation is performed, together there are at leastl 2

1 current entries in the blocks which have to be merged

Therefore we have:

2.d-=1>Q+¢)-d
or, equivalently e < 1— }

()

3.1 Run-time analysis

As introduced before, for our multiversion B-tree we have

next underflow or overflow situation on these blocks can oc-
cur. To be more precise, we consider the utilization of data
blocks and of directory blocks separately.

For data blocks, one update operation can lead to at most
one overflow or underflow situation. We distinguish four
types of situations:

— Version split only:One blockA becomes dead and one
new live block B is created.A was the first data block
in the data structure or has fulfilled initially — after its
creation — the strong version condition. If it becomes
overfull, at leaste - d + 1 operations must have taken
place onA since its creation. So the amortized space
cost for each of these operations is at mg_gfl.

— Version split and key split:One blockA becomes dead

separated the concerns of identifying the root block of the
requested version and querying the requested version. For
the following analysis we assume that, supported from the
application context, the appropriate root block is given.

and two new live block€B1 andB2 are created. Again,
at leasts - d + 1 operations must have taken place 4n
and therefore the amortized space cost for each of these

: . k-d
operations is at most 4.

270

— Version split and merge without key spliffwo blocks is 2- k - d. Therefore, the amortized space cost per update
Al and A2 become dead and one new live bloBkis on levell is at most
created. OnAl or A2 at leasts - d + 1 operations must o1 2
have taken place. Thus, the amortized space cost for eadh’ < 2- k- d - <

! : d (e-d+1)-k-d e-d

of these operations is at most?, .

— Version split and merge with key spliffwo blocks 41~ for 1 < | < L. With C° := Sya,, ie. C° = #F (from
and A2 become dead and two new live blockd and inequality 3), we can rewrite inequality 4:
B2 are created. Again, ol or A2 at leaste - d + 1 o \! 2\ 2.k
operations must have taken place. The amortized spacg! < () .C° = () . (5)
cost for each of these operations is at mg§t:. €-d e-d €

. lel (4)

for1<(<L.

In all cases the amortized data block space cost per up- : .
date operatior,,; is at most Therefore, the total amo.rtlzed directory block space cost
per operationSy;, is at most:

2-k-d 2k
< =0(1 3 L 2.k & 2\
o 0 SEettE (L) e
For directory blocks, one update operation can lead to at 1=1 AN

most oneblock overflowor version underflowsituation on gqr 7 < 2 which can easily be satisfied in all practically
each directory level up to the directory level of tlaot in relevant circumstances, we get:
the current version. LeL denote the maximum level that z

occurs during theN operations. To look precisely at the g 2.k & 2 - O(1
different underflow and overflow situations, we distinguish %" < Z .d) - @

between directory blocks that are roots during their lifetime _ N
and inner blocks. In summary, from inequalities 3 and 7 we can conclude:

Let A" denote arinner directory blockof level I. We Theorem 4 The worst-case amortized space cost per update
call a reference ind! dead if it is a reference to a dead operationsS = Sy + Sqir is O(1) if d > 2.
— €&

block, live otherwise. The following situations can cause a
weak version underflow or a block overflow df: In total, we get:

(7)

=1

— One reference iM! becomes dead and one new refer- Theorem 5 The multiversion B-tree constructed in the de-
ence has to be inserted intty. This can cause block scribed way from the single-version B-tree is asymptotically
overflow with the creation of two new directory blocks. optimal in the worst case in time and space for all considered

— One reference iM! becomes dead and two new refer- operations.
ences have to be inserted intd. This can cause block
overflow with the creation of two new directory blocks. The analysis shows that for a given block capaditif is

— Two references iM! become dead and one new refer- useful for the time complexity to choogdarge and: small.
ence has to be inserted intf. This can cause weak To guarantee good space utilization it is useful to chaose
version underflowor a block overflow In the case of a maximum, that is equal to % i andk as small as possible
weak version underflow, a sibling of! also becomes without violating inequality 1. Choosing = 1 — Cll gives
dead, and up to two new directory blocks are created. pounds for the strong version condition of- 2 — 1 and

— Two references iM! become dead and two new refer- (k—1)-d+1. For instance, for block capacity= 25 we get
ences have to be inserted intd. This can cause block . = 5,d = 5, ands = 0.8. In the worst case, this implies that
overflowwith the creation of two new directory blocks. we have 11.5 ?Cc —1) redundant records for each key on av-

Note that if a directory block is the root of the data structure &r29€- Because this is quite a high number, we implemented
the multiversion B-tree and ran a number of experiments

in versioni, a weak version underflow does not lead to a ith the ab t i = 100000 undat
new copy of the block. A block overflow of a root block is Wt th€ above paramelters and = - update opera-
ons. It turned out that in all experiments, we had between

treated in the same manner as a block overflow of an innef
block. 1.31 and 1.70 redundant records for each key on average.

fHence, our worst-case bounds are extremely pessimistic and

We explain the amortized space cost per operation fo . X
P b P P QP not imply high constant costs on average.

the first case. The extension to the other cases and the ro
blocks is straightforward and yields the same resdiltis the
only live parent for the live blocks referenced frasd and
has initially fulfilled the strong version condition. Therefore,
in the subtree ofi’ on levell —1 at least -d+1 new blocks |n the following, we present some of the thoughts around
have been created between the creation'oénd the block the main result that may be interesting or important in prac-
overflow of A'. Hence, at least:(- d + 1) - k - d space was tice. First, we discuss the organization of the access to the
used. Let us assume that the amortized space cost per updat®juested B-tree root; this also solves the problem of time-
Ohd!g\fy —1is at mostC'~*. Then it follows that at least oriented access, where query points in time differ from ver-
(©d:D 4 operations have taken place in the subtreeibf sion creation times, and of maintaining user-defined ver-
between the creation of! and its block overflow. The space sions. Second, we show how to efficiently remove the old-
cost for the version split oft’ and the subsequent key split est versions, in order to save storage space. Our thoughts

4 Thoughts around the main result

271

are intended to demonstrate the high potential of adaptingurrent B-tree is found i®(log, m). Third, the remaining

the multiversion B-tree to different settings and different re-effort to perform the update has only constant amortized

guirements. The given list of modifications and extensionscost (Huddleston and Mehlhorn 1982). Overall, this proves

is not meant to be exhaustive; additions to this list shouldour statement.

be performed as needed. Other access structures may be plugged in to serve as
root*. For instance, if a high locality of reference to nearby
versions is required, a finger search tree may be the method

4.1 Access to the requested version of choice (Huddleston and Mehlhorn 1982). To summarize,
root* has the potential to be tuned to the particular applica-

Our presentation of the multiversion B-tree so far assumegion.

that access to the root of a version is taken care of in the

context of the application. If this is not the case, a search

structure may be used to guide the access. As an example,4a2 Purging old versions

B-tree maintaining the version intervals of the multiversion

B-tree root nodes in its leaves serves this purpose. Even ifthe operation of removing the oldest versions from disk,

its most direct application, this access structure to the rootshe so-calledpurge operation, is very important in multi-

of the multiversion B-tree (we call ibot*) allows access to version access structures, because maintaining all versions

a root as well as insertion of a new root into roat time forever may be too costly in terms of storage space. Under

O(log, p), wherep is the number of roots being maintained. the assumption that old versions are accessed significantly

The space efficiency of such a B-tree is obviouélp). less frequently than newer ones, the amount of secondary

Since p is less than[N/d], the storage cost of robtis storage can be reduced substantially by moving old versions

O(N/b) and the search for a key in a multiversion query to tertiary storage (e.g. optical disks) or, whenever the appli-

can be realized in tim&(log, N) in total, including the cation permits, by simply deleting them (e.g. in multiversion

search for the appropriate version. concurrency control).

In most cases, we expect that the number of roots is much The deletion of versions older than a specified version
less than[N/d]. Consider, for example, the situation when ¢ can be supported easily in the multiversion B-tree. A
the current version data set has been created by a sequenstgaightforward approach would be to search for all blocks
of insertions only, beginning at an empty structure. Then, thewvhich have been split by a version split in a version less
left path of the current B-tree contains all the roots of thethan or equal toi. This search starts at the root blocks
multiversion B-tree. Therefore, the number of roots is onlyvalid for versiorni and older. Performing a depth-first search,
O(log, N) which is considerably less than the worst-caseall blocks fulfilling the above condition can immediately be
results of the general case. deallocated. The disadvantage of this approach is that it may

Furthermore, rodtcan be used to support time-oriented access many blocks for a few that can be purged. A more
queries. If our setup changes from versions to time, suctefficient approach accesses only blocks that must be purged:
that each key has an insertion time stamp and a deletioAn additional data structure is used to keep track for each
time stamp, rodt supports queries for any point in time (not node of the most recent (i.e. newest) version for which this
necessarily coinciding with some insertion or deletion time)node is relevant in a query. Since this version is just the ver-
in the standard B-tree fashion. sion before the version in which the node dies, this defines

Moreover, roct can be tuned to achieve even higher a linear order on the nodes; a simple first-in-first-out queue
performance by observing that a new multiversion root carwill therefore suffice to perform all operations efficiently.
only be added at the high end of the current version olWhenever a node dies, a corresponding entry is added to
time spectrum. Therefore, a split of a node of fooan be the tail of the queue. Whenever the oldest versions before
made totally unbalanced: the node of the lower key rangesome version are to be deleted, triggered by the user or by
is full, whereas the node of the higher key range containssome other mechanism such as concurrency control, the cor-
just one key, namely the new one. As a consequence, allesponding head entries of the queue are removed, as well
nodes in root are full, except those on the rightmost path. as the corresponding multiversion B-tree nodes.

This straightforward approach is somewhat reminiscent of Note that the removal of a node from a multiversion B-
the append-only tree (Segev and Gunadhi 1989), where atiee may leave the tree in an inconsistent state: there may be
entry pointer to the rightmost node for each level of the pointers in the tree that point to the node that is no longer
tree is maintained in addition, in order to favor queries topresent. Nevertheless, this inconsistency is not harmful, as
the recent past. Then, access to the records of the curretdng as no search for a deleted version (older than version
(and recent past) version can be organized more efficiently;) initiates: A search may encounter a dangling pointer but
leading to a path length @?(log, m). Therefore, the worst- will never follow it.

case time bound for range queries to the current version

for the MVBT tree isO(log, my + r/b). An update costs

time O(log, N) in the worst case, because a change mays Related work

propagate up to the root of the rod-tree. Amortized over

a sequence of updates, however, the worst-case cost of A number of investigations on how to maintain multiver-
single update is only¥)(log, m), for the following reasons: sion data (historical data, time-dependent data) on external
First, in root, the entry pointing to the current root is found storage have been presented in the literature. Often, the goal
in O(1). Second, the record to perform the update in theof these investigations has been somewhat different from

272

our goal in designing the multiversion B-tree. Neverthelessbraker 1991), a hybrid of segment trees (Bentley 1977)
some previous proposals pursue almost the same objective asnd R-trees (Guttman 1984). Skeleton SR-trees operate with
we do, and others have been influential in setting the stagea preset data space partitioning, based on an assumption
To put our work into its proper perspective, we present aabout the data distribution. In the performance evaluation
synopsis of relevant previous work in this section. presented by Kolovson and Stonebraker (1991), the SR-

Kolovson and Stonebraker (1989) discussed the problentrees never outperformed R-trees in the non-skeleton vari-
of maintaining multiversion data using two external storageant. However, skeleton SR-trees have better performance
media, magnetic disk for recent data and WORM opticalthan skeleton R-trees for non-uniformly distributed interval
disk for historical versions. They proposed two approacheslengths and query regions of very high or very low aspect
both using the R-tree index (Guttman 1984), to organize dataatio. The approach of (skeleton)SR-trees suffers from the
records: according to their key values in one, according tosame major inefficiencies as using R-trees to store multiver-
their lifespans in the other dimension. The approaches difsion data. There is no good worst-case guarantee for dele-
fer by the techniques of moving data and index blocks fromtions, exact-match queries, and range queries.
magnetic disk to WORM disk, also called vacuuming. Inthe Elmasri et al. (1990, 1991) proposed ttirme indexfor
first approach, vacuuming is triggered in the following way. maintaining historical data. The time index supports all the
If the size of the index on magnetic disk reaches a givenoperations of our setting, plus range queries over versions.
threshold, a vacuuming process moves a given fraction ofn the time index, data records are organized if"atree
the oldest (i.e. dead) data blocks to WORM disk and — recuraccording to versions (time). For each version, a bucket is
sively up the tree — those directory blocks that refer only tomaintained for storing all data records (or references to it)
blocks already stored on WORM disk. The second approaclvalid for that version. Elmasri et al. proposed several modifi-
maintains two R-trees, one completely on magnetic disk, theations of the basic approach to reduce the high redundancy
other with the upper levels on magnetic and all levels belowresulting from this data organization. However, assuming
on WORM disk. Again, if the size of the R-tree completely that each update creates a new version, the space efficiency
stored on magnetic disk reaches a threshold, all its blocksf all those variants may be as bad@&V?/b) in the worst
except the root are moved to WORM disk. Then, referencexase. An insertion of a record in the time index may create a
to the blocks below the root level, now stored on WORM new bucket containing all records for the new version. In the
disk, are inserted into the corresponding level of the R-treeworst case, this operation requir€$N/b) time. Moreover,
on magnetic disk. Updates are only performed on the R-tre¢he time index does not support range queries efficiently:
that completely resides on magnetic disk, while queries mayange query efficiency may be as bad@gog, N + N/b)
affect both R-trees. Both approaches presented by Kolovin the worst case.
son and Stonebraker (1989) support the same operations as The Write-once B-tree (WOBT), proposed by Easton
the multiversion B-tree (MVBT). Additionally, queries over (1986), is a variation of thé3*-tree; it is completely stored
version intervals can be answered. on a WORM medium, e.g. an optical disk. Because of the

In both approaches, the height of the R-tree®(®g, NV); write-once characteristic, all versions of data are kept for-
remember thatV is the total number of updates to the tree, ever. If version numbers are assigned to the index and data
and b is the maximum number of entries in a tree node.records, multiversion queries can be answered in a straight-
Therefore, each insertion needs tir@¢log, N); this com- forward way. To treat an overflow of a data or an index
pares with amortized tim&(log, my) in the MVBT, since block in the WOBT, first a version split must be performed,
access to the newest version is always immediate. Deletiobecause the overflow block itself cannot be rewritten. Af-
must be implemented as modification of the correspondingerwards, if the current entries occupy more than a given
R-tree entry. For that, the affected entry has to be searchefilaction of the new block (e.g. two-thirds), a key split is
in the tree before modification. Because of overlapping re-performed on the block before writing it to external mem-
gions in the R-tree, the search for a record may necessiery. So far, the WOBT split policy is comparable to the one
tate a traversal of the whole index tree in the worst caseof the MVBT. One major difference is the treatment of a root
Therefore, deletion can be extremely expensive in the worssplit: if a root is split in the WOBT, a new root block is allo-
case; this compares with worst-case tid@og, my) inthe cated that initially contains three references. One reference
MVBT. The same arguments show that exact-match queriegs pointing to the old root block, whereas the other refer-
and range queries on a given version may acegds/b) ences are pointing to the blocks obtained from splitting the
blocks in the worst case. This compares with a worst-cas®ld root. Thus, a WOBT has one root, and all the paths from
time for exact-match queries and range querie®@bg, V) the root to a data block have the same leng(tog, V). In
and ©(log, N +r/b), respectively. Note, however, that the contrast, if a root is split in the MVBT, the reference to the
goals of these approaches have been somewhat differenew root is inserted into root*, the data structure organizing
from our goal of building a multiversion B-tree. the root blocks.

Because no data are replicated, the space efficiency of Under the pessimistic assumption that the computation
Kolovson and Stonebraker’s approaches is perfect. Howevenf the root of an arbitrary non-current version requires
especially for sets of records with lifespans of non-uniformly ©(log, N) time, the MVBT is still more time-efficient than
distributed lengths, Kolovson and Stonebraker observed ¢he WOBT for updates and queries on the current version.
decreasing efficiency for the R-tree. Recall that the root of the MVBT valid for the current ver-

In order to achieve better query and update performancsion — and for some recent non-current versions — can be
for such data distributions, Kolovson and Stonebraker havaccessed in tim&(1) by maintaining a direct reference to
proposedsegment R-tree§SR-trees; Kolovson and Stone- this block. Therefore, queries to these versions and updates

273

to the current version are more efficient th@og, N +r/b) the tree. If such a live block becomes dead (i.e. it migrates
andO(log, N), the respective bounds in the WOBT. More- to optical disk), the corresponding references have to be up-
over, the WOBT is restricted to insertions and modificationsdated in the parent nodes. However, this would require that
of the non-key part of records, while the MVBT supports the dead blocks are stored on a write-many storage medium.
both insertions and deletions. In their first paper on the TSBT, Lomet and Salzberg
In order to reduce storage costs and to improve perfor{1989) discuss the effects of using version and key splits for
mance of queries on the current version, Lomet and Salzbermdex block splitting. An index block split policy based on
(1989) proposed a variant of the WOBT, ttime-split B-tree key splits avoids redundancy, but leads to an index which
(TSBT). The TSBT spans over magnetic and WORM disk.gives no selectivity according to versions. Moreover, an in-
All live blocks are stored on magnetic disk, while a deaddex block may contain entries which cannot be separated
block migrates to WORM disk during a version split. Lomet by a key split. Therefore, for the simulations presented in
and Salzberg distinguish split policies for index blocks from Lomet and Salzberg (1990), the authors applied another pol-
those for data blocks. icy for index block splitting. A version split is performed
For splitting data blocks, the following two basic types of using the insertion version of the oldest index entry that is
splits can be performed in the TSBT. First, in contrast to thestill valid for the current version. Then, a dead block con-
WOBT, the version (time) used for a version split (time split) tains only non-current index entries and therefore it can be
of a data block is not restricted to the current version, but carwritten onto WORM disk. In addition to the redundancy that
be chosen arbitrarily. Second, a key split can be performedhis entails in index blocks, the main problem of this split
on a data block instead of a version (time) split. Lomet andpolicy is that such a split version may not exist. In this case,
Salzberg (1989, 1990) discussed the effects of different data key split is possible. This separates not only current en-
block split policies, with emphasis on space cost. The spacéries (as desired), but also dead ones. As a consequence, the
cost is given as the sum of storage cost on magnetic an@SBT does not have a lower bound on the number of entries
WORM disk. Fordata block split the following three split for a version in an index block.
policies were proposed: Lanka and Mays (1991) presented three approaches for
fully persistentB*-trees. Full persistence means that changes
WOBT can pe applied to any version, current or past, preating anew
_ The tirﬁe-of—last-update policyperforms a version split version. Because this concept of multiple versions of data is
with the version of the last update. This reduces the numinore _gen_eral than ours, all _three_ approaches _also can _be used
ber of entries to be kept in the deéd block after a versionto maintain our type of muIt.|verS|on data (partially persistent
split, and therefore the storage space needed on WOR ata). Like the MVBT, and in contrast to the WOBT and the
di ' e . : _TSBT, all the proposed techniques support insertions and
isk. The number of entries in the live block remains un deletions
changed in comparison to a vgrsion split of thg WOBT' The ﬁ.rst approach, thiat node methodis based on the
As for the WOBT.’ a key_spht will be perform_ed immedi- idea that each node, index node or leaf with data items is fat
ately after a version split, if the current entries occupy atenou h to store all versions of all its entries. Lanka and Mays
Ieasp a given fractior) of the new block (e.g. twc_)—t_hirds). propogsed implementing such a fat node e{s a set of blocis,
— The isolated-key-split policyperforms a key split if at one block per version, and a version block, containing ref-
least a given fraction of the entries (e.g. two-thirds) of theerences to each of the blocks. Although query and update
overfull node belongs to the current version. Otherwise, ffici ; . o> o Ihased on
a version split with the current version is performed. In efficiency for any given versiod is O(log, m?,) [bas
comparison with the two split policies described above the assumption that the root block for versiboan be ac-
‘cessed in time)(1)], this obviously leads to storage cost of

this split pc?llcy red_uces rgdyndancy and ther'ef.ore Stor'@(l) blocks per update. Moreover, it is doubtful whether one
age space: a version split is not performed if it would

be immediately followed by a key split. The disadvan- physical block is sufficient to implement a version block, as

. L . . __assumed in the paper.
tage of this policy is that by a key split the dead entries , .
of the block are spread over two blocks. This decreases The fat f'e.ld methqu an improvement on the fat node
the performance for range queries to non-current ver-methOd' storing entries of d|f_ferent+ver5|ons in the same
sions. Consequently, in contrast to the MVBT it is not block. To desc_:nbe which versm_nsB -tree entry _bellongs.
guaranteed that a blbck contains for each version eithe?o’ each entry is extended by a field representing its insertion

no entries or@(b) entries. Then, a range query in the version and the set of its deletion versions. Applying the fat

worst case require®(IV/b) blocks, independent of the field method to our multiversion data, the structure of an

size of the response set and independent of the number g eltgi;w 32?;1);0(:??0223 hg\I/S%Tcgrr:rﬁrgglza% s?hgnl\l/ly\/%rjre
records in the corresponding version. In comparison with ' P X

the TSBT, the MVBT requires more storage space [butthe fa}t field method guarantees for each 'block and gach ver-
sion in the block that a number of entries proportional to

it is still O(V)] to cluster versions appropriately such . o i .
that range queries can be answered aitog, N +7/b) the block capacity (namely 50%) is storepl in that block. If
; for any version less than half of the entries belong to that
disk accesses. . : . . .
version, a version split and a merge is performed. The split
For index blocks, split policies cannot be the same as forpolicy is a version split, followed by a key split if the block
data blocks. The problem of using data block split policiesis still overfull. In contrast to the MVBT, for the fat field
on index nodes is the following: a dead index block may still method a block may be full after split or merge. That means
contain references to live blocks on the next lower level ofthat after a constant number of updates, the next split or

— The WOBT policy is the split policy as used in the

274

merge may be triggered, leading to a worst-case storage coguarantees do not hold for the single-version structure in the
of ©(1) blocks per update. As for the fat node method, thefirst place. However, we do not know in sufficient generality
guery performance analysis for the fat field method is basedhow the performance of an arbitrary external access structure
on the assumption that each version block fits into one physehanges if it is transformed into a multiversion structure
ical block. This assumption is not realistic for organizing a along the lines of our technique.

high number of versions in the structure.

. The third approach proposed by L_anka an.d Mays J(rlggl)AcknowledgementsWe want to thank an anonymous referee for an ex-
is the pure version block methodn this technique, &3"- traordinary effort and thorough discussion that led to a great improvement
tree index is built over the key values of the data items.in the presentation of the paper. This work was partially supported by grants
This technique does not give any selectivity according toESPRIT 6881 of the European Community and Wig810/2-5 of the Deutsche
versions. Forschungsgemeinschaft DFG.
As a result, we conclude that the approaches for multi-
version B-trees proposed in the literature have their merits
in exposing many interesting ideas and achieving good perReferences
formance in one or the other aspect. Nevertheless, none of _ _ ,
them achieves asymptotic worst-case optimality both in thé3arghou_t| NS, Kaiser GE (1991) Concurr.ency control in advanced database
. : . applications. ACM Comput Surv 23:269-317
time for all operations _and m_ space. Th,erefore' W_e feel th ecker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1993) On optimal
MVBT to be a worthwhile addition to the list of multiversion multiversion access structures. In: 3rd International Symposium on
external B-trees. Large Spatial Databases. (Lecture Notes in Computer Science, vol 692)
Springer, Berlin Heidelberg New York, pp 123-141
Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) Ther&e: an
efficient and robust access method for points and rectangles. ACM
SIGMOD International Conference on Management of Data 19:322—
) . 331
In this paper, we have presented a technique to tranSgentiey JL (1977) Algorithms for Klee's rectangle problems. Computer
form certain single-version hierarchical external storage ac- Science Department, Carnegie-Mellon University, Pittsburg, Pa

cess structures into multiversion structures. We have showRernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and
that our technique delivers multiversion capabilities with no _ recovery in database systems. Addison Wesley, Reading, Mass
change in asymptotic worst-case performance for B-trees, if:ln‘ford J, Ariav G (1986) Temporal data management: models and systems.

that th t block f ted P In: Ariav G, Clifford J (eds) New directions for database systems.
we assume that the root DIOCK Tor a requested version Is given Ablex, Norwood, NJ, pp 168-186

from the applic_ation context. Otherwise, a search StrUCtUréyriscoll JR, Sarnak N, Sleator DD, Tarjan RE (1989) Making data structures
for the appropriate root block can be tuned to the particular persistent. 3 Comput Syst Sci 38:86-124
requirements. The properties of B-trees that we have useBaston M (1986) Key-sequence data sets on indelible storage. IBM J Res

include the following characteristics of access structures: Dev 30:230-241 o
Elmasri R, Wuu G, Kim Y-J (1990) The time index: an access structure

1. The access structure is a rooted tree of external storage for temporal data. 16th International Conference on Very Large Data
blocks. Bases, pp 1-12
2. Data items are stored in the leaves (data b|0CkS) of thglmasri R, Wuu G, Kim Y-J (1991) Efficient implementation techniques

. . . o for the time index. Seventh IEEE International Conference on Data
tree; the inner nodes (directory blocks) store routing in- Engineering, pp 102-111

6 Conclusion

formation. _ Freeston MW (1987) The BANG-file: a new kind of grid file. ACM
3. The tree is balanced, typically, all leaves are on the same sIGMOD International Conference on Management of Data 16:260—
level. 269

4. The tree can be restructured by splitting blocks or byGonnet GH, Baeza-Yates R (1991) Handbook of algorithms and data struc-

merging blocks with siblings along a path between the fures: in PASCAL and C. Addison-Wesley, Reading, Mass _
root and a leaf Greene, D (1989) An implementation and performance analysis of spatial

. . access methods. Fifth IEEE International Conference on Data Engi-
5. Ablock split can be balanced; that is, each of the two re- heering, pp 606-615 g

sulting blocks is guaranteed to contain at least a constantunther O, Bilmes J (1991) Tree-based access methods for spatial
fractiona, 0 < o < 0.5, of the entries. databases: implementation and performance evaluation. IEEE Trans
. . L . Knowl Data Eng 3:342-356
Single-version access structures satisfying these requiresyttman A (1984) R-trees: a dynamic index structure for spatial search-
ments are therefore the prime candidates for carrying over ing. ACM SIGMOD International Conference on Management of Data
and applying our technique. Examples of such access struc- 12:47-57
tures other than the B-tree include the ceII-treémtBler and Huddlestc:jnI S, Mehlhorrfl K (1982) A new data structure for representing
: : sorted lists. Acta Inform 17:157-184
B"”?es 1991)’ the BANG file (FreeSton 1987)‘ and the R-tree anellakis PC, Ramaswamy S, Vengroff DE, Vitter JS (1993) Indexing for
famlly (GUttman 1984' Green_e 1989, Beckmann et al. 1990), data models with constraints and classes. ACM SIGACT-SIGMOD-
whenever reinsertion of data items can be replaced by block siGART Symposium on Principles of Database Systems 12:233-243
merge without loss of geometric clustering. Note that thekatz RH (1990) Towards a unified framework for version modeling in
data items are not limited to one-dimensional points. engineering databases. ACM Comput Surv 22:375-408
We Conjecture that our technique may be useful also forKoIo(\j/sonb C, Stongrt:raker M (1989) Ilndexifng techniques for historical
. : atabases. Fifth IEEE International Conference on Data Engineering,
access structures that fjo not satisfy all of our requirements, op 127137
such as hlerarc_hlcal g”d files. In that case, the perfor_mancﬂolovson C, Stonebraker M (1991) Segment indexes: dynamic indexing
guarantees derived for the MVBT do not carry over without techniques for multi-dimensional interval data. ACM SIGMOD Inter-

change. This is clearly due to the fact that these performance national Conference on Management of Data 20:138-147

275

Lanka S, Mays E (1991) Fully persisteBt'—trees. ACM SIGMOD Inter- Segev A, Gunadhi H (1989) Event-join optimization in temporal relational
national Conference on Management of Data 20:426-435 databases. 15th International Conference on Very Large Data Bases,
Lomet D, Salzberg B (1989) Access methods for multiversion data. ACM pp 205-215
SIGMOD International Conference on Management of Data 18:315-Tansel, AU, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass R
324 (1993) Temporal databases — theory, design, implementation. Ben-
Lomet D, Salzberg B (1990) The performance of a multiversion access jamin/Cummings, Redwood City, Calif
method. ACM SIGMOD International Conference on Management of Vitter JS, (1991) Efficient memory access in large-scale computation. In:
Data 19:353-363 8th Annual Symposium on Theoretical Aspects of Computer Science.
Mehlhorn K, Tsakalidis A (1990) Data structures. In: Leeuwen J van (Lecture Notes in Computer Science, vol 480) Springer, Berlin Hei-
(ed) Handbook of theoretical computer science, vol A: Algorithms and delberg New York, pp 26-41
complexity. Elsevier, Amsterdam, pp 301-341
Sedgewick R (1988) Algorithms. Addison-Wesley, Reading, Mass

