The VLDB Journal (1997) 6: 1-25 The VLDB Journal
© Springer-Verlag 1997

The hB!-tree: a multi-attribute index supporting concurrency,
recovery and node consolidation

Georgios Evangelidid, David Lomet?, Betty Salzberg

Linformatics Dept., Technological Educational Institute of Thessaloniki, P.O. Box 14561, GR-54101 Thessaloniki, Greece
2Microsoft Corporation, One Microsoft Way, Bldg 9, Redmond, WA 98052-6399, USA
3College of Computer Science, Northeastern University, Boston, MA 02115, USA

Edited by R. Sacks-Davis. Received 27 June 1994 / Accepted 26 September 1995

Abstract. We propose a new multi-attribute index. Our ap- well, if the leaf level of the index consists of pages that con-
proach combines the hB-tree, a multi-attribute index, andain the actual data items. Such a single-attribute clustering
the II-tree, an abstract index which offers efficient concur-index is very efficient for answering range queries on the
rency and recovery methods. We call the resulting methodndexed attribute, since data items with comparable values
the hB” -tree. We describe several versions of thé’aBee, for their indexed attribute will be in the same or neighboring
each using a different node-splitting and index-term-postingpages.

algorithm. We also describe a new node deletion algorithm. However, today new applications that deal with “non-
We have implemented all the versions of the’hBee. Our traditional” data require innovative solutions to storage and
performance results show that even the version that offeraccess problems. These include scientific applications, such
no performance guarantees, actually performs very well iras those proposed for the terabytes of meteorological, as-
terms of storage utilization, index size (fan-out), exact-matchtronomical, and geographic data, streaming in daily from
and range searching, under various data types and distrsatellites, and design databases for CAD and VLSI.
butions. We have also shown that our index is fairly in- This data is called multi-attribute data. It must be or-
sensitive to increases in dimension. Thus, it is suitable forganized in terms of more than one attribute, for example
indexing high-dimensional applications. This property andlatitude and longitude and height above the earth.

the fact that all our versions of the WBtree can use the A straightforward way to handle multi-attribute data is
II-tree concurrency and recovery algorithms make th€-hB to use many single-attribute indexes (e.g';tBes), one for
tree a promising candidate for inclusion in a general-purposeach attribute of interest. Unfortunately, this is a highly inef-

DBMS. ficient solution. Only one of the indexes can be a clustering
index and during insertions or deletions all indexes need
updating.

Key words: Multi-attribute index — Concurrency — Recovery

S To efficiently handle multi-attribute data, one needs ex-
— Node consolidation

plicity multi-attribute indexes. It is essential to cluster
“nearby” k-dimensional data in contiguous areas of a disk.
There is no “perfect” way to map multi-attribute data on lin-
ear physical disk storage, though. In general, the desirable

properties of multi-attribute indexes are [Sal91]:
1 Introduction e .
1. good space utilization in both index and data nodes,

. . 2. high fan-out (the index should be significantly smaller
Traditional database management systems (DBMSs) effi- than the data collection),

ciently organize, access, and manipulate very large quantitie% fast exact match search (given the coordinates, the data
of data for business applications in banks, airlines, govern-—" should be obtained quickly) '

ment agencies, hospitals, and other large organizations. Al- . M ’ .
most all of them implement some variation of thé-fee 4. fair clustering in data pages by all attributes for good

; o . : range search performance,
[B'\/:zzégn%n:;g]“{g d%gﬁ;?,fj dsal\rt]gli;r:trgbem\%&de%x'gg.Iinear 5. easy integration with the query, locking, and recovery

: o oo . . systems of existing DBMSs,
data. Each data item is identified by some attribute that dis- d . ; . .
tinguishes it from other data items and this is what we call ™ simple design for incremental growth and shrinkage (in-

a primary key for the data item. The primary key defines a sertion and deletion algorithms).
total order for the data items in the databaskti@e indexes
on a primary key are often (dynamic) clustering indexes as

Correspondence toB. Salzberg

1.1 Related work In addition, and perhaps more importantly, we invent
new node-splitting and index-term-posting, and node consol-
There are two basic types of multi-attribute data: idation and index-term-dropping algorithms. The new index-

node-splitting and index-term-posting algorithms correct an

Point o!ata that can be V|e_vved as geome_trlcal_ points in %rror in the hB-tree. Also, the hB-tree had no node consoli-
k-dimensional space, without necessarily being geomet-

rical data. Examples are (X, y, z) triplets in the three- dation algorithm. : e .
; e X P . L The result of this modification of the hB-tree is called
dimensional Euclidean space, or (SSN, city) pairs in

two-dimensional space %he hB!-tree. In a series of experiments, we test the vari-
Spatial data that can be viewed as subspaces inda ous splitting and posting algorithms and measure the overall

mensional space, for example, polygons in the tWO_performance of the hii-tree.
dimensional Euclidean space. This type of multi-attribute

data is almost always geographical data. 1.3 Overview

Proposed point data indexing methods include Z-orderin% . .
[OM84], the grid file [NHS84], the K-D-B-tree [Rob81], and In Sect.2, we review thdI-tree [LS92]. We modify the
the hB-tree [LS90]. Z-ordering magsattributes to a single hB-tree [LS90] to become a subcase of tiietree. We call
one by alternating their bit representations. Then it uses an{e€ new method the hB-tree and we present its structural
single-attribute index, e.g., the*Bree, to index the result- Ccharacteristics in Sect. 3. _ o
ing attribute. The rest of the mentioned methods explicitty ~ Section 4 is devoted to the various node splitting and

index multi-attribute data. index-term-posting algorithms for the WBtree. Section 5
Proposed methods for spatial (or non-point) data in-Presents a node consolidation algorithm for the’hgee.
clude the R-tree [Gut84] and its variations'(Ree [SRF87], The splitting/posting and consolidation algorithms have

R*-tree [BKSS90]), and the cell tree [Gue89]. An alter- been t.est.ed .in the implemented HBree un_der various
native approach maps-dimensional spatial objects tok2 data distributions. The_data we used was elthgr computer-
dimensional points. This can be done by taking the mini-generated or geographical data from the Sequoia 2000 Stor-
mum bounding box of the spatial object and usingka 2 @age Benchmark [SFGM93]. The results are shown in Sect. 6.
dimensional point to represent it (low and high values for ~ Finally, in Sect.7 we summarize and give some direc-
each attribute) [Hin85]. Then, any point data method can bdions for future work.
used to index the transformed space.

Concurrency control in Btrees has been the subject
of many papers [BS77, LY81, Sal85, Sag86, SG88, ML89,2 II-tree concurrency and recovery
LS92]. Most of these papers, with the exception of [ML89,
LS92], have not addressed the problem of system crash
during structure changes.

da this section we briefly review a general algorithm for
concurrency and recovery for a wide class of index trees
(single-attribute, multi-attribute, or versioned) [LS92]. This
algorithm is applicable to an abstract index tree structure,
the I1-tree.

The main idea is to make it possible to hold only short-
We introduce a new access method for multi-attribute datd€'™M 10cks on non-leaf nodes. This is achieved by making
that we call the hB -tree. It is based on the hB-tree, a multi- 1/-{ré€ structure changes consist of a sequence of atomic
attribute point data access method [LS90] and théree, actions [Lom??]. Most of these_ actions are separate from

the transaction whose update triggered the structure change

an abstract index tree for which a general algorithm for con-) . .
currency and recovery is available [LS92]. and each one of them leaves the tree in an intermediate

The II-tree is essentially a generalization of th&"8- well-formed state. _
tree [LY81]. The Bi"*-tree has side-pointers or links point- What we do here is review the structure offatree and

ing from each index node to the next index node on the sami1® concurrency and recovery algorithms applying to it. In
level of the tree in key order. Links enable index-term post-tN€ next section, we will modify the hB-tree only slightly (by
ing to be separated from index-node splitting, since, wherfdding side pointers) to make it/d-tree. We will also add
information about a split has not yet been posted to the parS°Me features to aid in node consolidation. This WI||. mqke
ent, search can follow the links and still be correct. Thisthe {/-tree concurrency, recovery and node consolidation
implies that the locks needed for splitting can be dropped®/90rithms applicable to the modified hB-tree.

before the locks for posting are acquired.

A recent study compared the performance of various con-
currency control algorithms [SC91]. Its most important con-2‘1 Structure
clusion was that algorithms using the link technique provide
the most concurrency and the best overall performance.

The II-tree generalizes the'B*-tree, because it treats
the multi-attribute case, it considers node consolidation, an
it considers recovery as well as concurrency. We modify the — can be directly responsible for some part of the space.
hB-tree so that it becomes a special case oflfhgee. This For an index node, it is the space the node distributes
involves minor structural changes to the hB-tree. among its children nodes and is described by index

1.2 Our approach

The II-tree is a rooted DAG. It consists of index and data
nodes. Each node is responsible for a specific part of the key
§hace. All-tree node:

a) Before splitting X from C b) After X splitsfrom C c) After posting split

P P
P
w w w

d) After consolidating W with C

P

[

w — — W\
C c \M

_>X

Fig. 1a—d. Splitting, posting, and consolidating in thé-tree

terms, and, for a data node, it is the space where extree where the update is to be made. (In [LS92], a slightly

isting and potential data points lie;

less restrictive lock is used at the update level; we are mak-

— can also delegate responsibility for part of the space tang a simplification.) On all other levels, or if no updates are
sibling nodes. This space is described by sibling terms.to be made, the search locks are share locks.

The index and sibling terms include pointers fibtree
nodes. The pointers to sibling nodes are called side pointer
If a node C contains a side pointer to a node X, C is referreq%jj
to as the container node for X and X is referred to as an,
extracted node of C.

Each level of the tree begins as one node, the root. Node;
splitting always creates a new sibling node on the same leve
When information about a root node split is posted, a new
root node and a new level to the tree are created. Postingt
of other split information does not create new levels. Datas
nodes are all on the bottom level of the tree.

In the I7-tree, it is possible for a node to be referred to by
more than one parent. This happens whenever the boundary
of a parent split cuts across a child boundary. Then both
the old parent and its new sibling on the same level of the
tree are parents of the child. This child is called a multi-
parent node. (Nodes which are not multi-parent nodes are
single-parent nodes.)

If an update or read is to be to on a data item, only the

database lock on the data item (of whatever granularity the
atabase system supports) is held to end of transaction. The
ode locks of the searching algorithm of [LS92] need not
e held once the search has finished and the data item is
read or updated. (Database locks are not part of/fhieee
Igorithms, which are mainly concerned with tree structure
odifications.)

For range searches, multiple children nodes are visited

each level. These are the nodes whose directly contained
pace intersects the query window. Eventually, the multiple
paths that are followed lead to all data nodes that satisfy the
search.

2.3 Node-splitting and index-term posting

When an insertion causes/a-tree node to overflow, that

node is split, with part of the contents going to a new sibling
node, and a new index term is posted to the parent. ldfthe

2.2 Searching

tree node-splitting and the index-term posting are performed
by separate recoverable atomic actions, as follows:

For exact match searches, a unique path, that may includdode-splitting: an updating process detects/atree node

side pointers, is followed down to the leaf (data) level.
Searches start at the root of tiietree. At every node vis-
ited, if the search point is included in the node’s directly
contained space, a child pointer is followed that leads to a
lower level node. Otherwise, a side pointer is followed until
a sibling index node that directly contains the search point is
found. Eventually, a leaf data node is reached. If necessary,
side pointers at leaf level lead to a data node whose directly
contained space includes the search point. The record for the
search point will be present on that node, if it exists at all.
Since we are only interested in the case where node con-
solidation is possible, we must deal with the fact that nodes
can be deallocated. Because of this, searching uses lock-
coupling. The lock held on a node is not released until the
lock on the next node (its child or sibling) is acquired. In the
case an update is to be made at some level of the tree, the
nodes are locked with an exclusive lock at the level of the

C that is full and cannot accommodate the update. C
is split and part of its contents are moved to a newly
created node, X. Node-splitting concludes by storing a
sibling term and side pointer for X in C. Since C now
contains a side pointer to X, C is a container node for
X and X is considered extracted from C. (see Figs. la
and b). It is not true that C will forever be a container
for X. Another node, Y, could split from C at a later
time and take with it the pointer to X. Then Y would
be a container for X and C would be a container for Y.
Containment/extraction in thé/-tree is determined by
the existence of side pointers.

Only the node C which is split need be locked (with an
exclusive lock) during the node-splitting atomic action.
If C is a data node, and the insertion is part of a transac-
tion, the lock on C may need to be held to end of trans-
action. Splits above the data node level are never part of

a database transaction. All splits immediately schedulel.
index-term posting, once their locks are dropped.

Index-term posting: an index term that describes the space

that was extracted from the container is posted to the2.
parent of the container in the current search path (see
Fig. 1c). An index-term-posting atomic action always 3.
posts to a single parent. Sincelktree node may have
more than one parent, index posting may consist of4.
several separate index-term-posting atomic actions. The

Using KEY find P (Parent), where P is the node at
LEVEL+1 that contains KEY. Lock P with an exclusive
lock.

Find the child C (Container) of P where KEY belongs.
Lock C with a short-term share lock.

Using KEY find the sibling X (eXtracted) of C (by find-
ing a side pointer).

If no such sibling X of C exists, EXIT (posting has al-
ready been performed or node has been consolidated)

node where the posting is to take place is exclusively
locked during the posting. In addition, the container child 5.
to which the index term refers is locked briefly with a
share lock, to check that a side pointer still exists whose
information still needs posting. To check that the parent
is the correct one and that it has itself not been changed
since the posting was scheduled, state identifiers in the 4 Node consolidation
parent are checked against those in the posting request.

If they do not match, search for the correct parent begin
again in the root. More details can be found in [LS92].

and drop all locks. If X exists, drop the lock on C.

Post index term: include in P an index term that describes
the space of X, and update in P the index term that
describes the space of C. Then drop the lock on P.

STo improve storage utilization, H-tree node whose storage
utilization drops below a prespecified threshold should be

Node-splitting is exactly the same (except for possimeconsolidated with another node that can be either its con-

database locks) at the abstraction level of fietree in tainer node or a node that has been extracted from it.

[LS92] for both data and index nodes. However, a particu- In_theH-tree, regardless of whether the sparse node is a
lar IT-tree (such as a Btree) may have index terms which C€ontainer or an extracted node, the contents of the extracted

look quite different from data records. The details of Suchnode are moved to the container node and the extracted node
splitting will differ from example to example. Much of this is deallocated. All references to the deallocated node must
paper discusses the details of splitting, index-term posting?® removed from its parent(s). That is why, in thetree,

and node consolidation for the HBtree. These cannot be unlike node-splitting (which can be performed using multiple
deduced from thel-tree. independent atomic actions), node consolidation has to be

When index-term posting involves multiple parents (be_completed by a S|_ngle atomic action.
cause a parent split across a child boundary) or when a sys- W& want atomic actions to involve as few nodes as pos-
tem failure interrupts index-term posting, ttie-tree is left sible, so we require three conditions for node consolidation:
in a consistent state. Searchers can always traverse or viz’&
an extracted node by going through its container node and™ dren of the same parent
following the side pointer. That is, two instances of tife 2 the extracted nodg must’ be a sinale- t nod d
tree can be structurally different, because index-term post-; ; - gle-parent noce, an
ing has not been performed or completed, but semantically?" the container node has sufficient space to absorb the con-
equivalent. Traversal of a side pointer results in scheduling tents of the extracted node.
the index-term-posting atomic action for the missing index
term.

Below, we describe in detail the node-splitting and
index-term-posting atomic actions:

both the container and the extracted nodes must be chil-

In Fig. 1c, we assume that node W is sparse and can be
consolidated with node C since both W and C have P as par-
ent. C absorbs W’s contents, the reference to W is removed
from P, and the index term for C is adjusted (Fig. 1d). Here

" .) is the node consolidation algorithm:
Node-splitting atomic action

. A node C (Container) is overfull and cannot accommo-

date an insertion. C is locked with an exclusive lock. 0.

. A new node X (eXtracted) is allocated.

. The directly contained space of C is partitioned into two 1.

parts.

. One part remains in C and the other is moved (delegated)

to X.

. A sibling term for X is included in C. C is unlocked

if C is an index node and not a data node. Data nodes

involved in splits may have to hold locks until end of

transaction. 3.
4,

Index-term-posting atomic action

. Scheduling: either a tree traversal using a (multi-attribute)

KEY traverses a side pointer, or a node split has just beerb.

performed, at LEVEL. This causes a posting action to be

scheduled. 6.

Node-consolidation atomic action

Scheduling: a tree traversal using KEY visits a sparse
node at LEVEL.

Using KEY find P (Parent), where P is the node at
LEVEL+1 that contains KEY. Lock P with an exclusive
lock.

2. Find the child S (sparse) of P where KEY belongs. Lock

S with an exclusive lock. It is not required that P refer
to S. P need only have KEY in its directly responsible
space.

If S is NOT sparse anymore, EXIT and drop locks.

If no child of P (container of or extracted from S) is
found to merge S with, EXIT and drop locks. Otherwise
lock the child to merge with with an exclusive lock.

Let C and W be the container and extracted nodes (S
can be either one of them).

If W is NOT single-parent, EXIT and drop all locks.

7. Drop index term: remove index term for W from P, and | KEY SF’X’ECE
adjust C’s index term in P to include W's space. If the It T
index term for W has never been posted, this step can y: Zinf, +inf B
. X0 i 0
be skipped. . R AN a ,
8. Drop sibling term: replace pointer to W in C with W’s A Y0 A
contents. to/A })B
9. Deallocate W. Drop all locks. N -
x0
x: —inf, +inf X: X0, +inf reclist2
y: —inf, +inf y: Y0, +inf reclistl e o
2.5 Concurrency efficiency and recovery issues R data . - 40
rec / \ rec nodes reclist3
. . . list1 /0 list3 .
An atomic action holds at most three exclusive locks on ex- rec \exl ..
isting II-tree nodes at all times: in the case of node-splitting, L2 T

!t is on the node_ tha.t !S about to be Split, and in. the (.:ase Of:ig. 2. A two-dimensional hB-tree with one index node and two data nodes
index-term posting, it is on the node where posting will take
place. In the case of the node consolidation, it is on the par-
ent and the two children. In the case of index-term posting,

a short-term share lock is also held on the container childyq | q-tree: paths £0-left) and :0-right, yO-left) constitute
Searching holds at most two locks at a time. No other lockshe index term for child node A. and pa;t}ﬂ—right yO-right)
are held by atomic actions. Because only a small number ofgnsiitutes the index term for child B. These kd-tree paths
locks are held and because most atomic actions are indepepgicate that all records in which both € [0, +00) and
dent of database transactions, concurrency is efficient. y € [0, +00) are located in node B (unless otherwise noted
A'gomlc_actmns are Iogged. If there is a failure before a,”equality is assumed to be on the right path in our kd-tree
atomic action completes, it is rolled back. Complete atomictigres), and the rest of the records are located in node A.
actions (actions all of whose log records are on disk) aréyat4 node A also contains a kd-tree. Its paths describe the
redone at recovery if their results have not reached the dlskspaces occupied by its two record lists and the space that
Thus, the transaction manager must know about atomic aGy a5 extracted from A and was delegated to B. Finally, data
tions in the sense it knows about database or system trangyge B contains only a record list.
actions. More details can be found in [LS92]. To summarize, a path from the root of a kd-tree to a leaf
kd-tree node can represent either

3 The hBX -tree: structure

In this section, we first briefly review the hB-tree and then 1. an index term for index nodes (that describes a region
we describe the structural modifications that transform the ©Of a child) or an inner boundary for data nodes (that
hB-tree into the hB -tree. describes the region occupied by a record list), or
2. a sibling term (that describes the region of a node that
has been extracted from that node due to a prior split).
3.1 Review of the hB-tree

3.1.1 Structure In addition, each node stores a description of the space it

is responsible for. These are two attribute values (low, high)
for each attribute. These values are called the boundaries of
the hB-tree node. For example, in Fig. 2 the boundaries of |
— Index nodes are responsible fedimensional subspaces. and A are the whole space, whereas the boundaries of B are

They contain a kd-tree [Ben79] which is used to organize(m: [sz +00), y: [0, ‘_*OO))_-])
information about children on the next lower level of the ~ Unlike other multi-attribute indexes that split nodes by
hB-tree and about regions which have been extracted anyPerplanes (e.g., the K-D-B-tree or the Grid File), the hB-
transferred to siblings on the same index level. tree can use more than one attnbutg to descrlbe the extracted
— Data nodes contain the actual data records. Data nodd§9ion. Therefore, nodes can be bricks with holes that repre-
may also contain kd-trees that enable the data nodeSent extracted regions, hence the name holey Brick tree. For
to describe their own inner boundaries (collection of €xample, in Fig.2, node A is a brick from which a corner
records, known as record lists, that occupy-dimen- ~ has been extracted.

sional region) and the extracted data-level sibling re- (Note that splitting is not symmetric unless the kd-tree
gions. is split at the root. If the kd-tree is not split at the root,

the boundaries of a node C describe a space which strictly
Figure 2 contains an example hB-tree. We have a two-contains the space described by the boundaries of the node
dimensional attribute space. The root of the hB-tree is theX which has been extracted from C. In the case of a split at
index node |, which is responsible for the whole space. ltsthe root of the kd-tree, neither sibling is designated as the
kd-tree describes the next level of the hB-tree, which consistSextracted” or the “container” sibling. Also, for a split at the
of two data nodes, A and B. There are three kd-tree paths imoot, no sibling terms are created.)

The hB-tree (or holey Brick tree) [LS90] consists of index
and data nodes.

3.1.2 Searching q nthehB-tree Q x1 x

L
Searching for point data is straightforward. We start the (D K v2
search at the hB-tree root. The root is searched by traversing OO K
its kd-tree. Every kd-tree node has information which in-|.% X ¢ 52 Mo [y,
cludes an attribute and its value. By comparing this value tg oxt ¢
the value of the corresponding attribute of the search point Moot

one can decide on which of the two children of the kd-tree (@) kd-tree (b) corresponding space
node one should visit next.

This process leads us to lower levels of the hB-tree and_ inthe hg Tiree
eventually to a data node. That data node contains the regioger—« p— ey
where the search point belongs, if it exists at all. Finally, the L
points of the node are searched with the help of the kd-treq
of the node.

To illustrate, assume thg0 = 0 andx0 = 0 and assume
that we are searching for point (185) using the example
hB-tree of Fig. 2. We start from the root | of the hB-tree and
we follow the kd-tree path the search point directs us to, o _
that is, @0-right, yO-left). This path leads us to data node Fig. 3. Intra-node organization of hB-tree and HBree nodes using kd-
. f trees
A, where the same procedure using A’s kd-tree leads us to
record list reclist2. This record list is the place where our
search point is located, if it exists at all. 3.2 Making the hB-tree @/-tree

M [yl

R

(c) kd-tree (d) corresponding space

In the following discussion, we describe the transformations
s that make the hB-tree &/-tree. In order to transform the
3.1.3 Node-splitting hB-tree into a case of thé/-tree when a split at node N
) _) occurs, we need to place the actual address of the node that
When an insertion causes a data or index hB-tree node t@ extracted from N in N. When the split is not at the root
overflow, its kd-tree is used to find a kd-subtree whose sizeyf the kd-tree, we will simply replace external markers with
is between one and two thirds of the contents of the nodethis address. We must also treat the case of a split at the
For data nodes, if necessary, a record list is split using onggot. We shall use Fig. 3 to illustrate these changes and the
or more attributes and new kd-tree nodes are introduced t8hanges we make to support node consolidation.
describe the resulting SubSpaceS. A new hB'tree node iS al' Figure 3a shows the intra-node Organization of an index
located and part of the contents of the overflowing node arg,g_tree node Q, and Fig. 3b shows the corresponding space
moved to it. When the Sp“t is not at the root of the kd'tree,decomposition_ Each pa‘[h in the kd-tree of node Q corre-
the original node to indicate that part of its contents havepath (c1-left, y1-left) corresponds to a sibling term and de-
been extracted. (When the split is at the root of the kd-treegcribes space that has been extracted from Q and delegated
there is no external marker.) ~ to asibling on the same level as Q. This space is represented
~ For example, in Fig. 2, A’s kd-tree shows that A, which py the shaded region of Fig. 3b. The remaining four paths in
initially was responsible for the whole attribute space, wasthe kd-tree of Q correspond to index terms. They describe
split by a corner (bothr andy attributes were used). All the decomposition of the space node Q is directly responsi-
records in which bottr € [20, +o0) andy € [y0, +oo) were ple for among its children, namely nodes K, L, and M. These

moved to a newly allocated node B. Two kd-tree nodesspaces are represented by the white regions of Fig. 3b.
20, andy0, were introduced to describe the new space de-

composition. The resulting kd-tree in A describes A’s inner
boundaries and the extracted region (indicated by the exter3.2.1 Side pointers
nal marker).

The kd-tree nodes in the path from the kd-tree root of theThe first and most important modification is the replacement
node to the extracted subtree which describe the extractedf external markers by pointers to the extracted nodes, called
region and have not been posted during another splitting arside pointers. In Fig. 3c, the thick arrow with the address of
posted to the parent hB-tree node. Posting of index term&ode R represents the side pointer that is now used in the
may trigger additional node splits at higher levels. In Fig. 2, place of the external marker. Right after the split of R from
kd-tree nodes:0 andyO were posted in the index node | to Q, R will contain a kd tree which had been a subtree of the
describe the splitting of node A. kd tree which was in Q. R is on the same level as Q. R is

When the splitting boundary of an index node intersectsnot on the same level as L, M and K, which are children
the space of a child, that child becomes a multi-parent nodeof Q. In Fig. 3d, the shaded region represents the space the
Its address is stored both in the original and the new siblingextracted node R is responsible for.
node. All of the parents of a multi-parent node are on the Now, we can be lazy about posting index terms that
same level of the tree, since all splits create a new node odescribe a node split. A search that should visit the extracted
the same level of the tree as the original node. node can still visit it through its container node.

For example, in the hB-tree the index term that describesSecond, if a kd-tree node’s left or right pointer is a child
the extraction of node R from node Q (see Fig. 3a) must begointer and is the same as the kd-tree node’s decoration,
posted in the parent of Q at the time of the split, otherwisethen that pointer does not need to be stored (for example,
one cannot visit node R. In the WBtree, the inclusion of in Fig. 3c, kd-tree nodesl andy2 did not store their right
the side pointer to R in Q allows us to perform the postingpointers and kd-tree node2 did not store its left pointer,
any time after a split without affecting search correctnesssince they were the same as their decorations). We say that
(see Fig. 3c). decorations and child pointers that are not stored are NULL.

Note that decorations are relevant to index nodes only. Data

nodes do not have children.
3.2.2 Splitting a node at its kd-tree root The collection of kd-tree nodes with the same decoration

forms a decorated fragment that describes the partitioning of
Another important modification is the way node-splitting is the space of the child node appearing as decoration among
done, when the kd-tree of the node is split at the root. Inits siblings. We observe that now one can determine the
the original hB-tree, one of the subtrees becomes the kdeontainment order of the children of a node by just looking
tree of the node that is split, and the other one becomesat the kd-tree of that node. For example, the kd-tree of node
the kd-tree of the newly allocated node. The original kd-treeQ in Fig. 3c indicates that first node L was extracted from
root disappears and no external marker is created for thi&, and later node M was extracted from L. The K-fragment
split. In the hB-tree, splitting at the root produced symmetricconsists of kd-tree nodesl, 1, andz2, the L-fragment of
children, where neither can be identified as the “container’kd-tree nodey2, and the M-fragment is empty, indicating
or “extracted” child. that either M has not been split yet, or that no splitting of M

In the hB”-tree, we keep the kd-tree root in the origi- has been posted yet. The arrows in the space decomposition
nal node and we simply extract the appropriate kd-subtreepf Fig. 3d indicate the containment order of the children of
which again becomes the kd-tree of the new’hiBee node. node Q.

Now the container/extracted relationship is also indicated by
the side pointer from the container to the extracted sibling
node. In this case, we are transforming a symmetric relation3.3.2 Continuation flags
ship to an asymmetric one, where one sibling is arbitrarily
declared to be the container and the other the extracted sitwhenever a decorated fragment is partitioned by an index
ling. I1-trees require this asymmetry. hB!-tree node split, the extracted kd-subtree is decorated
with the same decoration as the split decorated fragment.
) o After the completion of the split, the child HBtree node
3.3 Supporting node consolidation that appears as decoration will be a multi-parent node. It
S will be pointed to by both the original node and the newly
To support node consolidation, we make further structural:reated node.
changes. Given an HBtr_ee node N, the idea is to be able We distinguish the multiple parents of an #iBree node
visit extra hB'-tree nodes: N-fragment is located as the prime parent of N. All the other
parents of N, where the N-fragment is continued, are called
secondary parents of N. We also refer to the concatenation
of the decorated fragments for a node in its parent nodes as

For example, in the hB-tree of Fig.3a, we are not in athe full decorated fragment for that node. The root of the full
position to know the above-described information: (1) we dodecorated fragment is always located in the prime parent.
not know the address of the node that was extracted from Q, Since node consolidation in thé-tree requires that the
(2) we do not know whether the child L of Q was extracted node that is being deleted is referenced only by a single
from the child M of Q, or vice versa, and (3) we do not parent, we have to be able to detect whether a node is multi-
know whether the child K of Q is multi-parent or not. parent or not by examining its current parent. To accomplish

this, we keep a special continues-to flag with every side

pointer. The continues-to flag of a side pointer is TRUE
3.3.1 Decorations or FALSE, indicating whether the decorated fragment that

contains that side pointer is continued to the sibling node or
To determine the containment order of the children of anot. This is a way to determine if the child node that appears
node, we begin by associating each kd-tree node with thas the decoration is multi-parent or not. For example, the
the address of the HBtree node it was posted from. We TRUE continues-to flag of the side pointer to R in Fig.3c
use the term decoration for the children addresses associat@wicates that the child node K of node Q is multi-parent,
with kd-tree nodes. and that node R is its other parent.

We can achieve space savings and reduced bookkeeping In addition, some of the index-term-posting algorithms
by following two conventions. First, a kd-tree node that hasthat we describe in the next section require that we are able
the same decoration as its parent kd-tree node does not ne&a determine whether a parent node P of a node N is the
to store the decoration again (for example, in Fig. 3c, kd-prime parent or a secondary parent of N. Clearly, if N is
tree nodegy1 andx2 did not store their decoration, since the decoration of a kd-subtree of P’s kd-tree, P is the prime
they were sharing the same decoration with their parent)parent of N. But if N happens to be the decoration of the

1. the containment order of the children of N and
2. whether a child node of N is multi-parent or not.

root of P’s kd-tree, it may be the case that the N-fragment inA—%1% x® A Cld B0
P is a piece of the full N-fragment. For this reason, alfhB K K
tree nodes also store a special continues-from flag. When a N| o " N[o
decorated fragment is partitioned by an index node split, we M B y0
make the continues-from flag of the extracted node TRUE, t y5 L v
to indicate that it is a secondary parent of the child node M M
that appears as the decoration hoﬁj the root. For example, th(;,\ . .
FALSE continues-from flag of hB-tree node Q in Fig.3c [=mm K i, +inf 7 .15 | contT
indicates that Q is the prin%e parent of K. Note that, ?egard-m'"f/ﬂ\m b . gm
less of the value of Q’s continues-from flag, Q is the prime| N X L R
parent of both L and M. R S s N0

x10 L/\ cont:T \ /\O

¢}
(a) before (b) after

3.4 Terminology and notation
Fig. 4a and b. Original index node splitting

Table 1 shows the terminology that we will be using in the
following sections.
In Fig. 3c, the index term for node K consists of all the

kd-tree nodes in the two paths from the root of Q's kd-treeyq gistinguish index-node-splitting from data-node-splitting.
to K, i.e, 21, y1, anda2. The K-subtree is the whole kd- ey nodes contain a kd-tree only, whereas data nodes con-

tree, the L-subtree is the same as the L-fragment, and thgyi either a collection of records known as a record list, or
M-subtree is empty. If we consider Q to be the parent node, | y_tree and one or more record lists.

(P) and K to be the container node (C), then we have two |,4ex-node-splitting i ; o
) ; . plitting is straightforward. In [LS90], it is
PtoC-paths: {1-left, y1-right) and {1-right, z2-left). Inthe ¢h5wn that one can always split off a kd-subtree with be-

space decomposition figure (3d), index terms for the childrenyyeey one third and two thirds of the kd-tree nodes. This

of Q correspond to one or more white rectangles, and theifg (he exiracted kd-subtree that is moved to the extracted
containment order is represented by the thick arrows.

N L ; node (a newly allocated HBtree node). The root of the
Also, in Fig. 3c, the sibling term for node R consists of gy¢acted kd-subtree takes the decoration of the decorated
all the_ kd-tree nodes in the path_from the root of Q’s kd,'treefragment it belonged to. The parent of the root of the ex-
o R, i.e,zl, andyl. If we consider Q to be the container i ,cteq kd-subtree is made to point to the extracted node.
node (C) and R to be the extracted node (X), then the CtoXrys js done by replacing the child pointer of the parent cor-

path is (r1-left, y1-left). In the space decomposition figure reghonding to the extracted kd-subtree with a pointer to the
(3d), the sibling term for the sibling R of Q corresponds t0 qyiracted hi -tree node.
the shaded rectangle. For example, in Fig.4, node B was split off node A.
(In Fig.4 and subsequent figures, we use the notation
as shorthand for: = n.) The kd-subtree rooted a5 was
4 The hB -tree: splitting/posting extracted and a side pointer to B, indicated by the thick
arrow, was included in A’s kd-tree. Note that the child M of
In the previous section, we showed how kd-trees are used t6 S NOW referenced to by both A and B and hence is a multi-
represent index and sibling terms. In this section, we describ@ar€nt node. Also, note that the space directly contained by
in detail how kd-trees should be split, how sibling terms A has now become holey.

4.1.1 Original index-node-splitting

are created during HB-tree node-splitting, and finally, how The procedurg for locating the root of the extracted kd-
index terms should be posted, and more importantly, whaBubtree is very simple:
they should look like. 1. Start from the kd-tree root.
2. Visit the child that represents the root of the larger kd-
subtree.
4.1 Description of a problem 3. If the size of that kd-subtree is between one third and

two thirds of the page size, then this is the root of the

We begin by showing here how one could adapt the origi- extracted kd-subtree, else repeat from step 2.

nal hB-tree node-splitting and index-term-posting algorithms Note that the extracted space is described by the kd-tree
(described in [LS90]) for use in the HBtree. This is a path from the root of the split node to the extracted kd-
straightforward adaptation, since the main innovation of thesubtree. This is always dimensional region (or Brick).
hB' -tree are the side pointers and the fact that node-splitting
and index term posting are performed by separate atomic ac-
tions. 4.1.2 Original data-node-splitting

We then show that the original algorithms are flawed
and that an hB-tree (or an hB-tree) that uses them is not To describe data-node-splitting, let us assume that we start
well-formed. In particular, search is not correct. Our newwith an hB”-tree that has a single data node (and, of course,
algorithms, described in Sect. 4.2, will correct this flaw. no index nodes at all). That node will contain a single record

Table 1. hB!! -tree terminology

Term Description
— hB! -tree node 2-dimensional array stored in an ABtree node
boundaries that describes the space the node is responsible for
— index term kd-nodes in the path(s) from the root of a
kd-tree to a child node pointer
— sibling term kd-nodes in the path from the root of

a kd-tree to a sibling node pointer
— decorated fragment set of kd-tree nodes with common decoration
— full decorated fragment the concatenation of all the decorated fragments
(e.g. full A-fragment) for a node in its multiple parents
— decorated subtree kd-subtree rooted at a decorated kd-tree node

-P,C, X (P)arent, (C)ontainer and e(X)tracted nodes
— PtoC-path a path from the root of the C-fragment in P to C
— CtoX-path the path from C’s kd-tree root to X
A A B A A x20 B
L) L4 ° . . B)
L4 . . b .) . .
L4 N o B N e o o e o o e o o v20 o o o
. . . . b hd
[] L]
A A x20 B A A B
x:=inf, +inf X:—inf, +inf x: 20, +inf x:=inf, +inf x:=inf, +inf x: 20, +inf
y:-inf, +inf y:=inf, +inf y:—inf, +inf y:=inf, +inf y:-inf, +inf y: 20, +inf
x20 x20
rec rec rec rec
list-1 e B list-3 list=1 rec 0 list-4
rec list-2 Ve
list-2 rec B
list-3
(a) before (b) after (a) before (b) after

Fig. 5a and b.Data node hyperplane split Fig. 6a and b.Data node corner split

i use both indexing attributes and extract all records that have
list. Once the node becomes full and cannot accommodatgyiy - > 20 andy > 20. This kind of split introduces two
another insertion, it has to be split. . kd-tree nodes in node A that describe the resulting space de-
In the hB”-tree (and the hB-tree), one can simultane- composition. In [LS90], it is shown that it is always possible
ously use more than one attribute to split a record list. Weyq 5chieve a one third to two thirds corner split.
talk about hyperplane ok-dlmensmnql corner splits when If there is a kd-tree in the data node, we may be able
one ork attributes are used, respectively. Every record listy, fing and extract a kd-subtree that refers to a collection of
keeps track of the attribute that was last used to split it. Theecorg lists, instead of splitting a record list. In that case,

splitting algorithm uses this information to split the record 415 node-splittings do not introduce new kd-tree nodes.
list by a different attribute next time in a round-robin fash-

ion.
We first try to split our record list using the current split- 4.1.3 Original index term posting
ting attribute and so that at worst a one third/two thirds split
is made. If this is not possible, then we try with the next Suppose a node C (for Container) is split and a new node
attribute and so on. If a split with one attribute is possible X (for eXtracted) is created. Once the node-splitting atomic
(this was almost always the case in our experiments), wection is over, or when the side pointer from C to X is
create a new kd-tree node whose attribute is the same as tliaversed, we want to post the description of the split to the
splitting attribute. One of its children is the remaining record current parent node P (for Parent) of C. The objective of
list and the other a side pointer to the extracted node, wherandex-term-posting is to include (post) a description (index
the extracted record list is moved. For example, in Fig.5term) of X's space in P, and also to modify the already
data node A was split and all records with> 20 were existing index term in P for C, so that it reflects the new
extracted to a newly created node B. The appropriate kd{shrunk) space of C.
tree node was included in A to describe the node’s “inner” For example, in Fig.7, the shaded kd-subtree was split
boundaries and the extracted region. off node K and now resides in node M. The parent P of K
In the case that no hyperplane split is possible, we cannitially only contains index terms for its children K and L.
use more than one attribute, and then, we have a corndndex term posting has to include in P the minimum number
split. For example, in Fig. 6, there is no way to extract be-of kd-tree nodes in the path from the root of the kd-tree of
tween one third and two thirds of the node’s contents bythe container node K to the extracted node M that describe
performing a hyperplane split. On the other hand, we carthe extracted space. This is the so-called condensed path.

10

P parent of K P B1
K K C1 x10
X5 | <«—— before /)(5\ y5 ™
L The tree e space
AN after - V10 structure / \x 10 decomposition cL |c2
L index term posting N y5
M extracted / \ c1
space C2
condensed path
K Space of K \
- _—1 x15 x20 c1 c2
Ve b\ D1 c2
@ extracted X5
-— kd-subtree y15 7/ \ x5_x10
L Y5 g that has been V5 Cc1 -
4 \ moved to M more 2\ p2
M more
*_> L — y10 more X0 —pm| y5
7 2 |
V5 more

» o
previously
extracted
space

Fig. 7. Original index term posting

Fig. 8. Phase 1: C2 was split off C1 and the condensed pgiha(10) was
x5 posted to B1
Al

The tree Bl The space AL
structure y5 decomposition B2

/N 5

B1

In our example, it consists of kd-tree nodeS (that has
already been posted) apd0. Note thaty5 does not belong
to the condensed path, sing#0 is a tighter boundary for the R - 6 X10
extracted space. Once posting has been performed, node P N — x10 c1 ez
contains a new index term for M, and has an updated index s B 7\ L
term for K: before the boundaries for K were & 5 and < S
y = anything) and now they are: > 5 andy < 10). =

We have just sketched the basic ideas behind index term &—; c2
posting. We will not describe this procedure in more detail. X5 X5 XEB

The reason is that we have found that the posting algorithm m:e Ns c1 n
for the hB-tree [LS90] is not correct. In the following sec- /\Dp2 more |y5

more — |

tions, first we demonstrate the problem, and then we present 7 c2
in detail various alternative splitting and posting policies that more
remedy the problem.

Fig. 9. Phase 2: B2 was split off B1 and the condensed pa8) (vas
posted to Al

4.1.4 hB-tree splitting/posting algorithm flaw

The directly contained space of a data’hee node, i.e.,)

the one that does not include space that has been delegated C3 has just been extracted from C1, and we are ready to
to a sibling node due to a split, can be viewed as a union of ~ Post the index term for that split (see Fig. 10).

disjoint rectangular regions corresponding to the record lists

that reside in the node.

We call the boundaries of these disjoint spaces at the)) .)
data level or of collections thereof data space boundaries 1€ algorithm described in [LS90] does not cope with
(or DSBs). We have found that if index nodes are split in SPace decompositions that do not preserve DSBs. As shown
such a way that the extracted space and/or the remainintj Fig: 11, it would post kd-tree nodeS aboveys in B1,
directly contained space of the nodes do not correspond to §1d change the C1 decoration to a C3 decoration in B2.
DSB there will be search correctness problems. We say thdioté that in the hB -tree we need two separate index-term-
such splits do not preserve DSBs. Also, we say that a kghosting atomic actions to do this. This is because node C1

tree defines DSBs when the space decomposition it describd¥@PPens to be a multi-parent node.
preserves DSBS. But, then we would have a major problem. A process

With the help of the scenario demonstrated in Figs. g_searching for point (2, 9), which is in C1, would be directed
11, we show that the splitting and posting algorithm of the fom node Al to node B2, and eventually to node C3. That
hB-tree [LS90] is erroneous. These figures use alhige, IS search is not correct. The problem.occurred because node
but the argument we will use also holds for hB-trees. In theB1 Was split along a boundary that did not preserve DSBs.

first three phases of our scenario, we can see the state of an_Vhat is needed to correct the hB-tree flaw is to preserve
hB! -tree after: DSBs at the index levels. We have found various policies

that accomplish this. Basically, they involve restrictions on
— C2 was extracted from C1, and the condensed p#h (the places where nodes can be split, or the nature of the index
210) was posted to B1 (see Fig. 8), term that is being posted. In the next section, we present a
— B2 was extracted from B1, and the condensed pg) (hierarchy of the various resulting splitting/posting algorithms
was posted to Al (see Fig.9), that preserve DSBs.

11

Al Al X5
The tree Bl The space Al The tree Bl The space Al
structure y5 iti B2 structure x5 iti B2
decomposition decomposition
7\ 7\ B1
y5 V5 y5
B2 B1 7\ B1
B2
B1 B2 - x10 B1 B2 B2
c1 C1 c1 |2 c1 c3 B1 ci|c2
Y5 x10 x5 x10
/ B2 / \ / \y5 VAN c1
c2 Bl c1 / _BZ> C2 c1
more more
Cl C3 C2 C1 C3 C2
D1 C3[]c2 BT c3[]c2
D2 c1 D2 c1
x5 x10 > X5 x10
/ \y5 s —=1. [/ \y5 s == [
—_— more —_— more
more / c3 more more / Cc3 more
more more

Fig. 10.Phase 3: C3 was split off C1 and we are ready to post the condense#ig. 12. Posting the full paths: kd-trees at index levels define DSBs
path
search point (2, 9)

Al
/
Wecture v Tespace AT g Suppose first we extract X from C. We then post the full
7\ path from the root of the kd-tree in C to the root of the
kd-tree of X (the CtoX-path) to the parent P. The next split

B1 B2 could be at C or at X. If it is at X, suppose Y is extracted
% 10 from X. Then the path from the root of the kd-tree in X to
7 Ny / \\ the root of Y is appended to the path already in P.

/B ol Suppose, instead, that the second split is in C. Say, a

c1 c3 c2 node Z is extracted from C. Then the path from the root of
oL D2 c1 the kd-tree in C to the root of the kd-tree in Z intersects

7 \y5_> s = |- the CtoX-path (possibly only at the root of the kd-tree in
mre s cs | [more "o C). The new path then is connected to the already posted

CtoX-path where they intersect by appending the part that is
Fig. 11. Phase 4: The condensed paif5(y5) was posted to B1, and the not shared. It is also possible that the new path is a subpath
C1 decoration was changed to a C3 decoration in B2, but now searches faf the already posted CtoX-path. Then the already posted
point (2, 9) are not correct CtoX-path need only be decorated with the address of Z in
the appropriate place. This new decoration is a kd-tree node
decoration if Z now contains the side pointer to X, or itis a
kd-tree leaf decoration if not.

We introduce three different approaches to splitting and post- NOW suppose we have asynchrony and we are posting
ing which correct the flaw in the hB-tree. All of these ap- full paths. Can it be that a later posting is missing the earlier
proaches preserve DSBs. One of them, the CB (Completép“t information to append to? This might happen if A split
Boundaries), has the best performance characteristics. HoWtom B and the information was not posted and then D split
ever, implementors may prefer to use the other approache§0m A. However, we adapt the policy of posting only split
for reasons of algorithmic simplicity, as the performance dif- information from the first side pointer we see in a chain
ferences are not great. In any case, reading the descriptior§$arting from a child whose address we already have. Using
of the simpler approaches aids in understanding the CB aphis policy, posting full path always appends to an existing

proach. pat _
Now suppose that the parent P has been split and part of

the posted information is in one node and part is in a sibling.
4.2.1 Solution 1: post full paths We claim that this does not change the fact that new posting

information is always appended to an existing path. This is
One way to preserve DSBs is to always post the full pathbecause the kd-trees on one level of d’hBee can logically
during index term posting. Here the interesting thing to ob-be considered as forming one large kd-tree by concatenating,
serve is that this reduces posting to appending to or relabeFollowing sibling pointers. This proves the claim.
ing (with new decorations) an already posted kd-tree. (This Thus, the kd-tree (concatenation of all kd-trees) of a level
is already the case when posting index terms from the dataf the hB”-tree is a prefix of the kd-tree of the level below.

4.2 New approaches to splitting and posting

level splits in the hB-tree.) Since the level-0 (data level) kd-tree defines DSBs, the same
Claim: Posting reduces to appending or relabeling when fullwill be true for the level-1 kd-tree, and so on. Hence, a path
paths are always posted. from the root of a kd-tree to any kd-tree node in the kd-tree

Proof of claim: First we treat the case where scheduleddefines DSBs.

posting occurs in the same order as the corresponding node- Figure 12 shows the WB-tree of Fig. 10 if we post the
splitting. We also assume that there is only one parent nod&ll paths. Now, kd-tree node5 was posted to B1 as part
for the node(s) to be split, and it has room for all the newof the index term for C2. Therefore, the index term for the
postings. subsequent splitting of B1 defines a DSB.

12

Al x10 é
B1 Al
The tree The space
5 pace
structure y y N\ decomposition B1 |B2 O/ \ @ kd-tree of node P
X10 y5
7\ B1
B2 NN
, = ~ R /@\
c1 B1 c2 corresponds o the 5
y5 c2 Cl — root of B's kd-tree =
7 o more /O
—t
/ B2 C1 @ - ‘ decorated kd-tree node
C1 C3 / \ O additional candidate kd-tree

nodes for extraction

C2
D1 C3 Cc2 @ @
,(XS\ /)?120_> :| Cl|: E_Q | / AN / \@ —_— s

y <! \vorel VOV
/ C3 more :I / \
Fig. 13. Splitting at decorations: kd-trees at index levels define DSBs Fig. 14. Splitting at complete boundaries: kd-trees at index levels define
DSBs

There is a drawback in posting full paths, though, that
has to do with the size of the index terms. The hB-tree uses) o o)
condensed paths in order to have a worst case guarantee 8#litting policy which is a combination of the two previ-
2k + 1 kd-tree nodes for the size of the index term. Postingous solutions. It assumes that the condensed paths are being

full paths cannot offer any guarantee on the size of the indeX0sted, but offers more candidate kd-subtrees for extraction
term. (in addition to the decorated ones).

Let us assume that we have a decorated kd-tree node,

i.e, a root of a decorated fragment, in an index’hBee
4.2.2 Solution 2: split at decorations only node at levelL. Let ny be that kd-tree node angy be its

parent kd-tree node (which, of course, belongs to a different
Another way to preserve DSBs is to split nodes only atdecorated fragment). Imagine that the kd-tree paghn,
boundaries defined by their children. This is also a recursivez, - .., 7, p > 1, is full, i.e., there are no missing kd-tree
procedure that preserves DSBs across the tree levels. Byodes between any two kd-tree nodes in the path. In other
definition, data nodes define DSBs because they are collegvords, we already know that the path from the the previous
tions of record lists. At higher hB-tree levels, when index decoration that ends iny defines DSBs (it is the index term
hB'-tree nodes are split only at boundaries defined by theiifor the child node appearing as the decoratiomgf, and
children (so that the root of the new HBtree node was we now extend it with a full path that, by definition, also
a decorated kd-tree node before the split), no multiparengefines DSBs. We can extract the kd-subtree rooted; at
nodes are created. (We call this policy splitting at decora-becauser; is decorated. But we can also extract kd-subtrees

tions). This means each new HBree index node has the rooted at any child of a node on the path, nz, ..., ny,
boundaries of the union of its children. Recursively, theseand still preserve DSBs.
are DSBs. For example, in Fig. 14, we can see the kd-tree of node

Figure 13 shows the WB-tree of Fig. 10 when nodes are P. Two of the children of P are nodes A and B. We can
split at decorations only. Node B1 was not allowed to besee that kd-tree nodé corresponds to the root of the kd-
split by extracting the kd-subtree rootedadt0. Instead, the tree of node B. This is because it is decorated and there
extracted kd-subtree was the right child.cf0 whose root —are no missing kd-tree nodes above it. Also, kd-tree node
was C2-decorated (not shown in the figure). Therefore, theorresponds to the kd-tree node that carries the side pointer
index term for B2 in A1 does includel0. Note that, in order to B in the kd-tree of A that is the container of B. We can
to split off C3 from C1, we used a decorated kd-subtree, too€extract any of the following kd-trees: (a) the one rooted,at

One advantage of splitting at decorations is that, sincédecausel is decorated (solution 2), (b) the one rootectat
no multi-parent nodes are ever created, index term postingecause there are no missing kd-tree nodes alip(® the
can always be completed with a single atomic action. Onone rooted aff, because there are no missing nodes above
the other hand, index nodes cannot be split anywhere. Thid ande, and (d) the one rooted gt for the same reason we
can degrade index node storage utilization. Whenever it igan extract the one rooted #t
not possible to find a decorated kd-subtree with between one We say that these additional splitting points in the kd-

third and two thirds of the size of a page, we have a “bad’trees of index nodes define complete boundaries. In order
quality split. to make this splitting approach work, we need to have a

way to determine whether a kd-tree path is full or not. The

bookkeeping needed to implement this splitting approach
4.2.3 Solution 3: split at complete boundaries only will be described in a later section.

The complete boundaries are not the only places where

The two previous solutions tell us that we have DSBs any-DSBs are preserved when posting the condensed paths.
where in a kd-tree when we always post the full paths, orlmagine that there exists a kd-tree paih, n2, ..., n,
at decorated kd-tree nodes regardless of the posting policgp > 2k), with no missing kd-tree nodes, that contains both
(full or condensed paths). In this section, we describe a neva low and a high boundary for each one of théndexing

13

attnbutes Then, |f the kd-tl’ee paﬂ}, np+1, ey nq, q Z P, SPLITTING POLICIES

is also full, clearly, a kd-subtree rooted at any child of a A: anywhere

kd-tree node in that path is a candidate for extraction. CE, Dy at decorated fragments
It is not very likely that there will be full paths which

contain low and high boundaries for every attribute and o > Cap > =RefotEs

which are also reasonably short. Even for a two-dimensional o oonsed path

hB -tree such a path will have to be at least four kd-tree <>

nodes long and may be much longer. Therefore, we choose - ' _ _
not to consider this scenario in our “complete boundaries”Fig- 15. Splitting/posting algorithm hierarchy
solution.

node’s kd-tree defines DSBs, and therefore, we can achieve
4.3 Algorithm hierarchy the best possible node storage utilization. Thus, the restric-

tion we impose on splitting applies only to index nodes.
In the previous section, we defined one new policy for post- We observe that algorithm A/cp corresponds to the orig-
ing index terms and two new policies for splitting nodes. inal splitting/posting algorithm for the hB-tree, the one we
We summarize all the existing node-splitting and index-have shown to be erroneous because it does not preserve
term-posting policies, and we present a hierarchy of split-DSBs. In the following sections, we will examine the other
ting/posting algorithm that preserve DSBs at the index lev-four algorithms (below the horizontal line of Fig. 15) that
els. preserve DSBs and discuss the advantages and disadvan-

The term splitting policy refers to the the way index tages of each one. We expect to obtain “better”’hBees

nodes are split. When splitting an index node, we have thregvhen using algorithms that are higher in the graph of Fig. 15.
options regarding the way we split its kd-tree:

A Anywhere: This policy may split a decorated fragment .
Consequently, multi-parent nodes may be introduced.4'4 Algorithm D/fp

At most one multi-parent node is introduced per split.

D At decorated kd-subtrees: That is, we always extract 4N this section, we describe the simplest splitting/posting
decorated subtree. All HB-tree nodes are single-parent algorithm: it splits index nodes only by extracting decorated
nodes. subtrees (D) and posts the full CtoX-path (fp), hence the

CB At complete boundaries: In addition to splitting at deco- "@Me D/fp. This algorithm uses both Solutions 1 and 2 in

rated fragments, we can split at any kd-tree node after £7der to preserve DSBs.
decorated kd-tree node, as long as the path from the par-

ent of the decorated kd-tree node to that kd-tree node is

full, i.e., there are no missing kd-tree nodes. This policy4-4.1 Splitting at decorations (D)
introduces multi-parent nodes, as well.

. . . When we split at decorations in the HRtree, data nodes are
The term posting policy refers to the nature of the 'ndexsplit anywhere (like the hB-tree). But, for index HBree

terms that are posted. An index term is comprised of copieg,gqes, the extracted subtree must be a decorated subtree. In
of some of the kd-tree nodes in the path from the root ofgenery) the kd-tree of an index node must be exhaustively
the kd-tree of the container node to the extracted node. Agarched in order to find the most suitable decorated subtree
index term must describe the space that was delegated to thg, oviraction. In some cases. it may not be possible to lo-
extracted node. We have two options regarding the nature of;te 5 decorated subtree whose size is between one and two
the index term: thirds of a node’s size. We always extract the best possible

fp We can use as an index term the full path to the extractedecorated subtree, i.e., the one whose size is closest to half
node. That is, all kd-tree nodes in the path are posted bjhe hB”-tree node size. .
a posting action. Finally, if no decorated subtree exists, we can drop the
extracted node: These are the kd-tree nodes of the fulpe the case in Fig. 16a if kd-tree nod0 were missing).
path that define the “tighter“ low and h|gh boundaries (Th|S case never occurred in our expe”ments -S|nce most
of an index term (the extra kd-tree node may be neededreée nodes are split when they have not enough space to
in order to correctly merge the condensed path with theRccommodate an index term posted by a posting action. By

existing kd-tree of the parent where posting takes place)deferring a splitting action in an index node, we actually
_ _ _ _ defer a posting action. This is acceptable, since search is
In Fig. 15, we present all possible algorithm configura- stjll correct.

tions. Algorithm CB/fp is irrelevant, since there are no miss- Here is the algorithm for splitting at decorations, in a
ing kd-tree nodes when posting the full path. CB/fp is thenode C:
same as A/fp.

It is important to notice that, since data nodes do not have Splitting at decorations (D)
decorated subtrees, if their kd-tree has to be split, any sub<. Find a decorated subtree in C whose size is closest to
tree can be extracted (as in the hB-tree). Any place in a data half a node’s size, else EXIT.

14

c x5 x10 x15 c x5 x15 S5 x10 5 P x5 x10 x15

, y: —inf, +inf ;=i ¢ s
X, y: —in| Km X, y: =inf, +inf 15 x15 T
o e|c|F K E X 7\ Et ¢ F1 5// N\ Et Xf F
D x15 Y5, D Y: D

5 ‘ D [ys Vs - b |ys N D fys /7N D |y5
7\ |) PN | | X T

4E_XS\L K 7D K & \Xlo ¢ E/ i S

oy e 7N 7\,

(a) C and its space before the subtree rooted (b) C and its space after X was split off C. (a) Before posting (b) After posting
at x10 is extracted to create node X. NOTE: the double path is the CtoX-path.

Fig. 16. D/fp: X has been split off C: the full CtoX-path must be posted to Fig. 17a and b.Dffp: PtoC-patfr> CtoX-path: X-decorate remaining PtoC-

the parent of C path
P x5 x15 P x5 x15
C C
2. Create a new node X, extract the decorated subtree fron 22 Ef c P Et 1 X
C, and move it to X. NP | D s P H oI5
3. In _C,' replacc_a the gxtracted subtree with a pointer to X _ N e 10 N e 10
(this is the side pointer). Eoox

(a) Before posting (b) After posting
Next, we show how to post the full CtoX-path of Fig. 16b, Fig. 18a and b.D/fp: PtoC-path == CtoX-path: make last node of PtoC-
that is indicated by the double edges, to the parent P of Cpath point to X
After the posting has been performed, node P will be able
to direct searchers directly to X.
4.4.3 Discussion

4.4.2 Posting the full path (fp) Posting the full path (fp) may increase the size of the index
terms posted. Especially when the data is skewed, we may
end up posting long CtoX-paths. Splitting at decorations (D)
requires an exhaustive search of the whole kd-tree of the

dex hB”-tree node to find the largest decorated subtree

hose size is between one and two thirds of the contents of

e node. It may be the case that such a subtree does not
exist at all. In this case, we will have a bad quality split. If
Bad splits are too frequent, the utilization of the index nodes
&will decrease, and the size of the index will increase.

In this variation of the hB-tree we post the full CtoX-
path, that is, all kd-tree nodes from the CtoX-path that hav
not already been posted. Since we split at decorations, a
hB' -tree nodes have exactly one parent. Thus, we only nee
to post the index term for a split to one ARree node.
Also, since the full paths are being posted, posting reduce
to bringing the PtoC-path up to date, so that it reflects th
space decomposition described by the CtoX-path.

The resulting algorithm is quite straightforward. All we
have to do is compare the PtoC-path against the CtoX-path. .
If it is equal or longer than the CtoX-path, we simply X- 4-5 Algorithm A/fp
decorate part of it. If it is shorter than the CtoX-path, we
append the extra kd-tree nodes of the CtoX-path to it, in-In this section, we relax the splitting policy by allowing
cluding a pointer to X. hB! -tree nodes to be split anywhere (A), but we still require

Figs. 17-19 demonstrate the three cases discussed abovkat the full CtoX-paths are posted (fp), hence the name A/fp.
Node P corresponds to the parent of node C of Fig. 16. IrThis algorithm uses Solution 1 to preserve DSBs.
each case, P and the space it is responsible for are shown
before and after the posting takes place. The double edges
in the kd-trees indicate the PtoC-path that in each case i e
compared to the CtoX-path of Fig. 16b. The algorithm is the§"5'1 Splitting anywhere (A)
following:

For this algorithm, when an index node needs to be split,

Case 1: The PtoC-path is longer than the CtoX-path: thighere is no limitation on where its kd-tree can be split. The
indicates that all kd-tree nodes of the CtoX-path haveProcedure for finding the kd-subtree that has to be extracted

already been posted by other posting actions. All weWas described earlier in the description of the original index-
have to do is X-decorate the first node of the PtoC-pathode-splitting algorithm.
which no longer refers to space in C (see Fig. 17).

Case 2: The PtoC-path and the CtoX-path are the same,
length: again, all kd-tree nodes of the CtoX-path have

x15 p x5 x15

already been posted. We make the last kd-tree node of s //xcls\ c |y

the PtoC-path point to X (see Fig. 18). 7 N c b PaL t o s
Case 3: The PtoC-path is shorter than the CtoX-path: that| B PN l o

is, the PtoC-path is a prefix of the CtoX-path. We append X

a copy of the extra CtoX-path to the PtoC-path, with the @ sefore posing (b) After posting

last posted node pointing to X (see Fig. 19). Fig. 19a and b.D/fp: PtoC-path< CtoX-path: append the exira nodes of

CtoX-path to PtoC-path

15

c x5 x10 x15 c X5 x15 [=] x5 x15 P x5 x15
X, y: —inf, +inf X, y: —inf, Hinf x: —inf, 15 x: =inf, 15
K —inf, +inf * inf, +i
y: —inf, +in © —inf, +inf
XlST L1 F K. X E c Y E X
X15 g
y5 [} D [ys 4/ D D |¥5 & 1 5
5
7 Nos | Y5 Y5 y5 Y y5
- /' N\ 7N\ | N\ 1
E Iio K E__ X5 =¥ K /x5 \ c x5\ c
— AN
/) F g7 D e Nx
(a) C and its space before the subtree rooted (b) C and its space after X was split off C
at x10 is extracted to create node X. NOTE: the double path is the CtoX—path. (a) Before posting (b) After posting

Fig. 20a and b.A/fp: X has been split off C: the condensed CtoX-path Fig. 22a and b.A/fp: P is a secondary parent of C: P’s space contains X's

must be posted to the parent(s) of C

space

P x5 x10 x15 P x5 x10 x15 4 5 3 D i
X5 15 x5 15 .5.3 Discussion
y: 5, +inf | c . y: 5, +inf < .
So T s & T |ss A/fp still does not guarantee the worst case size for the index
2N 7\ terms, since it posts the full paths like D/fp. What is new
F F here is the splitting policy which is a great improvement over
@) Before posing B AfeT 55T the D/fp algorithm, as now we can always split a kd-tree by

Fig. 21a and b.A/fp: P is a secondary parent of C: P’s space is equal to

X's space

4.5.2 Posting the full path (fp)

removing between one third and two thirds of its contents.
Index node space utilization is expected to be better than the
D/fp algorithm.

4.6 Algorithm D/cp

_In this section, we describe an algorithm that relaxes the
posting policy of algorithm D/fp, instead of relaxing its split-
It uses Solution 2 to preserve

Although the posting policy (fp) is the same as in algo
rithm D/fp, the new splitting policy (A), which may intro- F |
duce multi-parent nodes, affects the way posting is doneting Policy (as A/fp does).
The posting scenarios we describe are based on Fig. 16 Bs.

Sect. 4.4. We repeat this figure, as Fig. 20, in order to make

the description of the examples easier to follow. Below, we

examine all the possible cases. 4.6.1 Splitting at decorations (D)

We split hB?-tree nodes at decorations only. As a result,
Il nodes are single-parent nodes. This splitting policy is
escribed in Sect. 4.4.

Case 1: P is a prime parent of C: identical to D/fp.

Case 2: P is a secondary parent of C: then, the C-fragme
in P is part of the full C-fragment. The root of the full
C-fragment, which corresponds to the root of C’s kd-tree
(and the first kd-tree node of the CtoX-path), is located
in a container of P. Therefore, we have to find the point
in the CtoX-path where posting should start. In order
to do that, we start with the boundaries of C and we

4.6.2 Posting the condensed path (cp)

In Sect.4.1.3 we introduced the notion of the condensed

efne them a5 we traverse the Clox-pah. Our purposfel’c LS 1S Trimin colecton of e ke uce nodes of
is to match them with the boundaries of P. There are two P y

scenarios: region. In the worst case, the condensed path consists of

Case 2.1: The CtoX-path runs out of kd-tree nodes, i.e.ﬁg:ﬂéakr?égigrn:;j:ﬁ‘ozgeg? t?l;ea:\t’;’i%J{g:te\f\}elor\:]vaangl;ggh
we have to follow the side pointer to X, in order to have to post an extra kd-tree node calléd the di)\//er ence
match the boundaries of P. This indicates that the ode, in (F))rder to glue pieces of the k,d-tree where ost?n is
space described by the C-fragment in P now belongg] ’ glue p P 9

to X. We simply X-decorate the root of P's kd-tree per(/c;/rrr]r;?]dv\}gg(ztgtetrhe condensed paths, we may have “miss-
(which also is the first kd-tree node of the PtoC-path).. P P ’ y

This is the case in the example of Fig. 21 ing” kd-tree nodes in the middle of kd-tree paths. Posting

Case 2.2: We match the boundaries of P and there arE:hem later, during an index-term-posting atomic action, is

more kd-tree nodes in the CtoX-path. The kd-treeSimilar to filling in gaps in existing kd-trees. ,
node that comes next in the CtoX-path is the point We are now faced with a new problem, which was first

where posting should start. We post the remain-gci)lru%r::;%glf; alétitenztgmAtf)télg'\i/rlllszragrr]enl?a-ﬁ);r:.n%cég’]mb)e':rhls
ing CtoX-path in P as described in Case 1. Fig- 9. 2o 9 ;
ure 22 demonstrates this scenario. Once we matcrr‘ween kd-tree nodes andb, we need to determine whether

the boundaries of P at kd-tree nogé of C (see the kd-subtree rooted at which is the previous right child

: : f a, will become a left or a right child ob. We call the
Fig. 20), we follow Case 1, regarding kd-tree node &' @ .
J5 as the root of the CtoX-path. kd-subtree rooted at the hanging tree.

Here is the answer to this problem. Assume that node
X is extracted from node C and, while posting the index

16

Before posting b After b becomes the right child of a, where will ¢ go? C Space as seen by C

x4 x6 x8 x10 x12
@ @ O] -
N No * N @\@ N
7\ ®/ AN 7N\ © o k[x|L|e|x[p
/N /N o a2 }
_@ N/ D I y5
Fig. 23. D/cp: hanging tree problem X E K

Fig. 25. D/cp: X has been split off C and we have to post the condensed
path in the parent P of C

Posting the index term for B4's extraction form B2 in Al

Al Al
B1 before ?(15
X5 -
/ \\BZ P Space as seen by P P Space as seen by P
B2
7 \le 12 x12 (}?5 X4x6 x10x12
7\ c N\
y5 y10 5

R N\ (/\ VAN c D N clx| ¢ [c|o

/ \53 after [o7 x15 x12 /Xlo

/ \ 7 \D * y5 x6/ \le * f y5
B3 C | x?7 N\ /N\p < I
Bl B2 / (a) Before posting (b) After posting
% = the hanging tree Fig. 26a and b.D/cp: posting the condensed path to the parent P of C
- ng
y10
B4 VRN
X15] .
B3 y5 was posted when the extraction of D from C was
. _ . posted.
Fig. 24. Dicp: solving the hanging tree problem 2. belongs to the condensed path, and has to be posted

above existing kd-tree nodes of the C-fragment: we insert
. o) it between the current and the next kd-tree nodes of the
term for this split in the parent P of C, we have to insert PtoC-path. We examine the hanging tree (the one rooted

a missing kd-tree node, say in the C-fragment of P. The at the next node in the PtoC-path) to find a node with
fact thatb was missing indicates that during another index- ihe same attribute as the newly posted node, and, based
term-posting (say, for the extraction of Y from @)was not on the attribute-value of that node, we determine if the
in the condensed path. ThaF is, there was a Flghter boundary hanging tree becomes a left or a right child of the newly
(some other kd-tree nodéwith the same attribute) further posted node. In Fig. 26b, nodd is posted above12. In
down the path from C to Y that was posted instead. this examplez12 happened to be the root of the hanging
We claim thatd will still be present in the hangmg tree. tree, and since 12 is greater thanr42 became the right
To see that, remember that we split at decorations only. Thus, chjid of z4. Also, kd-tree noder10 is not the tightest
the C-fragment resides in its entirety In a single parent. high 2-boundary for X, but has to be posted to P because
We look ford in the hanging tree. I#’s value is smaller it is a divergence node, that is, it is needed in order to
thanb’s value, then the hanging tree becomes a left child of | ,5ke possible the merging of the condensed path into
b, otherwise a right child ob. the kd-tree of P. (In the case that the newly posted node

Figure 24 demonstrates the above problem. The parent s 0w the root of the C-fragment, as wittl0 in Fig. 24,
Al of B2 is shown before the index term that describes B4's it raceives the C-decoration.)
extraction from B2 has been posted. Note that the condensed belongs to the condensed path, and has to be posted
path for the extr_action of B3 from B2 did not include kd- below existing kd-tree nodes of the C-fragment: we ap-
tree nodex10, sincex15 further down the path from B2 pended it in the C-fragment in P. This is the case of node
to B3 was a tighter boundary for the extracted space. That g i figure 26b.
kd-tree node, i.ex15, is used to determine where to putthe 4 s a redundant node: we skip that node. This is the case
hanging tree rooted atl10, after we post10 in P. of nodez8 in Fig. 25.
In order to describe all the cases that can be encountered
during index term posting, we use the example of Fig. 25.
Node X has been extracted from C, and kd-tree nades
x4, andz6 comprise the condensed patfd. is a lower and
x6 is a higher boundary for attribute, whereasy5 is a
lower boundary for attributey. Figure 26 shows the parent 4.6.3 Discussion
P of C.
The algorithm for posting the condensed path in the par-
ent P of C will have to traverse the CtoX-path and the PtoC-Algorithm D/cp has the drawbacks inherent in the split-
path in parallel. For every kd-tree node in the CtoX-path, ifting policy D, that is, a “good” split may sometimes not
the node: be achievable. Its best and very desirable property is that
there is an upper bound on the size of the index term that
1. belongs to the condensed path, but has already beds posted by a posting action. The maximum size of the
posted: we do nothing; for example, in Fig.26a, nodecondensed path isk2 1 nodes.

17

Only the extraction of

f Now, we post the extraction of B4 in Al
B3 has been posted in A1

4.7 Algorithm CB/cp

The CB/cp algorithm also posts condensed paths. But, in
addition to allowing kd-trees to be split at decorations, we
also allow them to be split at full paths after a decoration.
These are places in the kd-trees where we have completg

Al

x30:2

boundaries, as described in the discussion of Solution 3 i

Sect. 4.2.3. Therefore, the algorithm preserves DSBs. 2\

Since we must be able to detect these complete bound
aries, we introduce a new field in every kd-tree node, called
the counter field. First, we present a procedure that sets and

updates the counters of kd-tree nodes during posting, an :I-—Xlsiz\ more

B4

then we describe the node-splitting policy CB that uses thd

more

PHASE 1

Al

PHASE 2

Al

B1
x10:1

x30:0

x20:1 B3

x15:2

B4

B1
x10:1

x30:0

x15:4 B3

B4

Post all non—posted
kd-tree nodes in
the full path

Eliminate kd—nodes
that are not in the
condensed path

counter fields. Finally, we describe how index-term-posting @ ®) ©

is affected by the new Spllttlng pO“Cy' Fig. 27a—c.CB/cp: setting and updating the counter fields during posting

4.7.1 The counter field Al of B1. Notice that in B1 counter@0) = O, but in Al

{:ounter(r30) = 2, sincer10 (with counter = 1) was not in the
ondensed path and was not posted to A1. Now, assume that
4 is extracted from B1. In Fig.27b, the first phase of our

Counter setting and updating procedure posts all non-posted

kd-tree nodes of the full path from B1 to B4. Notice how the

counter ofx30 changes back to zero. Finally, in Fig. 27c, the

second phase of the procedure eliminates kd-tree n@@e

IIhat should not have been posted, and appropriately updates

jhe counter ofr15.

The idea is to store in every kd-tree node a counter tha
indicates how many kd-tree nodes are missing between thi
kd-tree node and its current parent. Kd-tree nodes at th
data level of the hB-tree will always have a zero counter.
Similarly, since full paths are always posted to the level just
above the leaves, even when posting is used, that level
will have only zero counters.

Below, we describe the procedure for setting the counte
of a newly posted kd-tree node at the levels above the paren
of-leaf level of the hB! -tree. As usual, we assume that’hB
tree node X has been extracted from C and we post the L)
condensed CtoX-path in the parent P of C. To simplify the4-7-2 Splitting at complete boundaries (CB)
explanation, we assume that (i) first, all not previously posted
kd-tree nodes are being posted, and not only the ones in thdere we describe the new splitting policy CB. Whenever we
condensed path, and (ii) then, the kd-tree nodes that are natant to split an index hB-tree node, we use the following
in the condensed path, and therefore should not have bee#gorithm to determine the root of the extracted kd-subtree
posted, are eliminated. When a node is posted or when £see also Solution 3 in Sect. 4.2.3):
node is eliminated, the counter in the root of its hanging

i . Step A: Start from the root of the kd-tree.
tree is also adjusted.

Step B: Search the tree recursively testing all kd-subtrees
whose root:
1. is decorated, or
2. is not decorated, but has its parent kd-tree node be-
longing to a path that has the following properties:

a) the path starts at a decorated kd-tree node, and

b) all of the path’s kd-tree nodes have their counter
equal to zero.

Step C: Among all those candidate kd-subtrees, choose the
one with contents closer to half the size of an"hBee
node.

Procedure for setting or updating the counter field
of kd-tree nodes in P:
LET a be a kd-tree node in the full CtoX-path
LET «’ be the copy ofz posted to P
LET &’ be the root of the hanging tree (if any) that
becomes a child of’
Phase 1: Post all in path
FOR every kd-tree node in the full CtoX path
that has not already been posted t§ P
posta’ as a copy ofu
counterg’) = counterg)
IF there exists a hanging tree with being its root
THEN counter’) = countery’) - [counter¢’) + 1] }
Phase 2: Drop nodes not in condensed path
FOR each kd-tree nodée that should have not been
posted to P{
LET d’ be the only child of
counter@’) = counter@’) + [counter¢’) + 1]
eliminatec’ }

4.7.3 Posting the condensed path (cp)

Since decorated fragments can be split, we may have multi-
parent nodes. Therefore, it may be necessary to post the
index term for a split to more than one parent. Here is the

algorithm for posting the condensed path:

We demonstrate the use of the above procedure with th€ase 1: P is a prime parent of C: same as algorithm D/cp.
example of Fig. 27. In Fig. 27a, node B3 was extracted from Also, we need to set or update the kd-tree node counter
B1, and the condensed path30Q) was posted to the parent fields.

18

At — A2__ A2__ not being able to split a kd-tree and having to drop a postin
% v y: 5 i action, ags describepd in the discussion of 9elxlgorithrr; D?fp. k
/X51\° o Bl o One drawback of this algorithm is the fact that all kd-tree
B3 }&, AN AN nodes need to store an extra field. Since all kd-tree nodes at
A2 B2 B4 x1R0 the data level and the parent-of-leaf level have their counters
Bl ___ B2 equal to zero, and most of the time kd-tree nodes at the
S Lyt +int | higher index levels do not have missing kd-tree nodes above
B3 _ Posting the extraction them, we may choose not to store zero counter fields. Also,
R even non-zero counters will be small numbers. Therefore,
4%o:o their storage representation will be a small number of bits.
o xlCS:ZO
Va3 _ _
@ borore (©)after 4.8 Summary of algorithm properties
Fig. 28a and b.CB/cp: posting to a secondary parent Table 2 summarizes the advantages and disadvantages of

the various splitting/posting algorithms we described in the

) _ previous sections. We do not include an entry for algorithm
Case 2: P is a secondary parent of C: same as algorithmcp.

A/fp, but we post the condensed path as described in
algorithm D/cp. Also, we need to set or update the kd-
tree node counter fields. 5 The hB™-tree: consolidating

During posting we can always solve the problem of theNode consolidation in the HB-tree is performed along the
hanging tree in the same way we did in algorithm D/cp. Ourjines of I7-tree node consolidation: the sparse’hBee node
argument is still valid, despite the fact that now we mayis consolidated with a sibling node and the parent of the
split decorated fragments. A missing kd-tree node indicategieleted node is modified to reflect the change. For reasons
that, during an index-term-posting atomic action, a tighterof simplicity and efficiency, we always choose to consoli-
boundary than this missing node was posted instead. Thgate a sparse HBtree node with its container node. In the
tighter boundary cannot belong to another (extracted) parfollowing, the term extracted node will refer to the node

of the decorated fragment, because decorated fragments afg want to deallocate. So, the three conditions fofHigee
partitioned by node splits only when there is a full path from node consolidation are:

their root to the extracted kd-subtree. This is not the case
here, since we have a missing kd-tree node. Therefore, thd. the extracted (sparse) node shares the same parent with
part of the decorated fragment where the missing node is ItS container,
posted always contains the tighter boundary for that missing2- the extracted node is a single-parent node, and
node. As in algorithm D/cp, we use this boundary in order 3. the container node has sufficient space to absorb the con-
to determine where to put the hanging tree. tents of the extracted node.

dFigure 28 td:aquns;ré':ltefhar] %xan:ple O]; pcizting ,Eo at'sec- Conditions 1 and 2 are not as restrictive as they appear to
gp Be;r){d ﬁgreBr;’ .frgml%l hZ,d aelzrgla de;(bzrgspg;teg f(;(trliac g’;ﬁoe_ Note that, since at most one decorated fragment is split
ent Al of B1, when A2 was extracted from Al. Using the per _hBH-tree node split, there is a limit on the number of
CB splitting policy, =15 was a candidate kd-subtree for ex- multi-parent nodes created. In the worst case, there will be

> . ; ; as many multi-parent nodes at a given level of thé/hiBee
fraction, since Its parenys belonged in a path that started as parent nodes at the level above. With a fan-out of 140

o & secoralon (B1) and s of s e noies 120 Sypical for an N -ree i node si 4K). o most 0.7
: 9 pit, f the nodes at a given level will be multi-parent. The same

mul/t:\;:%%rr((ajri]rg n?geéase 2 of the posting algorithm. we Startargument holds for hB-tree nodes that do not share the
9 P g aig ' same parent with their container node. These are exactly the

with the boundaries of B1 and we refine them, following ; : .
) ' . nodes whose decoration (child pointer) appears at the root
the path from B1 to B4, until we match the boundaries of f the kd-tree of their parent. In the worst case, there will

A2. Then, we start posting the condensed version of the re .
of the path from B1 to B4, that is, kd-tree nodd0. In :Ighee?:\/g}aggoizm nodes at a given level as parent nodes at

Fig. 28b, we see A2 after the posting has been performed. On the other hand, condition 3 may be quite restrictive. A

Notice the new updated counter value iS5 in A2. sparse node cannot be consolidated unless its container node

is empty enough to absorb it. This condition may delay node
)) consolidation.

4.7.4 Discussion Since an hB -tree node uses a kd-tree for its intra-node
organization, we also have to reorganize the kd-trees of the

The CB splitting policy is a significant improvement over the parent and container nodes of the extracted node.

D splitting policy. There are more potential splitting points In this section, we first show how one can determine

for kd-trees, and we expect to have a good index node utiwhether a node can be deleted by examining the kd-tree of

lization. Also, it is even more unlikely that we will end up its parent. This is independent of the posting policy in use

19

Table 2. Splitting/posting algorithm comparison

Property Splitting Posting Worst case Worst case split Multiple Concurrency
Algorithm algorithm algorithm index term size parents
Difp Restrictive Append Skewed Large No High
Alfp Flexible Append Balanced Large Yes High
Dicp Restrictive Merge Skewed Small No High
CB/cp Quite Flexible Merge Quite Balanced Small Yes High
P P P P Space P Space
X C A c c
x1 x1
N\ " y\x y/ D yl D c D
7 Ne 7/ N\, Q 7N\ N R
/ \B /Cm B/ \ X) ——

(®)

The container of X

(b)

X is multi-parent

(©

X can be consolidated

with its container C

(a) before pruning

(b) after pruning

x1

is not a child of P
Fig. 30a and b.Full-path pruning in P
Fig. 29a—c.Determining when consolidation is possible

) . kd-tree nodes from the kd-trees of P and C (when C is a data
(fp or cp). Then we show how to use pruning to reorganize,,qe) may be candidates for elimination. In general, kd-tree
kd-trees. Pruning is affected by the posting policy. nodes are eliminated when their absence does not change
the space decomposition and preserves the properties of the
kd-trees according to the posting policy in use.

When the cb/cp algorithm is used and we eliminate kd-
o)) tree nodes, we have to accordingly update the counter field
The bookkeeping information we keep in the'hiree en- o its only, if any, child kd-tree node. In particular, if kd-tree
ables us to determine whether the two conditions for nodeyoder, is eliminated and:’ is its child kd-tree node, then
consolidation are met by only examining the kd-tree of the.oynter(n’) = counter(n’) + (counter(n) + 1).
parent of the sparse node.

Let us assume that C is the container of the sparse node
X (extracted) and P is the parent of X. Node X is single-5 2 1 Fuyll-path pruning
parent when all (if any) continues-to flags in the X-fragment
in P are FALSE. Also, C IS a child of P if X is not the Fjrst we treat the case of pruning when fp posting is used.
decoration of the root of P's kd-tree. In that case, C corre-afier g sparse node x is consolidated with its container C,
sponds to the last decoration seen before the X decoratiofqre may be a chance to eliminate certain kd-tree nodes in
in the path from the root of P’s kd-tree to the X decoration. p:g kd-tree, as shown in Fig. 30.

Figure 29 demonstrates cases when nodes can and cannot be |, Fig. 30a, after the removal of the reference to X from
consolidated. , , P’s kd-tree, kd-tree nodgl can be eliminated since both

In Fig.29a, X is the decoration of the root of the kd- jis children are NULL. In other words, now that X ceases
tree of P. This indicates that either X has no container, ok, exist, its index term has to be dropped. It happens that
the container of X is not a child of P. Since condlyon 1 y1, which belongs to the index term for X, does not belong
does not hold, consolidation cannot proceed. In Fig.29b;, any index term for some other child of P. Hengd, is
C is the container of X and condition 1 holds, but the X- (aqundant. The pruned kd-tree is shown in Fig. 30b.
fragment extends to the sibling Q of P, that is, X is multi- A\ our pruning algorithms traverse the kd-tree in P in
parent. Condition 2 does not hold and consolidation cannog, upwards direction from the dropped reference to X. Here
proceed. Later, if Q is consolidated with P, perhaps X cang the pruning algorithm for index node P:
be deallocated. In Fig. 29c, both conditions hold and X can
be consolidated with C, if there is space in C.

According to condition 2 for node consolidation, a node Requirement: X-fragment was empty in P
cannot be consolidated unless there is a container node fc%ro(é ;g"csh ak dc-?rlde %%gteeri)n (ascending) order in the
it. There is one exception when the root of the’hBee is path from the reference to X (that n%w is NULL)
left with a single child. In this case, the root of the ABree

' - -) . to the C decoration in P’s kd-tree
is consolidated with this node and the height of thé’hiBee IF both the children of the kd-tree node are NULL {
is decreased by one.

5.1 Determining when consolidation is possible

FULL-PATH PRUNING IN INDEX NODE P

make the child of the kd-tree node’s
parent NULL

eliminate the kd-tree node }

K . lqorith ELSE

5.2 kd-tree pruning algorithm DONE

We distinguish two different cases for kd-tree pruning, de- Note that this kind of pruning can take place only when

pending on the posting policy in use (fp or cp). In both casesthe X-fragment is empty in P. Also, it can eliminate the

20

C Space C Space P Space P Space
x1
1 C C
V5] rec X
y1 list2 /S L /Xz\
f bined
2N o |,y [cemres e | NG | e || e o || ¢ |°
list1 | rec / \
listl D —— i
formerly in X
x1 x1 x1 x2 X2
(a) before pruning (b) after pruning (a) before pruning (b) after pruning
Fig. 31. Full-path pruning in C Fig. 32a and b.Condensed-path pruning in P
P Space

whole kd-tree of P. For example, in Fig. 30b, kd-tree node
21 will be eliminated when D is consolidated with C. In 2
this case, we cannot consolidate P with its container as pait / \™ olc || e
of the atomic action that consolidated D with C. Instead,| *I x3
P will remain empty, containing only a child pointer to C /N / N o [~ T™
(an empty C-fragment), until it is consolidated by another D E
atomic action. The scenario we have described above is usu
ally avoided, since P would have already been consolidated _ o
before it became empty. Fig. 33. Redundant divergence kd-tree nodes cannot be eliminated
A similar pruning algorithm may be applicable to the
kd-tree of the container C of X. Figure 31a demonstrate
such a scenario, with C and X being data nodes. Node >s§
that contained a single record list is consolidated with noded
C. The side pointer to X is replaced by the contents of X
making kd-tree nodgl redundant. In Fig. 311 has been
eliminated and its two record lists have been combined an
become a child of its parent kd-tree nod&. The pruning

C

X X

odes in the kd-trees of P and C. Figure 32a demonstrates

uch a scenario for the parent P of X. The reference to X is

ropped in the kd-tree of its parent P, making kd-tree node

x1 redundant. In Fig. 32h;1 has been eliminated and, since

it happened to be the root of the C-fragment, its chiltlis
ecorated with C. Notice that node D, previously a sibling

of X, now becomes a sibling of C.

algorithm for data node C follows: A kd-tree node is redundant when the space decompo-
FULL-PATH PRUNING IN DATA NODE C sition described by the kd-tree the node belongs to is not
Requirement: X's contents was a single affected by the elimination of that kd-tree node. We assume
record list , _ _ for algorithmic simplicity that the ancestor-descendent rela-
FOR each kd-tree node in (ascending) order in the tionship of pairs of kd-tree nodes is not changed by pruning.
path from the side pointer to X (that now points

Only nodes in the path from the reference to X ascending

to X's contents) to the root of C's kd-tree . . N
to the C decoration in P may be eliminated. A consequence

IF both the children of the kd-tree node are

record lists { of this decision is that sometimes a kd-tree node, both of
create a new record list by merging whose children are kd-subtrees, cannot be eliminated by our
the two lists _ algorithm, even if it is redundant. Such a kd-tree node is
make the new list a child of the called a divergence kd-tree node. In Fig. 33, kd-tree node

kd-tree node’s parent 'Y divergence node
eliminate the kd-tree node } z< IS a divergence node.

ELSE Here is an algorithm that determines whether a kd-
DONE tree noden of the kd-tree of an hB-tree nodeH is non-
] . . divergence redundant (ND-redundant) or not. Note that this
When C is an index node and X's contents is an emptytest works both for index and data HBrree nodes.
kd-tree (see discussion in the previous section) the full-path
pruning algorithm for the kd-tree of C is identical to the one :<FD-TREEf ';'r?DEh.BD-RE?UNPA":I'SZLT('aS_T
used to prune the parent P. i~ one of the chiidren of n I s an
Wher? the root r?ode of the HBtree is left with a single '”df?:d ”t%ie)bggngaﬁichZ;Lgﬁdg} o csjf‘btﬁ‘n ”:de) {
child node, the above algorithm will eliminate all kd-tree of H that are reachable from H through ng
nodes in the kd-tree of the root. No kd-tree is needed t0 |F n appears in at least one of the node
describe the space decomposition among the children of the boundaries

root, since there is only one child. In this case, the root is RETURN FALSE

deallocated and its child node becomes the new root of the ~ ELSE

hB -tree RETURN TRUE }
. ELSE

RETURN FALSE

5.2.2 Condensed-path pruning In the ND-redundancy test algorithm, the boundaries we

are talking about are boundaries calculated from the kd-tree
The kd-tree pruning algorithm described above is also apnode paths ind. Using the above kd-tree node redundancy
plicable when the posting policy is to post condensed pathstest, we can now proceed to the description of the additional
But, now, one may be able to eliminate additional kd-treepruning procedures for P and C.

21

c f°”"e;'y "X pace c Space wheren determines the degree of skewness. For example,
) — for n = 21.85, we get a 90:10 skewed distribution [Knu68,
iisa | P 7N iss | P Lom83, GSE94].
rec. 1 i /> yl In our experiments, we used 250000 records, each one
fec, e rec, consisting of 12 4-byte attributes. To simulate ‘hBrees
of various dimensionalities, we used between one and 12
(@) before pruning xI x2 (&) after pruning X2 of the_m as indexing attributes. In order to stress the various
algorithms and assess the performance of thé-hi2e under
Fig. 34a and b.Condensed-path pruning in C extreme situations, we used only skewed values for all the

indexing attributes (obtained using = 3000 for a 90:10
distribution). In the rest of this section, we will be referring

CONDENSED-PATH PRUNING IN INDEX NODE P to this kind of data as computer-generated data.
FOR each kd-tree node in order in the path from

the reference to X (that now is NULL) to the C
decoration in P’s kd-tree

IF the kd-tree node is ND-redundant { 6.1.2 Sequoia data
make its parent point to the kd-tree node’s
only child The Regional version of the Sequoia 2000 Storage Bench-
eliminate the kd-tree node } mark [SFGM93] consists of geographic data from the state

f California. This is point, polygon, graph, and raster data.
n our experiments, we used the point data. The point data
file consists of 62584 California place names and their co-
ordinates, in the following format:

An example of condensed-path pruning in a parent inde
node is shown in Fig. 32. Node X is consolidated with node
C and kd-tree nodel in P’s kd-tree becomes ND-redundant
and is eliminated.

We may be able to eliminate additional kd-tree nodescqsting : northing : name
in C. These are the kd-tree nodes that lie in the path from i . . o
C’s kd-tree root to the side pointer to X (that now has beenThe first two fields represent distance in kllqmetgrs from the
rep|aced by X’s Contents) and that are ND_redundant_ center Of the Coord|nat-e SyStem. The th|rd f|e|d IS a Var|ab|e

The condensed-path pruning algorithm when C is an inleéngth string representing the name of the place. Here is a
dex node is exactly the same as the one used to prune P. TiR@rtion of the file:
same is true when C is a data node, with the only difference))
being the fact that, after the elimination of a ND-redundantjgjigigjzggggggjﬁgggh Mount
node, the records of its record list will have to be re—inserted_1779525j_893112jAbbOtt Canvon
in the resulting pruned kd-tree. This is a local re'insertion-1680181:-722305:Abbott Cregk
and does not involve any HBtree traversals. This scenario -1902477:-126821:Abbott Lake
is demonstrated in Fig. 34, where kd-tree nadeis elimi- : '
nated, since it is not needed to describe D’s space. Records

from record list 1, that was1’s child, are re-inserted in the In the rest of this section, we will be referring to this
pruned kd-tree and modify record lists 2 and 3. kind of data as “Sequoia data’".
6 Performance results 6.2 hB”-tree Performance: point data

In this section, we first describe the nature of muIti-attributeWe present performance results both for the computer-
data we used to test the various versions of thé'fi2e, generated and the Sequoia data. In particular, we measure
and then we present the performance results we obtained. node space utilization, index size (that is related to fan-out),
and range query performance.
First we report a very interesting result. Regardless of (a)
6.1 Workload the data distribution we used, (b) the total nhumber or size
of records we inserted, or (c) the splitting/posting algorithm
We used both computer-generated data and data from th&e used, the average number of kd-tree nodes posted per

Sequoia 2000 Storage Benchmark [SFGM93]. index-term-posting atomic action was only slightly larger
than one.
This is because record lists are almost always split us-
6.1.1 Computer-generated data ing exactly one attribute (i.e., by a hyperplane). Hence, all

posting actions that involve data nodes (i.e., that post to the

Computer-generated data were created by skewing valuef£r3t index level above the data level) have to post exactly

obtained from a random number generator. To do this, weN€ kd-tree node. Also, most of the time index nodes have
performed the following transformation on each valudg alanced kd-trees that are usually split by extracting either
the old value and’ is the new one): child of their kd-tree root (i.e., by a hyperplane). This kind

of index node split also requires the posting of exactly one
v =0 for0<wv <1, kd-tree node.

22

index node (D/cp)
index node (D/fp)

Table 3. Good versus bad split cases under various algorithms and node v space Sequoia Point data
: Utilization —_
Sizes 62,584 points representing
California place names
. 69 < e =
Node Size— 512 1024 2048 4096 512 1024 2048 4096 (average record size = 29 bytes)
Algorithm Good Split Bad Split 8T
Dicp or D/fp 1498 388 89 23 253 16 3 0 671
CBlcp 1696 399 091 23 2 0 0 0 66 - —H8— datanode
1 === index node (A/fp and CB/cp)
A/fp Always Never 65 =&=— index node (D/fp and D/cp)
64 4+
63 +
% Space = average fraction of each node Computer—-generated point data } } } } {Logetglsze
Utilization which is non-empty 250,000 two-dimensional points 512 1024 2048 4096 4
(record size = 32 bytes) . »
69 4 each atribute follows Fig. 36. Space utilization when using point data from the Sequoia Bench-
68 =+ a90:10 skewed distribution mark
67 +
66 -+ % Index nodes over total Computer—generated point data
& data node number of nodes 250,000 two-dimensional points
65 + === index node (A/fp and CB/cp))) (record size = 32 bytes)
== index node (D/cp and D/fp) This shows that in all cases,
64 + 7 the index nodes are only a small each attribute follows
T fraction of the data structure X .
63 -+ when the page size is 4K bytes. a 90:10 skewed distribution
} } } } page size 6 +
512 1024 2048 4096 in bytes
. - . 54 N\ —_
Fig. 35. Space utilization when using skewed computer-generated data index node (CB/cp)
9 p 9 p 9 A\ —0— index node (A/fp)
4 4 N
—E—

6.2.1 Node space utilization 7

2 4
Figures 35 and 36 show the node space utilization of the; | 076
hB’ -tree when using computer-generated and Sequoia point L | | | page size
data, respectively. Node space utilization is the percentage 512 1024 2048 40%
of the node Wh'Ch has mfom_]at'on (rather than empty Space)Fig. 37.Index size when using skewed computer-generated data. This is
For comparison, the Btree is known to have a 69% node the proportion of the tree which is above the leaves.
space utilization.
We observe that, in both figures, algorithms D/fp and
D/cp perform identically. The same is true for algorithms Again, all algorithms perform almost identically. This is
Alfp and CB/cp. This is as expected, because splitting poli-explained by the fact that we post one new kd-tree node
cies A and CB achieve much better splitting quality, i.e., theper posting on average. Also, even when we post condensed
extracted contents are closer to half the size of a page, thagaths, the missing kd-tree nodes are often later posted by
splitting policy D. The comparably low index node space other posting actions.
utilization when the page size is 4 Kbytes is attributed to the The smaller the percentage of index nodes is, the larger
fact that the number of index nodes is very small (only 20)the fan-out of the tree will be. In Fig. 37, we observe that for
and the sparse root page is included in the calculations. a node size of 4K, the index HBtree nodes are less that
Table 3 shows the quality of the various splitting policies 1% of the total number of hB-tree nodes, yielding a fan-
when we use skewed computer-generated data. A “goodgut of 130. In the current implementation of the ‘hree,
quality split is a split that extracts between one and twowe use a fixed kd-tree node size (20 bytes).
thirds of a node’s contents. As we can see, splitting policy Since, in our experiments with two-dimensional skewed
CB is a great improvement over splitting policy D. In our data, the condensed paths were always the same as the full
experiments it essentially performs as well as policy A. paths, we ran the same experiments with the same data
In general, node space utilization is very high, even forrecords, but using only one indexing attribute (essentially,
small page sizes, and is comparable fotie node space we used the hB-tree as a B-ree). Table 4 shows data
utilization. concerning the kd-tree nodes that were posted at the index
levels using the various algorithms and under various node
sizes. Each table entry consists of three numbers in the for-
6.2.2 Index size mat a:b:c, wherea is the number of kd-tree nodes posted,
b is the number of kd-tree nodes that were not posted, i.e.,
Figure 37 shows the proportion of the HBree which is they did not belong to the condensed paths, and the
above the leaves (when using computer-generated data). Waumber of the missing kd-tree nodes that were eventually
call this the size of the index. By “index” we refer to the posted since they belonged to some condensed path.
collection of index hB! -tree nodes. We count the percentage Table 4 shows that, even for one-dimensional skewed
of the index nodes over the total number ofhBree nodes. point data, the condensed paths are almost the same as the
The inverse of that number is an approximation of the fan-full paths, especially for large node sizes. Less than 1/400
out of the hB!-tree. For example, if 1% of the nodes are of the total number of kd-tree nodes is not posted, because
index nodes, then the fan-out is close to 100 (i.e., each nod# does belong to the condensed path when the node size is
has approximately 100 children). 0.5K and we use either algorithm D/cp or CB/cp. Of course,

23

Table 4. kd-tree nodes posted and not posted under various algorithms and However. in addition to a kd-tree every Heree node

node sizes . . - ?
, stores its own boundaries (i.e., low and high values for all
Node Size 512 1024 2048 4096 attributes that describe the space the node is responsible for).
Algorithm acbrc arbic abic arbc The_se are r_:lttrlbute values for _a:—dlm_ensmnal hE’-tree.
An increase in the number of dimensions does increase the
D/fp 14875:0:0 6671:0:0 3196:0:0 1565:0:0 space require(_j to store a node’s boundaries. This additional
Alfp 14890:0:0 6674:0.0 3196:0:0 1565:0:0 space is not significant for large page sizes. Figure 39, from
Dlcp 14823:120:68 6665:12:6 3195:1:0 1564:1:0 [ES93], illustrates this fact.
CBicp 14804:121:66 6665:14:7 3194:21 1564:1:0 In this experiment, the version of the HBtree that uses
_ the D/fp algorithm was used. Node space utilization is de-
i record. Seduoa Ponidala fined as the ratio of the size of a node’s kd-tree and the size
o .natching records 62,584 points representing California place names

retrieved records (average record size = 20 bytes) of a page. The decline in utilization is due to increased con-
1004 trol information (hB”-tree node boundaries) and not index
t term size. For example, when we use 12 indexing attributes
and the size of the value of an attribute is 4 bytes, we need
12+ 2x4 = 96 bytes to store the boundaries of a node. This is
a considerable amount of space for small node sizes (almost
20% of the space of a 0.5Kbyte node). On the other hand,
it is an almost negligible percentage of the space of a large
node (around 2% of the space of a 4-Kbyte node). With a
, | = o e e hamber o page size of 1Kbytes and larger, there is almost no effect
records that a data node can hold on the size of the hB-tree and the node space utilization
as the dimensions increase. (Page sizes larger than 2 Kbytes
are not shown.)
. qwery This is in contrast, for example, with the R-tree [Gut84],
001 0.02 0.04 008 0.6 032 064 128 256 512 102420484096 % 2™ where index entries are bounding coordinates of objects plus
a pointer. Thus, in the R-Tree (and its variants), the size of
the index is proportional to the dimension of the space.

904

804

704

604

50+

40
304
204

104
f”’

Fig. 38. Range search performance under various node sizes and que
selectivities

there may be data distributions that considerably increas& Conclusion
this number.
7.1 Summary

6.2.3 Range queries Indexing of multi-attribute data in general-purpose DBMSs
is a very desirable feature. This is because the number of
Finally, we have tested the range search performance of thapplications that deal with multi-attribute data is continually
hB -tree using the Sequoia data. We performed the samancreasing. Recently, for example, there has been a great deal
series of 104 range searches with varying query selectivityof activity in data warehousing and OLAP (on-line analyti-
and different node size. The query window was rectangulacal processing), where many attributes of business data are
and was formed by taking a randomly chosen existing pointused to analyze historical data for trends. Also, there are a
as its center. To achieve various query selectivities, we chosgrowing number of applications for Geographic Information
the extent of the window for each attribute to be a randomSystems (GIS).
ratio of the domain range for that attribute. These applications expect that the DBMS offers the same
The results, shown in Fig. 38, indicate very good rangefunctionality for this kind of data as it offers for traditional
search performance for query selectivities greater than 0.5%gjata. The DBMS should use efficient and reliable ways to
and sufficiently good for even smaller query selectivities. store, index, and access the data. For many of these applica-
Note that, when the query selectivity is approximately equaltions, it is also important to maximize concurrent accessing
to the average number of records in a data node, 25% obf the data by as many users as possible at the same time,
the records retrieved satisfy the query. This is as expectedind be able to recover from application errors or system
because it is likely that in this case the query window will crashes that result in data inconsistency.
overlap on average four data nodes. Approaches that use multiple single-attribute indexes are
quite inefficient. That is why there has been extensive re-
search on explicitly multi-attribute indexing. Most proposed
6.3 hB”-tree performance with high-dimensional data multi-attribute indexes do not offer performance guarantees
and well understood methods for concurrency and recovery.
The hB?-tree is essentially insensitive to increases in di-But these are the requirements for the inclusion of an index
mension. A kd-tree node always stores the value of exactlyn a general-purpose DBMS.
one attribute. Thus, the size of a kd-tree node (and, conse- We wanted to propose a multi-attribute index that would
quently, the size of the kd-trees that reside in thé’ABze be appropriate for inclusion in a general-purpose DBMS.
nodes) does not depend on the number of indexing attribute©ur approach was to combine the hB-tree, a multi-attribute

24

Size of the hB-tree

in Mbytes .
Skewed computer—generated point data
7.0
68T Tree height=5 150,000 data points
o6 record size = 24 bytes (12 two—byte attributes)
6.4
algorithm used: D/fp
62 Tree height = 4 ————
e
6.0 N~ —— 7
~v
5.8 Treeheight=3 e

56 dim

Ll L e

T 1 T T 1
1 2 3 4 5 6 7 8 9 10 11 12

Data node Index node
space utilization space utilization

0"
70 70 .

62 62
60 Page size 60
............ 2048
58 —— 1024 58
512
56 56
54 dim 54 :
T T T T T T T T T T T T T T 1>
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 39. The hB -tree is fairly insensitive to dimensions when node sizes are greater than 1K bytes

index with promising performance guarantees, andfike even the most restrictive versions of the’hiree, which do
tree, which offers well-understood and efficient concurrencynot offer worst case storage utilization and index term size
and recovery methods. We called the resulting method thguarantees, actually perform very well.
hB™ -tree.

We presented the necessary modifications that transform
the hB-tree into a case of thE-tree, and yield the h- 7.2 Future work

tree. Unfortunately, in the process, we discovered a flaw in h h hat the HB ; I
the node-splitting and index-term-posting processes of thdVe nave shown that the htree performs very well on

hB-tree that affects its well-formedness, making searche®0int data. We would like to do further work on spatial (non-
incorrect. We proposed various solutions to the problemPOINnt) data. By mapping-dimensional bounding rectangles
They work by restricting the places nodes can be split, and/oP! SPatial objects to 2Zdimensional points, we no longer

by increasing the amount of information that needs to pecluster the objects in terms of Euclidean distance, but in

posted to describe a split. Finally, we demonstrated howf€ms Of size, i.e., large objects are clustered together and
sparse nodes can be consolidated. small objects are clustered together. It is interesting to see

Depending on the way we choose to solve the spIit-hOW separation by size can benefit certain kinds of range

ting/posting problem, we obtain versions of the 'hiree querirt]a's. kind of . | it ltered d
with different characteristics. In order to access the perfor- 11IS kind of mapping can also result in an altered data

mance of these various versions and compare them, we haglistribution. For example, imagine that our entire data col-
implemented all of them. We ran extensive experiments wit ection consists of small-sized one-dimensional spatial data,
ike short line segments, that follow a normal distribution.

various type and distributions of data and we concluded thaWhen we map them to two-dimensional points of the form

(line start point, line end point), we get a highly correlated [Gutg4]
distribution. We need to further assess the performance of

our method on such unusual data distributions. In particular,
we want to know how they affect range search performance[.H'”SS]
The polygon and graph data from the Sequoia 2000 Bench-
mark [SFGM93] would be appropriate for this purpose. [Knu68]

Another very interesting and important problem are spa-
tial joins. An example of a spatial join is “give me all cities [Lom77]
that are 10 miles away from the Mississippi river”. Assum-
ing that we have two spatial indexes, one for the cities and-omesl
one for the rivers, we need efficient ways of answering the[LSQO]
above query. Spatial joins are a hard research problem.

Often indexes are built on existing sets of data. It is not
acceptable to build such a new index by inserting all datalS92]
items one by one. Methods for “bulk-loading” should be
available. We would like to investigate this problem on the
hB -tree.

Finally, it would be very interesting to use the #B [ML89]
tree in a real general-purpose DBMS, or a GIS database, so
that we obtain an even clearer picture of its capabilities and
possible limitations.

[LY81]

[NHS84]
AcknowledgementsThis work was partially supported by NSF grants IRI-
91-02821 and IRI-93-03403. [OM84]
References [Rob81]
[Ben79] Bentley JL (1979) Multidimensional binary search trees in
database applications. IEEE Trans Software Eng SE-5:333-
340 [Sag86]

[BKSS90] Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The
R*-tree: An efficient and robust access method for points and [ggg5]
rectangles. In: Proceedings of ACM/SIGMOD Annual Confer-

ence on Management of Data, pp 322—-331

Bayer R, McCreight E (1972) Organization and maintenance [s55|91]
of large ordered indexes. Acta Informatica 1:173-189

Bayer R, Schkolnick M (1977) Concurrency of operations on
B-trees. Acta Informatica 9:1-21

Comer D (1979) The Ubiquitous B-tree. ACM Comput Surv
11:121-137

Evangelidis G, Salzberg B (1993) Using the holey brick tree

[BM72]
[BS77]
SC9a1
[Com79] []

[ES93]

for spatial data in general-purpose DBMSs. |IEEE Database[sFGM93]

Eng Bull 16:34-39

Gray J, Sundaresan P, Englert S, Baclawski K, Weinberger P

(1994) Quickly generating billion-record synthetic databases.

In: Proceedings of ACM/SIGMOD Annual Conference on [sGgg]
Management of Data, Minneapolis, Minn., pp 243-252

Guenther O (1989) The design of the cell tree: an object—[SRF87]
oriented index structure for geometric databases. In: Pro-
ceedings of IEEE Data Engineering Conference, Los Angeles,

Calif., pp 598-605

[GSE*94]

[Gue89]

25

Guttman A (1984) R-trees: a dynamic index structure for spatial
searching. In: Proceedings of ACM/SIGMOD Annual Confer-
ence on Management of Data, Boston, Mass., pp 47-57
Hinrichs KH (1985) The grid file: implementation and case
studies of applications. PhD thesis, Swiss Federal Institute of
Technology, Zurich, Switzerland

Knuth DE (1968) The art of computer programming volume 3.
Addison-Wesley, Reading, Mass.

Lomet DB (1977) Process structuring, synchronization, and
recovery using atomic actions. SIGPLAN Not 12:128-137
Lomet DB (1983) Bounded index exponential hashing. ACM
Trans Database Syst 8:136-165

Lomet D, Salzberg B (1990) The hB-tree: a multiattribute
indexing method with good guaranteed performance. ACM
Trans Database Syst 15:625-658

Lomet D, Salzberg B (1992) Access method concurrency with
recovery. In: Proceedings of ACM/SIGMOD Annual Confer-
ence on Management of Data, San Diego, Calif., pp 351-360
Lehman P, Yao SB (1981) Efficient locking for concurrent
operations on B-trees. ACM Trans Database Syst 6:650-670
Mohan C, Levine F (1989) ARIES/IM: an efficient and high-
concurrency index management method using write-ahead log-
ging. IBM Research Report RJ 6846, IBM Almaden Research
Center, San Jose, Calif.

Nievergelt J, Hinterberger H, Sevcik KC (1984) The Grid File:
an adaptable, symmetric, multikey file structure. ACM Trans
Database Syst 9:38-71

Orenstein JA, Merrett T (1984) A class of data structures for
associative searching. In: Proceedings of SIGART-SIGMOD
3rd Symposium on Principles of Database Systems, Waterloo,
Canada, pp 181-190

Robinson JT (1981) The K-D-B-tree: a search structure for
large multidimensional dynamic indexes. In: Proceedings of
ACM/SIGMOD Annual Conference on Management of Data,
New York, N.Y., pp 10-18

Sagiv Y (1986) Concurrent operations dntiees with over-
taking. J Comput Syst Sci 33:275-296

Salzberg B (1985) Restructuring the Lehman-Yao tree. Tech-
nical Report NU-CCS-85-21, College of Computer Science,
Northeastern University, Boston, Mass.

Salzberg B (1991) Practical spatial database access methods.
In: Proceedings of the Symposium on Applied Computing,
Kansas City, Mich., pp 82-90

Srinivasan V, Carey M (1991) Performance of B-tree concur-
rency control algorithms. In: Proceedings of ACM/SIGMOD
Annual Conference on Management of Data, Denver, Colo.,
pp 416-425

Stonebraker M, Frew J, Gardels K, Meredith J (1993)
The Sequoia 2000 Storage Benchmark. In: Proceedings of
ACM/SIGMOD Annual Conference on Management of Data,
Washington, DC, pp 2-11

Shasha D, Goodman N (1988) Concurrent search structure
algorithms. ACM Trans Database Syst 13:53-90

Sellis T, Roussopoulos N, Faloutsos C (1987) Ther&e:

a dynamic index for multi-dimensional objects. In: Interna-
tional Conference on Very Large Data Bases, Brighton, Eng-
land, pp 1-24

