
The VLDB Journal (1996) 5: 264–275 The VLDB Journal
c© Springer-Verlag 1996

An asymptotically optimal multiversion B-tree

Bruno Becker2, Stephan Gschwind2, Thomas Ohler2, Bernhard Seeger3, Peter Widmayer1

1 Institut für Theoretische Informatik, ETH Zentrum, CH-8092 Zürich, Switzerland
Tel. ++41-1-63-27400, Fax ++41-1-63-21172, email: widmayer@inf.ethz.ch
2 isys software gmbh, Ensisheimer Str. 2a, D–79110 Freiburg, Germany
3 Philipps-Universiẗat Marburg, Fachbereich Mathematik, Fachgebiet Informatik, Hans-Meerwein-Strasse, D–35032 Marburg, Germany

Abstract. In a variety of applications, we need to keep track
of the development of a data set over time. For maintain-
ing and querying these multiversion data efficiently, external
storage structures are an absolute necessity. We propose a
multiversion B-tree that supports insertions and deletions of
data items at the current version and range queries and exact
match queries for any version, current or past. Our multi-
version B-tree is asymptotically optimal in the sense that
the time and space bounds are asymptotically the same as
those of the (single-version) B-tree in the worst case. The
technique we present for transforming a (single-version) B-
tree into a multiversion B-tree is quite general: it applies
to a number of hierarchical external access structures with
certain properties directly, and it can be modified for others.

Key words: Information systems – Physical design – Access
methods – Versioned data

1 Introduction

The importance of not only maintaining data in their latest
version, but also keeping track of their development over
time, has been widely recognized (Tansel et al. 1993). Ver-
sion data in engineering databases (Katz 1990) and time-
oriented data (Clifford and Ariav 1986) are two prime ex-
amples for situations in which the concepts of versions and
time are visible to the user. In multiversion concurrency con-
trol (Barghouti and Kaiser 1991; Bernstein et al. 1987), these
concepts are transparent to the user, but they are used by the
system (e.g. the scheduler) for concurrency control and re-
covery purposes. In this paper, we are concerned with access
structures that support version-based operations on external
storage efficiently. We follow the convention of Bernstein et
al. (1987) and Driscoll et al. (1989) in that each update to
the data creates a new version; note that this differs from the
terminology in engineering databases, where an explicit op-
eration exists for creating versions, and versions of design
objects are equipped with semantic properties and mecha-
nisms, such as inheritance or change propagation. Our choice

Correspondence to: P. Widmayer

of creating a new version after each update turns out not to
be restrictive, in the sense that the data-structuring method
we propose can be easily adapted to create versions only on
request, without loss of efficiency.

We are interested inasymptotically worst-caseefficient
access structures forexternal storagethat support at leastin-
sertions, deletions, exact-match queries(associative search)
– thedictionary operations(Sedgewick 1988; Mehlhorn and
Tsakalidis 1990; Gonnet and Baeza-Yates 1991) – andrange
queriesin addition to application-specific operations such as
purging of old enough versions in concurrency control. That
is, we aim at a theoretical understanding of the fundamentals
of multiversion access to data, with little attention to con-
stant factors [studies with this flavor have attracted interest
in other areas, too (Kanellakis et al. 1993, Vitter 1991)]. We
limit our discussion to the situation in which a change can
only be applied to the current version, whereas queries can
be performed on any version, current or past. Some authors
call this a management problem forpartially persistentdata;
we call an access structure that supports the required oper-
ations efficiently amultiversionstructure.

The problem in designing a multiversion access structure
lies in the fact that data are on external storage. Formain
memory, there is a recipe for designing a multiversion struc-
ture, given a single-version structure. More precisely, any
single-version main memory data structure in a very general
class, based on pointers from record to record, can be trans-
formed into a multiversion structure, with no change in the
amortized asymptotic worst-case time and space costs, by
applying a general technique (Driscoll et al. 1989). For the
special case of balanced binary search trees, this efficiency
is achieved even in the worst case per operation – clearly a
perfect result.

Given quite a general recipe for transforming single-
version main memory data structures into multiversion struc-
tures, it is an obvious temptation to apply that recipe ac-
cordingly to external access structures. This can be done
by simply viewing a block in the external structure as a
record in the main memory structure. At first glance, this
models block access operations well; unfortunately, it does
not model storage space appropriately, in that the size of
a block is not taken into consideration. That is, a block is

265

viewed to store a constant number of data items, and the
constant is of no concern. Even worse, the direct applica-
tion of the recipe consumes one block of storage space for
each data item. However, no external data structure can ever
be satisfactory unless it stores significantly more than one
data item in a block on average; balanced structures, such
as the B-tree variants, actually require to store in each block
at least some constant fraction of the number of items the
block can hold (the latter being called the block capacityb).
As a consequence, the space efficiency of this approach is
clearly unacceptable, and this also entails an unacceptable
time complexity.

It is the contribution of this paper1 to propose a technique
for transforming single-versionexternal access structures
into multiversion structures, at the cost of a constant factor
in time and space requirements, where the block capacityb
is not considered to be a constant. That is, the asymptotic
bounds for the worst case remain the same as for the corre-
sponding single-version structure, but the involved constants
change. We call such a multiversion structureasymptotically
optimal, because the asymptotic worst-case bounds certainly
cannot decrease by adding multiversion capabilities to a data
structure. Our result holds for a certain class of hierarchical
external access structures. It is worth noting that this class
contains the B-tree and its variants, not only because the
B-tree is an ubiquitous external data structure, but also be-
cause an asymptotically optimal multiversion B-tree has not
been obtained so far, despite the considerable interest this
problem has received in the literature. Since we are inter-
ested primarily in the asymptotic efficiency, we will discuss
the involved constants only later in the paper. Multiversion
structures with excellent asymptotic worst-case bounds for
insert and exact-match operations (butnot for delete) and
for related problems have been obtained previously; we will
discuss them in some detail later in the paper.

For the sake of concreteness, we base the presentation
of our technique in this paper on B-trees; it is implicit how
to apply our technique to other hierarchical structures. Each
data item stored in the tree consists of akey and aninforma-
tion part; access to data items is by key only, and the keys
are supposed to be taken from some linearly ordered set. Let
us restrict our presentation to the following operations:

– Insert (key,info): insert a record with givenkey and info
component into thecurrent version; this operation cre-
ates a new version.

– Delete (key): delete the (unique) record with givenkey
from the current version; this operation creates a new
version.

– Exact-match query (key,version): return the (unique) rec-
ord with givenkey in the givenversion; this operation
does not create a new version.

– Range query (lowkey,highkey,version): return all records
whose key lies between the givenlowkey and the given
highkey in the given version; this operation does not
create a new version.

Before briefly reviewing the previous approaches of de-
signing a B-tree that supports these operations efficiently, let

1 A preliminary version of this paper has been published (Becker et al.
1993).

us state the strongest efficiency requirements that a multiver-
sion B-tree can be expected to satisfy. To this end, consider
a sequence ofN update operations (insert or delete), applied
to the initially empty structure, and letmi be the number of
data items present after thei-th update (we say, in versioni),
0 ≤ i ≤ N . Then a multiversion B-tree with the following
properties holding for eachi (all bounds are for the worst
case) is the best we can expect:

– For the firsti versions, altogether the tree requiresO(i/b)
blocks of storage space.

– The (i+ 1)-th update (insertion or deletion) accesses and
modifiesO(logbmi) blocks.

– An exact-match query in versioni accessesO(logbmi)
blocks.

– A range query in versioni that returnsr records accesses
O(logbmi + r/b) blocks.

The reason why these are lower bounds is the following.
For a query to any versioni, the required efficiency is the
same as if the data present in versioni were maintained
separately in their own B-tree. For insertions and deletions
on the current version, the required efficiency is the same as
for a (single-version) B-tree maintaining the data set valid
for the current version. In other words, a better multiversion
B-tree would immediately yield a better B-tree.

This paper presents a multiversion B-tree structure sat-
isfying these efficiency requirements, under the assumption
that in a query, access to the root of the requested B-tree
has only constant cost [we could even tolerate a cost of
O(logbmi), to be asymptotically precise]. We have thus sep-
arated the concerns of, first, identifying the requested ver-
sion, and, second, querying the requested version (that is,
the root of the appropriate B-tree). This separation of con-
cerns makes sense because in an application of a multiver-
sion structure, access to the requested version may be sup-
ported from the context, such as in concurrency control. For
instance, the block address of the requested root block may
directly be known (possibly from previous accesses) or only
a constant number of versions might be relevant for queries,
such that the root block can be accessed in timeO(1). This
assumption has been made in other papers (Driscoll et al.
1989; Lanka and Mays 1991), allowing the investigation to
concentrate on querying within a version. In this paper, we
follow this view and try to take advantage of a possibly
direct version access for querying a version. We therefore
concern ourselves with ways to identify the requested ver-
sion only later, with little emphasis, since any of a number
of search techniques can be applied for this purpose. Note
that if we do not separate these issues, but instead assume
that the root of the requested B-tree needs to be identified
through a search operation,Ω(logbN) instead ofΩ(logbmi)
is a lower bound on the run-time of a query, since one item
out of as many asN items needs to be found.

In building multiversion structures, there is a general
tradeoff between storage space, update time and query time.
For instance, building an extra copy of the structure at each
update is extremely slow for updates and extremely costly in
space, but extremely fast for queries. Near the other extreme,
Kolovson and Stonebraker (1989) view versions (time) as an
extra dimension and store one-dimensional version intervals
in two-dimensional space in an R-tree. As a consequence of

266

using an R-tree, they can also maintain one-dimensional key
intervals (and not only single keys). This gives good storage
space efficiency, but query efficiency need not be as good,
because the R-tree gives no guarantee on selectivity. That
is, even if access to versioni is taken care of in the context,
the time to answer a query on versioni does not depend
on the number of items in that version only, but instead
on the total number of all updates. We will discuss other
multiversion B-trees suggested in the literature in Sect. 5;
none of them achieves asymptotically optimal performance
in time and space.

In Sect. 2, we present an optimal multiversion B-tree.
Our description suggests a rather general method for trans-
forming hierarchical external data structures into optimal
multiversion structures, provided that operations proceed in
a certain way along paths between the root and the leaves.
But even if the external single version data structure does
not precisely follow the operation pattern we request (as in
the case of R-trees, for instance), we conjecture that the ba-
sic ideas carry over to an extent that makes a corresponding
multiversion structure competitive and useful. Section 3 pro-
vides an efficiency analysis of our multiversion B-tree, and
Sect. 4 adds some thoughts around the main result. Section
5 puts the obtained result into perspective, by comparing it
with previous work, and Sect. 6 concludes the paper.

2 An optimal multiversion B-tree

We present our technique to transform single-version exter-
nal access structures into multiversion structures using the
example of the leaf-oriented B-tree.

2.1 The basic idea

To achieve the desired behavior, we associate insertion and
deletion versions with items, since items of different life-
spans need to be stored in the same block. Let< key,
in version, delversion, info> denote a data item, stored
in a leaf, with akey that is unique for any given version,
an associatedinformation, and a lifespan from its inser-
tion version in version to its deletion versiondel version.
Similarly, an entry in an inner node of the tree is de-
noted by< router, in version, delversion, reference>; the
router, together with thein version and del version infor-
mation on thereferencedsubtree, guides the search for a
data item. For example, the B-tree uses a separator key and
the R-tree uses a rectangle as a router.

From a bird’s eye view, the multiversion B-tree is a
directed acyclic graph of B-tree nodes that results from cer-
tain incremental changes to an initial B-tree. In particular,
the multiversion B-tree embeds a number of B-trees; it has a
number of B-tree root nodes that partition the versions from
the first to the current one in such a way that each B-tree
root stands for an interval of versions. A query for a given
version can then be answered by entering the multiversion
B-tree at the corresponding root.

Each update (insert or delete operation) creates a new
version; thei-th update creates versioni. An entry is said
to be of versioni if its lifespan containsi. A block is said

to be live if it has not been copied, anddead otherwise. In
a live block, deletion version∗ for an entry denotes that the
entry has not yet been deleted at present; in a dead block, it
indicates that the entry has not been deleted before the block
died. For each versioni and each blockA except the roots
of versions, we require that the number of entries of version
i in block A is either zero or at leastd, whereb = k · d for
block capacityb and some constantk (assume for simplicity
that b, k, d are all integers andb is the same for directory
and data blocks); we call this theweak version condition.

Operations that do not entail structural changes are per-
formed in the straightforward way that can be inferred from
the single-version structure by taking the lifespan of entries
into account. That is, an entry inserted by update operation
i into a block carries a lifespan of [i, ∗) at the time of inser-
tion; deletion of an entry by update operationi from a block
changes itsdel version from ∗ to i.

Structural changes are triggered in two ways. First, a
block overflow occurs as the result of an insertion of an
entry into a block that already containsb entries. A block
underflow, as in B–trees, for example, cannot occur, since
entries are never removed from blocks. However, the weak
version condition may be violated in a non-root block as a
result of a deletion; such aweak version underflowoccurs if
an entry is deleted in a block with exactlyd current entries.
Moreover, we say that a weak version underflow occurs in
the root of the present version if there is only one live entry
(except for the pathological case in which the tree contains
only one record in the present version).

The structural modification after a block overflow copies
the block and removes all but the current entries from the
copy. We call this operation aversion split; it is com-
parable to a time split at the current time in Lomet and
Salzberg (1989); equivalently, it may be compared to the
node-copying operation of Driscoll et al. (1989). In general,
a copy produced by this version split may be an almost full
block. In that case, a few subsequent insertions would again
trigger a version split, resulting in a space cost ofΘ(1) block
per insertion. To avoid this and the similar phenomenon of
an almost empty block, we request that immediately after
a version split, at leastε · d + 1 insert operations or delete
operations are necessary to arrive at the next block overflow
or version underflow in that block, for some constantε to be
defined more precisely in the next section (assume for sim-
plicity that ε · d is integer). As a consequence, the number
of current entries after a version split must be in the range
from (1 +ε) · d to (k− ε) · d; we call this thestrong version
condition. If a version split leads to less than (1+ε)·d entries
– we say: astrong version underflowoccurs – a merge is
attempted with a copy of a sibling block containing only its
current entries. If necessary, this merge must be followed by
a version-independent split according to the key values of
the items in the block – akey split. Similarly, if a version
split leads to more than (k−ε)·d entries in a block – we say:
a strong version overflowoccurs – a key split is performed.

2.2 An example

To illustrate the basic ideas described above, let us discuss
the following example of a multiversion B-tree that orga-

267

2nd version

A

<10,1,*>
<15,1,*>

<35,1,*>

<25,1,*>
<30,1*>

<40,2,*>

R

<45,1,*,B>
<10,1,*,A>

A

<10,1,*>
<15,1,*>

<35,1,*>

<25,1,*>
<30,1*>

B

<45,1,*>
<55,1,*>
<65,1,*>
<70,1,*>
<75,1,*>
<80,1,*>

3rd version

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

(a) (b)

Fig. 1. Development of the multiversion B-tree up to the third version

A

<10,1,*>
<15,1,5>

<35,1,4>
<40,2,*>

<30,1,6>
<25,1,7>

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

R

<45,1,*,B>
<10,1,*,A>

(a)

R

<45,1,*,B>

A

<10,1,*>
<40,2,*>

A

<10,1,*>

<40,2,*>

<15,1,5>
<25,1,7>
<30,1,6>
<35,1,4>

< 5,8,*>

<10,1,8,A>

(b)

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

A*

< 5,8,*,A*>

Fig. 2. aThe seventh version of the multiversion B-tree;b the multiversion
B-tree after version split of block A

nizes records with an integer key. The initial situation (i.e.
first version) of our multiversion B-tree is given in Fig. 1a.

For the sake of simplicity of our example, we assume
that already 11 data records are in the first version. The
multiversion B-tree consists of three blocks: a rootR and
two leavesA and B. The parameters of the multiversion
B-tree are set up in the following way:b = 6, d = 2, andε =
0.5. Hence, after a structural change, a new block contains
at least three and at most five current entries.

The second version is created by the operationinsert(40),
adding a new entry to blockA. In Figure 1b, for the second
and the third version, the result of the corresponding update
operation is shown by depicting the block which has been
modified. The next operationdelete(65) creates the third ver-
sion. As shown in Fig. 1b, for the deletion of a record, the
deletion version of the corresponding entry is set to the cur-
rent version, overwriting the∗ marker.

To be able to illustrate different underflow and over-
flow situations, let us assume further updates –delete(35),
delete(15), delete(30) anddelete(25) – resulting in the sev-
enth version of the multiversion B-tree (Fig. 2a).

Now, let us consider two different cases for creating
the eighth version of the multiversion B-tree, illustrating the
various types of structural changes.

In the first case, we consider the operationinsert(5) to
create the eighth version of the multiversion B-tree. This
results in a block overflow of blockA that is eliminated by
performing a version split on that block. All current entries
of blockA are now copied into a new live blockA*. Because

A

<10,1,*>
<15,1,5>
<25,1,7>
<30,1,6>
<35,1,4>
<40,2,8>

R

<10,1,8,A>
<45,1,8,B>
<10,8,*,C>
<70,8,*,D>

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

<10,1,*>
<45,1,*>
<55,1,*>

C

<70,1,*>
<75,1,*>
<80,1,*>

D

Fig. 3. Structural changes after weak version underflow of blockA

<10,1,8,A>
<45,1,8,B>
<10,8,11,C>
<70,8,15,D>

<70,18,*,G>

<10,11,*,E>
<70,15,18,F>

R1 R2

<10,11,*,E>
<70,18,*,G>

<10,1,8,A>
<45,1,8,B>
<10,8,11,C>

R1

<70,8,15,D>
<10,11,*,E>
<70,15,18,F>

Fig. 4. Creation of two rootsR1, R2 by version split of root blockR1

block A* fulfills the strong version condition, no further
restructuring is needed. Eventually, the parent blockR is
updated accordingly (Fig. 2b).

In the second case, the eighth version is created by oper-
ation delete(40), which leads to a weak version underflow,
i.e. the number of current entries in blockA is less thand
(=2). Then, a version split is performed on blockA, copying
the current entries of blockA into a new blockA*. Now
a strong version underflow occurs inA*, which is treated
by merging this block with a block resulting from version
split of a sibling block. In our example,B is found to be a
sibling. Accordingly, by version split a temporary blockB*
is created fromB and blocksA* andB* are merged. As in
our example, a block resulting from a merge can violate the
strong version condition. To treat the strong version over-
flow, a key split is performed, creating two new blocksC
andD. Because a key split is always balanced for a B-tree,
blocksC andD fulfill the strong version condition. Even-
tually, the parent blockR has to be updated by overwriting
the ∗ of the entries which refer to blockA andB and in-
serting two new current entries, referring to blocksC andD
(Fig. 3). Now, blocksA andB are dead and blocksC and
D are live.

Now let us consider an exact match query in the multi-
version B-tree of Fig. 3. A record with key 25 is requested
in version 5. First, the root of version 5 is accessed; in our
example this is blockR. We consider only the entries in the
root that belong to version 5. Among these entries we choose
the one whose separator key is the greatest key lower than
the search key 25 and follow the corresponding reference
to the next block. In our example, the search is directed to
blockA. Eventually, the desired entry<25,1,7> is found in
block A.

As mentioned before, our multiversion B-tree is not a
tree, but a directed acyclic graph. In general, several root

268

<25,18,*,B>
<10,18,*,A>

<70,14,*,F>
<55,14,25,E>

R1

<55,25,*,G>

<40,21,*,D>
<30,21,*,C>

<10,25,*,R3>
<40,25,*,R4>

R2

<25,18,*,B>
<10,18,*,A>

R3

<30,21,*,C> <70,14,*,F>
<55,25,*,G>
<40,21,*,D>

R4

Fig. 5. Key split after strong version overflow of root blockR1

<10,32,*,I>
<40,21,*,D>

<70,14,*,F>
<55,25,*,G>

R5

R3

<30,21,32,C>

<10,32,*,I>

<25,18,29,B>
<10,18,29,A>

<10,29,32,H>
<70,14,*,F>
<55,25,*,G>
<40,21,*,D>

R4

R2

<10,25,32,R3>
<40,25,32,R4>

Fig. 6. Weak version underflow of root blockR2

blocks may exist. This and the effect of structural changes
in root blocks is illustrated in Figs. 4–6.

Figure 4 shows an overfull root blockR1 and the two
new rootsR1, R2 resulting from version split of blockR1.
Block R2 is the root of the current version, version 18,
whereas blockR1 is the root of versions 1–17. References
to rootsR1 andR2 can be stored in an appropriate data
structure, supporting access to the root blocks over versions.

Figure 5 illustrates the case that after the version split
a strong version overflow occurs and a key split becomes
necessary. In this case, a new root block (R2) is allocated,
which stores entries referring to the two blocksR3 andR4
resulting from key split of the copy of rootR1. By that, the
height of the subtree valid for the current version, version
25, has grown.

Figure 6 shows the shrinking of a subtree. By several
data block merges, the number of current entries inR3
has shrunk, a weak version underflow occurred. To handle
this underflow, block copies ofR3 andR4 are created and
merged into a blockR5. Since this causes a weak version
underflow of blockR2, R5 becomes the new root block
valid for the current version.

2.3 The multiversion operations in detail

To make these restructuring operations more precise, let us
now present the main points in a semi-formal algorithmic
notation. In order to present the main idea without obstruct-
ing irrelevant details, we assume that an exact-match query

in the single-version structure returns a block in which the
searched item is stored if it is present in the structure. For
the same reason, we ignore the treatment of the end of the
recursion in our operations, when a change propagates up to
the root of the tree.

To insert a data item, we proceed as follows:

insert key k, current versioni, information info :
{assumek is not yet present}
exact-match query fork in versioni leads to blockA;
blockinsert < k, i, ∗, info > into A.

Here,blockinsert is defined as follows:

blockinsert entry e into blockA:
entere into A;
{this may momentarily lead to a block overflow inA,
conceptually; such an overflow is eliminated immedi-
ately}
if block overflowof A then

version split: copy current entries ofA into a new
block B;
blockinsert entry referencingB into father ofA;
if strong version underflowof B then

mergeB
elsif strong version overflowof B then

treat strong version overflow of B.

Note that after a version split, the deletion version stored
in the father entry referring to the dead block must be ad-
justed to represent the version of the version split, in order
to guide subsequent searches correctly.

Merging a block makes use of the fact that a suitable
sibling can always be found in the access structure:

merge block B:
identify a siblingD of B to be merged;
version split: copy current entries ofD into a new
block E; uniteB andE into B and discardE;
if strong version overflowof B then

treat strong version overflow of B
{no weak version underflow possible in father ofB}

else
adapt router toB in father ofB;
check weak version underflowof father ofB.

Essentially, a strong version overflow is treated by a key
split of the entries according to their key or router values:

treat strong version overflow of block A:
key split: distribute entries ofA evenly amongA and
B; adapt router toA in father ofA;
blockinsert entry referencingB into father ofA.

A weak version underflow leads to a version split and a
merge:

check weak version underflowof block A:
if weak version underflowof A then

version split: copy current entries ofA into a new
block B;
blockinsert entry referencingB into father ofA;
mergeB.

269

This completes the description of the insertion of an item
into a block. To delete an item, we proceed as follows:

deletekey k, current versioni {assumek is present}:
exact match query fork in versioni leads to blockA;
blockdeletek, i from A.

blockdeletekey k, versioni from blockA:
change entry< k, i

′
, ∗, info > into < k, i

′
, i, info >

in A;
check weak version underflowof A.

This completes the more detailed presentation of update
operations. Let us repeat that the multiversion structure de-
fined in this way is not a tree, but a directed acyclic graph. In
general, more than oneroot block may exist. Since the num-
ber of root blocks to be expected is very small, maintaining
these blocks is not a major data organization problem; see
Sect. 4 for a suggestion.

In the next section, we show in an analysis that the basic
operations actually do lead to the desired behavior.

3 Efficiency analysis

Recall that a block islive if it was not copied up to the
current version,dead otherwise.N is the number of update
operations performed on the data structure from the begin-
ning up to the current version,mi is the number of data
items present in versioni.

What are the restrictions for the choice ofk andε? First,
after akey split, the resulting blocks must fulfill the strong
version condition. Before a key split on a blockA is per-
formed,A contains at least (k−ε)·d+1 entries. After the key
split operation that distributes the entries ofA among two
blocks, both blocks must contain at least (1 +ε) · d entries.
Therefore, the following inequality must hold:

(k − ε) · d + 1 ≥ 1
α · (1 + ε) · d

or, equivalently, k ≥ 1
α + (1 + 1

α) · ε− 1
d

(1)

Here,α depends on the underlying access structure. It de-
notes the constant fraction of data entries that are guaranteed
to be in a new node. For example,α = 0.5 is fulfilled for
B-trees, i.e. inequality 1 is equivalent tok ≥ 2 + 3 · ε− 1

d .
Second, no strong version underflow is allowed for a

block A resulting from amergeoperation. Before a merge
operation is performed, together there are at least 2· d −
1 current entries in the blocks which have to be merged.
Therefore we have:

2 · d− 1 ≥ (1 + ε) · d
or, equivalently, ε ≤ 1− 1

d

(2)

3.1 Run-time analysis

As introduced before, for our multiversion B-tree we have
separated the concerns of identifying the root block of the
requested version and querying the requested version. For
the following analysis we assume that, supported from the
application context, the appropriate root block is given.

Recall that our multiversion structures are based on leaf-
oriented balanced-access structures. The data blocks are on
level 0, the directory blocks are on level 1,2,. . . . Then the
number of block accesses for searching a data itemx in
versioni is at mostdlogdmie, because each directory block
on the path from the root of versioni to the leaf wherex is
stored has at leastd references ofi. Given direct access to
the root of the version in question, we conclude:

Theorem 1 The number of block accesses for searching a
data item in versioni is dlogdmie in the worst case.

The arguments above can be extended to range queries that
are answered by traversing the corresponding umbrella-like
part of a subtree of the tree for the queried version:

Theorem 2 The number of block accesses for answering
a range query in versioni that returns r data items is
O(dlogdmie + r/d) in the worst case.

The (i+ 1)-th update operation first performs an exact match
query in versioni and then modifies at least one data block
A. If A violates the weak version condition, up to three other
data blocks have to be created or modified. In this case, the
parent ofA – sayA′ – has to be modified. Again, this can
lead to a violation of the weak version condition ofA′. In the
worst case, this situation occurs on each directory level up
to the root of versioni. On each directory level, at most five
directory blocks have to be accessed, modified or created.
Therefore we have:

Theorem 3 The number of block accesses and modifications
for the(i+1)-th update operation is5·dlogdmie in the worst
case.

3.2 Space analysis

We analyze the worst-case space utilization over the se-
quence of theN update operations. The crucial factor in
the analysis is the fact that aversion split, if necessary fol-
lowed by amergeor a key split, leads to new blocks which
fulfill the strong version condition. Therefore we need a cer-
tain number of update operations on these blocks before the
next underflow or overflow situation on these blocks can oc-
cur. To be more precise, we consider the utilization of data
blocks and of directory blocks separately.

For data blocks, one update operation can lead to at most
one overflow or underflow situation. We distinguish four
types of situations:

– Version split only:One blockA becomes dead and one
new live blockB is created.A was the first data block
in the data structure or has fulfilled initially – after its
creation – the strong version condition. If it becomes
overfull, at leastε · d + 1 operations must have taken
place onA since its creation. So the amortized space
cost for each of these operations is at mostk·d

ε·d+1.
– Version split and key split:One blockA becomes dead

and two new live blocksB1 andB2 are created. Again,
at leastε · d + 1 operations must have taken place onA
and therefore the amortized space cost for each of these
operations is at most2·k·dε·d+1.

270

– Version split and merge without key split:Two blocks
A1 andA2 become dead and one new live blockB is
created. OnA1 or A2 at leastε · d + 1 operations must
have taken place. Thus, the amortized space cost for each
of these operations is at mostk·dε·d+1.

– Version split and merge with key split:Two blocksA1
andA2 become dead and two new live blocksB1 and
B2 are created. Again, onA1 or A2 at leastε · d + 1
operations must have taken place. The amortized space
cost for each of these operations is at most2·k·d

ε·d+1.

In all cases the amortized data block space cost per up-
date operationSdat is at most

2 · k · d
ε · d + 1

<
2 · k
ε

= O(1) (3)

For directory blocks, one update operation can lead to at
most oneblock overflowor version underflowsituation on
each directory level up to the directory level of theroot in
the current version. LetL denote the maximum level that
occurs during theN operations. To look precisely at the
different underflow and overflow situations, we distinguish
between directory blocks that are roots during their lifetime
and inner blocks.

Let Al denote aninner directory blockof level l. We
call a reference inAl dead, if it is a reference to a dead
block, live otherwise. The following situations can cause a
weak version underflow or a block overflow ofAl:

– One reference inAl becomes dead and one new refer-
ence has to be inserted intoAl. This can cause ablock
overflow with the creation of two new directory blocks.

– One reference inAl becomes dead and two new refer-
ences have to be inserted intoAl. This can cause ablock
overflow with the creation of two new directory blocks.

– Two references inAl become dead and one new refer-
ence has to be inserted intoAl. This can cause aweak
version underflowor a block overflow. In the case of a
weak version underflow, a sibling ofAl also becomes
dead, and up to two new directory blocks are created.

– Two references inAl become dead and two new refer-
ences have to be inserted intoAl. This can cause ablock
overflow with the creation of two new directory blocks.

Note that if a directory block is the root of the data structure
in version i, a weak version underflow does not lead to a
new copy of the block. A block overflow of a root block is
treated in the same manner as a block overflow of an inner
block.

We explain the amortized space cost per operation for
the first case. The extension to the other cases and the root
blocks is straightforward and yields the same result.Al is the
only live parent for the live blocks referenced fromAl and
has initially fulfilled the strong version condition. Therefore,
in the subtree ofAl on levell−1 at leastε ·d+1 new blocks
have been created between the creation ofAl and the block
overflow ofAl. Hence, at least (ε · d + 1) · k · d space was
used. Let us assume that the amortized space cost per update
on level l − 1 is at mostCl−1. Then it follows that at least
(ε·d+1)·k·d

Cl−1 operations have taken place in the subtree ofAl

between the creation ofAl and its block overflow. The space
cost for the version split ofAl and the subsequent key split

is 2 · k · d. Therefore, the amortized space cost per update
on level l is at most

Cl < 2 · k · d · Cl−1

(ε · d + 1) · k · d <
2
ε · d · Cl−1 (4)

for 1 ≤ l ≤ L. With C0 := Sdata, i.e. C0 = 2·k
ε (from

inequality 3), we can rewrite inequality 4:

Cl <

(
2
ε · d
)l

· C0 =

(
2
ε · d
)l

· 2 · k
ε

(5)

for 1 ≤ l ≤ L.
Therefore, the total amortized directory block space cost

per operationSdir is at most:

Sdir <
L∑
l=1

Cl =
2 · k
ε

·
L∑
l=1

(
2
ε · d
)l

(6)

For d > 2
ε , which can easily be satisfied in all practically

relevant circumstances, we get:

Sdir <
2 · k
ε

·
∞∑
l=1

(
2
ε · d
)l

= O(1) (7)

In summary, from inequalities 3 and 7 we can conclude:

Theorem 4 The worst-case amortized space cost per update
operationS = Sdat + Sdir is O(1) if d ≥ 2

ε .

In total, we get:

Theorem 5 The multiversion B-tree constructed in the de-
scribed way from the single-version B-tree is asymptotically
optimal in the worst case in time and space for all considered
operations.

The analysis shows that for a given block capacityb it is
useful for the time complexity to choosed large andk small.
To guarantee good space utilization it is useful to chooseε
maximum, that is equal to 1− 1

d , andk as small as possible
without violating inequality 1. Choosingε = 1 − 1

d gives
bounds for the strong version condition of 2· d − 1 and
(k−1) ·d+ 1. For instance, for block capacityb = 25 we get
k = 5, d = 5, andε = 0.8. In the worst case, this implies that
we have 11.5 (2·kε −1) redundant records for each key on av-
erage. Because this is quite a high number, we implemented
the multiversion B-tree and ran a number of experiments
with the above parameters andN = 100 000 update opera-
tions. It turned out that in all experiments, we had between
1.31 and 1.70 redundant records for each key on average.
Hence, our worst-case bounds are extremely pessimistic and
do not imply high constant costs on average.

4 Thoughts around the main result

In the following, we present some of the thoughts around
the main result that may be interesting or important in prac-
tice. First, we discuss the organization of the access to the
requested B-tree root; this also solves the problem of time-
oriented access, where query points in time differ from ver-
sion creation times, and of maintaining user-defined ver-
sions. Second, we show how to efficiently remove the old-
est versions, in order to save storage space. Our thoughts

271

are intended to demonstrate the high potential of adapting
the multiversion B-tree to different settings and different re-
quirements. The given list of modifications and extensions
is not meant to be exhaustive; additions to this list should
be performed as needed.

4.1 Access to the requested version

Our presentation of the multiversion B-tree so far assumes
that access to the root of a version is taken care of in the
context of the application. If this is not the case, a search
structure may be used to guide the access. As an example, a
B-tree maintaining the version intervals of the multiversion
B-tree root nodes in its leaves serves this purpose. Even in
its most direct application, this access structure to the roots
of the multiversion B-tree (we call itroot∗) allows access to
a root as well as insertion of a new root into root∗ in time
O(logb p), wherep is the number of roots being maintained.
The space efficiency of such a B-tree is obviouslyO(p).
Since p is less thandN/de, the storage cost of root∗ is
O(N/b) and the search for a key in a multiversion query
can be realized in timeO(logbN) in total, including the
search for the appropriate version.

In most cases, we expect that the number of roots is much
less thandN/de. Consider, for example, the situation when
the current version data set has been created by a sequence
of insertions only, beginning at an empty structure. Then, the
left path of the current B-tree contains all the roots of the
multiversion B-tree. Therefore, the number of roots is only
O(logbN) which is considerably less than the worst-case
results of the general case.

Furthermore, root∗ can be used to support time-oriented
queries. If our setup changes from versions to time, such
that each key has an insertion time stamp and a deletion
time stamp, root∗ supports queries for any point in time (not
necessarily coinciding with some insertion or deletion time)
in the standard B-tree fashion.

Moreover, root∗ can be tuned to achieve even higher
performance by observing that a new multiversion root can
only be added at the high end of the current version or
time spectrum. Therefore, a split of a node of root∗ can be
made totally unbalanced: the node of the lower key range
is full, whereas the node of the higher key range contains
just one key, namely the new one. As a consequence, all
nodes in root∗ are full, except those on the rightmost path.
This straightforward approach is somewhat reminiscent of
the append-only tree (Segev and Gunadhi 1989), where an
entry pointer to the rightmost node for each level of the
tree is maintained in addition, in order to favor queries to
the recent past. Then, access to the records of the current
(and recent past) version can be organized more efficiently,
leading to a path length ofO(logbmN). Therefore, the worst-
case time bound for range queries to the current version
for the MVBT tree isO(logbmN + r/b). An update costs
time O(logbN) in the worst case, because a change may
propagate up to the root of the root∗ B-tree. Amortized over
a sequence of updates, however, the worst-case cost of a
single update is onlyO(logbmN), for the following reasons:
First, in root∗, the entry pointing to the current root is found
in O(1). Second, the record to perform the update in the

current B-tree is found inO(logbmN). Third, the remaining
effort to perform the update has only constant amortized
cost (Huddleston and Mehlhorn 1982). Overall, this proves
our statement.

Other access structures may be plugged in to serve as
root∗. For instance, if a high locality of reference to nearby
versions is required, a finger search tree may be the method
of choice (Huddleston and Mehlhorn 1982). To summarize,
root∗ has the potential to be tuned to the particular applica-
tion.

4.2 Purging old versions

The operation of removing the oldest versions from disk,
the so-calledpurge operation, is very important in multi-
version access structures, because maintaining all versions
forever may be too costly in terms of storage space. Under
the assumption that old versions are accessed significantly
less frequently than newer ones, the amount of secondary
storage can be reduced substantially by moving old versions
to tertiary storage (e.g. optical disks) or, whenever the appli-
cation permits, by simply deleting them (e.g. in multiversion
concurrency control).

The deletion of versions older than a specified version
i can be supported easily in the multiversion B-tree. A
straightforward approach would be to search for all blocks
which have been split by a version split in a version less
than or equal toi. This search starts at the root blocks
valid for versioni and older. Performing a depth-first search,
all blocks fulfilling the above condition can immediately be
deallocated. The disadvantage of this approach is that it may
access many blocks for a few that can be purged. A more
efficient approach accesses only blocks that must be purged:
An additional data structure is used to keep track for each
node of the most recent (i.e. newest) version for which this
node is relevant in a query. Since this version is just the ver-
sion before the version in which the node dies, this defines
a linear order on the nodes; a simple first-in-first-out queue
will therefore suffice to perform all operations efficiently.
Whenever a node dies, a corresponding entry is added to
the tail of the queue. Whenever the oldest versions before
some versioni are to be deleted, triggered by the user or by
some other mechanism such as concurrency control, the cor-
responding head entries of the queue are removed, as well
as the corresponding multiversion B-tree nodes.

Note that the removal of a node from a multiversion B-
tree may leave the tree in an inconsistent state: there may be
pointers in the tree that point to the node that is no longer
present. Nevertheless, this inconsistency is not harmful, as
long as no search for a deleted version (older than version
i) initiates: A search may encounter a dangling pointer but
will never follow it.

5 Related work

A number of investigations on how to maintain multiver-
sion data (historical data, time-dependent data) on external
storage have been presented in the literature. Often, the goal
of these investigations has been somewhat different from

272

our goal in designing the multiversion B-tree. Nevertheless,
some previous proposals pursue almost the same objective as
we do, and others have been influential in setting the stage.
To put our work into its proper perspective, we present a
synopsis of relevant previous work in this section.

Kolovson and Stonebraker (1989) discussed the problem
of maintaining multiversion data using two external storage
media, magnetic disk for recent data and WORM optical
disk for historical versions. They proposed two approaches,
both using the R-tree index (Guttman 1984), to organize data
records: according to their key values in one, according to
their lifespans in the other dimension. The approaches dif-
fer by the techniques of moving data and index blocks from
magnetic disk to WORM disk, also called vacuuming. In the
first approach, vacuuming is triggered in the following way.
If the size of the index on magnetic disk reaches a given
threshold, a vacuuming process moves a given fraction of
the oldest (i.e. dead) data blocks to WORM disk and – recur-
sively up the tree – those directory blocks that refer only to
blocks already stored on WORM disk. The second approach
maintains two R-trees, one completely on magnetic disk, the
other with the upper levels on magnetic and all levels below
on WORM disk. Again, if the size of the R-tree completely
stored on magnetic disk reaches a threshold, all its blocks
except the root are moved to WORM disk. Then, references
to the blocks below the root level, now stored on WORM
disk, are inserted into the corresponding level of the R-tree
on magnetic disk. Updates are only performed on the R-tree
that completely resides on magnetic disk, while queries may
affect both R-trees. Both approaches presented by Kolov-
son and Stonebraker (1989) support the same operations as
the multiversion B-tree (MVBT). Additionally, queries over
version intervals can be answered.

In both approaches, the height of the R-trees isΘ(logbN);
remember thatN is the total number of updates to the tree,
and b is the maximum number of entries in a tree node.
Therefore, each insertion needs timeΘ(logbN); this com-
pares with amortized timeΘ(logbmN) in the MVBT, since
access to the newest version is always immediate. Deletion
must be implemented as modification of the corresponding
R-tree entry. For that, the affected entry has to be searched
in the tree before modification. Because of overlapping re-
gions in the R-tree, the search for a record may necessi-
tate a traversal of the whole index tree in the worst case.
Therefore, deletion can be extremely expensive in the worst
case; this compares with worst-case timeO(logbmN) in the
MVBT. The same arguments show that exact-match queries
and range queries on a given version may accessΘ(N/b)
blocks in the worst case. This compares with a worst-case
time for exact-match queries and range queries ofΘ(logbN)
andΘ(logbN + r/b), respectively. Note, however, that the
goals of these approaches have been somewhat different
from our goal of building a multiversion B-tree.

Because no data are replicated, the space efficiency of
Kolovson and Stonebraker’s approaches is perfect. However,
especially for sets of records with lifespans of non-uniformly
distributed lengths, Kolovson and Stonebraker observed a
decreasing efficiency for the R-tree.

In order to achieve better query and update performance
for such data distributions, Kolovson and Stonebraker have
proposedsegment R-trees(SR-trees; Kolovson and Stone-

braker 1991), a hybrid of segment trees (Bentley 1977)
and R-trees (Guttman 1984). Skeleton SR-trees operate with
a preset data space partitioning, based on an assumption
about the data distribution. In the performance evaluation
presented by Kolovson and Stonebraker (1991), the SR-
trees never outperformed R-trees in the non-skeleton vari-
ant. However, skeleton SR-trees have better performance
than skeleton R-trees for non-uniformly distributed interval
lengths and query regions of very high or very low aspect
ratio. The approach of (skeleton)SR-trees suffers from the
same major inefficiencies as using R-trees to store multiver-
sion data. There is no good worst-case guarantee for dele-
tions, exact-match queries, and range queries.

Elmasri et al. (1990, 1991) proposed thetime indexfor
maintaining historical data. The time index supports all the
operations of our setting, plus range queries over versions.
In the time index, data records are organized in aB+-tree
according to versions (time). For each version, a bucket is
maintained for storing all data records (or references to it)
valid for that version. Elmasri et al. proposed several modifi-
cations of the basic approach to reduce the high redundancy
resulting from this data organization. However, assuming
that each update creates a new version, the space efficiency
of all those variants may be as bad asΘ(N2/b) in the worst
case. An insertion of a record in the time index may create a
new bucket containing all records for the new version. In the
worst case, this operation requiresΘ(N/b) time. Moreover,
the time index does not support range queries efficiently:
range query efficiency may be as bad asΘ(logbN + N/b)
in the worst case.

The Write-once B-tree (WOBT), proposed by Easton
(1986), is a variation of theB+-tree; it is completely stored
on a WORM medium, e.g. an optical disk. Because of the
write-once characteristic, all versions of data are kept for-
ever. If version numbers are assigned to the index and data
records, multiversion queries can be answered in a straight-
forward way. To treat an overflow of a data or an index
block in the WOBT, first a version split must be performed,
because the overflow block itself cannot be rewritten. Af-
terwards, if the current entries occupy more than a given
fraction of the new block (e.g. two-thirds), a key split is
performed on the block before writing it to external mem-
ory. So far, the WOBT split policy is comparable to the one
of the MVBT. One major difference is the treatment of a root
split: if a root is split in the WOBT, a new root block is allo-
cated that initially contains three references. One reference
is pointing to the old root block, whereas the other refer-
ences are pointing to the blocks obtained from splitting the
old root. Thus, a WOBT has one root, and all the paths from
the root to a data block have the same lengthΘ(logbN). In
contrast, if a root is split in the MVBT, the reference to the
new root is inserted into root*, the data structure organizing
the root blocks.

Under the pessimistic assumption that the computation
of the root of an arbitrary non-current version requires
Θ(logbN) time, the MVBT is still more time-efficient than
the WOBT for updates and queries on the current version.
Recall that the root of the MVBT valid for the current ver-
sion – and for some recent non-current versions – can be
accessed in timeO(1) by maintaining a direct reference to
this block. Therefore, queries to these versions and updates

273

to the current version are more efficient thanO(logbN +r/b)
andO(logbN), the respective bounds in the WOBT. More-
over, the WOBT is restricted to insertions and modifications
of the non-key part of records, while the MVBT supports
both insertions and deletions.

In order to reduce storage costs and to improve perfor-
mance of queries on the current version, Lomet and Salzberg
(1989) proposed a variant of the WOBT, thetime-split B-tree
(TSBT). The TSBT spans over magnetic and WORM disk.
All live blocks are stored on magnetic disk, while a dead
block migrates to WORM disk during a version split. Lomet
and Salzberg distinguish split policies for index blocks from
those for data blocks.

For splitting data blocks, the following two basic types of
splits can be performed in the TSBT. First, in contrast to the
WOBT, the version (time) used for a version split (time split)
of a data block is not restricted to the current version, but can
be chosen arbitrarily. Second, a key split can be performed
on a data block instead of a version (time) split. Lomet and
Salzberg (1989, 1990) discussed the effects of different data
block split policies, with emphasis on space cost. The space
cost is given as the sum of storage cost on magnetic and
WORM disk. Fordata block split, the following three split
policies were proposed:

– The WOBT policy is the split policy as used in the
WOBT.

– The time-of-last-update policyperforms a version split
with the version of the last update. This reduces the num-
ber of entries to be kept in the dead block after a version
split, and therefore the storage space needed on WORM
disk. The number of entries in the live block remains un-
changed in comparison to a version split of the WOBT.
As for the WOBT, a key split will be performed immedi-
ately after a version split, if the current entries occupy at
least a given fraction of the new block (e.g. two-thirds).

– The isolated-key-split policyperforms a key split if at
least a given fraction of the entries (e.g. two-thirds) of the
overfull node belongs to the current version. Otherwise,
a version split with the current version is performed. In
comparison with the two split policies described above,
this split policy reduces redundancy and therefore stor-
age space: a version split is not performed if it would
be immediately followed by a key split. The disadvan-
tage of this policy is that by a key split the dead entries
of the block are spread over two blocks. This decreases
the performance for range queries to non-current ver-
sions. Consequently, in contrast to the MVBT it is not
guaranteed that a block contains for each version either
no entries orΘ(b) entries. Then, a range query in the
worst case requiresΘ(N/b) blocks, independent of the
size of the response set and independent of the number of
records in the corresponding version. In comparison with
the TSBT, the MVBT requires more storage space [but
it is still O(N)] to cluster versions appropriately such
that range queries can be answered withO(logbN +r/b)
disk accesses.

For index blocks, split policies cannot be the same as for
data blocks. The problem of using data block split policies
on index nodes is the following: a dead index block may still
contain references to live blocks on the next lower level of

the tree. If such a live block becomes dead (i.e. it migrates
to optical disk), the corresponding references have to be up-
dated in the parent nodes. However, this would require that
the dead blocks are stored on a write-many storage medium.

In their first paper on the TSBT, Lomet and Salzberg
(1989) discuss the effects of using version and key splits for
index block splitting. An index block split policy based on
key splits avoids redundancy, but leads to an index which
gives no selectivity according to versions. Moreover, an in-
dex block may contain entries which cannot be separated
by a key split. Therefore, for the simulations presented in
Lomet and Salzberg (1990), the authors applied another pol-
icy for index block splitting. A version split is performed
using the insertion version of the oldest index entry that is
still valid for the current version. Then, a dead block con-
tains only non-current index entries and therefore it can be
written onto WORM disk. In addition to the redundancy that
this entails in index blocks, the main problem of this split
policy is that such a split version may not exist. In this case,
a key split is possible. This separates not only current en-
tries (as desired), but also dead ones. As a consequence, the
TSBT does not have a lower bound on the number of entries
for a version in an index block.

Lanka and Mays (1991) presented three approaches for
fully persistentB+-trees. Full persistence means that changes
can be applied to any version, current or past, creating a new
version. Because this concept of multiple versions of data is
more general than ours, all three approaches also can be used
to maintain our type of multiversion data (partially persistent
data). Like the MVBT, and in contrast to the WOBT and the
TSBT, all the proposed techniques support insertions and
deletions.

The first approach, thefat node method, is based on the
idea that each node, index node or leaf with data items is fat
enough to store all versions of all its entries. Lanka and Mays
proposed implementing such a fat node as a set of blocks,
one block per version, and a version block, containing ref-
erences to each of the blocks. Although query and update
efficiency for any given versioni is O(logbmi) [based on
the assumption that the root block for versioni can be ac-
cessed in timeO(1)], this obviously leads to storage cost of
Θ(1) blocks per update. Moreover, it is doubtful whether one
physical block is sufficient to implement a version block, as
assumed in the paper.

The fat field methodis an improvement on the fat node
method, storing entries of different versions in the same
block. To describe which versions aB+-tree entry belongs
to, each entry is extended by a field representing its insertion
version and the set of its deletion versions. Applying the fat
field method to our multiversion data, the structure of an
entry is equal to that of a MVBT entry, because only one
deletion version can occur. Also comparable to the MVBT,
the fat field method guarantees for each block and each ver-
sion in the block that a number of entries proportional to
the block capacity (namely 50%) is stored in that block. If
for any version less than half of the entries belong to that
version, a version split and a merge is performed. The split
policy is a version split, followed by a key split if the block
is still overfull. In contrast to the MVBT, for the fat field
method a block may be full after split or merge. That means
that after a constant number of updates, the next split or

274

merge may be triggered, leading to a worst-case storage cost
of Θ(1) blocks per update. As for the fat node method, the
query performance analysis for the fat field method is based
on the assumption that each version block fits into one phys-
ical block. This assumption is not realistic for organizing a
high number of versions in the structure.

The third approach proposed by Lanka and Mays (1991)
is the pure version block method. In this technique, aB+-
tree index is built over the key values of the data items.
This technique does not give any selectivity according to
versions.

As a result, we conclude that the approaches for multi-
version B-trees proposed in the literature have their merits
in exposing many interesting ideas and achieving good per-
formance in one or the other aspect. Nevertheless, none of
them achieves asymptotic worst-case optimality both in the
time for all operations and in space. Therefore, we feel the
MVBT to be a worthwhile addition to the list of multiversion
external B-trees.

6 Conclusion

In this paper, we have presented a technique to trans-
form certain single-version hierarchical external storage ac-
cess structures into multiversion structures. We have shown
that our technique delivers multiversion capabilities with no
change in asymptotic worst-case performance for B-trees, if
we assume that the root block for a requested version is given
from the application context. Otherwise, a search structure
for the appropriate root block can be tuned to the particular
requirements. The properties of B-trees that we have used
include the following characteristics of access structures:

1. The access structure is a rooted tree of external storage
blocks.

2. Data items are stored in the leaves (data blocks) of the
tree; the inner nodes (directory blocks) store routing in-
formation.

3. The tree is balanced; typically, all leaves are on the same
level.

4. The tree can be restructured by splitting blocks or by
merging blocks with siblings along a path between the
root and a leaf.

5. A block split can be balanced; that is, each of the two re-
sulting blocks is guaranteed to contain at least a constant
fractionα, 0< α ≤ 0.5, of the entries.

Single-version access structures satisfying these require-
ments are therefore the prime candidates for carrying over
and applying our technique. Examples of such access struc-
tures other than the B-tree include the cell-tree (Günther and
Bilmes 1991), the BANG file (Freeston 1987), and the R-tree
family (Guttman 1984, Greene 1989, Beckmann et al. 1990),
whenever reinsertion of data items can be replaced by block
merge without loss of geometric clustering. Note that the
data items are not limited to one-dimensional points.

We conjecture that our technique may be useful also for
access structures that do not satisfy all of our requirements,
such as hierarchical grid files. In that case, the performance
guarantees derived for the MVBT do not carry over without
change. This is clearly due to the fact that these performance

guarantees do not hold for the single-version structure in the
first place. However, we do not know in sufficient generality
how the performance of an arbitrary external access structure
changes if it is transformed into a multiversion structure
along the lines of our technique.

Acknowledgements.We want to thank an anonymous referee for an ex-
traordinary effort and thorough discussion that led to a great improvement
in the presentation of the paper. This work was partially supported by grants
ESPRIT 6881 of the European Community and Wi810/2–5 of the Deutsche
Forschungsgemeinschaft DFG.

References

Barghouti NS, Kaiser GE (1991) Concurrency control in advanced database
applications. ACM Comput Surv 23:269–317

Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1993) On optimal
multiversion access structures. In: 3rd International Symposium on
Large Spatial Databases. (Lecture Notes in Computer Science, vol 692)
Springer, Berlin Heidelberg New York, pp 123–141

Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R∗-tree: an
efficient and robust access method for points and rectangles. ACM
SIGMOD International Conference on Management of Data 19:322–
331

Bentley JL (1977) Algorithms for Klee’s rectangle problems. Computer
Science Department, Carnegie-Mellon University, Pittsburg, Pa

Bernstein PA, Hadzilacos V, Goodman N (1987) Concurrency control and
recovery in database systems. Addison Wesley, Reading, Mass

Clifford J, Ariav G (1986) Temporal data management: models and systems.
In: Ariav G, Clifford J (eds) New directions for database systems.
Ablex, Norwood, NJ, pp 168–186

Driscoll JR, Sarnak N, Sleator DD, Tarjan RE (1989) Making data structures
persistent. J Comput Syst Sci 38:86–124

Easton M (1986) Key-sequence data sets on indelible storage. IBM J Res
Dev 30:230–241

Elmasri R, Wuu G, Kim Y-J (1990) The time index: an access structure
for temporal data. 16th International Conference on Very Large Data
Bases, pp 1–12

Elmasri R, Wuu G, Kim Y-J (1991) Efficient implementation techniques
for the time index. Seventh IEEE International Conference on Data
Engineering, pp 102–111

Freeston MW (1987) The BANG-file: a new kind of grid file. ACM
SIGMOD International Conference on Management of Data 16:260–
269

Gonnet GH, Baeza-Yates R (1991) Handbook of algorithms and data struc-
tures: in PASCAL and C. Addison-Wesley, Reading, Mass

Greene, D (1989) An implementation and performance analysis of spatial
access methods. Fifth IEEE International Conference on Data Engi-
neering, pp 606–615

Günther O, Bilmes J (1991) Tree-based access methods for spatial
databases: implementation and performance evaluation. IEEE Trans
Knowl Data Eng 3:342–356

Guttman A (1984) R-trees: a dynamic index structure for spatial search-
ing. ACM SIGMOD International Conference on Management of Data
12:47–57

Huddleston S, Mehlhorn K (1982) A new data structure for representing
sorted lists. Acta Inform 17:157–184

Kanellakis PC, Ramaswamy S, Vengroff DE, Vitter JS (1993) Indexing for
data models with constraints and classes. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems 12:233–243

Katz RH (1990) Towards a unified framework for version modeling in
engineering databases. ACM Comput Surv 22:375–408

Kolovson C, Stonebraker M (1989) Indexing techniques for historical
databases. Fifth IEEE International Conference on Data Engineering,
pp 127–137

Kolovson C, Stonebraker M (1991) Segment indexes: dynamic indexing
techniques for multi-dimensional interval data. ACM SIGMOD Inter-
national Conference on Management of Data 20:138–147

275

Lanka S, Mays E (1991) Fully persistentB+–trees. ACM SIGMOD Inter-
national Conference on Management of Data 20:426–435

Lomet D, Salzberg B (1989) Access methods for multiversion data. ACM
SIGMOD International Conference on Management of Data 18:315–
324

Lomet D, Salzberg B (1990) The performance of a multiversion access
method. ACM SIGMOD International Conference on Management of
Data 19:353–363

Mehlhorn K, Tsakalidis A (1990) Data structures. In: Leeuwen J van
(ed) Handbook of theoretical computer science, vol A: Algorithms and
complexity. Elsevier, Amsterdam, pp 301–341

Sedgewick R (1988) Algorithms. Addison-Wesley, Reading, Mass

Segev A, Gunadhi H (1989) Event-join optimization in temporal relational
databases. 15th International Conference on Very Large Data Bases,
pp 205–215

Tansel, AU, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass R
(1993) Temporal databases – theory, design, implementation. Ben-
jamin/Cummings, Redwood City, Calif

Vitter JS, (1991) Efficient memory access in large-scale computation. In:
8th Annual Symposium on Theoretical Aspects of Computer Science.
(Lecture Notes in Computer Science, vol 480) Springer, Berlin Hei-
delberg New York, pp 26–41

