
The VLDB Journal (1996) 5: 276–304 The VLDB Journal
c© Springer-Verlag 1996

Semantic and schematic similarities between database objects:
a context-based approach

Vipul Kashyap1,2,?, Amit Sheth2

1 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA
2 LSDIS, Department of Computer Science, University of Georgia, 415 GSRC, GA 30602-7404, USA

Edited by Dennis McLeod. Received 3 November 1993 / Revised 30 March 1994 / Accepted 1 August 1995

Abstract. In a multidatabase system, schematic conflicts be-
tween two objects are usually of interest only when the
objects have some semantic similarity. We use the con-
cept ofsemantic proximity, which is essentially anabstrac-
tion/mappingbetween the domains of the two objects asso-
ciated with thecontext of comparison. An explicit though
partial context representation is proposed and the specificity
relationship between contexts is defined. The contexts are
organized as a meet semi-lattice and associated operations
like the greatest lower bound are defined. The context of
comparison and the type of abstractions used to relate the
two objects form the basis of a semantic taxonomy. At the
semantic level, the intensional description of database ob-
jects provided by the context is expressed using descrip-
tion logics. The terms used to construct the contexts are ob-
tained fromdomain-specific ontologies. Schema correspon-
dencesare used to store mappings from the semantic level
to the data level and are associated with the respective con-
texts. Inferences about database content at the federation
level are modeled as changes in the context and the associ-
ated schema correspondences. We try to reconcile the dual
(schematic and semantic) perspectives by enumeratingpos-
sible semantic similaritiesbetween objects having schema
and data conflicts, and modeling schema correspondences
as the projection of semantic proximitywith respect to (wrt)
context.

1 Introduction

Many organizations face the challenge of interoperating
among multiple independently developed database systems
to perform critical functions. With high interconnectivity and
access to many information sources, the primary issue in the
future will not be how to efficiently process the data that is
known to be relevant, but to determine which data is relevant
[She91]. Thus, the fundamental question in interoperability
is that of identifying objects in different databases that are

? Presently at: MCC, 3500 W. Balcones, Center Dr., Austin, Texas,
78759 USA

semantically related, and then resolving the schematic differ-
ences among these objects. In this paper, we are interested
in the reconciliation of the semantic and schematic perspec-
tives and its use as a step towardsinformation focusingand
correlation across multiple databases.

We characterize the degree of semantic similarity be-
tween a pair of objects using the concept ofsemantic
proximity [SK92]. It is based on the premise that it is
essential to associate theabstractions/mappings between
the objects with thecontext of comparison for captur-
ing the semantic similarity between them. Other researchers
in the field of multidatabases have also made observa-
tions that are similar in principle, but different in details
[ON93, SSR92, YSDK91]. This association of context with
abstractions represents the first step in achieving the recon-
ciliation between the semantic and schematic perspectives.

Inadequacies of purely structural and mapping-based
methods are discussed, and explicit representation of con-
text is proposed to resolve some inadequacies. Computa-
tional benefits of representing context are also discussed. We
propose a partial representation of context as a collection of
contextual coordinates and their values. This representation
is used to describe objects and the constraints which they
must satisfy in an intensional manner. The meaning of the
contextual coordinates and their values are informally ex-
plained by expressing the context using description logic
(DL) expressions [BS85].

In order for a context representation to be useful for se-
mantic interoperability in multidatabases, it is important to
have automatic ways of comparing and manipulating them.
Based on the proposed representation of context, we define
the specificity relationship between two contexts. A defi-
nition of the specificity relationship and thegreatest lower
bound(glb) and other operations on contexts are presented.
The specificity relationship induces a partial order such that,
for any two contexts, there exists aglb leading to the orga-
nization of the context set as a meet semi-lattice.

The semantic proximity descriptor consists of context
and abstraction as its main components. Depending on the
values assumed by these two components, we define a data
model-independent taxonomy of semantic similarities. The
possible values of the first component can be contexts con-

277

structed using the various operations mentioned above. Clas-
sification or taxonomies ofschematic differencesappear in
multidatabase literature. However, purely schematic consid-
erations do not suffice to determine the similarity between
objects [FKN91, SG89]. We try to reconcile the two per-
spectives by enumerating the possible semantic similarities
between objects having schematic and data conflicts.

Even though the representation of semantics better en-
ables us to represent the similarities between the various ob-
jects, we also need to be able to capture structural similarities
in a mathematical formalism for reasoning on the computer.
We define the concept ofschema correspondencesto cap-
ture the structural similarities between the objects. They are
also associated with the context in which the semantic prox-
imity is defined. We reconcile the semantic and schematic
perspectives by defining the schema correspondence as a
projection of the semantic proximitywith respect to(wrt)
context. The semantics of the projection operation are cap-
tured in the rules of the algebra enumerated in Appendix 1.

The overall organization of the paper is as follows. In
Sect. 2, we present a model to represent semantic similari-
ties among objects. In Sect. 3, we discuss the rationale for
representation of context in a multidatabase environment and
propose an explicit, though partial, representation of context.
The associated operations for reasoning about and manipu-
lating the context representations are also defined. In Sect. 4,
a taxonomy of the various types of possible semantic simi-
larities between the various objects is presented. In Sect. 5,
we discuss a broad class of schematic differences and the
possible semantic similarities between objects having those
differences. In Sect. 6, we define a uniform formalism for
representation of structural similarity. It is associated with
the context and is defined as the projection of semantic sim-
ilarity. Examples illustrating the operations from an algebra
describing the projection operation (Appendix 1) are pre-
sented. A discussion of related work is presented in Sect. 7.
Conclusions and future work are presented in Sect. 8.

2 Semantic similarities between objects

In this section, we discuss the concept ofsemantic proximity
which characterizessemantic similarities between objects.
We distinguish between thereal world and themodel world
which is a representation of the real world. As in the work
in semantic data modeling [HK87, PM88], we endeavor to
capture some of the important semantic information about
the real world and represent it in the model world. However,
over and above the semantics of the data, we also attempt to
capture semantics of queries and applications. This enables
us to support semantics-based focusing and correlation of
information across multiple databaseswith respect toan ap-
plication.

Attempts have been made to capture the similarity of
objects by using mathematical tools like value mappings be-
tween domains and abstractions such as generalization, ag-
gregation, etc. However, it is our belief that thereal-world
semantics(RWS) of an object1 cannot be captured suffi-
ciently using mathematical formalisms. The term “object”

1 The term “real-world semantics” distinguishes from the “(model) se-
mantics” that can be captured using the abstractions in a semantic data

in this paper refers to an object in the model world (i.e., a
representation or intensional definition in the model world,
e.g., an object class definition in object-oriented models or
relation in relational models) as opposed to an entity or a
concept in the real world. These objects may model infor-
mation at any level of representation, such as theattribute
or entity level.

We need to understand and represent more knowledge to
capture the semantics of relationships between objects. This
knowledge should be able to capture thecontext of compar-
ison of the objects and theabstraction relating the domains
of the two objects. Attempts to partially represent such ex-
tra knowledge include the use of meta-attributes [SSR92]
and building and partitioning ontologies into micro-theories
[Guh90].

Attempts to represent context and abstraction as sug-
gested above have been reflected in the techniques and rep-
resentational constructs used by various practitioners and re-
searchers in the field of multidatabases. The model for se-
mantic proximity defined in this section has been influenced
by these attempts. Some significant attempts are theseman-
tic proximity proposal by Sheth and Kashyap [SK92], the
context building approach by Ouksel and Naiman [ON93],
the context interchangeapproach by Sciore et al. [SSR92]
and thecommon conceptsapproach by Yu et al. [YSDK91].
We relate the above attempts to semantic proximity.

2.1 Semantic proximity: a model for semantic similarity

Given two objectsO1 andO2, the semantic proximitybe-
tween them is defined by the 4-tuple given by [SK92]:

semPro (O1, O2)
=< Context, Abstraction, (D1, D2), (S1,S2)>,
where Di is domain of Oi and Si is state of Oi.

– The first component denotes the context in which the two
objects O1 and O2 are being compared. This context may
be the same, different, or related in some manner to the
context(s) in which the objects O1 and O2 are defined.

– The second component identifies the abstraction/mapping
used to relate the domains of the objects, O1 and O2.

– The third component enumerates the domain definitions
of the objects, O1 and O2. The domains may be defined
by either enumerating the values as a set or by using
existing type definitions in the database.

– The fourth component enumerates the states of the ob-
jects, which are the extensions of the objects recorded in
their respective databases at a particular time.

In Fig. 1 we have illustrated the definition of the semantic
proximity between two objects O1 and O2 in the database.
Context(O1) and context(O2) represent the contexts (referred
to asdefinition contextslater in the paper) in which the ob-
jects O1 and O2 are mapped from the real world to the model
world. Context refers to the context in which the objects are
being compared.

model. Our definition is also intensional in nature and differs from the ex-
tensional definition of Elmasri et al. [ELN86] who define the RWS of an
object to be the set of real-world objects it represents.

278

REAL WORLD

Model World 1 Model World 2

Context

Context (O) Context (O)

O O

1 2

1 2

semPro(O
1

, O
2

)

Fig. 1. Semantic proximity between two objects

2.2 Context: the semantic component

The context is the key component in capturing the semantics
related to an object’s definition and its relationships to other
objects. Alternatives discussed in the multidatabase literature
for representing context are as follows.

– In [ON93], context is defined as the knowledge that is
needed to reason about another system, for the purpose
of answering a query. It is specified as a set of assertions
identifying the correspondences between various schema
elements.

– In [SSR92], context is defined as the meaning, content,
organization and properties of data. It is modeled using
meta-data associated with the data.

– In [YSDK91], common conceptsare proposed to char-
acterize similarities between attributes in multiple data-
bases.

– When using a well-defined ontology, such as Cyc
[Guh90], a well-defined partition (calledMicrotheory)
of the ontology is assigned a context.

– A context may be identified or represented using the
following [SK92].
– by association with a database or a group of databases
– as therelationshipin which an entity participates
– from a schema architecture (e.g., the multidatabase or

federated schema architecture of [SL90]), a context
can be specified in terms of anexport schema(a
context that is closer to the database) or anexternal
schema(a context that is closer to the application)

– at a very elementary level, as anamed collectionof
domains of objects

A context may be used in several ways to capture the
relevant semantics. A context may be associated with an
object to specify the assumptions used in its design and its
relationships with other objects. However, the term context
in semPro refers to the context in which a particular semantic
similarity holds between two objects. As we shall see later,
the context in semPro need not be the exactly the same as
the contexts associated with the objects.

2.3 Abstractions/mappings: the structural component

We use the term abstraction to refer to the relation between
the domains of the two objects. Mapping between the do-
mains of objects is the mathematical expression to denote

the abstractions. However, since abstractions by themselves
cannot capture semantic similarity, they have to be associ-
ated either with the context [KS93] or with extra knowledge
in order to capture the RWS. Some of the proposals are as
follows.

– In [SK92], abstractions are defined in terms of value
mappings between the domains of objects and are asso-
ciated with the context as a part of the semantic prox-
imity.

– In [ON93], mappings are defined between schema ele-
ments calledinterschema correspondence assertionsor
ISCAs. A set of ISCAs under consideration are a repre-
sentation of the context for integration of the schemas.

– In [SSR92], mappings calledconversion functionsare
associated with the meta-attributes which define the con-
text.

– In [YSDK91], the attributes are associated with “com-
mon concepts”. Thus the mappings (relationship) be-
tween the attributes are determined through the extra
knowledge associated with the concepts.

Some useful and well-defined abstractions are

Total 1-1 value mapping.For every value in the domain of
one object, there exists a value in the domain of the other
object and vice versa.

Partial many-one mapping.In this case, some values in the
domain of one of the objects might remain unmapped,
or a value in one domain might be associated with many
values in another domain.

Generalization/specialization.One domain can generalize/
specialize the other, or domains of both the objects can
be generalized/specialized to a third domain.

Aggregation.One domain can be an aggregation or a col-
lection of other domains.

Functional dependencies.The values of one domain might
depend functionally on the other domain.

ANY. This is used to denote that any abstraction such as the
ones defined above may be used to define a mapping
between the domains of two objects.

NONE. This is used to denote that there is no mapping de-
fined between the domains of two objects.

2.4 Domains of the objects

Domains refer to the sets of values from which the objects
can take their values. When using an object-oriented model,
the domains of objects can be thought of as types, whereas
the collections of objects might themselves be thought of as
classes. A domain can be eitheratomic (i.e., cannot be de-
composed any further) or composed of other atomic or com-
posite domains. The domain of an object can be thought of
as a subset of the cross-product of the domains of the prop-
erties of the object (Fig. 2). Analogously, we can have other
combinations of domains, such as union and intersection of
domains.

An important distinction between a context and a domain
should be noted. One of the ways to specify a context is
as a named collection of the domains of objects, i.e., it is
associated with a group of objects. A domain, on the other

279

X X

D1 is a subset of D2 x D3 x D4

Domain of Object(D1)

Domain of attr(D2)

Domain of attr(D3)

Domain of attr(D4)

Fig. 2. Domain of an object and its attributes

hand is a property of an object and is associated with the
description of that object.

2.5 States (extensions) of the objects

The state of an object can be thought of as an extension of
an object recorded in a database or databases. However, this
extension must not be confused with the actual state of the
entity being modeled according to the RWS. Two objects
having different extensions can have the same state RWS
(and hence be semantically equivalent).

3 Explicit context representation in a multidatabase
environment

In this section, we discuss the inadequacies of purely struc-
tural and mapping-based methods to represent object simi-
larity and how representing context in the model world helps
solve some of them. We also discuss computational advan-
tages of representing context in the model world and propose
an appropriate representation of context as a collection of
contextual coordinates and their values. The contextual co-
ordinates and their values may be chosen from a previously
defined ontology of concepts.

We view ontology as the symbolic layer closest to
concepts in the real world. An ontology may be defined
as the specification of a representational vocabulary for a
shared domain of discourse which may include definitions
of classes, relations, functions and other objects [Gru93].
Criteria for constructing contexts from an ontology are dis-
cussed in [KS95a].

We discuss a partial representation of context, the seman-
tics of which are informally explained using DL expressions.
We shall also define operations for automatic ways of com-
paring (e.g., deciding whether one context is more general
than the other) and manipulating contexts (e.g., taking the
glb of two contexts). A brief discussion of issues relating
to the language for representing contexts and the domain-
specific ontologies from which terms to construct contexts
are obtained is also presented.

3.1 Rationale for context representation

In characterizing the similarity between objects based on
the semantics associated with them we have to consider the

RWS of an object. It is not possible to completely define
what an object denotes or means in the model world [SG89].
We propose thecontext of an object as the primary vehi-
cle to capture the RWS of the object. The context in which
two objects are being compared and the associated abstrac-
tion/mapping helps to capture the semantic aspect of the
relationship between two objects (Fig. 1). We argue for the
need for representing context by showing the inadequacy of
purely structural representations. We also discuss the com-
putational benefits of representing context.

3.1.1 Inadequacy of purely structural representations

It has been suggested by Sheth and Gala, Kashyap [SG89,
KS94b] and Fankhauser et al. [FKN91] that the ability to
represent the structure of an object does not help capture
the RWS of the object. It is not possible to provide a struc-
tural and hence a mathematical definition of the complex
notion of RWS. In [LNE89], a one-to-one mapping is as-
sumed between the attribute definition and the attribute’s
RWS. They define an attribute in terms of fixed descriptors
such asUniqueness, Lower/Upper Bound, Domain, Scale,
etc., which are used to generate mappings between two at-
tributes. They are also used to determine the equivalence
of attributes. However, what they establish is the structural
equivalence of these attributes which is necessary but not
sufficient to determine the semantic equivalence of the at-
tributes.

Consider two attributesperson-nameand department-
name. We may be able to define a mapping between the
domains of these two attributes, but we know that they are
not semantically equivalent. In order to be able to capture
this lack of equivalence, we propose the mappings between
the domains of the attributes be madewith respect toa
context. We define two objects to be semantically equiva-
lent if it is possible to define mappings with respect toall
known and coherent contexts. The respective definition con-
texts should be coherent with respect toeach other. Defini-
tion contexts and the notion of coherence is defined later
in this section. Since the definition contexts ofperson-name
anddepartment-nameare not coherent (one identifies an an-
imate and the other identifies an inanimate object), they are
not defined as equivalent attributes.

3.1.2 Computational benefits of representing context

In [Sho91], Shoham discussed the computational benefits
that might accrue in modeling and representing context in AI
and knowledge-based systems. We believe that there are sim-
ilarities between AI/knowledge-based and multidatabase sys-
tems that suggest context representation in a multidatabase
system for a clean and efficient handling of information.

Economy of representation.In a manner akin to database
views, contexts can act as afocusing mechanismwhen
accessing the component databases of a multidatabase
system. They can be asemantic summaryof the infor-
mation in a database or group of databases and may be
able to capture semantic information which cannot be

280

expressed in the data definition model of the databases.
Thus, unnecessary details can be abstracted from the
user. Examples detailing this are enumerated in Sect. 6.2.

Economy of reasoning.Instead of reasoning with the infor-
mation present in the database as a whole, reasoning can
be performed with the context associated with a database
or a group of databases. This approach has been used
in [KS94a, MKSI96] for information resource discovery
and query processing.

Handling inconsistent information.In a multidatabase sys-
tem, where databases are designed and developed inde-
pendently, it is not uncommon to have information in
one database inconsistent with information in another.
As long as information is consistent within the context
of the query of the user, inconsistency in information
from different databases may be allowed. This is dis-
cussed in Sect. 5.3.

Flexible semantics.A big fallout of associating abstrac-
tions/mappings with the context in the semantic prox-
imity model (Sect. 2.1) is that the same two objects can
be related to each other differently in two different con-
texts. This is because two objects might be semantically
closer to each other in one context than in the other.

3.2 A partial context representation

There have been attempts to represent the similarity between
two objects in databases. In [LNE89], a fixed set of descrip-
tors define essential characteristics of the attribute and are
used to generate mappings between them. We have discussed
with the help of an example how they do not guarantee se-
mantic similarity. Thus, any representation of context which
can be described by a fixed set of descriptors is not appro-
priate.

The descriptors (or meta-attributes) are not fixed but dy-
namically chosen to model the characteristics of the ap-
plication domain in question. It is not possible a priori to
determine all possible meta-attributes which would com-
pletely characterize the semantics of the application domain.
This leads to apartial representation of context. We repre-
sent context as a collection of contextual coordinates (meta-
attributes) as follows:

Context =<(C1, V1) (C2, V2) ... (Ck, Vk) >

We shall informally explain the meaning of the symbols Ci

and Vi by using examples and by enumerating the corre-
sponding DL expressions (Table 1). Using DL expressions2,
it is possible to define primitive classes and, in addition,
specify classes using intensional descriptions phrased in
terms of necessary and sufficient properties that must be sat-
isfied by their instances. The intensional descriptions may be
used to express the collection of constraints that make up a
context. Also, each Ci roughly corresponds to a role and
each Vi roughly corresponds to fillers for the role the object
must have.

2 We have proposed a minor addition [<role-set>] for
<DL-expression> [MKSI96]. However this is for retrieval only and not
used for concept forming.

– Ci, 1 ≤ i ≤ k, is a contextual coordinate denoting an
aspect of context.

– Ci may model some characteristic of the subject domain
and may be obtained from a domain-specific ontology
(discussed later in this section).

– Ci may model an implicit assumption in the design of a
database.

– Ci may or may not be associated with an attribute Aj of
an object O in the database.

The value Vi of a contextual coordinate Ci can be repre-
sented in the following manner:

– Vi can be a variable.
– It is used only at the highest level of nesting for

retrieval of objects/properties.
– It can be unified (in the sense of Prolog) with another

variable, a set of symbols, an object or type defined
in the database or another variable.

– It can be unified with another variable associated with
a context.

– It can be used to impose constraints on the answer.
Example.Suppose we are interested in people who are
authors and who hold a post. We can represent the query
context Cq (discussed later in this section) as follows:
Cq = <(author, X) (designee, X)>
The same thing can be expressed in a DL as follows:
Cq = [author] for (SAME-AS author designee)

– Vi can be a set.
– The set may be an enumeration of symbols from a

domain-specific ontology.
– The set may be defined as the extension of an object

or as elements from the domain of a type defined in
the database.

– The set may be defined by posing constraints on pre-
existing sets.

Example.Suppose we want to represent the assumptions
implicit in the design of the object EMPLOYEE in a
database. We can represent this as the definition context
of EMPLOYEE, Cdef (EMPLOYEE) as follows:
Cdef (EMPLOYEE)
= < (employer, [Deptypes∪{restypes}])

(article,PUBLICATION)>
Let Deptconcept = term corresponding to Deptypes in
an ontology
The same thing can be expressed in a DL as follows:
Cdef (EMPLOYEE)
= (AND EMPLOYEE

(ALL article PUBLICATION)
(ALL employer (OR Deptconcept)

(ONE-OF research)))
Deptypes is a type defined in the database. The sym-
bols restypes, employer and article are taken from the
ontology. The definition context (defined later in this
section) expresses an association between EMPLOYEE
and PUBLICATION which may not be captured in the
database.

– Vi can be a variable associated with a context.
– This can be used to express constraints which the

result of a query should obey. This is called the con-
straint context and is defined later in this section.

281

Table 1. Contextual coordinate, value pairs and the corresponding DL expressions

Contextual coordinates and values, Cdef (O), Cq DL expressions
Cdef (O) = <(C1, V1) ... (Ck, Vk)> (AND O (ALL C1 V1) ... (ALL Ck, Vk))
Cdef (O) = <(Ci, Oi◦ <(Cj , Vj)>)> (AND O (ALL Ci (AND Oj (ALL Cj Vj))))

Cq = <(Ci, X) (Cj , X)> [Ci] for (SAME-AS Ci Cj)
Cq = <(Ci, X◦ <(Cj , Vj)>)> [Ci] for (ALL Ci (ALL Cj Vj))

– The constraints would apply to the set, type or object
the variable X would unify with.

Example.Suppose we want all the articles whose titles
contain the substring “abortion” in them. This can be
expressed in the following query context:

Cq = <(article,
X◦ <(title, {y|substring(y) = “abortion”})>)>

= <(article, X◦Cntxt)>

where◦ denotes association of a context with a variable
X and
Cntxt = <(title, {y|substring(y) = “abortion”})>
Associationof a variable and a context ensures that the
answer satisfies the constraints expressed in the context.
The same thing can be expressed in a DL as follows:
Let Extension (AString) ={y|substring(y) = “abortion”}
Cq = [article] for (ALL article (ALL title AString))

– Vi can be a set, type or an object associated with a
context.

– This is called the association context and is defined
later in this section.

– This may be used to express semantic dependencies
between objects which may not be modeled in the
database.

Example.Suppose we want to represent information re-
lating publications to employees in a database. Let PUB-
LICATION and EMPLOYEE be objects in a database.
The definition context of HAS-PUBLICATION can be
defined as:
Cdef (HAS-PUBLICATION)
= <(article, PUBLICATION)
(author, EMPLOYEE◦ <(affiliation, {research})>)>

Cdef (HAS-PUBLICATION)
= <(article, PUBLICATION)

(author, EMPLOYEE◦Cntxt)>

where◦ denotes association of a context with an object
EMPLOYEE, and Cntxt =<(affiliation, {research})>
Associationof a context with an object is similar to defin-
ing a view on the object extensions such that only those
instances satisfying the constraints defined in the con-
text are exported to the federation. The same thing can
be expressed in a DL as follows:

Cdef (HAS-PUBLICATION)
= (AND HAS-PUBLICATION

(ALL article PUBLICATION)
(ALL author (AND EMPLOYEE

(ALL affiliation (ONE-OF research)))))

Note that the relationships between EMPLOYEE, PUB-
LICATION and HAS-PUBLICATION is information rep-
resented in the context not modeled in the database.

3.2.1 Definition context of an object

Given an object O in a database and a collection of contex-
tual coordinates Cis from the ontology, the definition context
is denoted as Cdef (O) and can be used in the following ways:

– to specify the assumptions used in the design of the ob-
ject O

– to share only a pre-determined extension of the object O
with the federation of databases. This exported object is
denoted as OF

The associations between the objects stored in the database
and the objects exported to the federation are expressed us-
ing the concepts ofsemantic proximity andschema corre-
spondences(defined in Sect. 6.1).

3.2.2 Association context of objects

Given objects O and O1 in a database the dependence of the
definition context of O on the context of association between
O and O1, Cass(O1, O) can be represented as:

Cdef (O) = <(C1, O1◦Cass(O1, O)) ... (Ck, Vk) >

The association context can be used in the following ways:

– to represent relationships between two objects with ref-
erence to an aspect of an application domain. This is
done by associating it with the appropriate contextual
coordinate

– different relationships between two objects may hold
with reference to different aspects of the subject domain.
This can be modeled by different association contexts
between the two objects associated with different con-
textual coordinates

– to model the relationships between the object O and dif-
ferent (more than one) objects as a part of the definition
context of the same object. Thus,the context of an object
would consist of its relationships with other objects

3.2.3 Query context

Whenever a query Q is posed to a federation of databases,
we associate with it a query contextCq which makes explicit
the partial semantics of the query Q.

– The user can consult ontologies to construct the query
context in a semi-automatic manner. Issues of combining
and displaying ontologies to enable a user to do this
easily are discussed in [MKSI96, MKIS96, KS96].

– Objects and types defined in databases are also avail-
able to the user by relating them to some concept in an
ontology.

282

– The query is expressed as a set of constraints which an
answer object must satisfy. The constraints expressed in
the query context can express incomplete information.

3.2.4 Constraint context

The constraint context, Cconstr(X,ANSWER) is typically a
part of the query context and is used to pose constraints on
the answer returned for the query.

Cq = <(C1, X◦Cconstr(X, ANSWER)) ... (Ck, Vk)>

– It is associated with a variable which may be a place-
holder for the answer or a part of the answer. The vari-
able may be instantiated to an object or type definition.

– The context may represent constraints on the object and
its attributes or the contextual coordinates associated
with an object.

– The constraints which we currently limit to are cardinal-
ity constraints on sets and those that may be defined as
a predicate on the elements of a set.

3.3 Reasoning about and manipulation of contexts

We have proposed a partial representation of context in the
previous section. To use this representation meaningfully to
focus on relevant information and to correlate information
the following needs to be precisely defined:

– the most common relationship between contexts is the
“specificity” relationship. Given two contexts C1 and C2,
C1 ≤ C2 if C1 is at least as specific as C2. This is use-
ful when objects defined in a particular context have to
transcend [McC93] to a more specific or general context.
This is discussed in detail with examples in [KS95b].

– It is also the case that two contexts may not be compa-
rable to each other, i.e. it may not be possible to decide
whether one is more general than the other or not. Thus,
the specificity relationship gives us a partial order.

– For every two contexts, we define the glb of two contexts
as the most general context which is more specific than
each of the two contexts. The set of contexts thus forms
a meet semi-lattice.

3.3.1 The specificity relationship

The specificity relationship between two contexts determines
which context is more general than the other. We have de-
fined this relationship with the help of specificity rules gov-
erning the contextual coordinates and their values.

Let Cntxt1 = <(C1, V1) (C2, V2) ... (Ck, Vk)>
Cntxt2 = <(C’1, V’ 1) (C’2, V’ 2) ... (C’m, V’m)>

Cntxt1 ≤ Cntxt2 if Cntxt1 is at least as specific asCntxt2

In the following exposition, C, C1, C2, C’1, C’2, ... denote the
contextual coordinates of the contexts under consideration.
V, V1, V2, V’ 1, V’ 2, ... denote the values of the contextual

coordinates. A, A1, A2, ..., S, S1, S2, ... stand for sets. X, Y,
Z, stand for variables.

The specificity rules for the values of the contextual co-
ordinates (Vis) are as follows:

variable specificity: V1 ≤ X, anything is more specific than
a variable

set specificity: S1 ≤ S2 iff S1 ⊆ S2

association context specificity:these are rules concerning
specificity of contextual coordinates when an association
context is involved.

– A1◦Cntxti ≤ A2 if A 1 ≤ A2

– Ai◦Cntxti ≤ Aj◦Cntxtj if
Ai ≤ Aj ∧ Cntxti ≤ Cntxtj

Cntxt1 ≤ Cntxt2 if the following conditions hold:

– m≤ k
– ∀i, 1 ≤ i ≤ m, ∃j Cj ≤ C’i3 ∧ Vj ≤ V’ i

3.3.2 Operations on the context lattice

As observed earlier, the specificity relationship between the
contexts induces a partial order among the contexts. Thus,
the context can be organized as a meet semi-lattice where
every pair of contexts has the glb. In this subsection, we
define theglb operation and other operations we will use
later in the paper.

overlap(Cntxt1, Cntxt2) = {Ci| Ci ∈ Cntxt1 ∧ Ci ∈ Cntxt2 }
coherent(Cntxt1, Cntxt2) This operator determines whether

the constraints determined by the values of the contextual
coordinates are consistent.
Example.Let Cntxt1 = <(salary,{x| x ≤ 10000})>

Cntxt2 = <(salary,{x| x > 10000})>
Thus, coherent(Cntxt1, Cntxt2) = FALSE

3.3.2.1 The glb of two contexts

We now define the glb of two contexts with the help of the
rules that determine the glbs of the contextual coordinates
and their values. The rules determiningglb(Vi, V’ j) are

Variable: glb(Vi, X) = Vi;
sets: glb(S1, S2) = S1 ∩ S2

Association contexts.these are rules concerning the glb of
the values of the contextual coordinates when an associ-
ation context is involved.

– glb(A1◦Cntxti, A2) = glb(A1, A2)◦Cntxti
– glb(Ai◦Cntxti, Aj◦Cntxtj)

= glb(Ai, Aj)◦glb(Cntxti, Cntxtj)

The greatest lower bound of the contextsglb(Cntxt 1,
Cntxt 2) can now be defined as:

3 This specificity relationship between contextual coordinates is deter-
mined from the ontology and is beyond the scope of this paper. In defining
the various operations on the context lattice we shall use the equality com-
parison instead.

283

– glb(Cntxt1, Cntxt2) = Cntxt1, if Cntxt2 = <>
[Empty Context]

– (Ci, Vi) ∈ glb(Cntxt1, Cntxt2),
if Ci /∈ overlap(Cntxt1, Cntxt2)

– (C’i, V’ i) ∈ glb(Cntxt1, Cntxt2),
if C’ i /∈ overlap(Cntxt1, Cntxt2)

– (Ck, glb(Vk, V’ j)) ∈ glb(Cntxt1, Cntxt2),
if Ck = C’j ∈ overlap(Cntxt1, Cntxt2)

An alternative equivalent representation of a context (ex-
pressed using the glb operation) is very useful when there is
a need to carry out inferences on the context and information
associated with it.
Cntxt = <(C1, V1)(C2, V2) ... (Ck, Vk)>
= glb(<(C1, V1)>,glb(<(C2, V2)>, ... ,

glb(<(Ck, Vk)>, <>) ...))
Example.Consider the following two contexts:
Cntxt1
= <(author, EMPLOYEE◦ <(affiliation, {research})>)

(article, PUBLICATION)>
Cntxt2
= <(article,

X◦ <(title,{x| substring(x) =”abortion”})>)>
It should be noted that
– article∈ overlap(Cntxt1,Cntxt2)
⇒ (article, glb(PUBLICATION,

X◦ <(title, {x|substring(x) = ”abortion”})>))
∈ glb(Cntxt1, Cntxt2)

– author/∈ overlap(Cntxt1,Cntxt2) ⇒
(author, EMPLOYEE◦ <(affiliation, {research})>)
∈ glb(Cntxt1, Cntxt2)

– glb(PUBLICATION,
X◦ <(title, {x|substring(x) = ”abortion”})>)

= glb(PUBLICATION,X)◦
<(title,{x|substring(x) = ”abortion”})>

[Association Contexts]
= PUBLICATION◦

<(title,{x|substring(x) = ”abortion”})>
[glb of a variable and an object]

glb(Cntxt1,Cntxt2)
= <(author, EMPLOYEE◦ <(affiliation, {research})>)

(article, PUBLICATION◦
<(title,{x| substring(x) =”abortion”})>)>

3.4 Issues of language and ontology in context
representation

In this section, we discuss the issues of a language in which
the explicit representation discussed above can be best ex-
pressed. We also discuss issues of ontology, i.e., the vocab-
ulary used by the language to represent the contexts.

3.4.1 Language for context representation

In Sect. 3.2, we have proposed a context representation as
a collection of contextual coordinates and their values. The
values themselves may have contexts associated with them.
In this section, we enumerate the properties desired of a
language to express the context representation.

– The language should be declarative in nature, as the con-
text shall typically be used to express constraints on ob-
jects in an intensional manner. Besides, the declarative
nature of the language will make it easier to perform
inferences on the context.

– The language should be able to express the context as
a collection of contextual coordinates, each describing a
specific aspect of information present in the database or
requested by a query.

– The language should have primitives (for determining
the subtype of two types, pattern matching, etc.) in the
model world, which might be useful in comparing and
manipulating context representations.

– The language should have primitives to perform naviga-
tion in the ontology to identify the abstractions related
to the ontological objects in the query context or the
definition contexts of objects in the databases.

3.4.2 The ontology problem

In constructing the contexts as illustrated in Sect. 3.2, the
choice of the contextual coordinates (Cis) and the values
assigned to them (Vis) is very important. There should be
ontological commitments, i.e., agreements about the onto-
logical objects used between the users and the information
system designers. In our case, this corresponds to an agree-
ment on the terms used for the contextual coordinates and
their values by a user in formulating the query context and
a database administrator for formulating the definition and
association contexts. In an example in Sect. 3.2, we have
defined Cdef (EMPLOYEE) by making use of symbols like
employer, affiliationand reimbursementfrom the ontology
for contextual coordinates andresearch, teachingetc., for
the values of the contextual coordinates.

We assume that each database has available an ontol-
ogy corresponding to a specific domain. The definition and
association contexts of the objects take their terms and val-
ues from this ontology. However, in designing the definition
contexts and the query context, the issues of combining the
various ontologies arise.

We now enumerate various approaches one might take in
building ontologies for a federation of information sources.
Other than the ontological commitment, a critical issue in
designing ontologies is thescalability of the ontology as
more information sources enter the federation.

– The common ontology approach.
– One approach has been to build an extensive global

ontology. A notable example of global ontology is
Cyc [LG90], consisting of around 100,000 objects.
The mapping between each individual information
resource and the Cyc global ontology in the Carnot
project [CHS91] is accomplished by a set ofartic-
ulation axiomswhich are used to map the entities
of an information resource to the concepts in Cyc’s
existing ontology [CHS91].

– Another approach has been to exploit the semantics
of a single problem domain (e.g., transportation plan-
ning) [ACHK93]. The domain model is a declarative
description of the objects and activities possible in

284

A classification using a generalization hierarchy

A classification using an aggregation hierarchy

Urban

Residential

Forest Land Water

Commercial

Industrial
Evergreen Lakes

 Reservoirs

Streams and Canals

Population Area Classification (US Census Bureau)

State

County

Rural AreaCity

Tract

Block Group
Block

Land Use and Land Cover Classification (USGS)

Deciduous Mixed

Fig. 3. Examples of generalization and aggregation hierarchies for ontology
construction

the application domain as viewed by a typical user.
The user formulates queries using terms from the ap-
plication domain.

– Re-use of existing ontologies.Given our assumption
that there will be numerous information systems partici-
pating in the federation, it is unrealistic to expect any one
existing ontology or classification to suffice. We propose
a re-use of various existing classifications such as ISBN
classification for publications, botanical classification for
plants, etc. An example of such a classification is illus-
trated in Fig. 3. These ontologies can then be combined
in different ways and made available to the federation.
– A critical issue in combining the various ontologies

is determining the overlap between them. One pos-
sibility [Wie94] is two define the “intersection” and
“mutual exclusion” points between the various on-
tologies. Attempts have been made to use termino-
logical relationships between terms across different
ontologies to represent the intersection points. In the
OBSERVER system,synonymshave been used to
represent the intersection points and a proposal to
extend the system usinghyponymsand hypernyms
has been presented in [MKIS96].

– Another approach has been adopted in [MS95]. The
types determined to be similar by a sharing advi-
sor are classified into a collection calledconcept. A
concept hierarchyis thus generated modeling super-
concept-subconcept relationships. These types may
be from different databases and their similarity or
dissimilarity is based on heuristics with user input as
required.

4 A semantic taxonomy

Our emphasis is on identifying semantic similarity even
when the objects have significant representational differ-
ences [She91].Semantic proximity is an attempt to character-
ize the degree of semantic similarity between two objects us-
ing the RWS. It provides a qualitative measure to distinguish

between the terms introduced in [She91], such assemantic
equivalence, semantic relationship, semantic relevanceand
semantic resemblance. Two objects can be semantically re-
lated in one of the above four ways. Semantic equivalence
is semantically closerthan semantic relationship, and so on.

In this section, we use the concept of semantic prox-
imity defined in Sect. 2 and the context representation dis-
cussed above to define a semantic taxonomy consisting of
the various types of semantic similarities between objects.
The taxonomy thus designed is illustrated in Fig. 5.

4.1 The role of context in semantic classification

The context, which is the pivot on which the semantic prox-
imity depends, plays a key role in this taxonomy. Here we
enumerate the possible values for context.

– ALL, i.e., the semPro between the objects is being de-
finedwith respect toall known andcoherentcomparison
contexts. There should be coherence between the defini-
tion contexts of the objects being compared and between
the definition contexts and the context of comparison.

– SOME, i.e., thesemPro between the objects is being
definedwith respect tosome context. This context may
be constructed in the following ways.

– GLB, i.e., the glb of the contexts of the two objects
Typically, we are interested in theglb of the con-
text of comparison and the definition context of the
object.

– LUB, i.e., the least upper bound (lub)4 of the con-
texts of the two objects is taken. Typically, we are
interested in thelub of the definition contexts of the
two objects when there does not exist an abstrac-
tion/mapping between their domains in the context
of comparison.

– SUB-CONTEXTS, we might be interested in thesemPro
between two objects in contexts which are more specific
or more generalwith respect tothe context of compari-
son.

– NONE, i.e., there does not exist a context in which a
meaningful abstraction or mapping between the domains
of the objects may be defined. This is the case when the
definition contexts of the objects being compared arenot
coherentwith each other.

4.2 Semantic equivalence

This is the strongest measure of semantic proximity two
objects can have. Two objects are defined to besemantically
equivalentwhen they represent the same real-world entity
or concept. Expressed in our model, it means that given two
objects O1 and O2, it should be possible to define a total 1-1
value mapping between the domains of these two objects in
any known and coherent context. Thus we can write it as:

4 We have not defined it for the general case. Here, we are only interested
in the special case:
(Ck, Vk ∪ V’ j) ∈ lub(Cntxt1, Cntxt2)
where Ck = C’j ∈ overlap(Cntxt1, Cntxt2)

285

semPro(O1, O2)
= <ALL, total 1-1 value mapping, (D1, D2), >5.
The notion of equivalence described above depends on the
definition of the domains of the objects and can be more
specifically calleddomain semantic equivalence. We can also
define a stronger notion of semantic equivalence between
two objects, which incorporates the state of the databases
to which the two objects belong. This equivalence is called
state semantic equivalenceand is defined as:

semPro(O1, O2) = <ALL, M, (D 1, D2), (S1, S2) >,
where M is a total 1-1 value mapping between (D1, S1) and
(D2, S2).

For the purposes of this paper we shall use semantic equiv-
alence to mean domain semantic equivalence.

4.3 Semantic relationship

This type of semantic similarity is weaker than semantic
equivalence. Two objects are said to besemantically related
when there exists a partial many-one value mapping, or a
generalization, or aggregation abstraction between the do-
mains of the two objects. Here, we relax the requirement
of a 1-1 mapping in a way that, given an instance O1, we
can identify an instance of O2, but not vice versa. The re-
quirement that the mapping be definable in all the known
and coherent contexts is not relaxed. Thus, we define the
semantic relationshipas:

semPro(O1, O2) = <ALL, M, (D 1, D2), >,
where M may be a partial many-one value mapping, gener-
alization, or aggregation

4.4 Semantic relevance

We consider two objects to besemantically relevantif they
can be related to each other using someabstractionin some
context. Thus the notion of semantic relevance between two
objects is context-dependent, i.e., two objects may be se-
mantically relevant in one context, but not so in another.
Objects can be related to each other using any abstraction.

semPro(O1, O2) = <SOME, ANY, (D1, D2), >

4.5 Semantic resemblance

This is the weakest measure of semantic proximity, which
might be useful in certain cases. Here, we consider the case
where the domains of two objects cannot be related to each
other by any abstraction in any context. Hence, the exact
nature of semantic proximity between two objects is very
difficult to specify. In this case, the user may be presented
with extensions of both the objects. In order to express this
type of semantic similarity, we introduce an aspect of con-
text, which we callrole, by extending the concept of role
defined in [EN89]. Semantic resemblance is defined in detail
in the next section.

5 We use the “” sign to denote “don’t care”.

Employee
Name

Employee
Number

Database1

Database2

Role1

Role2

OBJECTS CONTEXTS

Role1 = role-of(EmployeeName, Database1) = Identifier
Role2 = role-of(EmployeeNumber, Database2) = Identifier
EmployeeName in Database1.Identifier
EmployeeNumber in Database2.Identifier
Thus, Role1 = Role2

Fig. 4. Roles played by objects in their contexts

4.5.1 Role played by an object in a context

This refers to the relationship between an object and the
semantic context to which it belongs. We characterize this
relationship as a binary function, which has the object and
its context as the arguments and the name of the role as the
value.

role-of : object× context→ rolename

The mapping defined above may be multivalued, as it is pos-
sible for an object to have multiple roles in the same context.

Based on the representation of a context proposed in Sect. 3.2,
we can express this by constructing the lub of the contexts.
Consider the typeNumber and the typeName defined in
the databases.

Cdef (Database1) =<(Class,{Employee, ...})
(Identifier,{Name, ...})>

Cdef (Database2) =<(Class,{Employee, ...})
(Identifier,{Number, ...})>

lub(Cdef (Database1), Cdef (Database2))
= <(Class,{Employee1, Employee2, ...})

(Identifier,{Name, Number, ...})>
Thus role-of(Name, Cdef (Database1))

= role-of(Number, Cdef (Database2)) = Identifier
Since Name, Number∈ Identifier
∧ Identifier∈ lub(Cdef (Database1), Cdef (Database2))
This is illustrated in Fig. 4.

4.5.2 Roles and semantic resemblance

Whenever two objects cannot be related to each other by
any abstraction in any context, but they are associated with

286

Semantic Proximity

Semantic Resemblance Semantic Incompatibility

Semantic Relevance Semantic Relationship

Semantic Equivalence

Context, Abstraction

Similar[Context = SOME,
 Abstraction = NONE]

Dissimilar[Context = NONE,
 Abstraction = NEG]

Context = SAME,
Abstraction = SOME

Context = ALL
Abstraction = SOME

Abstraction = Total
 1-1 value mapping

Fig. 5. Semantic classification of object similarities

contexts in which they have the same role and their defini-
tion contexts are coherent with respect to each other, they
can be said tosemantically resembleeach other. This is a
generalization of the DOMAIN-DISJOINT-ROLE-EQUAL
concept in [LNE89].

semPro(O1, O2) = <SOME(LUB), NONE, (D1, D2), >,
where coherent(Cdef (O1),Cdef (O2)) and∃Cntxt1,Cntxt2 ex-
ported by DB1,DB2, respectively
and SOME(LUB) denotes a context defined as follows:
context = lub(Cntxt1, Cntxt2) and D1 /= D2
and role-of(O1, context) = role-of(O2, context)

4.6 Semantic incompatibility

While all the qualitative proximity measures defined above
describe semantic similarity, semantic incompatibility as-
serts semantic dissimilarity. Lack of any semantic similarity
does not automatically imply that the objects are seman-
tically incompatible. Establishing semantic incompatibility
requires asserting that the definition contexts of the two ob-
jects areincoherent with respect toeach other and there do
not exist contexts associated with these objects such that
they have the same role.

semPro(O1, O2) = <NONE, NONE, (D1, D2), >
where Cdef (O1) and Cdef (O2) are incoherent with each other
and D1 may or may not be equal to D2
and 6 ∃ context such that
role-of(O1, context) = role-of(O2, context)

5 Schematic heterogeneities in multidatabases

In this section, we deal with a broad class of schematic dif-
ferences and the possible semantic similarities between ob-
jects having schematic differences [SK92]. With each type
of schematic difference, we enumerate the possible semantic

Incompatibility

Domain Definition Incompatibility

Entity Definition Incompatibility

Data Value Incompatibility

Abstraction Level Incompatibility

Schematic Discrepancy

Fig. 6. Schematic heterogeneities

proximity descriptors. The broad classes of schematic het-
erogeneities we are dealing with are:domain incompatibility,
entity definition incompatibility, data value incompatibility,
abstraction level incompatibilityand schematic discrepan-
cies (Fig. 6). While the issues of schematic/representational
/structural heterogeneity have been dealt with by a number
of researchers [DH84, BOT86, CRE87, KLK91, KS91], the
unique feature of our work is the strong correlation between
the semantic aspects defined above and the structural aspects.

5.1 Domain incompatibility

In this section, we discuss the incompatibilities that arise
when two different domain types are used as different defi-
nitions of semantically similar attribute domains. We refine
the broad definition of this incompatibility given in [CRE87].
We also discuss the possible semantic similarities with each
case (Fig. 7).

5.1.1 Naming conflicts

Two attributes that are semantically alike might have differ-
ent names. They are known assynonyms.
Example.Consider two databases having the relations:

STUDENT(Id#, Name, Address)
TEACHER(SS#, Name, Address)

Id# of STUDENT and SS# of TEACHER are
synonyms.

Mappings between synonyms can often be establishedwith
respect toall known and coherent contexts. In such cases,
the two domain types may be consideredsemantically equiv-
alent.

Two attributes that are semantically unrelated might have
the same names. They are known ashomonyms.
Example.Consider two databases having the relations:

STUDENT(Id#, Name, Address)
BOOK(Id#, Name, Author)

Id# of STUDENT and BOOK are homonyms.

287

The definition contexts of the two domain types (which are
defined in two different databases) may be modeled as fol-
lows:

Cdef (STUDENT.Id#) =<(identifies, AnimateObject)>
Cdef (BOOK.Id#) =<(identifies, InAnimateObject)>

The concepts AnimateObject and InAnimateObject are ob-
tained from an ontology for the domain.

Since homonyms are semantically unrelated, their definition
contexts are modeled in a way that they areincoherent with
respect toeach other. Thus, these two domain types may be
consideredsemantically incompatible.

5.1.2 Data representation conflicts

Two attributes that are semantically similar might have dif-
ferent data types or representations.
Example.

STUDENT.Id# is defined as a 9-digit
integer.

TEACHER.SS# is defined as an 11-character
string.

Conversion mappings or routines between different data
representations can often be establishedwith respect toall
known and coherent contexts. In such cases, these domain
types may be consideredsemantically equivalent.

5.1.3 Data scaling conflicts

Two attributes that are semantically similar might be rep-
resented using different units and measures. There is a 1-1
mapping between the values of the domains of the two at-
tributes. For instance, the salary attribute might have values
in $ and $.

Typically, mappings between data represented in differ-
ent scales can be easily expressed in terms of a function or
a lookup table, or by using dynamic attributes as in [LA86]
and with respect toall known and coherent contexts. In
such cases, the domain types may be consideredsemanti-
cally equivalent.

5.1.4 Data precision conflicts

Two attributes that are semantically similar might be repre-
sented using different precisions. This case is different from
the previous case, because there may not be 1-1 mapping
between the values of the domains. There may be a many-
one mapping from the domain of the precise attribute to the
domain of the coarser attribute.
Example.
Let the attribute Marks have an integer value from 1 to 100.
Let the attribute Grades have the values{A, B, C, D, F}.

Table 2. Mapping between marks and grades

Marks Grades
81-100 A
61-80 B
41-60 C
21-40 D
1-20 F

There may be a many-one mapping from Marks to Grades
(Table 2). Grades is the coarser attribute. Typically, map-
pings can be specified from the precise data scale to the
coarse data scalewith respect toall known and coherent
contexts. Given a letter grade, determining the precise nu-
merical score is typically not possible. In such cases, the
domain types may be consideredsemantically related.

5.1.5 Default value conflicts

This type of conflict depends on the definition of the domain
of the concerned attributes. Thedefault valueof an attribute
is that value which it is defined to have in the absence of
more information about the real world. For instance, the
default value for age of an adult might be defined as 18
years in one database and as 21 years in another.

It may not be possible to specify mappings between a
default value of one attribute to the default value of another
in all known and coherent contexts. However, it is often pos-
sible to do sowith respect tosome context. In such cases,
the domain types can be considered to besemantically rele-
vant, i.e., theirsemantic proximitycan be defined as follows:

semPro(Age1, Age2) = <SOME, Abstraction, (D1, D2), >
Context =<(default, DefaultAge)>,
where the concept DefaultAge is obtained from an ontol-
ogy for the domain. When the semPro isevaluatedwith re-
spect to the context, it maps to different ages in the different
databases.

5.1.6 Attribute integrity constraint conflicts

Two semantically similar attributes might be restricted by
constraints which might not be consistent with each other.
For instance, in different databases, the attribute Age might
follow these constraints:
Example.
C1 : Age1 ≤ 18
C2 : Age2 > 21
C1 and C2 are inconsistent and hence the integrity con-
straints on the attribute Salary are said to conflict.

If the constraints are captured in the definition contexts of
the domain types of Age1 and Age2, then they would be
incoherent and can be consideredsemantically incompati-
ble. However, in the case these types are playing the same
role in the definition contexts of their respective databases in
which they exist, they may be considered to have asemantic
resemblanceto each other.

288

Domain Incompatibility

Naming Conflicts

Data Representation Conflicts

Data Scaling Conflicts

Data Precision Conflicts

Default Value Conflicts

Attribute Integrity Constraint Conflicts

Synonyms

Homonyms

(Semantic Equivalence)

(Semantic
 Incompatibility)

(Semantic Equivalence)

(Semantic Equivalence)

(Semantic Relationship)

(Semantic Relevance)

(Semantic Resemblance)

Fig. 7. Domain incompatibility and the likely types of semantic proximities

Cdef (Database1) = <(timePeriod,{Age, Duration, ...})>,
Cdef (Database2) = <(timePeriod,

{Age, RacePerformance, ...})>,
where Age1, Age2 denote the attribute Age in Database1,
Database2, respectively
semPro(Age1, Age2)
= <SOME(LUB), NONE, (D1, D2), >,
where SOME(LUB) denotes a context defined as follows:
where context = lub(Cdef (Database1), Cdef (Database2))
and D1 /= D2
and role-of(Age1, context) = role-of(Age2, context)

= timePeriod.

5.2 Entity definition incompatibility

In this section, we discuss the incompatibilities that arise be-
tween two objects when the entity descriptors used by the ob-
jects are only partially compatible, even when the same type
of entity is being modeled. We refine the broad definition of
this class of conflicts given in [CRE87]. We also discuss the
possible semantic similarities with each case (Fig. 8).

5.2.1 Database identifier conflicts

In this case, the entity descriptions in two databases are
incompatible, because they use identifier records that are
semantically different.

Example.

STUDENT1(SS#, Course, Grades)
STUDENT2(Name, Course, Grades)

STUDENT1.SS# and STUDENT2.Name are
semantically different keys.

The semantic proximity of objects having this kind of con-
flict depends on whether it is possible to define an abstraction
to map the keys in one database to another. However, if we

assume that the context(s) of the identifiers are defined in
the local schemas, we know that they play therole of iden-
tification in their respective contexts. Hence, the weakest
possible measure ofsemantic resemblanceapplies, though
stronger measures might apply too.

semPro(SS#, Name) =<SOME(LUB), , (D1, D2), >,
where D1 = Domain(SS#) and D2 = Domain(Name)
and where SS# and Name exist in Database1 and Database2,
respectively
Cdef (Database1) = <(Class,{STUDENT1, ...})

(Identifier,{SS#, ...})>
Cdef (Database2) = <(Class,{STUDENT2, ...})

(Identifier,{Name, ...})>
and SOME(LUB) denotes a context defined as follows:
and context = lub(Cdef (Database1), Cdef (Database2))
and role-of(SS#, context) = role-of(Name, context)

= Identifiers

5.2.2 Naming conflicts

Semantically alike entities might be named differently in
different databases. For instance, EMPLOYEE and WORK-
ERS might be two objects describing the same set of entities.
They are known assynonyms. Typically, mappings between
synonyms can often be establishedwith respect toall known
and coherent contexts. In such cases, the objects may be con-
sideredsemantically equivalent.

On the other hand, semantically unrelated entities might
have the same name in different databases. For instance,
TICKETS might be the name of a relation which models
movie tickets in one database, whereas it might model traf-
fic violation tickets in another database. They are known as
homonymsof each other. In a manner similar to that demon-
strated in Sect. 5.1.1, their definition contexts can be mod-
eled in a way that they are incoherentwith respect toeach
other. Thus, these objects may be consideredsemantically
incompatible.

5.2.3 Schema isomorphism conflicts

Semantically similar entities may have different number of
attributes, giving rise to schema isomorphism conflicts.

Example.

INSTRUCTOR1(SS#, HomePhone, OffPhone)
INSTRUCTOR2(SS#, Phone)

is an example of schema non-isomorphism.

It should be noted that this can be considered an artifact of
the data precision conflictsidentified in Sect. 5.1.4 of this
paper, as the phone number of INSTRUCTOR1 can be con-
sidered to be represented in a more precise manner than the
phone number of INSTRUCTOR2. However, the conflicts
discussed in section 5.1.4 are due to the differences in the
domains of the attributes representing the same information
and hence areattribute level conflicts. Whereas, conflicts in
this section arise due to differences in the way the entities

289

INSTRUCTOR1 and INSTRUCTOR2 are defined in the two
databases and hence areentity level conflicts.

Since mappings can be established between the objects
on the basis of the common and identifying attributes, the
two objects may be consideredsemantically related.
semPro(Instructor1, Instructor2)
= <ALL,{MID,M1},({D1,SS#, DHomePhone, DOffPhone},

{D2,SS#, DPhone}), >,
where MID is a total 1-1 value mapping between D1,SS# and
D2,SS# and represents the mapping between the identifiers
of the two objects.
M1 may be a total/partial 1-1/many-one value mapping be-
tween DHomePhone∪ DOffPhone and DPhone.

5.2.4 Missing data item conflicts

This conflict arises when, of the entity descriptors model-
ing semantically similar entities, one has a missing attribute.
This type of conflict is subsumed by the conflict discussed
in the previous section. A special case of the above conflict
which satisfies the following conditions:

– the missing attribute is compatible with the entity, and
– there exists an inference mechanism to deduce the value

of the attribute.

Example.

STUDENT(SS#, Name, Type)
GRAD-STUDENT(SS#, Name)

STUDENT.Type can have values "UG"
or "Grad"

GRAD-STUDENT does not have a type
attribute, but that can be implicitly
deduced to be "Grad".

In the above example, GRAD-STUDENT can be thought
to have a type attribute whose default value is “Grad”. The
conflict discussed in this section is different from thedefault
valueconflict in Sect. 5.1.5, which is anattribute level con-
flict, whereas the conflict discussed here is anentity level
conflict. The objects may be consideredsemantically rele-
vant, as proposed below.

The definition contexts of the two objects can be defined
as:
Cdef (STUDENT) =<(type,{graduate, undergraduate})>,
Cdef (GRAD-STUDENT) =<(type,{graduate})>

The context in which semPro(STUDENT, GRAD-STUDENT)
will be defined as:
glb(Cdef (STUDENT), Cdef (GRAD-STUDENT))
= <(type,{graduate})>
The abstraction is then computed by “conditioning” the orig-
inal student abstractionwith respect tothis new context.
Since every abstraction/mapping is associated with a con-
text, the change in the abstraction as a result of the change
in the associated context is called conditioning and is dis-
cussed in detail in [KS95b].

semPro(STUDENT, GRAD-STUDENT)

Entity Definition Incompatibility

Database Identifier Conflicts

Naming Conflicts

Homonyms

Synonyms

Schema Isomorphism Conflicts

Missing Data Item Conflicts

(Semantic Resemblance)

(Semantic
 Incompatibility)

(Semantic
 Equivalence)

(Semantic Relationship)

(Semantic Relevance)

Fig. 8. Entity definition incompatibilities and the likely types of semantic
proximities

= <SOME, M, (D1, D2), >,
where M: STUDENT→ GRAD-STUDENT is a partial 1-1
value mapping
and Context = SOME =<(type,{graduate})>

5.3 Data value incompatibility

This class of conflicts covers those incompatibilities that
arise due to the values of the data present in different
databases [BOT86]. These conflicts are different from de-
fault value conflicts (Sect. 5.1.5) and attribute integrity con-
straint conflicts (Sect. 5.1.6) in that the latter are due to the
differences in the definitions of the domain types of the at-
tributes. Here, we refer to the data values already existing in
the database. Thus, the conflicts here depend on the database
state. Since we are dealing with independent databases, it is
not necessary that the data values for the same entities in
two different databases be consistent with each other. We
also discuss the possible semantic similarities with each case
(Fig. 9).

Example.

Consider two databases modeling the
entity Ship

SHIP1(Id#, Name, Weight)
SHIP2(Id#, Name, Weight)

Consider a entity represented in both
databases as follows:

SHIP1(123, USSEnterprise, 100)
SHIP2(123, USSEnterprise, 200)

Thus, we have the same entity for which
SHIP1.Weight is not the same as
SHIP2.Weight, i.e., it has inconsistent
values in the database.

5.3.1 Known inconsistency

In this type of conflict, the cause of inconsistency is known
ahead of time and hence measures can be initiated to resolve

290

the inconsistency in the data values. For instance, it might be
known ahead of time that one database is more reliable than
the other. This information can typically be represented in
the query context Cq. Here, the similarity of objects depends
on the state component of semPro and are hence considered
state semantically relevant.
Cq = <(class, SHIP) (dataItem,{Id#})

(choose-from,{DB1})>

semPro(O1, O2) = <Cq, M, (D1, D2), (S1, S2)>,
where M is a total 1-1 value mapping between (D1, S1) and
(D2, S2) (In this case the default is (D1, S1)).

5.3.2 Temporal inconsistency

In this type of conflict, the inconsistency is of a temporary
nature. This type of conflict has been identified in [RSK91]
and has been expressed as atemporal consistency predicate6.
One of the databases which has conflicting values might have
obsolete information. This means that the information stored
in the databases is time-dependent. The time lag information
(∆t) can be easily represented in the query context Cq and
hence the objects may be consideredstate semantically rel-
evant. The semPro when evaluatedwith respect tocontext
gives the mapping defined below.

Cq = <(class, SHIP) (dataItem,{Weight}) (timeLag,∆t)>

semPro(O1, O2)
=<Cq, total 1-1 value mapping, (D1, D2), (S1, S2)>
where S2(t + ∆t) = S1(t).

5.3.3 Acceptable inconsistency

In this type of conflict, the inconsistencies between val-
ues from different databases might be within an acceptable
range. Thus, depending on the type of query being answered,
the error in the values of two inconsistent databases might
be considered tolerable. Thetoleranceof the inconsistency
can be of a numerical or non-numerical nature and can be
easily represented in the query context Cq, and hence the
objects may be consideredstate semantically relevant.

Example.Numerical inconsistency
QUERY: Find the tax bracket of an employee.
INCONSISTENCY: If the inconsistency in the value of an
employee income is up to a fraction of a dollar it may be
ignored.
Cq = <(class, EMPLOYEE) (dataItem,{Salary})

(epsValue, [0, 0.99])>,
where epsValue is a contextual coordinate which models the
level of inconsistency that can be tolerated for the query.

Example.Non-numerical inconsistency
QUERY: Find the state of residence of an employee.
INCONSISTENCY: If the employee is recorded as staying
in Edison and New Brunswick (both are in New Jersey),
then again the inconsistency may be ignored.

6 Additional information on weaker criteria for consistency can be found
in the literature on transaction models (e.g., see [SRK92]).

Data Value Incompatibility

Known Inconsistency

Temporal Inconsistency

Acceptable Inconsistency

(State Semantic Relevance)

(State Semantic Relevance)

(State Semantic Relevance)

Fig. 9. Data value incompatibilities and the likely types of semantic prox-
imities

Cq = <(class,EMPLOYEE) (dataItem,{Residence})
(epsValue, sameState)>

semPro(O1, O2)
=<Cq, partial many-one value mapping, (D1, D2), (S1, S2)>,
where perturb(S1, ε) = S2 and ε is the discrepancy in the
state of the two objects.

5.4 Abstraction level incompatibility

This class of conflicts was first discussed in [DH84] in the
context of the functional data model. These incompatibilities
arise when two semantically similar entities are represented
at differing levels of abstraction. Differences in abstraction
can arise due to the different levels of generality at which an
entity is represented in the database. They can also arise due
to aggregation used both at the entity as well as the attribute
level. We also discuss the possible semantic similarities with
each case (Fig. 10).

5.4.1 Generalization conflicts

These conflicts arise when two entities are represented at
different levels of generalization in two different databases.

Example.

Consider the entity "Graduate Students"
which may be represented in two
different databases as follows:

STUDENT(Id#, Name, Major, Type)
GRAD-STUDENT(Id#, Name, Major)

Thus, we have the same entity set
being defined at a more general level
in the first database.

The definition contexts of the two objects can be defined as:
Cdef (STUDENT) =<(type,{graduate, undergraduate})>
Cdef (GRAD-STUDENT) =<(type,{graduate})>
The context in which semPro(STUDENT, GRAD-STUDENT)
is defined is given by:

glb(Cdef (STUDENT), Cdef (GRAD-STUDENT))
= <(type,{graduate})>
The abstraction is then computed by “conditioning” the orig-
inal student abstractionwith respect tothis new context.
Thus, STUDENT and GRAD-STUDENT may be consid-
eredsemantically relevant.

291

Abstraction Level Incompatibility

Generalization Conflicts

Aggregation Conflicts

(Semantic Relevance)

(Semantic Relevance)

Fig. 10.Abstraction level incompatibilities and the likely types of semantic
proximities

semPro(STUDENT, GRAD-STUDENT)
= <SOME, M, (D1, D2), >
where M: STUDENT→ GRAD-STUDENT is a partial 1-1
value mapping
and Context = SOME =<(type,{graduate})>

5.4.2 Aggregation conflicts

These conflicts arise when an aggregation is used in one
database to identify a set of entities in another database.
Also, the properties of the aggregate concept can be an ag-
gregate of the corresponding property of the set of entities.

Example.

Consider the aggregation SET-OF which is
used to define a concept in the first
database and the set of entities in
another database as follows:

CONVOY(Id#, AvgWeight, Location)
SHIP(Id#, Weight, Location, Captain)

Thus, CONVOY in the first database is a
SET-OF SHIPs in the second database.
Also, CONVOY.AvgWeight is the average
(aggregate function) of SHIP.Weight
of ships that are members of the convoy.

In this case, there is a mapping in only one direction, i.e.,
an element of a set is mapped to the set itself. In the other
direction, the mapping is not precise. When the SHIP entity
is known, one can identify the CONVOY entity it belongs
to, but not vice versa. Also, the aggregation can be expressed
in the definition context of CONVOY using the composition
of contextual coordinates as follows:
Cdef (CONVOY)
= <(member, SHIP) (weight, ...) (location, ...)>,
Cdef (SHIP) =<(shipweight, ...) (shiplocation, ...)>,
whereweight = average(shipweight) andshiplocation = loca-
tion are relationships between the various contextual coordi-
nates obtained from the ontology of the domain.
context = glb(Cdef (CONVOY), Cdef (SHIP))

semPro(CONVOY, SHIP)
= <context, Aggregation, (D1, D2), >

Thus, CONVOY and SHIP maybe consideredsemantically
relevant.

5.5 Schematic discrepancies

This class of conflicts was discussed in [DAODT85, KLK91].
It was noted that these conflicts can take place within the
same data model and arise when data in one database cor-
respond to meta-data of another database. This class of con-
flicts is similar to that discussed in Sect. 5.3 when the con-
flicts depend on the database state. We now analyze the prob-
lem and identify three aspects with help of an example given
in [KLK91]. We also discuss the possible semantic similar-
ities with each case (Fig. 11).

Example.Consider three stock databases. All contain the
closing price for each day of each stock in the stock market.
The schemata for the three databases are as follows:

– Database DB1 :
relation r :{(date, stkCode, clsPrice). . . }

– Database DB2 :
relation r :{(date, stk1, stk2,. . .) . . . }

– Database DB3 :
relation stk1 :{(date, clsPrice). . . },
relation stk2 :{(date, clsPrice). . . },
...

DB1 consists of a single relation that has a tuple per day
per stock with its closing price. DB2 also has a single rela-
tion, but with one attribute per stock, and one tuple per day,
where the value of the attribute is the closing price of the
stock. DB3 has, in contrast, one relation per stock that has a
tuple per day with its closing price. Let us consider that the
stkCode values in DB1 are the names of the attributes, and
in the other databases they are the names of relations (e.g.,
stk1, stk2).

5.5.1 Data value attribute conflict

This conflict arises when the value of an attribute in one
database corresponds to an attribute in another database.
Thus, this kind of conflict depends on thedatabase state.
Referring to the above example, the values of the attribute
stkCodein the databaseDB1 correspond to the attributes
stk1, stk2, . . . in the databaseDB2.

The mappings here are established between sets of at-
tributes ({Oi}) and values in the extension of the other at-
tribute (O2). This is possible, however onlywith respect to
the contexts of the databases they are in. The two objects
model data at different levels and hence may be considered
to bemeta-semantically relevantand theirsemantic proxim-
ity can be defined as follows:

semPro({Oi}, O2) = <context, M, (D1, D2), (S1, S2)>,
where context = glb(Cdef (DB1), Cdef (DB2))
and M is a total 1-1 mapping between{Oi} and S2.

5.5.2 Attribute entity conflict

This conflict arises when the same entity is being modeled
as an attribute in one database and a relation in another

292

Schematic Discrepancies

Data Value Attribute Conflict

Attribute Entity Conflict

Data Value Entity Conflict

(Meta-Semantic Relevance)

(Semantic Relevance)

(Meta-Semantic Relevance)

Fig. 11. Schematic discrepancies and the likely types of semantic proxim-
ities

database. This kind of conflict is different from the conflicts
defined in the previous and next subsections, because it de-
pends on thedatabase schemaand not on thedatabase state.
It can also be considered as a part of the entity definition in-
compatibility (Sect. 5.2). Referring to the example described
in the beginning of this section, the attributestk1, stk2in the
databaseDB2 correspond to relations of the same name in
the databaseDB3.

Objects O1 and O2 can be consideredsemantically rele-
vant, as 1-1 value mappings can be established between the
domains of the attribute (O1) and the domain of the identi-
fying attribute of the entity (O2). It should be noted that O1
is an attribute (property) and O2 is an entity (class) and their
definition contexts are needed to determine the identifying
attribute of the entity (O2).

semPro(O1, O2)
= <context, total 1-1 value mapping, (D1, D2), >
where context = glb(Cdef (DB2), Cdef (DB3))
and D1 = Domain(O1) and D2 = Domain(Identifier(O2)).

5.5.3 Data value entity conflict

This conflict arises when the value of an attribute in one
database corresponds to a relation in another database. Thus,
this kind of conflict depends on thedatabase state. Referring
to the example described in the beginning of this section, the
values of the attributestkCodein the databaseDB1 corre-
spond to the relationsstk1, stk2in the databaseDB3.

The mappings here are established between set of enti-
ties ({Oi}) and values in the extension of an attribute (O2).
This is possible, however onlywith respect tothe contexts of
the databases they are in. Thus, the two objects may be con-
sidered to bemeta-semantically relevantand theirsemantic
proximity can be defined as follows:

semPro({Oi}, O2) = <context, M, (D1, D2), (S1, S2)>,
where context = glb(Cdef (DB1), Cdef (DB2))
and M is a total 1-1 mapping between{Oi} and S2.

6 Structural similarity: a component
of semantic similarity

In this section, we propose a uniform formalism called
schema correspondencesfor representation of structural

similarities between objects. These are associations between
objects and types defined in the various databases and can be
expressed using operations from a modified object algebra.
The schema correspondences so defined are a part of the se-
mantic proximity between the two objects or types and are
dependent on the context in which the semantic proximity is
defined.Projection rules which define the relationship be-
tween schema correspondences and semantic proximity are
also discussed.

6.1 Schema correspondences: a uniform formalism for
representation of abstraction

We propose a uniform formalism to represent the mappings
which are generated to represent the structural similarities
between objects having schematic conflicts and some se-
mantic affinity. This formalism is a generalization of the
concept ofconnectorsused to augment the relational model
in [CRE87].

Given two objects O1 and O2, the schema correspondence
between them can be represented as

schCor(O1,O2) = <O1,attr(O 1),O2,attr(O 2),M>.

– O1 and O2 are objects in the model world. They are
representations or intensional definitions in the model
world. They may correspond to class definitions or type
definitions in a database.

– The objects enumerated above may model information
at any level of representation (such as the entity or the
attribute level). If an object Oi models information at the
entity level, then attr(Oi) denotes the representation of
the attributes of Oi. If Oi models objects at the attribute
level, then attr(Oi) is an empty set.

– M is a mapping (possibly higher order) expressing the
correspondences between objects, their attributes and the
values of the objects/attributes. We use object algebra
operations enumerated below.

6.1.1 A brief introduction to a limited object algebra

Objects are considered as collections of instances which are
homogeneous and have the same type as the abstract data
type associated with the object. We list a limited set of op-
erations to manipulate objects in a database; these are very
similar to those in object-oriented database literature (e.g.,
[SZ90])7.

OSelect(p,O)This operation selects a set of instances of an
object O satisfying a selection predicate, p.
OSelect(p,O) ={o| o∈O ∧ p(o)}

makeObject(C,S)Given a contextual coordinate C and a set
S (which may be either a set of concepts from an ontol-
ogy, an object or a type domain), it defines a new object
with instances having attribute C and a value from the
set S as its value.
makeObject(C,S) ={o| o.C=s∧ s∈S}

7 When defining and using these operations, performance issues are ig-
nored in favor of simplicity of description.

293

FEDERATION
LEVEL

Federation
Object

O F Attributes C1 , C2 , ..., Ck

DATABASE
LEVEL

ODatabase
Object

Attributes

Cdef(O) <(C1

2

A1 , A2 , ..., Ak

mapO(Ci, Ai), V1) ... (C)> ...k ,Vk

Fig. 12. Schema correspondences: association between federation and
database objects

OProduct(O1,O2) Given two objects O1 and O2, a new ob-
ject is created which has the attributes of both O1, and
O2, and for every tuple of values in O1 has all the tuples
of values in O2 associated with it.
OProduct(O1,O2) = {o| (o.Ai=o1.Ai ∧ Ai ∈attr(O1) ∧
o1 ∈ O1) ∨ (o.Aj=o2.Aj ∧ Aj ∈attr(O2) ∧ o2 ∈O2)}

OJoin(p,O1,O2) This can be thought of as a special case of
the operation OProduct, except that the instances should
satisfy the predicate p.
OJoin(p,O1,O2) = {o| o∈OProduct(O1,O2) ∧ p(o)}

6.1.2 Schema correspondences and context

Each information system exports federation objects OF cor-
responding to the objects O it manages. The objects OF are
obtained by applying the constraints in the definition context
Cdef (O) to the object O. The user at the federation level sees
only the federation objects. The contextual coordinates Ci of
the Cdef (O) act as the attributes of OF . The exported objects
OF are associated with the objects and types defined in the
database. This association might be implemented in different
ways by various component systems. We use schema corre-
spondences to express these associations. This is illustrated
in Fig. 12

schCor(OF ,O) = <OF ,{Ci| Ci ∈ Cdef (O)},O,attr(O),M>

– OF is the exported federation object of an object O or
type T defined in the database.

– The attributes of the object OF are the contextual coor-
dinates of the definition context Cdef (O).

– The mapping operationmapO(Ci,Ai) stores the associ-
ation between contextual coordinate Ci and attribute Ai
of object O whenever there exists one.

– The mapping M between OF and O can be evaluated
using the projection rules enumerated and illustrated in
Sect. 6.2.

6.2 Schema correspondences: projection of semPro with
respect to context

We discussed in Sect. 3.1 how representing structural simi-
larities is not enough to capture semantic similarity between
two objects. However, for any meaningful operation to be
performed on the computer, the semPro descriptor between
two objects has to be mapped to a mathematical expression
which would essentially express the structural correspon-
dence between two objects. Our approach consists of the
following three aspects:

The semantic aspect:The semPro descriptor captures the
RWS of the data in the database through context and
includes intensional descriptions of:
– objects and their attributes
– the relationships between various objects
– the implicit assumptions in the design of the objects
– the constraints which the objects and attributes satisfy

The federation objects are objects obtained by apply-
ing the constraints in the intensional descriptions to the
database objects.

The data organization aspect:This refers to the actual or-
ganization of the data in the databases, e.g., the tables
and views in a relational database, or the class hierarchy
in object-oriented databases.

The mapping/abstraction aspect:The schCor descriptor,
as defined earlier, captures the association between the
federation objects and the database objects. The associ-
ation uses object algebraic operations to express corre-
spondences between the federation and the database ob-
jects. The evaluation of these associations results in the
retrieval of database objects which satisfy the constraints
specified in the context.

The mapping aspect can be succinctly expressed as

schCor(OF ,O) = ΠContext(semPro(OF ,O))

In the rest of this section, we explain the mapping aspect
with the help of examples. We first define the terminol-
ogy, operations and the projection rules used to specify the
semantics of the associations between the federation and
database objects, followed by examples illustrating them.

6.2.1 Relevant terminology and projection rules

We first enumerate the operations used to specify the as-
sociations between the exported federation objects and the
database objects. We shall use Cntxt, Cntxt1, ... to refer to
contexts and C, C1, ... to refer to contextual coordinates.
O1, O2, ... shall be used to refer to actual database objects
whereas O1F , O2F , ... shall be used to denote their counter-
parts exported to the federation. O’, O”, ... shall be used to
denote temporary objects to illustrate each step.

The operations are as follows:

mapO(C,A) The mapping operation which stores the associ-
ation between the attribute C of the exported federation
object OF (which is essentially a contextual coordinate
of the definition context Cdef (O) chosen from a domain-
specific ontology) and the attribute A of the object O.

semConstrain(<(Ci,Vi)>,semPro(O’,O))The exported fed-
eration object OF is obtained by iteratively applying the
constraints in Cdef (O) to the database object O. Thesem-
Constrainoperation models one iteration, i.e., the appli-
cation of one constraint in Cdef (O) to the database object
O. Let
- semPro(OF ,O) be defined with respect toto Cdef (O)
- Ci be a contextual coordinate of Cdef (O)
- Cdef (O) = glb(<(Ci,Vi)>,Cntxt) (discussed in
Sect. 3.3)

294

- semPro(O’,O) be defined with respect toCntxt and
- O’ be a temporary object obtained by applying all the
constraints in Cntxt on O;
then the federation object OF may be iteratively defined
as
semPro(OF ,O)
= semConstrain(<(Ci,Vi)>, semPro(O’,O))

strConstrain(mapO(Ci,Ai),Si,schCor(O’,O)) strConstrainis
the structural counterpart ofsemConstrain. It maps the
attributes of the federation object to the attributes of the
database object. It also recomputes the mappings asso-
ciated with schCor(O’,O). This is done by adding a se-
lection condition to the original mapping as follows:
OF = OSelect((Ai ∈Si),O’),
where there exists a mapping between O’ and O from
schCor(O’,O)

semCondition(Cntxt,semPro(OF ,O)) In some cases, a
database object O may be associated with another
database objectwith respect tothe contextCntxt. The
semConditionoperation modifies the semantic proxim-
ity descriptor bylifting [Guh91] it into a context(Cntxt)
different from the one(Cdef (O)) in which it is defined
in. This operation can be defined iteratively using the
semConstrain operation.

Let Cntxt = glb(<(Ci,Vi)>,Cntxt1)
semCondition(Cntxt,semPro(OF ,O))
= semConstrain(<(Ci,Vi)>,

semCondition(Cntxt1,semPro(OF ,O)))

semCombine(Ci,semPro(O’,O),semPro(O”,Oi)) In some
cases, the definition context of an object O makes explicit
an association between the database objects O and Oi.
This association is typicallywith respect tothe associa-
tion context between two objects denoted as Cass(Oi,O).
ThesemCombineoperation models thecorrelationof in-
formation from objects O and Oi, which is then exported
as a part of the federation object OF . Let
- semPro(OF ,O) be defined with respect toto Cdef (O)
- Cdef (O) = glb(<(Ci,Oi◦Cass(Oi,O))>,Cntxt)
- semPro(O’,O) is defined with respect toCntxt
- O’ be a temporary object obtained by applying the con-
straints in Cntxt to O
- O” be a temporary object obtained by applying the con-
straints in Cass(Oi,O) to OiF ;
then the semPro(OF ,O) can be defined as
semConstrain(<(Ci,Oi◦Cass(Oi,O))>,semPro(O’,O))
= semCombine(Ci,semPro(O’,O),semPro(O”,Oi))
where semPro(O”,Oi)
= semCondition(Cass(Oi,O), semPro(OiF ,Oi))

strCombine({mapO(Ci,Ai),mapOi
(Ci,A’i)},schCor(O’,O),

schCor(O”,Oi)) strCombineis the structural counterpart
of semCombine. It maps the contextual coordinate Ci

to the attributes of the database objects O and Oi. It
correlates instances of the two objects. This results in
a join condition used to combine mappings associated
with schCor(O’,O) and schCor(O”,Oi).
OF = OJoin((Ai=A’ i),O’,O”) where there exist map-
pings between O’ and O from schCor(O’,O) and between
O” and Oi from schCor(O”,Oi)

Projection rules

We describe here a set ofprojection ruleswhich specify the
semantics of the projection operation discussed earlier in this
section. The rules specify an algebra based on the operations
discussed above. Here we describe them with the perspective
of the role they play in mapping the federation objects to the
various database objects. A detailed specification of these
rules is presented in the Appendix 1.

Rule 1. When the definition context of a database object
is empty, i.e., there are no constraints which the object
should satisfy, it is exported to the federation as it is
without any modifications. This situation is captured by
the Empty Context Rule.

Rule 2. The Simple Sets Ruledeals with the case when the
definition context has simple sets of values associated
with each contextual coordinate. Each contextual coor-
dinate is also associated with an attribute of a database
object. The effect of this rule can be achieved with re-
peated applications ofRule 3.1but it is used to simplify
the evaluation of the projection operation. An example
of application of this rule is illustrated in Sect. 6.2.2.

Rule 3. The exported federation object OF is obtained by
iteratively applying the constraints in the definition con-
text to the database object O. TheSimple Set Constraint
Ruledeals with the case where the constraints in the con-
text are applied iteratively to the database objects. The
termination condition of the iteration is the case when the
context is empty and is covered by theEmpty Context
Rule. This rule deals with the case where the constraint
to be applied is of the formC ∈ S, where C is a con-
textual coordinate and S is a simple set of symbols from
the ontology. This rule may also be used to apply an
arbitrary constraint on a federation object.
Rule 3.1.This rule deals with the case where the con-

textual coordinate in the constraint is not present in
the definition context in which the semPro is defined
and there exists an attribute of a database object cor-
responding to that contextual coordinate.

Rule 3.2.This rule deals with the case where the con-
textual coordinate in the constraint is already present
in the definition context and there exists an attribute
of a database object corresponding to that contextual
coordinate.

Rule 3.3.This rule deals with the case where the contex-
tual coordinate in the constraint is not present in the
definition context and there does not exist an attribute
of a database object corresponding to that contextual
coordinate. An example of application of this rule is
illustrated in Sect. 6.2.3.

Rule 3.4.This rule deals with the case where the con-
textual coordinate in the constraint is present in the
definition context and there does not exist an attribute
of a database object corresponding to that contextual
coordinate.

Rule 4. In some cases, a database object Oi may be asso-
ciated with another database object Owith respect toan
association context. TheContext Conditioning Ruledeals
with the case where semPro(OiF ,Oi) is conditionedwith
respect tothe association context. This involves applying

295

the constraints in the association context to the federation
object OiF .
Rule 4.1.The Empty Context Conditioning Rulestates

that when the association context used to condition
the semantic proximity is empty, then the semantic
proximity is evaluatedwith respect tothe definition
context. This means that the federation object OiF is
returned as it is without modification.

Rule 4.2.The Constraint Conditioning Ruledeals with
the case when the constraints in the association con-
text are applied to the federation object OiF itera-
tively. The termination condition of this iteration is
when the association context is empty and is covered
by theEmpty Context Conditioning Rule.

Rule 4.3.The Context Conditioning and semCombine
Ruledeals with the case when the semantic proximity
descriptor is a combination of two semantic proxim-
ities combined using thesemCombineoperation. The
semantics of thesemCombine Ruleare given by Rule
5.

Rule 5. In some cases, the definition context of an object O
makes explicit an association between the database ob-
jects O and Oi. This association is typicallywith respect
to the association context between two objects denoted
as Cass(Oi,O). The semCombine Ruledeals with this
case and results in the generation and combination of
two semantic proximities. An example of application of
this rule is illustrated in Sect. 6.2.4.
Rule 5.1.This rule maps the contextual coordinate to the

attributes in the different objects and performs the
correlation of the instances of the two objects. The
two attributes may either satisfy the equality predi-
cate or any other well-defined predicate.

Rule 5.2.The Coordinate Composition Ruledeals with
the special case where the contextual coordinate in
the constraint may be a composition of two contex-
tual coordinates. Each of the contextual coordinate
parts may or may not be mapped into attributes of
database objects. An example of application of this
rule is presented in Sect. 6.2.5.

6.2.2 Using ontology for an intensional description of data

In Sect. 3.2, we chose the contextual coordinates Cis and
their values Vis from an ontology. We illustrate with the
help of an example how concepts in an ontology may be
mapped to the actual data in the database. Thus, the user at
the federation level can view the information in the database
with the help of concepts from a domain-specific ontology
without being aware of the underlying format of the data.

Example. Consider an object EMPLOYEE defined in a
database as follows:
EMPLOYEE(SS#,Name,Dept,SalaryType,Affiliation)

The definition context of the object EMPLOYEE may be
defined as:
Cdef (EMPLOYEE) =<(employer,[Deptypes∪{restypes}])

(affiliation,{teaching,research,non-teaching})
(reimbursement,{salary,honorarium})>

– Deptypesis a type defined in the database.
– The symbols for the contextual coordinatesemployer,

affiliation and reimbursementare taken from the ontol-
ogy. The association with the attributes of EMPLOYEE
is stored by the mapEMPLOY EE(C, A) operation.

– The symbolsrestypes, teaching, research, non-teaching,
salary and honorarium may either be taken from the
ontology or submitted for inclusion into the ontology by
the database administrator.

As discussed in Sect. 6, we associate with definition con-
text an object EMPLOYEEF which is exported to the fed-
eration of databases.
semPro(EMPLOYEEF ,EMPLOYEE)
= <Cdef (EMPLOYEE),M,(dom(EMPLOYEEF),dom(EMPLOYEE)),>,

where M is a mapping between the domains of the two objects. The mapping
relates information in the ontology to data in the database. The projection
is illustrated in Fig. 13.

Simple Sets Rule ⇒
ΠCdef (EMPLOY EE)(semPro(EMPLOYEEF ,EMPLOYEE))
= schCor(EMPLOYEEF ,EMPLOYEE)
= <EMPLOYEEF ,{employer,affiliation,reimbursement},EMPLOYEE,

{mapEMPLOY EE (employer,Dept),
mapEMPLOY EE (affiliation,Affiliation),
mapEMPLOY EE (reimbursement,SalaryType)},M>

M ≡ EMPLOYEEF = OSelect(p,EMPLOYEE)
p ≡ (Dept∈[Deptypes∪{restypes}])

∧(Affiliation∈{teaching,research,non-teaching})
∧(SalaryType∈{salary,honorarium})

6.2.3 Domain augmentation: representing extra information

In this section, we demonstrate an interesting case where
extra informationcan be stored with the intensional descrip-
tions of objects. This extra information is represented as a
constraint at the federation level. Consider the constraint:
all publications have research areas that are associated with
departments. This may be used to make inferences about
database content, without actually accessing the database.
Consider a query that asks for all publications in a research
area not associated with a department. The answer to the
query is an empty set which can be determinedwithout ac-
tually accessing the database.

The constraint involving research areas can be repre-
sented in Cdef (PUBLICATION) and expressed using the
contextual coordinateresearchArea. However, the informa-
tion about the research areas of a publication is not modeled
by the existing database object
PUBLICATION(Id,Title, Journal).
The definition context of the object PUBLICATION is de-
fined as:
Cdef (PUBLICATION) =<(researchArea,Deptypes)> where
Deptypesis a type defined in the database.

The query discussed above can be processed without ac-
cessing the database if the constraint involving research areas
is part of the exported federation object. Because the contex-
tual coordinateresearchAreais not modeled in the database,
the projection algorithm creates a new object correspond-
ing to the research areas by using themakeObjectoperation.
This new object is then associated with the database object
PUBLICATION by using theOProductoperation. The above

296

semPro(EMPLOYEEF , EMPLOYEE)
<Cdef (EMPLOYEE), M, (dom(EMPLOYEE

Cdef (EMPLOYEE)
= <(employer, [Deptypes U {restypes}])
(affiliation, {teaching, research, non-teaching})

(reimbursement, {salary, honorarium})>

PROJECTION

schCor(EMPLOYEE F , EMPLOYEE)
<EMPLOYEEF , {employer,affiliation,reimbursement}, EMPLOYEE, {Dept,Affiliation,SalaryType}, M>

M <=> EMPLOYEE

F), dom(EMPLOYEE)), _>

 F = OSelect((Dept IN [Deptypes U {research}])

 AND (SalaryType IN {salary,honorarium}), EMPLOYEE)
 AND (Affiliation IN {teaching,research,non-teaching})

Fig. 13. Mapping EMPLOYEEF to object EMPLOYEE in the database

results in the augmentation of the domain of the database ob-
ject PUBLICATION and is expressed in Appendix 1(Rule
3.3).

dom(PUBLICATIONF) ⊆ dom(Id)×dom(Title)
×dom(Journal)×Deptypes.

The projection operation is diagrammatically illustrated in
Fig. 14.

[A] semPro(PUBLICATIONF ,PUBLICATION) is evaluatedwith respect
to Cdef (PUBLICATION). The definition context expresses extra infor-
mation about the object PUBLICATION not modeled in the database.
This step illustrates the augmentation of dom(PUBLICATION). Let:
- Cdef (PUBLICATION) = glb(<(researchArea, Deptypes)>, <>)
- semPro(PUBLICATION’,PUBLICATION) be defined with respect to<>
- PUBLICATION’ be a temporary object
The domain augmentation takes place as follows:
Simple Set Constraint Rule (New Constraint, Non-existing attribute) ⇒
(step [B])
semPro(PUBLICATIONF ,PUBLICATION)
= semConstrain(<(researchArea,Deptypes)>,

semPro(PUBLICATION’,PUBLICATION))
– Let M’ be the mapping between PUBLICATION’ and PUBLICA-

TION returned by step[C] .
– The constraint about research areas is incorporated in the exported

federation object PUBLICATIONF by using the mapping M. The
evaluation of the mapping is illustrated in steps[D,E].

– The resulting augmentation of the domain of the object PUB-
LICATION is reflected in the definition of the modified semPro
descriptor:

semPro(PUBLICATIONF ,PUBLICATION)
= <Cdef (PUBLICATION),M,

(dom(PUBLICATIONF), dom(PUBLICATION) × Deptypes), >

[C] Empty Context Rule ⇒
M’ ≡ PUBLICATION’=PUBLICATION

[D,E] Simple Set Constraint Rule (Rule 3.3) ⇒
schCor(PUBLICATIONF ,PUBLICATION)
= strConstrain({researchArea},Deptypes,

schCor(PUBLICATION’,PUBLICATION))

M ≡PUBLICATIONF
=OProduct(makeObject(researchArea,Deptypes),

PUBLICATION’)
=OProduct(makeObject(researchArea,Deptypes),PUBLICATION)

6.2.4 Representing relationships between objects

In this section, we illustrate with the help of an example
how context can be used to capture relationships between
objects which may not be represented in the database. We
illustrate a case where the definition context of the ob-
ject HAS-PUBLICATION captures its relationships with an-
other database object EMPLOYEE in an intensional man-
ner. These relationships arenot storedin the database and
the evaluation of the semPro descriptor results inextra in-
formationbeing associated with the federation object HAS-
PUBLICATIONF . A naive user will ordinarily not be aware
of this relationship.

Example. Consider objects EMPLOYEE and PUBLICA-
TION defined earlier and an object in the same database
which represents a relationship between employees and the
publications they write, HAS-PUBLICATION(SS#,Id)
Cdef (HAS-PUBLICATION)
= <(author,EMPLOYEE◦ < (affiliation,{research})>)>

This evaluation of the semPro descriptor has been diagram-
matically illustrated in Fig. 15.
[A] semPro(HAS-PUBLICATIONF ,HAS-PUBLICATION) is evaluated

with respect toCdef (HAS-PUBLICATION).
The definition context makes explicit the relationship between HAS-
PUBLICATION and EMPLOYEE. This step illustrates how the cor-
relation of the instances of EMPLOYEE and HAS-PUBLICATION is
done to satisfy the constraints in the definition context. Let
- Cdef (HAS-PUBLICATION)
= glb(<(author,EMPLOYEE

◦Cass(EMPLOYEE,HAS-PUBLICATION))>,<>)
- semPro(HAS-PUBLICATION’,HAS-PUBLICATION) be defined with re-
spect to<>
- Cass(EMPLOYEE,HAS-PUBLICATION)
= <(affiliation,{research})>
- HAS-PUBLICATION’ be a temporary object
- EMPLOYEE’ be a temporary object obtained by applying the constraints
in Cass(EMPLOYEE,HAS-PUBLICATION) to EMPLOYEEF
semCombine Rule ⇒
semPro(HAS-PUBLICATIONF ,HAS-PUBLICATION)

297

semPro(PUBLICATION

<Cdef (PUBLICATION), M, (dom(PUBLICATION

semConstrain

 <(researchArea, Deptypes)>

strConstrainPROJECTION

Cdef (PUBLICATION)

>

PROJECTION <>

researchArea Deptypes

schCor(PUBLICATION , PUBLICATION)

<PUBLICATION
M <=> PUBLICATION

, PUBLICATION)

 F), dom(PUBLICATION)X Deptypes),_>

), dom(PUBLICATION)),_>

 F

 F, {researchArea}, PUBLICATION, {researchArea}, M>

F

F

[A]

[B]

[C]

[D]

[E]

= OProduct(makeObject(researchArea,

 = OProduct(makeObject(researchArea,

Deptypes

Deptypes), PUBLICATION)

 , (dom(PUBLICATION’

schCor(PUBLICATION’,PUBLICATION)
<PUBLICATION’,

),PUBLICATION’)

semPro(PUBLICATION’, PUBLICATION)
<<>, M’

M’ <=> PUBLICATION’ = PUBLICATION
 {}, PUBLICATION,{},M’

PROJECTION

Fig. 14. Domain augmentation: mapping PUBLICATIONF to object PUBLICATION in the database

semPro(HAS-PUBLICATION

semCombine

author

semPro(EMPLOYEEF , EMPLOYEE)

(Affiliation IN ...) AND

M <=> HAS-PUBLICATION
,HAS-PUBLICATION)

=OSelect((Dept IN ...) AND

 F

 F

[A]

[B]

= OJoin((SS# = SS#),HAS_PUBLICATION,
OSelect((Affiliation IN {research}) AND (...) AND (...), EMPLOYEE))

<(author, EMPLOYEEo<(affiliation, {research})>)>

<>

semPro(HAS-PUBLICATION’,
HAS-PUBLICATION)

M’ <=> HAS-PUBLICATION’
= HAS-PUBLICATION

semPro(EMPLOYEE’,EMPLOYEE)
M’’ <=> EMPLOYEE’

= OSelect((Affiliation IN {research}) AND
 (Dept IN ...) AND (SalaryType IN ...), EMPLOYEE)

[C]

<(affiliation, {research})>

<(affiliation, {research})>

semConstrain

semCondition

<>
C def(EMPLOYEE)

M’’’ <=> EMPLOYEE

(SalaryType IN ...), EMPLOYEE)

[D]

 F

[E]

Fig. 15. Correlation of information between HAS-PUBLICATION and EMPLOYEE

= semCombine(author,
semPro(HAS-PUBLICATION’,HAS-PUBLICATION),
semPro(EMPLOYEE’,EMPLOYEE))

– Let M’ be the mapping between HAS-PUBLICATION’ and HAS-
PUBLICATION returned by step[B] .

– semPro(EMPLOYEE’,EMPLOYEE)
= semCondition(Cass(EMPLOYEE,HAS-PUBLICATION),

semPro(EMPLOYEEF ,EMPLOYEE))

Let M” be the mapping between EMPLOYEE’ and EMPLOYEE
returned by step[C] .

– mapEMPLOY EE (author,SS#)

– mapHAS−PUBLICATION (author,SS#)
Rule 5.1 ⇒
M ≡ HAS-PUBLICATIONF =
OJoin((SS#=SS#),HAS-PUBLICATION’,EMPLOYEE’)
= OJoin((SS#=SS#),HAS-PUBLICATION,EMPLOYEE’)
.... M’ From step [B]
= OJoin((SS#=SS#),HAS-PUBLICATION,
OSelect((Affiliation∈{research})∧(...)∧(...),EMPLOYEE))
.... M” From step [C]

[B] Empty Context Rule ⇒
M’ ≡ HAS-PUBLICATION’=HAS-PUBLICATION

298

[C] In this step, we show how the constraints in the association context
are applied to the federation object EMPLOYEEF . This is donebefore
correlation of the instances of EMPLOYEE and HAS-PUBLICATION,
as only employees who are researchers have publications.
Cass(EMPLOYEE,HAS-PUBLICATION)
=glb(<(affiliation,{research})>, <>)
Constraint Conditioning Rule ⇒
semCondition(Cass(EMPLOYEE,HAS-PUBLICATION),

semPro(EMPLOYEEF ,EMPLOYEE))
= semConstrain(<(affiliation,{research})>,

semCondition(<>,semPro(EMPLOYEEF ,EMPLOYEE)))
.... Illustrated in step [D]
= semConstrain(<(affiliation,{research})>,

semPro(EMPLOYEEF ,EMPLOYEE))
.... Empty Context Conditioning Rule

Let M”’ be the mapping returned by step[E] between EMPLOYEEF
and EMPLOYEE.
Rule 3.2 ⇒
M” ≡ EMPLOYEE’
=OSelect((Affiliation∈{research}),EMPLOYEEF)
= OSelect((Affiliation∈{research}),

OSelect((Affiliation∈{research,teaching,non-teaching})∧(...)∧(...),
EMPLOYEE)

.... M”’ From step [E]
= OSelect((Affiliation∈{research})∧(...)∧(...),EMPLOYEE)

[E] This step illustrates the association between the federation object
EMPLOYEEF and the database object EMPLOYEE and has been
discussed in detail in Sect. 6.2.2. The association is given by:
M”’ ≡ EMPLOYEEF
=OSelect((Affiliation∈{research,teaching,non-teaching})∧(...)∧(...)),

EMPLOYEE)

6.2.5 Composition of contextual coordinates: representing
extra information

In this section, we illustrate an example in which the infor-
mation that the contextual coordinateresearchInfois a com-
position of two contextual coordinates (researchAreaand
journalTitle) is obtained from the ontology of the domain.
This is then used to correlate information between the ob-
jects PUBLICATION and JOURNAL. However, the con-
textual coordinate researchArea has not been modeled for
the object PUBLICATION. Thus, this results inextra infor-
mationabout the relevant journals and research areas being
associated with the object PUBLICATION,even though no
information about research areas is modeled for PUBLICA-
TION.

Example.Consider a database containing the following ob-
jects:
PUBLICATION(Id, Title, Journal) Cdef (PUBLICATION)
= <(researchInfo,JOURNAL◦ <(researchArea,Deptypes)

(journalTitle,JournalTypes)>)>
JOURNAL(Title, Area) where Cdef (JOURNAL) =<>
The correlation of informationis illustrated diagrammati-
cally in Fig. 16.

[A] semPro(PUBLICATIONF ,PUBLICATION) is evaluatedwith respect
to Cdef (PUBLICATION)
The definition context makes explicit the relationship between PUB-
LICATION and JOURNAL. This step illustrates the generation of the
two semPro descriptors, one for applying the remaining constraints in
Cdef (PUBLICATION) to PUBLICATION and the other for applying
the constraints in Cass(JOURNAL,PUBLICATION) to JOURNALF .
Let

- Cdef (PUBLICATION)
= glb(<(researchInfo,JOURNAL◦ < (researchArea,Deptypes)

(journalTitle,JournalTypes)>)>,<>)

- semPro(PUBLICATION’, PUBLICATION) be defined with respect to<>
- Cass(JOURNAL,PUBLICATION)
= <(researchArea,Deptypes) (journalTitle,JournalTypes)>
- PUBLICATION’ be a temporary object
- JOURNAL’ be a temporary object obtained by applying the constraints
in Cass(JOURNAL,PUBLICATION) to JOURNAL
semCombine Rule ⇒
semPro(PUBLICATIONF ,PUBLICATION)
= semCombine(researchInfo,

semPro(PUBLICATION’,PUBLICATION),
semPro(JOURNAL’,JOURNAL))

– Let M’ be the mapping between PUBLICATION’ and PUBLICA-
TION returned by step[B] .

– semPro(JOURNAL’,JOURNAL)

= semCondition(Cass(JOURNAL,PUBLICATION),
semPro(JOURNALF ,JOURNAL))

Let M” be the mapping between JOURNAL’ and JOURNAL re-
turned by step[C] .

[B] Empty Context Rule ⇒
The mapping M’ associated with
schCor(PUBLICATION’, PUBLICATION) is
M’ ≡ PUBLICATION’=PUBLICATION

[C] Cass(JOURNAL,PUBLICATION)

= glb(<(researchArea,Deptypes)>,
glb(<(journalTitle,JournalTypes)>,<>))

2 applications of Constraint Conditioning Rule and 1 application of Empty
Context Conditioning Rule ⇒
semCondition(Cass(JOURNAL,PUBLICATION),

semPro(JOURNALF ,JOURNAL))
= semConstrain(<(researchArea,Deptypes)>,

semConstrain(<(journalTitle,JournalTypes)>,
semPro(JOURNALF ,JOURNAL)))

2 applications of Rule 3.2 and Cdef (JOURNAL) = <>⇒
The mapping M” associated with schCor(JOURNAL’,JOURNAL) is
M” ≡ JOURNAL’
= OSelect((Area∈Deptypes)∧(Title∈JournalTypes),JOURNAL)

[D] semPro(PUBLICATIONF ,PUBLICATION) is evaluated by applying
the Coordinate Composition Rule. The final result is illustrated in step
[E] . This step illustrates how information about the research areas of
the publications is propagated to PUBLICATION, even though there
is no information about research areas stored in the object PUBLICA-
TION. This is achieved by the composition of contextual coordinates
obtained from the domain ontology.

– researchInfo = compose(researchArea,journalTitle)
Coordinate Composition Rule ⇒
mapPUBLICATION (researchInfo,X)
= compose(mapPUBLICATION (researchArea,NA),

mapPUBLICATION (journalTitle,Journal))
mapJOURNAL(researchInfo,Y)
= compose(mapJOURNAL(researchArea,Area),

mapJOURNAL(journalTitle,Title))
– The mapping M associated with

schCor(PUBLICATIONF ,PUBLICATION) is given by:

strCombine({mapPUBLICATION (researchInfo,X),
mapJOURNAL(researchInfo,Y)},

schCor(PUBLICATION’,PUBLICATION),
schCor(JOURNAL’,JOURNAL))

M ≡ PUBLICATIONF =
OJoin((X=Y),PUBLICATION’,JOURNAL’)

= OJoin((researchArea=Area)∧(Title=Journal),
PUBLICATION’, JOURNAL’)

= OJoin((researchArea=Area)∧(Title=Journal),
PUBLICATION, JOURNAL’)

299

semPro(PUBLICATION

semCombine
<(researchInfo, JOURNALo<(researchArea,Deptypes)

(journalTitle, JournalTypes)>)>

researchInfo <>

, JOURNAL)

<(researchArea,Deptypes)
(journalTitle, JournalTypes)>

strCombinePROJECTION

schCor(
= PUBLICATION

<> PROJECTION

AND
(Title IN JournalTypes), JOURNAL)

PROJECTION
(journalTitle, JournalTypes)>

<(researchArea,Deptypes)

{compose(researchArea,Journal),
compose(Area,Title) }

schCor(PUBLICATION

, PUBLICATION)

, JOURNAL)

= OSelect((Area IN Deptypes), PUBLICATION)

, PUBLICATION)
M <=> PUBLICATION

OSelect((Area IN Deptypes) AND (Title IN JournalTypes), JOURNAL))

 F, PUBLICATION)

 F

 = OJoin((researchArea=Area) AND (Title = Journal), PUBLICATION,
F

[A]

[B]

[C]

[D]

[E]

semPro(PUBLICATION’

PUBLICATION’
M’ <=> PUBLICATION’

semPro(JOURNAL’

schCor(JOURNAL’
’M’’ <=> JOURNAL

PROJECTION

Fig. 16. Correlation between PUBLICATION and JOURNAL due to composition of contextual coordinates

.... mapping M’ from step [B]
= OJoin((researchArea=Area)∧(Title=Journal),PUBLICATION,
OSelect((Area∈Deptypes)∧(Title∈JournalTypes),JOURNAL))
.... mapping M” from step [C]

The constraintresearchArea ∈ Deptypes propagates to PUBLI-
CATION. This is because when the correlation takes place
between JOURNAL and PUBLICATION (refer to step[E]):

– only journals belong to the research areas correspond-
ing to the departments are selected (OSelect((Area IN
Deptypes) AND ... ,JOURNAL))

– the join condition (Title = Journal) ensured that only
those articles which are from the research areas corre-
sponding to the departments are exported to the federa-
tion
(OJoin((researchArea=Area) AND (Title = Journal), ...))

– this is achieved despite the attribute Area not being mod-
eled for PUBLICATION. Thus, there is aselective and
implicit domain augmentationof Deptypes to PUBLI-
CATION through the join condition.

6.2.6 Representation of incomplete information

The intensional description of the definition contexts can be
easily used to represent incomplete information. Traditional
database approaches have used NULL values to represent
incomplete information. The semantics of NULL values is
not always clear (e.g., a NULL value can mean unknown or
not applicable) and this can be a problem while retrieving

incomplete information from the database. We can use inten-
sional descriptions in an attempt to describe incomplete in-
formation and to avoid the problems associated with NULL
values.

Example.Consider the following definition context of the
object PUBLICATION.

Cdef (PUBLICATION)
= <(title,{x|substring(x) =“abortion”})>

This represents a constraint on the instances of the object
PUBLICATION such that all the titles should have the word
”abortion” in them. This does not specify the title of each in-
stance of PUBLICATION completely. This information can
be represented with the object PUBLICATIONF at the fed-
eration level and can help in querying the database in face
of incomplete information.

6.3 Applications of context

In Sect. 6.2, we defined and illustrated with examples the
relationship between schema correspondences and semantic
proximity. We have definedprojection ruleswhich define
schema correspondences as the projection of the semPro de-
scriptor with respect tothe context. Earlier work on map-
ping intensional descriptions of concepts to SQL queries on
relational databases has been reported in [BB93]. In our ap-
proach, however, the mappings expressed using object alge-
bra operations are also associated with the intensional con-
textual descriptions. Whenever the context changes, we also

300

keep track of the associated changes in the schema corre-
spondences. Rules modeling the changes in the schema cor-
respondences (and hence the mappings) due to changes in
context are presented in [KS95b].

We look at examples in which the semPro descriptors are
lifted [Guh91] to different contexts. Lifting a semPro to a
different context means re-evaluating the semPro in a context
which is different from the one it was defined in first. We
show in [KS95b] how query processing can be implemented
by the comparison of the definition contexts of the objects
in the database with the query context. We have illustrated:

– how the modification of schema correspondences due to
changes in context lead toinformation-focusing

– how changes in the definition context of one object leads
to the modification of schema correspondence of a re-
lated object

– how constraints from the query contexts can be applied
to an object stored in a database. This results in mod-
ification of the schema correspondences and results in
information focusing

– how the query context can form the basis of correlation
of information across different databases

7 Related work

A simple observation made by various researchers in the
field of multidatabases, which is also the central premise
of this paper is that it is essential to associate abstrac-
tions/mappings between objects with the context of com-
parison to capture semantic similarity. Some significant at-
tempts are thesemantic proximity proposal by Sheth and
Kashyap [SK92], thecontext-building approach by Ouksel
and Naiman [ON93], thecontext interchangeapproach by
Sciore et al. [SSR92] and thecommon conceptsapproach
by Yu et al. [YSDK91]. We have related the above attempts
to semantic proximity.

There have been attempts to use an attribute-value-based
representation for capturing similarities in various areas of
research. Larson et al [LNE89] use a set of fixed descrip-
tors to capture similarities between attributes. Sciore et al
[SSR92] use meta-attributes to represent context. In linguis-
tics [CMG90], context has been represented using a set of
context coordinates subject to certain conditions. Similar at-
tempts have also been made for documents in text retrieval
(using thematic roles) [VD92] and for clustering similar ob-
jects (using code words) in [ML92]. We have abstracted out
the commonalities in these approaches in our representation
of context. However, we differ from Sciore et al. [SSR92]
and Ouksel et al. [ON93] in the following aspects:

– Sciore et al. [SSR92] represent the context at the exten-
sional level, i.e., at the level of data values and object
instances. We represent context at an intensional level,
i.e., at the level of the database schema. This gives us an
opportunity to represent constraints about objects which
cannot be captured at the extensional level. We also view
the context of an object as acollection of constraints on
an objectwhich may not be represented in the database
schema

– Ouksel et al. [ON93] represent context as a collec-
tion of ISCAs (interschema correspondence assertions),
which are essentially structural correspondences between
schema elements in different databases. In our approach,
schema correspondences are associated with the context
and are not considered part of the context. They are used
to relate semantic information with the actual data in the
database

– the meta-attributes and their values are taken from the
ontology of the application domain being modeled by the
database. Issues of combining ontologies and scalability
are discussed in [MKSI96, MKIS96, KS96]

– we have also defined operations to compare the speci-
ficity of contexts, and to manipulate and reason about
them. Based on the partial order induced by the speci-
ficity relationship, we organize the contexts as a meet
semi-lattice. Inferences on a new contextwith respect
to the knowledge present in the context set can now be
supported by determining its position in the semi-lattice

We have expressed our context descriptions using DL
expressions. Well known DL systems are KL-ONE [BS85],
LOOM [Mac87], BACK [vLNPS87] and CLASSIC
[BBMR89]. We are investigating the use of CLASSIC as
the DL system for representing context. The advantage of
using CLASSIC is that it is sufficiently expressive and has
a polynomial time classification algorithm.

Classification or taxonomies ofschematic differencesap-
pear in [DH84, BOT86, CRE87, KLK91, KS91]. In this
paper, we present what we believe is a comprehensive tax-
onomy of schematic conflicts which subsumes most of the
taxonomies found in literature (Table 3 in Appendix 2). We
refined the broad definition of domain incompatibility and
entity definition incompatibility given in [CRE87]. Our clas-
sification consists of conflicts arising out of inconsistencies
in the database state [BOT86], conflicts due to representation
at differing levels of abstraction [DH84] and conflicts when
data in one database corresponds to meta-data in another
[DAODT85, KLK91].

8 Conclusions and future work

An essential prerequisite to achieving interoperability in a
multidatabase environment is to be able to identify seman-
tically similar data in different database systems. Another
key issue attracting wide attention with attempts to build a
national information infrastructure, is the issue of querying a
large number of autonomous databases without prior knowl-
edge of their information content. It is therefore important to
capture the semantic content of these databases in as explicit
a manner as possible.

We discussed the inadequacy of structural similarity and
how semantics cannot be captured by purely mathematical
formalisms. This led us to make a case for the explicit iden-
tification and representation of context in a multidatabase
environment. We define the concept ofsemantic proximity,
using which we represent the degrees of semantic similari-
ties between the objects [SK92]. Thecontextof comparison
of these objects is the fulcrum of the semantic proximity. We
propose an explicit though partial representation of context

301

in a multidatabase environment. We have also defined the
concept ofschema correspondences, using which we repre-
sent the structural similarities between objects.

We demonstrate the reconciliation of the dual schematic
vs semantic perspectives. This is done by associating the
mapping/abstraction between objects in different databases
with the context of the semantic proximity defined between
them. This association enables us to determine qualitative
measures of semantic similarity such asequivalence, rela-
tionship, relevance, resemblance and incompatibilityand de-
velop a semantic taxonomy. We also enumerate the various
schematic heterogeneities and the possible semantic similar-
ities between them.

We have also defined the concept ofschema correspon-
dences, using which we represent the structural similarities
between objects. Though it is known that representing struc-
tural similarities is inadequate to capture semantic similarity
between two objects, for any meaningful operation to be per-
formed on the computer, the semPro descriptor between two
objects has to be mapped to a mathematical expression which
would essentially express the structural correspondence be-
tween them. We have defined the schema correspondences
as a projectionwith respect tocontext of the semantic prox-
imity between the objects.

Besides helping to reconcile the semantic and the struc-
tural perspectives, it also enables us to represent extra knowl-
edge about the database objects. This includes domain-
specific constraints obtained from an ontology and im-
plicit relationships between objects in the databases. We
also demonstrate how extra information not modeled for a
database object may be associated with it. This enables infer-
ences to be drawn at the federation level without accessing
the databases. Some of these inferences involve extra knowl-
edge and would not have been possible, even if the objects
in the databases were accessed.

These inferences are modeled as changes in the context
and the associated schema correspondences. It enablesinfor-
mation focusingas some inferences affect the schema cor-
respondences to retrieve only the data relevant to the query.
It enablesinformation correlation, as one can specify con-
straints relating different objects in the context. The compu-
tation of the resulting schema correspondences enables the
correlation of the appropriate instances of the objects. These
have been discussed only briefly in the paper due to space
constraints. The reader may refer to [KS95b] for details.

The context is the key component in capturing the se-
mantic content of the information present in the various
databases. In any attempt to represent the context of ob-
jects in a database, issues of language and vocabulary be-
come important. We are looking into the possibility of the
knowledge interchange format [GF92] and DL-based lan-
guages [BS85, BBMR89, Mac87, PS84, vLNPS87, KBR86]
for context representation. In designing the definition con-
text of an object, it is necessary to choose the contextual
coordinates and their values in a controlled manner. We are
experimenting on using domain-specific ontologies to con-
struct these contexts in a methodical manner. In cases where
a domain ontology is not readily available, research is re-
quired to enable semi-automatic generation of ontologies.
We are looking at clustering and information retrieval tech-
niques for semi-automatic generation of ontologies. We are

also looking into re-using well-established metadata stan-
dards and classification taxonomies as domain-specific on-
tologies as intensional descriptions of information content in
the databases.

A complementary problem is that of presenting the on-
tologies to the user in a methodical manner to enable him/her
to construct the query contexts for retrieving information
from a federation of databases. Tools to present these on-
tologies to users and information system designers must be
developed to facilitate context design and representation.

There should be an agreement on the meaning of the
terms used in the ontologies for construction of the defini-
tion contexts on one hand and those used in the ontologies
for the construction of the query contexts on the other. Thus,
either a common ontology is required, or the correspondence
between the terms in the various ontologies needs to be es-
tablished. We are experimenting with utilization of termino-
logical relationships between terms across ontologies. The
OBSERVER system [MKSI96] usingsynonymrelationships
is a step in this direction. A proposal to extend the system
by usinghyponymandhypernymrelationships has been pre-
sented in [MKIS96]. We plan to extend the system to utilize
knowledge transmutation operators[Mic93] to express cor-
respondences between terms in the various ontologies in the
future.

References

[ACHK93] Arens Y., Chee C., Hsu C., Knoblock C (1993) Retrieving
and integrating data from multiple information sources.Int
J Intell Coop Inf Syst, 2

[BB93] Borgida A., Brachman R. (1993) Loading data into descrip-
tion reasoners. In:Proceedings of 1993 ACM SIGMOD.

[BBMR89] Borgida A., Brachman R., McGuinness D., Resnick L.
(1989) CLASSIC: A structural data model for objects.
In: Proceedings of ACM SIGMOD-89.

[BOT86] Breitbart Y., Olson P., Thompson G. (1986) Database in-
tegration in a distributed heterogeneous database system.
In Proceedings of the 2nd IEEE Conference on Data Engi-
neering.

[BS85] Brachman R., Scmolze J. (1985) An overview of the
KL-ONE knowledge representation system.Cognitive Sci
9:171–216

[CHS91] Collet C., Huhns M., Shen W. (1991) Resource integration
using a large knowledge base in carnot.IEEE Comput

[CMG90] Chierchia G., McConnell-Ginet S. (1990)Meaning and
grammar: an introduction to semantics. MIT Press, Cam-
bridge, Mass

[CRE87] Czejdo B., Rusinkiewicz M., Embley D. (1987) An ap-
proach to schema integration and query formulation in fed-
erated database systems. In:Proceedings of the 3rd IEEE
Conference on Data Engineering.

[DAODT85] Deen S., Amin R., Ofori-Dwumfuo G., Taylor M. (1985)
The architecture of a generalised distributed database sys-
tem PRECI*. IEEE Comput18

[DH84] Dayal U., Hwang H. (1984) View definition and general-
ization for database integration of a multidatabase system.
IEEE Trans Software Eng10:628–644

[ELN86] Elmasri R., Larson J., Navathe S. (1986) Schema integra-
tion algorithms for federated databases and logical database
design. Technical report, Honeywell Corporate Systems
Develpment Division, Golden Valley, Minn

[EN89] Elmasri R., Navathe S. (1989)Fundamentals of database
systems. Benjamin/Cummins, Menlo Park, Calif

302

[FKN91] Fankhauser P., Kracker M., Neuhold E. (1991) Semantic
vs. structural resemblance of classes.SIGMOD Record,
special issue on Semantic Issues in Multidatabases20

[GF92] Genesereth M., Fikes R. (1992) Knowledge interchange
format, version 3.0 reference manual. Technical Report
Logic-92-1, Computer Science Department, Stanford Uni-
versity

[Gru93] Gruber T. (1993) A translation approach to portable on-
tology specifications. Knowl Acquis Int J Knowl Acquis
Knowledge-Based Syst5

[Guh90] Guha R.V. (1990) Micro-theories and contexts in Cyc. I.
Basic issues. Technical Report ACT-CYC-129-90, Micro-
electronics and Computer Technology Corporation, Austin,
Tex

[Guh91] Guha R. (1991) Contexts: A formalization and some appli-
cations. Technical Report STAN-CS-91-1399-Thesis, De-
partment of Computer Science, Stanford University

[HK87] Hull R., King R. (1987) Semantic database modeling: sur-
vey, applications and research issues.ACM Comput Surv
19:201–260

[HM93] Hammer J., McLeod D. (1993) An approach to resolving
semantic heterogeneity in a federation of autonomous, het-
erogeneous, database systems.Int J Intell Coop Inf Syst
2:51–84

[KBR86] Kaczmarek T., Bates R., Robins G. (1986) Recent devel-
opments in NIKL. In:Proceedings AAAI-86.

[KCGS93] Kim W., Choi I., Gala S., Scheevel M. (1993) On resolving
schematic heterogeneity in multidatabase systems.Distrib
Parallel Databases Int J1

[KLK91] Krishnamurthy R., Litwin W., Kent W. (1991) Language
features for interoperability of databases with schematic
discrepancies. InProceedings of 1991 ACM SIGMOD.

[KS91] Kim W., Seo J. (1991) Classifying schematic and data
heterogeneity in multidatabase systems.IEEE Comput24
(12)

[KS93] Kashyap V., Sheth A. (1993) Schema correspondences
between objects with semantic proximity. Technical Report
DCS-TR-301, Department of Computer Science, Rutgers
University

[KS94a] Kashyap V., Sheth A. (1994) Semantics-based informa-
tion brokering. InProceedings of the Third International
Conference on Information and Knowledge Management
(CIKM).

[KS94b] Kashyap V., Sheth A. (1994) Semantics-based information
brokering: a step towards realizing the infocosm. Techni-
cal Report DCS-TR-307, Department of Computer Science,
Rutgers University

[KS95a] Kashyap V., Sheth A. (1995) Controlled vocabulary
sharing for query processing in global information sys-
tems. Technical report, LSDIS Lab, University of Georgia.
http://www.cs.uga.edu/LSDIS/infoquilt.

[KS95b] Kashyap V., Sheth A. (1995) Schematic and semantic
similarities between database objects: a context-based ap-
proach. Technical Report TR-CS-95-001, LSDIS Lab, Uni-
versity of Georgia

[KS96] Kashyap V., Sheth A. (1996) Semantic heterogeneity: role
of metadata, context and ontologies. In: M. Papazoglou,
G. Schlageter, (ed)Cooperative Information Systems: Cur-
rent Trends and Directions. 1996.

[LA86] Litwin W., Abdellatif A. (1986) Multidatabase interoper-
ability. IEEE Comput19: 10–18

[LG90] Lenat D., Guha R.V. (1990)Building large knowledge
based systems: representation and inference in the Cyc
Project. Addison-Wesley, Reading, Mass.

[LNE89] Larson J., Navathe S., Elmasri R. (1989) A theory of at-
tribute equivalence in databases with application to schema
integration.IEEE Trans Software Eng15

[vLNPS87] Luck K. von, Nebel B., Peltason C., Schmiedel A. (1987)
The anatomy of the BACK system. Technical Report KIT
Report 41, Technical University of Berlin

[Mac87] MacGregor R. (1987) A deductive pattern matcher. In:
Proceedings AAAI-87.

[McC93] McCarthy J. (1993) Notes on formalizing context. In:Pro-
ceedings of the International Joint Conference on Artificial
Intelligence.

[Mic93] Michalski R. (1993) Inferential theory of learning as a con-
ceptual basis for multistrategy learning.Machine Learning
11

[MKIS96] Mena E., Kashyap V., Illarramendi A., Sheth A. (1996)
Managing multiple information sources through ontologies:
relationship between vocabulary heterogeneity and loss of
information. In: Proceedings of the workshop on Knowl-
edge Representation meets Databases in conjunction with
European Conference on Artificial Intelligence.

[MKSI96] Mena E., Kashyap V., Sheth A., Illarramendi A. (1996)
OBSERVER: An approach for query processing in global
information systems based on interoperation across pre-
existing ontologies. InProceedings of the First IFCIS Inter-
national Conference on Cooperative Information Systems
(CoopIS ’96).

[ML92] Myaeng S.H., Li M. (1992) Building term clusters by
acquiring lexical semantics from a corpus. In:Proceedings
of the CIKM.

[MS95] McLeod D., Si A. (1995) The design and experimental
evaluation of an information discovery mechanism for net-
works of autonomous database systems. In:Proceedings
of the 11th IEEE Conference on Data Engineering.

[ON93] Ouksel A., Naiman C. (1993) Coordinating context build-
ing in heterogeneous information systems.J Intell Inf Syst
3:151–183

[PM88] Peckham J., Maryanski J. (1988) Semantic data models.
ACM Comput Surv20:153–190

[PS84] Patel-Schneider P. (1984) Small can be beautiful in knowl-
edge representation. In:Proceedings of the IEEE Workshop
on Principle of Knowledge-Based Systems.

[RSK91] Rusinkiewicz M., Sheth A., Karabatis G. (1991) Specify-
ing interdatabase dependencies in a multidatabase environ-
ment. IEEE Comput24:46–53

[SG89] Sheth A., Gala S. (1989) Attribute relationships: An imped-
iment in automating schema integration. In:Proceedings
of the NSF Workshop on Heterogeneous Databases.

[She91] Sheth A. (1991) Semantic issues in multidatabase systems.
SIGMOD Record, special issue on Semantic Issues in Mul-
tidatabases20 (12)

[Sho91] Shoham Y. (1991) Varieties of context.
[SK92] Sheth A., Kashyap V. (1992) So far (schematically),

yet so near (semantically). In:Proceedings of the IFIP
TC2/WG2.6 Conference on Semantics of Interoperable
Database Systems, DS-5, November 1992. In: IFIP Trans-
actions A-25, North Holland

[SL90] Sheth A., Larson J. (1990) Federated database systems
for managing distributed, heterogeneous and autonomous
databases.ACM Comput Surv22:183–236

[SPD92] Spaccapietra S., Parent C., Dupont Y. (1992) Model
independent assertions for integration of heterogeneous
schemas.VLDB J 1:81–126

[SRK92] Sheth A., Rusinkiewicz M., Karabatis G. (1992) Using
polytransactions to manage independent data. In:Database
Transaction Models

[SSR92] Sciore E., Siegel M., Rosenthal A. (1992) Context inter-
change using meta-attributes. In:Proceedings of the CIKM.

[SZ90] Shaw G., Zdonik S. (1990) A query algebra for object-
oriented databases. In:Proceedings of the 6th IEEE Con-
ference on Data Engineering.

[VD92] Voss D.A., Driscoll J.R. (1992) Text retrieval using a com-
prehensive lexicon. In:Proceedings of the CIKM.

[Wie94] Wiederhold G. (1994) Interoperation, mediation and on-
tologies. In:FGCS Workshop on Heterogeneous Coopera-
tive Knowledge-Bases.

303

[YSDK91] Yu C., Sun W., Dao S., Keirsey D. (1991) Determining
relationships among attributes for interoperability of multi-
database systems. In:Proceedings of the 1st International
Workshop on Interoperability in Multidatabase Systems.

Appendix 1 Detailed specification of projection rules

semPro(O1F ,O1) = <Cntxt,M,(dom(O1F),dom(O1)), >

ΠCntxt(semPro(O1F ,O1)) = schCor(O1F ,O1)
= <O1F ,{Ci| Ci ∈Cntxt},O1,attr(O1),M>

Rule 1. Empty Context Rule, i.e., Cntxt =<>
schCor(O1F ,O1) = <O1F ,φ,O1,φ,M> ⇒ M ≡ O1F =O1

Rule 2. Simple Sets Rule, i.e., Cntxt =<(C1,S1)...(Ck,Sk)> schCor(O1F ,O1)
= <O1F ,{Ci|Ci ∈Cntxt},O1,{Ai|mapO1(Ci,Ai) exists},M>
M ≡ O1F =OSelect(p,O1), where p≡ (A1 ∈S1) ∧...∧ (Ak ∈Sk)

Rule 3. Simple Set Constraint Rule, when Cntxt = glb(<(Cj ,Sj)>,Cntxt1)
semPro(O1F ,O1) = semConstrain(<(Cj ,Sj)>,semPro(O’,O1))
where semPro(O’,O1) is definedwith respect toCntxt1 and
O’ is a temporary object obtained by applying constraints in Cntxt1 on
O1 schCor(O1F ,O1) =ΠCntxt(semConstrain(<(Cj ,Sj)>,semPro(O’,O1))

= strConstrain(mapO1(Cj ,Aj),Sj ,schCor(O’,O1))
where the mapping M’ associated with schCor(O’,O1) is given by:
M’ ≡ O’=OSelect(p,O1)

Rule 3.1. New Constraint, Existing Attribute,
i.e., Cj /∈Cntxt1, mapO1(Cj ,Aj) exists.
The Mapping M associated with schCor(O1F ,O1) is given as: M
≡ O1F =OSelect((Aj ∈Sj),O’)

=OSelect((Aj ∈Sj),OSelect(p,O1))
=OSelect((Aj ∈Sj)∧p,O1)

Rule 3.2. Existing Constraint, Existing Attribute,
i.e., Cj ∈Cntxt1, mapO1(Cj ,Aj) exists.
Suppose (Cj ,S’j)∈Cntxt1.
Then the mapping M’ associated with schCor(O’,O1) may be writ-
ten as:
M’ ≡ O’=OSelect(p’∧(Aj ∈S’j),O1) where p≡ p’∧(Aj ∈Sj).
The mapping M associated with schCor(O1F ,O1) is then given as:
M ≡ O1F =OSelect((Aj ∈Sj),O’)

=OSelect((Aj ∈Sj), OSelect(p’∧(Aj ∈S’j),O1))
= OSelect(p’∧(Aj ∈Sj∩S’j),O1)

Rule 3.3. New Constraint, Non-existing Attribute,
i.e., Cj /∈Cntxt1, mapO2(Cj ,Aj) does not exist.
The mapping M associated with schCor(O1F ,O1) is given as:

M ≡ O1F =OProduct(makeObject(Cj ,Sj),O’)
=OProduct(makeObject(Cj ,Sj),OSelect(p,O1))

Rule 3.4. New Constraint, Non-existing Attribute,
i.e., Cj ∈Cntxt1, mapO2(Cj ,Aj) does not exist
Suppose (Cj ,S’j)∈Cntxt1,
then the mapping M’ associated with schCor(O’,O1) may be writ-
ten as:
M’ ≡ O’=OProduct(makeObject(Cj ,Sj),OSelect(p’,O1))
The mapping M associated with schCor(O1F ,O1) can be then
given as:
M ≡ O1F =OProduct(makeObject(Cj ,Sj),O’)
= OPro duct(makeObject(Cj ,Sj),

OProduct(makeObject(Cj ,S’j), OSelect(p’,O1)))
= OProduct(makeObject(Cj ,Sj∩S’j),OSelect(p’,O1))

Rule 4. Context Conditioning Rule, i.e.,
semCondition(Cntxt1,semPro(O1F ,O1))

Rule 4.1. Empty Context Conditioning Rule, i.e., Cntxt1 = <>
semCondition(Cntxt1,semPro(O1F ,O1)) = semPro(O1F ,O1)

Rule 4.2. Constraint Conditioning Rule, i.e. Cntxt1
= glb(<(Cj ,Sj)>,Cntxt2)
semCondition(Cntxt1,semPro(O1F ,O1))
= semConstrain(<(Cj ,Sj)>,

semCondition(Cntxt2,semPro(O1F ,O1)))

ΠCntxt1(semConstrain(<(Cj ,Sj)>,
semCondition(Cntxt2,semPro(O1F ,O1))))

= strConstrain(mapO2(Cj ,Aj),Sj ,
ΠCntxt2 (semCondition(Cntxt2,semPro(O1F ,O1))))

Rule 4.3. Context Conditioning and semCombine Rule, i.e.,

semCondition(Cntxt1,semCombine(Ci,
semPro(O’,O1), semPro(O”,Oi)))

= semCombine(Ci,semCondition(Cntxt1,semPro(O’,O1)),
semCondition(Cntxt1,semPro(O”,Oi)))

ΠCntxt1 (semCombine(Ci,
semCondition(Cntxt1,semPro(O’,O1)),
semCondition(Cntxt1,semPro(O”,Oi))))

= strCombine({mapO1(Ci,Ai),mapOi
(Ci,A’ i)},

ΠCntxt1(semCondition(Cntxt1,semPro(O’,O1))),
ΠCntxt1 (semCondition(Cntxt1,semPro(O”,Oi))))

Rule 5. semCombine Rule, i.e.,
Cntxt = glb(<(Ci,Oi◦Cass(Oi,O1))>, Cntxt1)
semPro(O1F ,O1) =
semConstrain(<(Ci,Oi◦Cass(Oi,O1))>,semPro(O’,O1))
= semCombine(Ci,semPro(O’,O1),

semCondition(Cass(Oi,O1), semPro(OiF ,Oi)))
where semPro(O’,O1) is definedwith respect toCntxt1 and O’ is a
temporary object obtained by applying all the constraints in Cntxt1 to
O1
ΠCntxt(semCombine(Ci,semPro(O’,O1),

semCondition(Cass(Oi,O1), semPro(OiF ,Oi))))
= strCombine({mapO1(Ci,Ai),mapOi

(Ci,A’ i)},
ΠCntxt1(semPro(O’,O2)),
ΠCass(Oi,O1)(semCondition(Cass(Oi,O1),semPro(OiF ,Oi))))

= strCombine({mapOi
(Ci,A’ i),mapO1(Ci,Ai)},

schCor(O’,O1),schCor(O”,Oi))
where O” is a temporary object obtained by applying all the constraints
in Cass(Oi,O1) to OiF
and the mappings M’ and M” associated with schCor(O’,O1) and
schCor(O”,Oi) are given as:
M’ ≡ O’=OSelect(p’,O1) M” ≡ O”=OSelect(p”,Oi)

Rule 5.1. New Constraint and Existing Attributes,
i.e., Ci /∈ Cntxt1,mapOi

(Ci,A’ i) and mapO1(Ci,Ai) exist.
M ≡ O1F =OJoin(g(Aj ,A’ j),O’,O”)

=OJoin(g(Ai,A’ i),OSelect(p’,O1),OSelect(p”,Oi))
Rule 5.2. Coordinate Composition Rule, i.e., Ci = compose(Ci,1,Ci,2)

The composition of attributes is as follows:
mapO(Ci,X) = mapO(compose(Ci,1,Ci,2),compose(X1,X2))

= compose(mapO(Ci,1,X1),mapO(Ci,2,X2))
Let mapO1(Ci,Ai)

= compose(mapO1(Ci,1,Ai,1),mapO1(Ci,2,Ai,2))
Let mapOi

(Ci,Ai)
= compose(mapOi

(Ci,1,A’ i,1),mapOi
(Ci,2,A’ i,2))

The mapping M associated with schCor(O1F ,O1) is given as:
M ≡ O1F =OJoin(g(<Ai,1,Ai,2 >,<A’ i,1,A’ i,2 >),O’,O”)
=OJoin(g(<Ai,1,Ai,2 >,<A’ i,1,A’ i,2 >),

OSelect(p’,O1),OSelect(p”,Oi))

Appendix 2 Taxonomies of schematic conflicts

In this section, we enumerate the various types of schematic/
representational conflicts identified by us in the taxonomy
proposed in this paper. We take a representative sample of
the multidatabase literature in this area and show the rela-
tionship of their work with ours by means of a table (Ta-
ble 3). We believe this paper provides a more complete enu-
meration of the various types of conflicts and their defini-
tions.

304

Table 3. Comparison of the types of conflicts. We use the symbolα to denote that the reference has an informal discussion of the schematic conflict. We
use the symbolβ to denote that the schematic conflict has been defined formally

Schematic conflicts [DH84] [CRE87] [SPD92] [SK92] [KCGS93] [HM93]
Domain incompatibilities β α α

Naming conflicts β α β β β α
Data representation conflicts α β β
Data scaling conflicts β α β β β
Data precision conflicts β β
Default value conflicts β β α
Attribute integrity constraint conflicts α β β α

Entity definition incompatibilities β α α

Database identifier conflicts α β β
Naming conflicts β α β β β
Schema isomorphism conflicts α α β β β α
Missing data item conflicts β β β α

Data value incompatibilities α α α

Known inconsistency β β β
Temporary inconsistency β β β
Acceptable inconsistency β

Abstraction level incompatibilities α α α

Generalization conflicts β β β β β
Aggregation conflicts β α β β β

Schematic discrepancies α

Data value attribute conflict β
Attribute entity conflict α β β β
Data value entity conflict β

