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Abstract. To effectively model complex applications in
which constantly changing situations can be represented, a
database system must be able to support the runtime speci-
fication of structural and behavioral nuances for objects on
an individual or group basis. This paper introduces the role
mechanism as an extension of object-oriented databases to
support unanticipated behavioral oscillations for objects that
may attain many types and share a single object identity.
A role refers to the ability to represent object dynamics by
seamlessly integrating idiosyncratic behavior, possibly in re-
sponse to external events, with pre-existing object behavior
specified at instance creation time. In this manner, the same
object can simultaneously be an instance of different classes
which symbolize the different roles that this object assumes.
The role concept and its underlying linguistic scheme sim-
plify the design requirements of complex applications that
need to create and manipulate dynamic objects.
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1 Background

Object-oriented data models possess the ability to represent
many different complex types of data and their relation-
ships with depth and precision. As a result, existing object-
oriented database systems are employed successfully in areas
which require performing manipulations on large collections
of complex objects.

To model objects in a particular application domain,
object-oriented database systems rely on the class concept.
All domain objects are pre-classified and assigned to a sin-
gle class as its instances. All objects of a certain type have
exactly the same set of state variables and methods captur-
ing their structure and behavior, respectively, and are treated
strictly uniformly. Once an object is instantiated and pop-
ulates a class, the only changes permissible are changes to
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its state variables. This preserves the uniformity of the en-
tire set of objects contained in that specific class. Should
the need arise for schema changes, these are applied to the
schema classes and have to be propagated to all the objects
contained in the classes under update. The restructuring of
objects in consequence of a schema change is necessary to
preserve consistency between the type associated with each
class and the structure and behavior of the class member
objects.

This traditional class-instance relationship requires dis-
tinguishing statically between the schema elements that
are intended to describe a common structure and behav-
ior, namely classes, and those that are expected to be id-
iosyncratic, viz. the objects. During the development phase
of a database application the designer can often foresee
commonalities between different parts of the application,
leading to a desire to share structure and behavior be-
tween those similar parts. In several situations it is, how-
ever, highly beneficial for a system to have the ability to
attach idiosyncratic behavior to an individual object or a
set of objects within one or more classes at a later stage.
For instance, consider Fred anEngineer object. Fred
may be promoted to the level of a principal engineer;
hence this object should dynamically acquire the proper-
ties of classPrincipalEngineer (and become an in-
stance of this class), while also retaining the properties of
an Engineer . At some point in his life Fred is first classi-
fied as an Engineer . Later through some process, Fred
is re-classified as aPrincipalEngineer . Yet at another
point, Fred may become aMemberOfTheBoard . This be-
havior may continue until retirement is reached or Fred be-
comes unemployed! Figure 1 shows the linear succession of
transitions for an object called Fred during its lifespan. This
figure shows that Fred who started his professional career
as anEngineer object at timet1 was first transformed
to a PrincipalEngineer object at timet2, and then to
a MemberOfTheBoard object at timet3 until he became
unemployed at timet4.

Unfortunately, stating behavior at design time puts se-
vere restrictions on the kinds of unanticipated structure
and behavior that can be introduced in an object-oriented
database system without modifying existing database schema
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Fig. 1. Life cycle of the Fred object

classes and all their instances. There is currently no lin-
guistic support to allow an object to alter its own behavior
separately from the other members of the class to which
it belongs. For example, every time that the Fred object
needs to be re-classified (e.g., changes from an instance of
classEngineer to PrincipalEngineer ) it would have
to first be removed from its original class and then be re-
generated with the properties of its new class, thereby losing
its original identity.

What is required is a linguistic framework which allows
us to selectively seed new functionality to a distinguish-
able set of objects within a given class at runtime. In this
way, it would be possible for members of a class to dy-
namically acquire different state variables and respond to
different messages. This is not possible with conventional
object-oriented database systems because it would involve
changing the membership of an object from one class to an-
other at runtime. This strictness of traditional object-oriented
systems was first pointed out by proponents of prototype-
based languages [LIE87] [StLU89].

1.1 The need for object dynamics

Because application and user needs are rarely stable, ad-
ditional functionality needs to be constantly integrated into
existing objects. To effectively model complex applications
in which constantly changing situations can be represented,
a system must be able to support the evolution and re-
configuration of individual objects. The strict uniformity of
objects contained in a class is unreasonable: runtime struc-
tural and behavioral nuances should be specifiable for objects
on an individual basis without restructuring the database
schema or reorganizing the database contents.

An object that evolves by changing its type dynamically
is able to represent changing situations as it can be an in-
stance of different types from moment to moment. Suchdy-
namic objectsmay fall into two broad categories.

1. Objects which need totransform in a linear succes-
sion from a beginning state to an end state. For exam-
ple, consider the object Fred, who begins his profes-
sional life as anEngineer object and then becomes a
PrincipalEngineer and finally aMemberOfThe
Board object (Fig. 1). Although the properties of Fred
may vary in each of these phases they relate to the very
same person (and, hence, need to relate to the same ob-
ject) under different guises.

2. Another category of dynamic objects are those that
evolve in a pseudo-random fashiondepending on the
occurrence of an external event. For instance, an aca-
demic may serve as a member of the university advisory
committee, academic board and research advancement
committee depending on years of service, performance
and availability. These changes may be transient as they
come and go with time (the lifetime of such commit-
tees is certainly short and their membership changes fre-
quently).

When viewed externally, an object belonging to either of
these two categories appears to oscillate among a set of dif-
ferent behaviors.Only some of these can be foreseen when
the database schema is designed. It is thus highly desirable
to adapt existing objects to new application requirements,
while maintaining a single object identity. However, when
designing an object system that enables objects to transit
from one class to another, a number of issues have to be
addressed. These include the following:

– How can the effects of dynamic changes to existing ob-
jects and classes be kept under control, so that they do
not impact the structure of the database.

– Should the framework allow a member of some class to
become a member of any other class or only of classes
that it is related to, e.g., by subtyping.

– What restrictions need to be imposed on object transi-
tions in order to balance expressiveness with the require-
ment of type safety?

In an object system that does not provide this kind of
functionality, an inherent danger lies in the fact that pro-
grammers do not have the means to ensure that the object
identifier of an evolving object is identical to the object iden-
tifier of the object from which it evolved. This problem is
seriously compounded if other objects in the system contain
references to an evolving object. The obvious solution is
to create tables containing pointers to all potentially change-
able objects and access them only through these table indices
(usually called handles). Another solution is to create a new
object every time an object changes class and then copy the
appropriate properties of the old object to the new object and
finally purge the old object. Yet another solution might be
the Common Lisp approach, whereby every object identifier
is represented by a pair of references: one pointing to the
class and the other referring to the storage. However, such
solutions are not only artificial but also introduce storage
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and performance overheads as well as adding a high degree
of complexity and coupling. Moreover, they are error-prone
and may result in corrupting already existing database ob-
jects.

From what has been stated above, it becomes obvious
that we require linguistic mechanisms for object-oriented
databases to support unanticipated behavioral oscillations for
individual objects, or sets of objects, that have many types
and share a single object identity. A language facility sup-
ports dynamic object properties best if new behavior can be
introduced by stating to the system the differences between
the existing behavior and the new desired behavior. Such
language properties are known to supportobject dynamics.

1.2 Contributions

In this paper, we propose a model designed to extend the
capabilities of object-oriented database systems so that they
can support object dynamics. Central to our linguistic mech-
anisms is the concept ofrole. A role refers to the ability to
change the classification of an object, so that the same object
can simultaneously be an instance of different classes some
of which are created dynamically. A role is an interface-
based specification implemented on the basis of pre-existing
objects in a way that allows a pre-existing object to gain
(or shed) state and behavior dynamically while retaining its
original identity. Roles designate significant, semantically
meaningful shifts in object behavior (obtained dynamically)
that are correlated with existing object properties and can
be queried exactly as other conventional class objects. In
summary, a role is determined on the basis of the collection
of properties that are attached to the object in the center
of interest and area responsible for bringing the role into
existence.

This paper introduces the object role model (ORM), a
model which integrates the concept of a role into object-
oriented database technology in order to represent object
dynamics. The linguistic facilities supported by the ORM
introduce several special operators for creating roles and for
allowing objects to be accessed in terms of particular roles
that they may undertake. ORM is closely aligned with the
ODMG-93 specifications for object databases. Thus, it offers
the possibilities for a variety of object-oriented data models
to provide the following features:

1. Support for objects with changing type: objects which
dynamically change the current roles that they play – by
gaining or retracting behavior.

2. Control of such forms of object evolution in accordance
with application semantics by allowing objects to react
to external events, in order to modify their behavior.

3. Respect of the structural and behavioral consistency of
typed objects.

The research presented in this paper builds on preliminary
work reported in [PAP91], [PaKB94] where we illustrated
how roles may improve the versatility and modeling power
of object-oriented database systems. In the remainder of this
paper we develop our model in detail. The following sec-
tion informally presents central concepts of the ORM and

further motivates the approach through an illustrative exam-
ple. The model is then formalized in Sect. 3 to provide a
precise foundation for the specification of a handful of el-
ementary operations to manipulate class DAGs. These are
introduced in Sect. 4. High-level database operations, com-
posed on the basis of these elementary operations, are then
introduced in Sect. 5. Section 6 discusses related work, while
Sect. 7 presents our summary and future work.

2 Basic concepts and definitions

The discussion that follows introduces basic concepts and
terminology and focuses on objects which have the charac-
teristics described below. We refer to these characteristics
as the basic object model characteristics as they provide a
sound basis for integrating the concept of a role into object-
oriented databases. The object-oriented modeling concepts
and terminology used in this paper are based on those found
in [ATK89] and [ZdM89].

2.1 Basic object model characteristics

The basic object model constituents aretypes, objects, classes,
and relationships.

Types: In a similar manner to abstract data types in pro-
gramming languages, types define sets of structured data
together with operations to modify such data in a con-
trolled manner. A type consists of a unique type name,
a collection of typed attributes and a set of operations
(or methods). All types pertinent to a particular appli-
cation are organized in adirected acyclic type graph, or
type DAG. The nodes of the DAG are labeled with type
names and are associated with a type specification, while
the edges represent a partial ordering relationship among
types that defines constraints on their type specifications
(cf. Fig. 2).

Objects: All objects are instantiated from one type specifi-
cation defining their structure and behavioral interface.
Each object has a uniqueobject identifier(oid) and a
state. The oid serves as a unique handle to reference
the object in order to access or modify its state. Object
identity is implemented via system-generated logically
unique identifiers for each object at the time of its cre-
ation [MZO89].

Classes: A class is based on a type specification and de-
termines a set of objects. A class includes the runtime
notions ofobject creationby cloning the prototype for
the class, and theextent, which denotes the set of all ob-
jects that are instances of the class’ type at a given point
in time. Classes are organized into a class DAG, which is
isomorphic to the corresponding type DAG. Whenever
a new object is created as an instance of a typec, its
object identifier is automatically added to the extent of
the corresponding classc and to the extent of all super-
classes ofc (if any). Thus, an object can be a member of
more than one classes at a time (multiple class member-
ship). The top element class in the class DAG is called
Object and all objects in the database are members of
this class.
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Fig. 2. A portion of the type DAG for an
employee-employer object base

Relationships: An association in the object-oriented world
can be modeled as a first-class object that has its own
attributes and is existent dependent on its arguments. The
typeshires and owns in Fig. 2 are examples of rela-
tionships. Many object-oriented data models support an
explicit relationship construct, such as, for instance, CO-
COON [SCH92]. Thus, the type DAG can be enriched
by user-defined relationship types. The extent of a rela-
tionship class contains a set of pairs of object identifiers.

2.2 Example: type and class DAG

Figure 2 illustrates a schema portion of a sample employer-
employee object base in the form of a type DAG. The
graphic illustration is based on a variant of an ER diagram
where diamonds represent binary relationship types and
boxes represent conventional types. This figure shows that
type Employer has as subtypes the two typesPrivate
Corporation and GovernmentBranch , whereas type
Employee has as subtypes the typesManager andCompa-
nyOwner . Type Employee is seen to be related to type
Employer via a relationship typeemployed by , whereas
the inverse relationship typehires associatesEmployer
with Employee types.Relationshipsbetween types can be
constrained as usual to a 1-1 association (e.g., anEmployee
employedBy a singleEmployer is indicated by a sin-
gle arrowhead from typeEmployee to type Employer );
1-N (e.g., anEmployer hires a set ofEmployee s is
indicated by a double arrowhead); or M-N (e.g., a set of
CompanyOwners own multiplePrivateCorporation s).

Figure 3 depicts the class hierarchy derived from the
type DAG in Fig. 2. Ovals in Fig. 3 denote class extents,
while dashed rectangles denote relationship extents. Ovals
and dashed rectangles are shown to contain the oids of the
instances associated with the types introduced in Fig. 2. To
fully understand the context of Fig. 3, consider an object
of type PrivateCorporation with the oidpc1 . When
this object is created as an instance of that class, its oid

is not only included in the extent of its corresponding class
PrivateCorporation but also in the extent of its super-
classEmployer . Formal definitions of the class and type
DAG are also given in Sect. 3.

2.3 Extending the basic model with roles

A role may be thought of as a typedabstract channelprovid-
ing an alternative perspective on an existing object. A role
ascribes properties that possibly vary over time and is im-
plemented as an extension of existing objects. The purpose
of a role is to model different “active” (application-specific)
representation alternatives for the same object in terms of
both structure and behavior. A particular object may con-
currently exhibit many roles which are obtained dynamically
throughout its lifespan. This type of object dynamism can be
achieved by subdividing and grouping together distinguish-
able (and related) objects contained in the DAG classes and
by defining subclasses or super-classes dynamically to en-
compass these object groupings. Each of the new classes
created in this manner is arole-defining class. The purpose
of role-defining classes is to partition an object into differ-
ent forms which are specific to the application in which the
object occurs.

The example depicted in Figs. 2 and 3 has been chosen
only for reasons of simplicity. It is not characteristic of the
usage of the role model. Typical complex systems where
roles can be of benefit may be, for example, design, product
development and knowledge applications. With such appli-
cations there is a need for designers and knowledge workers
to experiment with their environments (by using role objects)
and they also require effective database support to store use-
ful stable and tested role objects as part of an object base
shared between many applications.

Figure 4 extends the context of Fig. 3 with dynamic ob-
jects to satisfy the needs of a particular application. The bot-
tom half of Fig. 4 shows how the class DAG can be privately
extended to support role objects. A different application may
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use the same class DAG and extend it with different kinds
of roles meaningful to its context. Therefore, it is useful to
perceive a role as a customizable slant into an object which
constitutes a form of abstraction that configures this object in
a way that is dictated by the needs of the application within
which the role occurs.

By default, a role isvisible only within the scope of the
specific application that created it. Only in special circum-
stances can a role be shared between applications or become
permanent, i.e., become part of the type DAG. This will be
explained in detail in Sect. 5.3.4.

To comprehend how roles relate to object dynamics and
how they may impact upon the behavior of objects, consider
the case of anEmployee object with oide2 which dynam-
ically obtains the role of anEducatedEmployee and an
Engineer through a role defining operation (as explained
in Sect. 5.1). The dashed ovals in Fig. 4 indicate the exis-
tence of roles which an object may assume or relinquish
during its lifespan in addition to the properties acquired
upon creation. Such roles include, for instance, the roles
EducatedEmployee andEngineer for theEmployee
object with oide2. Thus, to describe this situation, the DAG
is extended by including two new (role-defining) classes,
namelyEducatedEmployee andEngineer that do not
correspond directly to the schema types in Fig. 2. As roles
are used to facilitate migration of objects in the class DAG,
both rolesEducatedEmployee and Engineer contain
in their extent theEmployee object with oid e2. Ac-
cordingly, the object with oide2 co-exists now in the ex-
tent of the classesEmployee , EducatedEmployee and
Engineer . Roles allow the introduction of new classes into
the class DAG without having to modify the definitions of
existing classes. This implies that their effects are localized
to the context of the application that created and uses them.

Roles are transient in nature. They have a finite lifespan
which is defined by the application program that has created
them. Roles are created by individual application programs,
are stored in an object repository local to the programs that
created them, and they have no global scope and effects,
i.e., they cannot be “seen” outside the context of the ap-
plication that created them. They normally do not become
persistent unless there is an explicit requirement for this to
happen (cf. Sect. 5.3). Each role introduces additional at-
tributes and methods to existing objects – through a set of
role-specific operations – thereby permitting the representa-
tion of behavioral shifts and increments. As roles re-define
behavior defined in their classes of origin, the system may
give different answers depending on how a particular object
is viewed. For example, assume that we defined a method
income for Employee objects which gives their annual
salary. This method might be re-defined when we consider
the role ofEmployee object as aShareholder to give
us a combinedEmployee andShareholder income.

The set of roles played by an object is obviously deter-
mined by its position in the class DAG. The existence of
all the roles of interest for a given object, itsrole set, fully
characterizes this object. The term role set is used here to
aggregate information about how an object is evolving, and
is determined by the set of classes in whose extent the object
identifier occurs. These classes form a connected subgraph
of a given class DAG extended with roles. For instance,

the role setρ(e1) = {Employee , EducatedEmployee ,
Shareholder , Engineer , EngineerShareholder }
includes all the roles that objects of the typeEmployee
can perform. We use the termancestor role(s)to denote
all the roles above a given role in the class DAG. The
term parent role is reserved for the role(s) immediately
above a given role, whereas the termdescendant role(s)
is used to denote all the roles below that role in the class
DAG. For example, the ancestral roles forEngineer are
EducatedEmployee and Employee , its parent role is
EducatedEmployee and its set of descendant roles con-
sists ofEngineerShareholder . Users can thus access
and query objects from a particular perspective.

The main objective of roles in the ORM is to customize
objects – according to application needs – so that they be-
come equipped with their own idiosyncratic behavior. In this
respect, roles present some similarity with views, however,
unlike views their objective is to cater for dynamic object
migration and automatic re-classification – without affect-
ing the database schema1. This implies that the semantics
of the ORM operations areobject-preservingin the sense
that they return part of the extents of their input classes.
More importantly, the extension of the class DAG – due to
the introduction of role-classes – does not change the set
of objects contained in the class DAGs. These and other
virtues of object-preserving operations and transformations
have been addressed by [BER91] and [SCH92]. The empha-
sis is on preserving the consistency of (existing) evolving
objects rather than creating new objects. New objects are
created only through pre-existing DAG classes and are re-
classified into roles either eagerly or lazily, depending on the
case. If the role operations resulted in the generation of new
objects, there will be a necessity for the system to maintain
and cross-correlate multiple snapshot object configurations
from diverse application programs.

3 Formalization of the ORM

In this section we formalize the ORM. First we introduce
elementary concepts such as data types, objects, values, and
method signatures. These form basic constituents of our def-
inition of type and class DAGs. Our notion of well-formed
and type-safe class DAGs is then derived in several steps
from the definition of type DAGs. It relies on typing con-
cepts which are also introduced in this section. In our defi-
nitions we adopt and extend concepts of the O2 data model
as defined in [KaLR92].

3.1 Data types, values and methods

In the definition of the syntax and semantics of schema types,
classes, objects and roles below, we assume the following
pairwise disjoint sets serving asbasic syntacticandsemantic
domainsin subsequent definitions:

A: a set ofattribute symbolsfor naming object attributes;
we use variablesa, a′, a1, a2, . . . as typical elements of
A.

1 The differences between roles and views are covered in some detail in
Sect. 6 which describes related research work.
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ST: a set ofschema-type names.
RT: a set ofrole-type names.
R: a set ofrelationship nameswith variablesr, r1, r2, . . .

denoting arbitrary elements ofR.
ID : denotes the set of all oids and variables,i, i′, i1, i2, . . .

are assumed to range overID .

From ST andRT, we form the setC := ST∪ RT of class-
type names, and we use variablesc, c′, c1, c2, . . . to range
over C. From C and R, we form the setT := C ∪ R; it
allows us to refer collectively to class and relationship names
whenever the distinction is irrelevant or can be deduced from
the context.Object identifiersare modeled as pairs (c, n)
with n a natural number inN.

The structure of objects is defined by means of two type
constructors which allow us to form record and pair types2

to describe the structure of class and relationship instances.

Definition 1. For a subsetC of C, the set ofdata types over
C, written types(C), is defined as follows:

1. class names inC are in types(C);
2. every (a1 : c1, . . . , an : cn) is in types(C) and is called

a record type, provided that theci occur inC and the
attribute names are distinct, i.e.,ai /= aj for 1≤ i < j ≤
n, 0≤ n;

3. if c1, c2 are elements ofC, every (binary)relationship
typeof the form (c1, c2) is in types(C).

For reasons of simplicity, this definition does not admit re-
cursive record or relationship types.Record typesas AT-
tribute names must be unique. Each attribute nameai for
i = 1, . . . , n of a record type (a1 : c1, . . . , an : cn) is viewed
as anattribute functionai : c1 × c2 × · · · × cn→ci mapping
each instance of the record type into itsi-th component. To
access the source and destination classc1 andc2 of any re-
lationship type (c1, c2), we also use the genericprojection
functionssrc anddest, respectively. Henceforth we use the
variablest, t′, t1, t2 . . . to denote data types.

Values are instances of data types. They are used to de-
fine the state of objects.

Definition 2. For a subsetI of ID , we inductively define the
set ofvalues overI, written val(I), as follows:

1. every element inI is in val(I);
2. the special symbol⊥ is a distinct element inval(I); it

denotes theundefinedvalue;
3. if v1, . . . , vn are inval(I), so is the labeled record (a1 =

v1, . . . , an = vn) for n ≥ 0, provided that all attributes
ai are distinct;

4. if v1, v2 /= ⊥ are in val(I), then all pairs (v1, v2) are in
val(I).

In the sequel, the variablesv, v′, v1, . . . are used to denote
values.

Operations, often called methods in object-oriented set-
tings, capture the behavior common to all instances of certain
types.Method signaturesare of the form

c.m : t1 → t2 .

2 To simplify the formal definition, we omit standard atomic data types
such asBoolean, integer, string, or real.

They provide a method namem, a class namec ∈ C the
method is associated with, an argument and a result type
t1, t2 ∈ types(C), respectively.

3.2 Schema-type DAGs

A schema-type DAG (or simply type DAG) defines the static
part of a database. It organizes a database in the form of a
directed acyclic graph. The nodes of the graph are labeled
with schema-type and relationship names and are associated
with data types and method signatures which determine the
structure and behavior of instances of these types, respec-
tively.

Definition 3. A type DAGis a quadruple (T,≺, τ, µ), where
T is a subset of class and relationship types inT from which
we derive the following two disjoint subsets:

C := T ∩ ST, a finite set of schema-type names and
R := T ∩ R, a finite set of binary relationship names;
(T,≺) : is a partially ordered set3; ≺ denotes anis a rela-

tionshipand is disjoint onC andR;
τ : is a mapping fromT to types(C) such that, for allc

in C, τ (c) is a record type and, for allr in R, τ (r)
is a relationship type, respectively;τ is called atype
assignment;

µ : is a mapping fromC into a set of method signatures of
the form c.m : t1 → t2 such thatc ∈ C and t1, t2 ∈
types(C).

For any two classesc, c′ with c ≺ c′ in C, c is called a
subclassof c′ andc′ is called asuper-classof c.

By c• we refer to the set{c′|c ≺ c′} of super-classes
and•c denotes the set{c′|c′ ≺ c} of subclasses of the class
c.
According to this definition, the type DAG presented in
Fig. 2 reads as follows:

C = {EMPLOYEE,MANAGER,COMPANYOWNER,
EMPLOYER,
PRIVATE CORPORATION,GOVERNMENTBRANCH}
R = {hires , employed by , owns, owned by}
src(hires ) = dest(employed by ) = EMPLOYER,
dest(hires ) = src(employed by ) = EMPLOYEE,
src(owns) = dest(owned by ) = COMPANYOWNER,
dest(owns) = src(owned by ) =
PRIVATE CORPORATION,
≺= {(MANAGER,EMPLOYEE),
(COMPANYOWNER,MANAGER),
(COMPANYOWNER,EMPLOYEE),
(PRIVATE CORPORATION,
EMPLOYER), (GOVERNMENTBRANCH,EMPLOYER)}
τ (EMPLOYEE) = (name : . . . , address : . . . ,
salary : . . .)
. . .
τ (hires ) = (τ (EMPLOYER), τ (EMPLOYEE))
. . .
µ(EMPLOYEE) = . . .

3 That is,≺ is a reflexive, antisymmetric and transitive relationship over
T .
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The is a relationship of a type DAG may be used to induce a
sub typing relationship on class names. Moreover, a recordt
can be used whenever another recordt′ is expected, but only
if t has at least the same attributes ast′ and the types of the
attributes oft are subtypes of the types of the corresponding
attributes oft′. Similarly, a relationship typer is a subtype
of another relationship typer′ if the source and destination
types ofr are subtypes of the source and destination types
of r′.

Definition 4. The subtyping relationshipover a type DAG
(T,≺, τ, µ), denoted by≤, is defined by the following min-
imal set of rules:

1. c1 ≺ c2 implies c1 ≤ c2;
2. (a1 : t1, . . . , am : tm, am+1 : tm+1, . . . , am+k : tm+k) ≤

(a1 : t′1, . . . , am : t′m, )
if ti ≤ t′i for i = 1, . . . ,m;

3. (t1, t2) ≤ (t′1, t
′
2) if t1 ≤ t′1 and t2 ≤ t′2.

The previous definition includes no integrity constraints that
would prevent the specification of ill-formed type DAGs. We
consider a type DAGTH to be ill-formed if its isa relation-
ships on classes and relationships do not conform with the
subtyping relationship according to the type assignmentτ of
TH , or if method signatures do not conform with the type
structure. Such deficiencies are excluded by the following
definition of well-formed type DAGs.

Definition 5. A type DAG (T,≺, τ, µ) is well-formedif for
all c1, c2 in C := T ∩ST and, for allr1 andr2 in R := T ∩R,
the following conditions hold:

1. r1 ≺ r2 implies src(τ (r1)) ≺ src(τ (r2)) anddest(τ (r1))
≺ dest(τ (r2));

2. c1 ≺ c2 implies τ (c1) ≤ τ (c2);
3. for all c in C, we have thatµ(c) = {c.m : t1 → t2};
4. if c ≺ c′ and methodm is defined inc with signature

c.m : t1 → t2 and in c′ with signaturec′.m : t′1 → t′2,
then t1 ≤ t′1 and t′2 ≤ t2 must hold.

Further, we assume that multiple-inheritance conflicts may
not occur. This can be excluded explicitly using a sufficient
condition as given in [KaLR92]. Condition 3 of the above
definition ensures thatµ is prefix closed with respect to class
names. Conditions 2 and 4 ensuretype safetyon attributes
and methods by requiringcovariance(restriction) for class
names and result types andcontravariance(expansion) for
arguments of methods.

Informally, the use of argument contravariance and result
covariance can be explained as follows. Assume we expect
a function or methodf to have typet1 → t2 and therefore
considert1 arguments as permissible when callingf . Now
assumef actually has typet′1 → t′2 with t1 ≤ t′1. Then we
can pass all the expected permissible arguments of typet1
without type violation;f will return results of typet′2 which
is permissible ift′2 ≤ t2 because the results will then also
be of typet2 and are therefore acceptable as they do not
introduce any type violations.

In the remainder of this paper when speaking about a
type DAG we always mean a well-formed type DAG .

3.3 Objects, classes and relationships

Classes are inhabited by objects that are simply viewed as
pairs associating an object identifier with a value according
to Definition 2.

Definition 6. An object is a pair (i, v).
In Definitions 1 and 2, we defined independently how

data types and values are formed correctly. But as objects are
instantiated from data types, we must ensure that the value
associated with a particular oid is compatible with the type of
that oid. This is made precise in the definition below which
indicates to what set of values the data types associated with
the type names in a type DAG can be instantiated. We call
this the interpretation of a type.

Definition 7 For any type DAG (T,≺, τ, µ) with c, c1, . . . ,
cm ∈ C := T ∩ST the interpretationof a typet in types(C)
underτ , denoted by [[t]] τ , is defined as follows:

1. [[c]] τ = {i|i = (c′, n), c′ ∈ C, c′ ≺ c, n ∈ N} ∪ {⊥},
i.e., oids of objects that were instantiated as members of
subclasses of classc are allowed as values of typec;

2. [[(a1 : c1, . . . , am : cm)]] τ = {(a1 = v1, . . . , am = vm,
am+1 = vm+1, . . . , am+k = vm+k)|vi ∈ [[ci]] τ , i = 1, . . . ,
m + k, k ≥ 0}, i.e., only those records that have at least
the set of attributes of the record type and whose at-
tributes assume values of subtypes of the corresponding
attribute types are accepted as values of the record type;

3. [[(c1, c2)]] τ = {(v1, v2)|v1 ∈ [[c1]] τ , v2 ∈ [[c2]] τ}, i.e., only
pairs of values whose first and second component assume
values of subtypes of the first and second component of
the relationship type are taken as values of the relation-
ship type.

In the above definition, each class namec is interpreted by
the set of oids naming objects of any subclass ofc (includ-
ing c because≺ is reflexive), each record type by the set of
records that have at least as many components as the record
type and assign a value out of the interpretation of the at-
tribute ci to the corresponding attributeai and, finally, each
relationship type is interpreted by the set of pairs of oids of
the proper source and destination class type.

We allow the undefined value⊥ to be used as an at-
tribute value in records to cope with situations where no
well-defined value is known.

3.4 Class hierarchies and roles

As mentioned in the previous section, objects can play sev-
eral roles at a time and they can change their roles during
their lifetime. This dynamics is captured in the notion of a
class DAG4 which is derived from a type DAG by adding
a setω of instantiated objects and specifying an oid assign-
mentπo that maps each class type (and relationship) into the
set of (pairs of) oids of objects that were created as instances
of that class. Moreover, it maps each role class into a set of
oids of role objects acquired from other classes by explicit
object migration.

4 Henceforth we will refer to a class DAG as the class hierarchy to avoid
any confusion with the notion of a type DAG.
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Note that this overloaded interpretation ofπo is only
possible becausewe do not allow role classes to have their
own instances.

Definition 8. Given a well-formed type DAGTH = (T,≺
, τ, µ), then a class hierarchy derived fromTH , class hier-
archy for short, is a structureCH = (T ′,≺′, τ ′, µ′, ω, πo),
where

T ⊆ T ′ : such that (T ′\T ) ∩ ST = ∅, i.e., the additional
elements inT ′ are role classes;

(T ′,≺′) : is a partially ordered set such that the restriction
of ≺′ to elements inT is equivalent to≺, i.e.,≺′ |T =≺;

τ ′ : is a type assignment such that the restriction ofτ ′ to
the domain ofτ is identical toτ , i.e., τ ′|T = τ ;

µ′ : is a method assignment identical toµ on the restriction
of µ′ to the domain ofµ, i.e.,µ′|C = µ;

ω : is a set of objects;
πo: is a function, calledoid assignment, which maps each

class namec ∈ T ′ and each relationship namer ∈ T ′
into a finite set of identifiers and a finite set of pairs
of identifiers naming objects inω, respectively;πo is
disjoint on schema types and relationships, i.e., for all
classesα, α′ ∈ T ′ with α /= α′, we require thatπo(α) ∩
πo(α′) = ∅; πo(α) denotes the set ofown instancesof α
if α ∈ T and it denotes the set oftransient instancesif
α is role class name inT ′\T ; the extentof each class or
relationshipα in T ′ is given by the extensionπ of πo
defined by

π(α) =
⋃

α′∈•α

πo(α′) .

By oids(CH) we denote the set{i|(i, v) ∈ ω}.
Like type hierarchies, class hierarchies may be ill-formed

if, for instance, the value associated with some object iden-
tifier i in the extent ofπ(c) of some classc is incompati-
ble with the typeτ (c) of c, or if the additional role classes
and their associated methods do not satisfy the conditions in
Definitions 5.2, 5.3, and 5.4. The following definition gives
a number of integrity constraints that a well-formed class
hierarchy must satisfy. The first condition in the following
definition states that the values of objects must becompati-
ble with their typeunder the given type assignment.

Definition 9. A class hierarchy (T,≺, τ, µ, ω, πo) is well-
formed if conditions 2, 3, and 4 of Definition 5 and, addi-
tionally, the following conditions hold:

1. for all objects (i, v) in ω and all classesc ∈ T with
i ∈ π(c), we require thatv ∈ [[τ (c)]] τ ;

2. ⋃
c∈T

πo(c) = {i|(i, v) ∈ ω} .

3.5 Type safety

One of the core features of the approach to roles is preserv-
ing an object’s identity while allowing it to change behav-
ior and structure. An object may participate in many roles,
but it has a unique oid. The only reference to an object is
through its object identifier in conjunction with the specifica-
tion of a role-class name. Allowing objects to dynamically

assume new (and relinquish old) behavior by introducing
new classes in (and dropping old classes from) the class hi-
erarchy presents a serious threat to the type safety of the
system. To avoid these potential problems, the ORM bases
its type-checking mechanisms on the notion oftype con-
formance. Conformance is a relation between types which
determines whether objects of one type can be used in lieu of
objects of another as discussed in the context of Definition 5.

A number of object-based or object-oriented languages
such as Emerald [BLA87], Trellis-Owl [SCH85], Eiffel
[MEY88] and object models such as TEDM [MZO89] and
FROOM [MaB90] have adopted the notion of conformance
to determine whether an object is of the specified type by
comparing its interfaces with the interface specified by the
type in question.

Observation 1. The signatures, i.e. type definitions and
method signatures, of any two subclass-related classes in a
well-formed class hierarchy conform.

This observation holds due to the conditions of Definition 9.
An elaborate discussion about method conformance in the
presence of covariance for class names and result types and
contravariance of argument types can be found in [ScZ94]
and [ScC95].

3.6 Type union and intersection

To support dynamic specialization and generalization, we
need to introduce two partial operators that define the union
and intersection of record types.

Definition 10. Let t andt′ be two record types formed over
a given class hierarchy. Moreover, let

t = (a1 : t1, . . . , ak : tk, ak+1 : tk+1, . . . , ak+m : tk+m)
t′ = (a1 : t′1, . . . , ak : t′k, a

′
k+1 : t′k+1, . . . , a

′
k+n : t′k+n)

with ti ≤ t′i for i = 1 . . . k

Then thetype uniont t t′ is the record type

(a1 : t1, . . . , ak : tk, ak+1 : tk+1, . . . ,

ak+m : tk+m, a
′
k+1 : t′k+1, . . . , a

′
k+n : t′k+n) ,

with ai /= a′j for i = k+1, . . . , k+m andj = k+1, . . . , k+n.
Dually, thetype intersectiont u t′ is the record type

(a1 : t′1, . . . , ak : t′k) .

In all other cases, we sett t t′ = > and t u t′ = ⊥. Note
thatt andu are only partially defined. If defined, they are
associative, as the order of attributes in a record type is
semantically irrelevant. Therefore, we omit parenthesis when
forming the union or intersection of multiple types.

Observation 2. If t t t′ and t u t′ are defined, thent ≤
t t t′ and t u t′ ≤ t hold.

4 Elementary operations on class hierarchies

The ORM provides elementary operations to modify class
hierarchies. These include operations to:
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1. modify the class hierarchy by adding and deleting role
classes,

2. migrate objects from existing classes to new role classes,
3. modify the type definition of a role class by adding at-

tributes and possibly new methods.

Although these operations may appear to be similar to
schema update operations, they introduce a new dimension
when combined with object migration. We assume that all
elementary operations introduced below are strict, i.e., they
are undefined whenever a constituent operator such as the
type union or intersection are undefined. Moreover, we as-
sume that the operations are undefined whenever at least one
of their preconditions fails to hold. In this case, they have
no effect on the given well-formed class hierarchy.

In this paper, we consider roles that can be defined as
sub- and super-classes of existing classes and objects that
can migrate into sub- or super-classes. This allows us to
provide a comprehensive set of operations that guarantee
type safety and consistent class DAGs. The implications of
relaxing these constraints to apply to classes other than sub-
or super-classes are the subject of ongoing research. Some
preliminary results have been reported in [PKS95].

Throughout this section, we use the symbolCH to denote
the following well-formed class hierarchy (T,≺, τ, µ, ω, πo).

4.1 Modifying the structure of a class DAG

The following operation supports thegeneralizationof exist-
ing classesc1, . . . , ck into a new classc acting as the direct
super-class of the former such that the type associated withc
is the intersection of the type associated withc’s subclasses.
Generalization is, for instance, useful for adding common
behavior to unrelated classes in a class DAG, as needs arise,
by forming a common super-class and associating the new
behavior with that super-class from which it is automatically
inherited.

Definition 11. The operation

addRoleClassc asSuperclassOfc1, . . . , ck

mapsCH into a new class hierarchy (T∪{c},≺′, τ ′, µ′, ω, π′o),
where

1. c in RT,
2. ≺′=≺ ∪{(c1, c), . . . , (ck, c)},
3. τ ′(c) = τ (c1) u · · · u τ (ck) and τ ′(α) = τ (α) for all

α ∈ T (i.e., τ ′ is the same asτ for all old classes and
relationships inT ),

4. µ′(c) = ∅ andµ′(c′) = µ(c′) for all c′ in T
5. π′o(c) = ∅, π′(c) = π(c1) ∪ · · · ∪ π(ck), and, for allα in

T , we have thatπ′o(α) = πo(α) andπ′(α) = π(α)

if the following conditions hold:

1. c does not occur inT ,
2. c1, . . . , ck are elements ofT , and
3. (T ∪ {c},≺′) is a partial order.

Similarly we define an operation that allows us to specialize
several classesc1, . . . , ck dynamically into a more special-
ized role classc. Its type is the union of the types of the
former.

Definition 12. The operation

addRoleClassc asSubclassOfc1, . . . , ck

mapsCH into a new class hierarchy (T∪{c},≺′, τ ′, µ′, ω, π′o),
where

1. c in RT,
2.

≺′=≺ ∪{(c, c1), . . . , (c, ck)} ∪⋃
c′1∈•c1

{(c, c′1)} ∪ . . . ∪
⋃

c′
k
∈•ck

{(c, c′k)} ,

3. τ ′(c) = τ (c1)t· · ·tτ (ck) andτ ′(α) = τ (α) for all α ∈ T ,
4. µ′(c) = ∅ andµ′(c′) = µ(c′) for all c′ in T
5. π′o(c) = ∅, π′(c) = ∅, and, for allα in T , we have that

π′o(α) = πo(α) andπ′(α) = π(α),

provided that the same conditions as in Definition 11 hold.

Observation 3. Both operations preserve the well-formed
ness ofCH and are thus type-safe.

Definition 13. The operation

markDeleteRoleClassc

mapsCH into a shadow class DAG(T ′,≺′, τ ′, µ′, ω, π′o),
provided thatc occurs inT ′ ∩ RT, where

1. classc, all subclasses ofc, all relationships that depend
on classes in•c disappear, i.e.,T ′ = T\(•c ∪ {r ∈
T | src(τ (r)) ∨ dest(τ (r)) ∈ •c});

2. the isa-relationshiprelationship is reduced by all pairs
whose first or second component is no longer a member
of T ′, i.e.,≺′= {(α1, α2) ∈≺ |α1, α2 ∈ T ′};

3. the type and method assignments of all remaining classes
and relationships do not change, i.e.,τ ′(α) = τ (α) and
µ′(α) = µ(α) for all α ∈ T ′;

4. π′(α) = (π(α)\π(c))∪πo(α) and π′o(α) = πo(α)∀ α ∈ T ′.
We have thatπ′(α) = (...) ∪ πo(α).

The continuous addition of role classes to a given class DAG
is likely to reduce data space and affect the performance of
ORM implementations. From a system designer’s point of
view, it is tempting to provide an operation for purging role
classes that become obsolete. However, as there may be ref-
erences to role objects, methods and classes that we wish
to delete, instead of providing a conventional delete opera-
tion, we rather rely on the existence of an efficient garbage
collector and provide an operation to mark these roles that
are designated as invalidated by the users. We then let the
garbage collector perform the deletion when no further ref-
erences to that role class or its instances exist. If no garbage
collector is available, special provisions can be made at the
systems level, e.g., by building up a cross-reference table,
to keep track of the establishment and destruction of refer-
ences and thus prohibit dangling references upon deletion of
objects, methods or attributes. The abovemark-deleteoper-
ation extends this type of deletion marking to all subclasses
of the selected class and to all relationships that have any of
the marked classes as source or destination. As role objects
are not destroyed, there are no dangling references. Also new
references to an invalidated role, as well as the dispatching
of messages to invalidated role objects, result in trappable
errors.
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The effect of this operation on a given class DAG is
illustrated in Fig. 5. This figure shows that, when marking
a class as deleted, all of its descendant classes as well as
relationships, which have this class either as origin or desti-
nation, are also marked as deleted. All remaining classes are
shaded to denote the existence of a shadow DAG as defined
above.

4.2 Migrating objects

Two types of object migration are potentially useful in a class
DAG: migration from a classc to a subclass or super-class of
c or to an arbitrary class. The former supports the dynamic
specialization or generalization of objects, while the latter
models the case where an object discontinuously changes its
structure and behavior. In the framework of this paper we
consider object migration into subclasses and super-classes
only.

Definition 14. The operation

migrateObject i fromClass c1 toSubclassc2

mapsCH into (T,≺, τ, µ, ω, π′o), provided that

1. c1 ∈ T andc2 ∈ T ∩ RT,
2. c2 ≺ c1, and
3. i ∈ πo(c1), i.e., identifiers inπ(c1) that are not owned

or transient toc1 but stem from other subclasses ofc1
cannot be migrated.

Then

1. a) i becomes a new member of the set of transient ob-
jects ofc2, i.e.,π′o(c2) = πo(c2) ∪ {i},

b) while the sets of own and transient objects of all
other class and relationship typesα /= c2 remain the
same, i.e.,π′o(α) = πo(α),

c) for all super-classesc ∈ c•2 of c2, their extents are
augmented byi, i.e.,π′(c) = π(c) ∪ {i},

d) while the extents of all other classesα in T\c•2 re-
main unchanged, i.e.,π′(α) = π(α), and

2. the value of each attributea in τ (c2) that does not occur
in τ (c1) is treated as⊥ whenever object (i, v) is accessed
as an object of classc2.

Classc1 is called theparent roleof c with respect toi.

Observation 4. Each object in a class DAGCH has a small-
est class, i.e., for all(i, v) ∈ ω, there is ac ∈ T such that
i ∈ πo(c) and, for all other classesc′ ∈ •c ∪ (T\c•), we
have thati /∈ π(c′).

By definition of a well-formed class hierarchy each object in
ω is created as an instance of exactly one schema type and
occurs in the extent of all super-classes of its corresponding
class. The class where objects inω are created is called
their smallest class. The extent of each role classc in the
ORM is empty upon creation (cf. Def. 11). The only way
to populate the extentπ0(c) of classc with oids is through
object migration. One way of achieving object migration
in the ORM is by placing objects of a given classc1 into
its descendants extents. This class may include in its set
πo(c) objects of its own (for which it is the smaller class)

or transient oids (for some of which it is the smallest class).
The effects of migrating an object into a subclassc2 of the
given classc1 are that: (a) the oid of the migrated object
becomes a member of the set of transient objects ofc2; (b)
c2 becomes the new smallest class of the migrated object;
and (c) the extents of any super-classes ofc2 are extended
by the oid of the migrated object.

4.3 Adding attributes and methods

Definition 15. The operation

addAttribute a : t = v to RoleClassc

mapsCH into (T,≺, τ ′, µ, ω, πo) where

1. τ ′(c) = (a1 : c1, . . . , ak : ck, a : t) if τ (c) = (a1 :
c1, . . . , ak : ck) and τ ′(α) = τ (α) for all α /= c ∈ T
and

2. for any oidi ∈ π(c) occurring in the extent of the mod-
ified class, we have thata(i) = v,

provided thatc is a role class, i.e.,c ∈ T ∩ RT, c has
no subclasses, i.e.,•c = ∅, a /= aj for j = 1, . . . , k, and
v = (t′, n) with t′ ≤ t.

Definition 16. The operation

addMethod c.m : t1 → t2 to RoleClassc′

mapsCH into a new class hierarchy (T,≺, τ, µ′, ω, πo), with
µ′(c′′) = µ(c′′) for all c′′ /= c in T andµ′(c′) = µ(c′)∪{c.m :
t1 → t2}, provided that

1. c = c′, c′ ∈ T ∩ RT, •c = ∅,
2. for all c′′ ∈ c• and for allc′′.m : t′′1 → t′′2 in µ(c′′), we

have thatt′′1 ≤ t1 and t2 ≤ t′′2 holds, and
3. there is no other method with signaturec′.m : t′1 → t′2

in µ(c′).

Condition 2 ensures method conformance. This condition
guarantees that all methods defined in a class have a unique
name. It can be verified in practice by checking just the sets
of equally named methods in direct super-classes ofc′.

Observation 5. Object migration, method and attribute ex-
tension, and deletion marking can also be shown to preserve
the well-formedness and thus the type safety of a class DAG.
The only exception is when no reference is made to any of
the deleted entities (role class, relationship, oid). However,
this type of reference can be trapped at the system level.

For a complete proof of this observation, we have to show
that, under the premise that the operations are defined, none
of the conditions presented in the definition of well-formed
type and class DAGs (Definitions 5 and 9) and none of the
constraints of oid assignments and method signature assign-
ments are violated.

5 Role class operations

In this section, we introduce some higher level ORM op-
erations for creating and manipulating roles. The semantics
of these operations are introduced in terms of compositions
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Fig. 5. Effect of deleting a role classc and the remaining shadow DAG

of the elementary role operations defined in Sect. 4. In the
definitions below, we assume the existence of a well-formed
class hierarchy (T,≺, τ, µ, ω, πo).

It is important to note that the role creation operations
described in the following do not only physically create roles
but also automatically instantiate their respective role classes
and populate them with selected objects from their originat-
ing classes.

5.1 Role operations based on the grouping of objects

5.1.1 Creation of roles by enumeration

The first and simplest role-defining mechanism isby enu-
meration. Here, roles can be defined by identifying the role-
creating objects by means of their object identifiers. The
operation

createRoleClassc asSubclassOfc1, . . . , cm
for i1, . . . , in1 in c1:

< roleClassBody >
for j1, . . . , jn2 in c2:

< roleClassBody >
. . .
for k1, . . . , knm in cm:

< roleClassBody >

creates a new role classc into which oidsi1, . . . , in1, j1, . . .
jn2, . . . , k1, . . . , knm – from the super-classesc1, . . . , cm of
classc – are migrated. This operation is the result of the
following sequential composition of elementary role class
operations defined in Sect. 4:

addRoleClassc asSubclassOfc1, . . . , cm;

migrateObject i1 fromClass c1 toSubclassc;
. . . ;

migrateObject in1 fromClass c1 toSubclassc;
< roleClassBody >

migrateObject j1 fromClass c2 toSubclassc;
. . . ;

migrateObject jn2 fromClass c2 toSubclassc;
. . . ;

< roleClassBody >

migrateObject knm fromClass cm toSubclassc

The operation is only defined if the constituent elementary
operations are all defined. The statementroleClassBody
may include the addition of new attributes such as:

ACADEMIC

PROFESSOR STUDENT ASSISTANT

is−ais−ais−a

Fig. 6. A schema subportion for a university database

a1 : t1 = v1, . . . , al : tl = vl

to capture additional state information and new method sig-
natures such as:

c.m1 : t1 → t′1, . . . , c.mn : tn → t′n
and method implementations to capture new behavior for the
identified object. The operations in the statementroleClass
Body extend the semantics of the high-level operationcre-
ateRoleClass– as described above – by the following se-
quence of class hierarchy operations (described in Sect. 4.3).

addAttribute a1 : t1 = v1 toRoleClassc;
. . . ;

addMethod c.m1 : t1 → t′1 toRoleClassc;
. . .

This has as effect the creation of an additional facet for
an object which retains its original object identifier.

In the ORM, we can generate role classes as generaliza-
tions of already existing classes. If we use generalization as
a means to define a new role class, sayc – common to a set
of classesc1, . . . , cm – the extent ofc would automatically
contain the union of the extents of all classesc1, . . . , cm.
Consider the following statement in conjunction with Fig. 6
which describes a schema portion of a university database.

createRoleClassTutor asSuperclassOf
Professor, Student, Assistant .

The above statement has the semantics of the operation

addRoleClassTutor asSuperclassOfProfessor,
Student, Assistant .

A new subclass relationship is introduced between the
smallest common super-class ofProfessor, Student
and Assistant , namely Academic , and the new class
Tutor . The operation is undefined if there is no smallest
common super-class of anytwo or moresuper-classes. The
new role class factors out commonalities between existing
classes. The semantics of the above operation result in the
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properties of the classTutor being the common proper-
ties of classesProfessor , Student and Assistant .
This situation is shown in Fig. 7. The extent of the new role
classTutor is formed by taking theunion of the extents
of the classesProfessor , Student and Assistant
according to Definition 11. The addition of the role class
Tutor guarantees that all the re-arrangements in the class
DAG result in a well-formed DAG (cf. Definition 9), as this
operation is only defined if all its constituent elementary op-
erations are well defined and, hence, the conjunction of their
preconditions is satisfied.

The above operation is not flexible as it does not per-
mit to exercise explicit control over subsets of objects in
specialized classes which can migrate into the more gener-
alized class. To selectively migrate objects from the extent
of a specialized class to a generalized class we may use the
following operation:

createRoleClassc asGeneralizationOfc1, . . . , cm
for i1, . . . , in1 in c1:
for j1, . . . , jn2 in c2:
. . .
for k1, . . . , knm in cm:

with < roleClassBody >

This operation generates a subclass (role class) namedci-c
for each class of originci (for i = 1, . . . ,m) and makes the
role classc become their common parent class. The seman-
tics of this operation are captured by the following sequential
composition of elementary role class operations:

createRoleClassc1-c asSubclassOfc1 for i1, . . . , in1 in c1

. . .

createRoleClasscm-c asSubclassOfcm for k1, . . . , knm
in cm

addRoleClassc asSuperclassOfc1-c, . . . , cm-c

Moreover, if there exists a smallest common super-classc′
of the classesc1, . . . , cm, thenc′ becomes a parent class of
c in the resulting class DAG.

To illustrate this concept, consider the following state-
ment in ORM:

createRoleClassTutor asGeneralizationOfProfessor ,
Student , Assistant

for i1, . . . , in1 in Professor :
for j1, . . . , jn2 in Student :
for k1, . . . , knm in Assistant :

with < roleClassBody >

in conjunction with the schema subportion of a univer-
sity database depicted in Fig. 6. This figure shows that
Academic s compriseProfessor s, Student s andAs-
sistant s.

The above ORM statement creates a new role, namely
Tutor (a kind of teaching assistant), for objects that be-
long to different classes, namely the classesProfessor ,
Student and Assistant . Notice that after the execu-
tion of this statement the new role classTutor is generated
for the enumerated objects, contained in the role creation
statement, as a direct subclass ofAcademic . This is due
to the fact thatAcademic is the common (direct) super-
class of all these three classes. The new roleTutor in-
cludes in its extent all the objects enumerated in the role cre-
ation statement. AsTutor is a role assumed by some and
not all the objects in the classesProfessor , Student
and Assistant , further specializations of this new role
class are also automatically generated by employing multi-
ple inheritance to represent the rolesProfessor-Tutor s,
Student-Tutor s andAssistant-Tutor s. This situ-
ation is depicted in Fig. 8.

5.1.2 Value-based creation of roles

Value-basedroles may be defined using an expression based
on attributes of the object in question. The semantics of
value-based role class operations are defined in a similar
manner as enumeration-based operations on the basis of
the elementary operations introduced in Sect. 4. Value-based
roles are defined according to the following syntax.

createRoleClassc asSubclassOf| asGeneralizationOfc′ grouped by e:
< roleClassBody >

wheree denotes an expression referring to attribute values
of particular attributes. Here a new role classc is created
as subclass (super-class) of classc′ and then all identifiers
i ∈ πo(c′) of objects (i, v) with v = e.

For example, if we wish to introduce a new role for
educated employees (employees with a University degree),
we would declare a role class as follows:

createRoleClassEducatedEmployee asSubclassOfEmployee
grouped by Employee.degree not null :

< roleClassBody >

The statementroleClassBody includes the definition of at-
tributes and methods and is treated in the same manner as
explained in the previous subsection.

5.1.3 Predicate-based creation of roles

Roles can be also created by means of predicates which must
be satisfied by all the members of a role class. This distin-
guishing property of ORM is usually found in classifica-
tion languages such as KL-ONE [BrS85]. This role creation
mechanism forms predicate-based roles, which are defined
according to some predicateP satisfied by all members of
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any particular role class as specified by the following state-
ment:

createRoleClass asSubclassOf| asGeneralizationOfc grouped by
case1 . . . , casek:

< roleClassBody >

where each role is individually defined through a case-like
statementcasei using the following structure for each case:

ci is Pi ,

whereci are the new role classes and the predicatesPi refer
to particular properties of the given class of originc. The
condition of the last case may be the keywordother, which
applies only if all other cases failed. Note that, if the cases
are not logically disjoint, the sequence of cases determines
the role in which those objects matching multiple conditions
are placed.

Again the semantics of this operation correspond to a
sequence ofaddRoleClassci asSubclassOfc and migra-
teObject elementary operations such that only those objects
that satisfy the conditionPi migrate to the new role class.

For example, in case that we wish to divide academics
according to their pay rate, we would declare the following
role classes:

createRoleClass asSubclassOfAcademic grouped by
HighlyPaidAcademic is Academic .Salary > 100K:

< roleClassBody >
ModeratelyPaidAcademic is Academic .Salary > 50K:

< roleClassBody >
LowlyPaidAcademic is other :

< roleClassBody >

This facility introducesparameterized role classeswhich
provide a way to define a template for a set of objects whose
members behave in a similar manner. Different parameteri-
zations of a parameterized class, e.g.,Academic , produce
different roles, e.g.,HighlyPaidAcademic .

The above role-generating conditions are applied to and
affect the extents of the classes mentioned in the role cre-
ation statement, e.g.,Academic , at the time of execu-
tion of this statement. After the execution of this state-
ment, the role-generating conditions act as demons on an
if-instantiatedbasis and are evaluated “lazily” whenever a
new object is instantiated and inserted into the extent of their

associated role class, e.g.,Academic . This leads to an au-
tomatic classification of newly createdAcademic objects
into one of the three role classesHighlyPaidAcademic ,
ModeratelyPaidAcademic , andLowlyPaidAcade-
mic .

5.2 Role operations based on inter-object relationships

The following role-creating operations allow one group of
objects to be defined in terms of another in some other class
in the DAG. The role-creating operations permit dynamic
control over the patterns of inter-object linking and are also
constructed as before using the elementary role operations
defined in Sect. 4.

The semantics of role operations based on inter-object
relationships correspond to a sequence ofaddRoleClassci
asSubclassOfc andmigrateObject elementary operations.

5.2.1 Reference-induced roles

Roles can be created by inter-relating object classes. The role
operations described in this subsection exhibit the general
form: < object− set1 > references < object− set2 >.
The semantics of the reference-induced role creation opera-
tion are reminiscent of the division operation of the relational
algebra and require that the operation returns a subset of ob-
jects from theobject-set1, where all the members of that
subset are associated with all the members ofobject-set2.
Theobject-set1 signifies a subset of the class extent of class
c, whereas theobject-set2 corresponds to the oidsi1, . . . , ik
in the following operation:

createRoleClassc as asSubclassOfc1 < referenced− class >
for i1, . . . , ik in c2:

< roleClassBody >

The reference can be in the form of a symbolic pointer such
as an attribute of a particular class which may have its do-
main in another class, e.g., the classPrivateCorpora-
tion may have an attribute calledcontracted-to de-
clared as “contracted-to: setOf Government
Branch ”. Consider the following example where a new role
is created for the classPrivateCorporation named
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Fig. 9. Defining dynamic object roles via the use of references

ContractedTo ImportantGvtBranch in association
with Fig. 9a.

createRoleClassContractedToImportantGvtBranch
asSubclassOfPrivateCorporation

PrivateCorporation.Contracted-to
for gb1 , gb2 , gb5 in GovernmentBranch :

< roleClassBody >

Figure 9b shows some sample data for the above situa-
tion. From the context of this figure it can be deduced
that thePrivateCorporation objectspc 1 andpcn are
contracted-to the PrivateCorporation specified
in the above statement. As a result, the roleContractedTo
ImportantGvtBranch is generated for the objectspc 1
andpcn.

Alternatively, the reference may be substituted by a
method in the body ofc1 which returns a set of objects
of the type of objects belonging to the set< object-set2 >.
For example, instead of having a reference to objects of type
GovernmentBranch , we may have a method which re-
turns these objects. The method must obviously be declared
in the body of the class which contains in its extent the object
set object-set1, i.e., PrivateCorporation . Consider
the method signature5 “PrivateCorporation .Contrac-
tedto:() → P GovernmentBranch ” and the follow-
ing statement:

createRoleClassContractedToGvtBranch
asSubclassOfPrivateCorporation

PrivateCorporation.Contracted-to ():
< roleClassBody >

The above statement creates a new role class, namelyCon-
tractedToGvtBranch , for all PrivateCorporation
objects that are contracted toGovernmentBranch es.

We can also create a new role class ofPrivateCor-
poration objects which are related to a particularGovern-
mentBranch by using the above statement in conjunction
with a predicate:

createRoleClassContractedToGvtBranch
asSubclassOfPrivateCorporation

PrivateCorporation.Contracted-to()
grouped by GovernmentBranch.name = “Health”:

< roleClassBody >

5.2.2 Creation of roles through explicit linkages

There are roles which can be specified through explicit inter-
object linkages which resemble dynamic role-relationships in
KL-ONE [BrS85]. In the ORM, a relationship may be used
to act as a predicate and capture the commonality among
a set of individual role-playing objects. Therefore, relation-
ships which associate two classes of objects may be used to
generate a new role for a subset of the objects which are con-
tained in the extent of the class at their point of destination.
Thus, the operation

createRoleClasscr from r(i, setOf cd):
< roleClassBody >

creates a new role classcr as a subclass of classcd and
migrates tocr all the objects in the extentπo(cd) of cd that
are related toi in its relationshipr, i.e., πo(cr) = {i′ ∈
πo(cd)|(i, i′) ∈ r}, provided thatcd is a subclass of the
destinationdest(r) of relationshipr and i is an element in
the extentπo(c) of some subclassc of the source classsrc(r).
We call cr the role class generated byr wrt cd and i.

Additionally, predicates relating a particular object iden-
tifier in the source (or destination) class of a relationship to
objects in its destination (or source class) are also admis-
sible. This operation is exemplified by the following situ-
ation. Consider the relationship typehires(Employer,
setOf Employee) between the typesEmployer and
Employee (Fig. 10). This relationship type accepts the class
of Employer objects as its source andEmployee class

5 P A denotes the powerset ofA, i.e., the set of all possible subsets of
A.
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objects as its destination (indicated by the presence of a
double arrowhead) and imposes the constraint that a single
Employer object may be related to a set ofEmployee
objects6.

The following statement:

createRoleClassEngineerForPrivateCorporation pc 1
from hires (pc1, setOf Engineer ):

< roleClassBody >

generates a new role calledEngineerForPrivateCor-
poration pc 1 and populates it with theEngineer ob-
jects that are associated with the particularPrivate
Corporation identified by the object identifierpc 1. The
new role is a subclass of the classEngineer which, in turn,
is a subclass of the destination of the role-defining relation-
ship hires . This situation is illustrated in Fig. 10, where
oids e1 and e2 in the extent of classEngineer , as they
are the only ones that also occur in the pairs of the extent
of relationship exhires. The presence of the double-headed
dashed arrow indicates the generation of a new role via the
use of a role-defining relationship, e.g.,hires . Although
the relationships in this figure conform to the relationship

6 In fact, this relationship is a polymorphic one, since, according to
the principle of argument contravariance, its argument domains may be
expanded by subclasses ofeither its origin and/or its destination.

types in Fig. 2, we have chosen to represent them as unidi-
rectional for reasons of simplicity.

In Fig. 10, we have introduced the relationship type
hiresPrincipalEngineer as destination class as a
subtype of the relationship typehires . This subtype rela-
tionship associates PrivateCorporation with
PrincipalEngineer objects. By employing the
hiresPrincipalEngineer relationship, we may now
generate a new role calledPrincipalEngineerFor-
PrivateCorporation pc 1 for thePrivateCorpora-
tion identified by the object identifierpc 1. It is interesting
to note that, since the roleEngineerForCorporation
pc 1 was created by the relationship typehires andhires
PrincipalEngineer is its subtype (by virtue of its def-
inition in Fig. 10), the class associated with that role, namely
PrincipalEngineer ForPrivateCorporation
pc 1, is a subclass ofEngineerForCorporation pc 1.
This fact is checked by the system which applies the fol-
lowing invariant that is based on therestriction relation in
KL-ONE.

Invariant 1. If a classc1 which is the (subclass of the) des-
tination of a relationship typer1 has a subclassc2, and if a
relationship typer2, defined as havingc2 as (a subclass of)
its destination, is a subtype ofr1, then every role class gen-
erated byr2 wrt c2 and some oidi in the extent of a subclass
of the source ofr2 is a subclass of the role class generated
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by r1 wrt c1 and i, provided that the source class ofr2 is
either the same or a subclass of that ofr1, sayc3. Moreover,
r2 satisfies all the constraints imposed on bothr1 andr2.

Observe that in Fig. 10 the lower and upper bounds which
define the range cardinalities for the set of objects gen-
erated by the role-defining relationship are both set to 1,
meaning that there is only a singlePrincipalEngineer
ForPrivateCorporation , indicated by a single-headed
arrow in Fig. 10. The class DAG shown in this figure satis-
fies Invariant 1 with the following binding of variables:
c1 = Engineer , c2 = PrincipalEngineer , and
c3 = PrivateCorporation , while r1 = hires and
r2 = hiresPrincipalEngineer .

5.2.3 Role creation through reasoning

Finally, as an analogy to role-defining relationships, we may
have roles generated throughreasoning. We exemplify this
situation by using an example relating to a loan-securing ap-
plication, whereby a relatively “intelligent” object-oriented
database system (employing production rules) helps a hu-
man intermediary with respect to the factors which must be
satisfied by a bank customer to secure a loan of a certain
type. For this purpose we shall use a simple rule-based sub-
language.

Rules can derive new patterns of associations among ob-
jects of selected classes. This situation is similar to the use
of triggers, which is covered in Sect. 5.3. Consider, for in-
stance, how the following two rulesr1 andr2 operate in the
context of Fig. 11. In this figure, we assume that the classes
Employee and Customer are populated by schema type
instances, whereas the classesSteadyJobCustomer ,
QualifiesForHomeLoan and QualifiesForCar
Loan are roles created from these classes.

r1 : if employedBy(Customer, Employer) is
GovernmentBranch
or Customer.LengthOfEmployment >= 5
then createRoleClassSteadyJobCustomer(Customer)

asSubclassOfCustomer :
< roleClassBody >

r2 : if SteadyJobCustomer(Customer)
and Customer.Disposable-Income >

(2.5 ∗ repaymentRate )
then createRoleClassQualifiesForHomeLoan

(Customer) asSubclassOfCustomer :
< roleClassBody >
else createRoleClassQualifiesForCarLoan

asSubclassOfSteadyJobCustomer :
< roleClassBody >

These two rules describe a situation whereCustomer s (a
subclass ofEmployee class) are characterized asSteady
JobCustomer s on the basis of their employment. Sub-
sequently, customers are assessed whether they satisfy the
conditions required for securing a particular type of loan,
e.g., home or car loan. The antecedent of ruler1 is the poly-
morphic relationship typeemployedBy in Fig. 2, which
associates objects of typeEmployee (and consequently
Customer as a subclass ofEmployee ) with objects of
type Employer (or subtypes thereof).

Rule r1 is a conditional statement that evaluates to true
or false, following the computational semantics of standard
rule-based systems, e.g., Prolog. If the rule evaluates to true,
then the objectCustomer is effectively asserted (added)
to the role-defining classSteadyJobCustomer . Thus,
classSteadyJobCustomer is created dynamically after
the execution of ruler1 and contains a subset of the ob-
jects in the classCustomer which satisfy the antecedents
of the rule r1. The entire situation is depicted in Fig. 11,
which shows how the execution of the rulesr1 andr2 leads
to the generation of the three additionalCustomer roles
SteadyJobCustomer , QualifiesForHomeLoan and
QualifiesForCarLoan . Notice that the roles
QualifiesForHomeLoan and QualifiesForCar
Loan are mutually exclusive according to the definitions
in rule r2. Mutually exclusive roles is the subject of the
following section.

5.3 Additional role operations

Additional ORM operations on role classes are defined be-
low. In contrast to the operations covered in the previous,
these operations accept already existing roles as input. The
operations either operate on the extents of role classes or on
an entire role class. In the former case, the role operations
assume a role class as input and add/remove or migrate ob-
jects to/from it, whereas, in the latter case, they accept a role
class as input and operate on its entire extent as a whole.

The set of role operations described in the following is
representative of the possible operations on roles. There are
other simpler operations which traverse the class DAG and
compute role transitive closures such asfind-roleSet, find-
Class-of-origin, find-parent, find-descendantsof a role and
so on, which together with elementary operations covered
in Sect. 4 help construct the operations that follow. We will
not consider them any further, as their semantics and impli-
cations are easily understood.

5.3.1 Assuming a role

The following statement illustrates how an object may as-
sume a new role.

assumeRoleClass for
i1, ..., in | < V alueBasedExpression > |
< PredicateBasedExpression >;

An object may assume an already existing role by using
this operation. The convention is that an object cannot as-
sume a role unless a role-defining class for this role already
exists. The statements< V alueBasedExpression > and
< PredicateBasedExpression > have a syntax similar
to that introduced in Sect. 5.1. Consider, for example, the
following statements in the context of Fig. 4.

assumeEngineer for
EducatedEmployee grouped by EducatedEmployee.Degree
= ‘‘Engineering’’
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5.3.2 Delaying operations and role transformation

5.3.2.1 Blocking roles.Role interaction is taken to mean how
objects in one role class extent may interact with objects in
another role class. Role interaction is mainly exemplified by
the concept of mutual exclusion, which leads to role block-
ing. Two roles having a common ancestor aremutually ex-
clusiveif an object is prohibited from joining both of these
roles and is forced to select either one.

Consider, for example, theEducatedEmployee ob-
jects in Fig. 12, which may wish to assume the additional
roles ofEngineer , Academic andSocialWorker ob-
jects. It might be desirable to block objects of typeEngi-
neer and Academic from being SocialWorker ob-
jects at the same time. Thus, we designate their respec-
tive role classes as being mutually exclusive, i.e., objects
which appear in the extents of the classesEngineer , or
Academic , are not allowed to appear in the extent of class
SocialWorker , and vice versa.

constrainRoleClassEngineer , Academic , SocialWorker for

EducatedEmployee
with Engineer Academic mutex SocialWorker

The previous statement introduces mutually exclusive roles
(and objects). This is indicated in Figs. 12 and 11 by arcs,
intercepted by the symbol X, that are directed from the
blocking towards the blocked roles. Obviously, nothing pre-
vents anEngineer object from simultaneously being an
Academic (although this is not shown in this figure). This
type of role-blocking may be thought of as a set exclusion
operation.

Invariant 2. If two or more role-defining classes are mutu-
ally exclusive, then all of their subclasses are also mutually
exclusive.

This invariant guarantees that descendants of theEngineer
role objects, e.g.,EngineerShareholder objects, do
not become members of the classSocialWorker , and
vice versa.
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5.3.2.2 Automatic role transformation.The most common
mechanism for the transformation of roles in the ORM is
provided by means of triggers. A trigger in the ORM is
thought of as a monitor on a data item (which may change
value) or as a logical condition-action pair. When the con-
dition is fulfilled, the action is executed. Consider the fol-
lowing example.

trigger TransformToAcademic when this
(CasualLecturer.Degree = ‘‘Phd’’

and CasualLecturer.Appointment = ‘‘FullTime’’ )
this CasualLecturer becomesAcademic

end trigger

The previous example shows how an object withCasual
Lecturer role may become anAcademic . This trig-
ger, like a method, is defined in the body of the class
CasualLecturer . The result of this operation is that
the object in question, say identified by the oide6, is re-
moved, by invoking operationremoveObject, from the ex-
tent of classCasualLecturer and joins the extent of
class Academic , by invoking the operationaddObject.
This relationship is signified by the horizontal arcs inter-
cepted by the symbol⊃ and directed from the current role,
i.e., CasualLecturer to the target role (the role class
after the current object’s role is changed; see Fig. 12). The
ORM upgrades the object in question automatically to the
structure and behavior of the target role class. This may in-
volve deleting and adding properties and behavior. The type-
safety invariants which govern this type of transformation
have some resemblance with those used for the generic func-
tion update-instance-for-different-classin CLOS [KEE89].

The trigger conditions are not only applied to the current
extents of the classes involved in the condition part of the
trigger, they are also applied lazily to any objects joining
the extents of these classes at a later stage.

5.3.3 Controlling role changes

The following operations control how objects may change
the current role that they are playing. The simplest opera-
tion is to relinquish a current role, for an object or a set of

objects, in favor of some other specified role. The following
statement illustrates how an object may relinquish a role.

relinquish RoleClass for
i1, ..., in | < V alueBasedExpression > |
< PredicateBasedExpression >
[resumeRoleClass] | [resumeRoleClass when< event >];

An object may relinquish its current role and assume ei-
ther: its immediate parent role (default case if theresume
statement is missing) or a specified role in its role-set by
means of theresumestatement, or finally, revert to the class
were it originated from. The operation relinquish is imple-
mented by invoking the elementary operationremoveObject
for objects that satisfy the relinquish criterion. Consider the
Shareholder object with oide3 in the context of Fig. 4
and the following statement:

relinquish Shareholder for e3;

this statement results in relinquishing the roleSharehol-
der for the objecte3. This object then is deleted from the
extent of this role class. This implies that the object with oid
e3 still keeps its role asEducatedEmployee .

In the following, we will explain the use of a simplere-
sumestatement in conjunction with therelinquishoperation.
The use of an event-triggered resumption of a role will be
explained when we consider role suspension. The statement:

relinquish Shareholder for e3
resumeEmployee;

results in the object with oide3 being removed from all
class extents betweenEmployee andShareholder . This
implies that this particular object abandons all of its roles
and reverts to its class of origin. Role relinquishing (and
suspension, see below) are governed by the following two
invariants which apply automatic coercion of relinquished
roles with existing role objects in the DAG and, in general,
control how an object canchangea role it currently plays.
The above statement is implemented by multiple invocations
of the operationremoveObject. The operationresumeuti-
lizes, in general, the elementary operationaddObject, mi-
grateObject, provided that the selected oid does not already
exist in the extent of the class specified by theremoveOb-
ject operator.
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Invariant 3. If an object relinquishes (suspends) its current
role, it also relinquishes (suspends) all of its current role’s
descendent roles, if any.

Invariant 4. An object that relinquishes its current role may
assume its parent role, or any role in its current role set,
provided that this role is an ancestral role of the role that the
object released. We call these roles valid roles. Alternatively,
it may assume any other role which is a direct or indirect
descendant of a valid role in its role set provided that there
exists a non-exclusive relationship between any of the roles
in its valid role set and the one just assumed.

Invariant 4 deserves some explanation. Consider, for exam-
ple, theEngineerShareholder object with oide1. If the
application semantics dictate that this objects should change
its role from EngineerShareholder (i.e., relinquish
EngineerShareholder) to Academic (i.e., resume
Academic), then the sequence of role changes correspond-
ing to these two operations is permissible. This object is re-
moved from the extent of the roleEngineer
Shareholder , remains in the extent of the rolesEmployee ,
EducatedEmployee , Engineer and Shareholder
and joins the extent of the roleAcademic . This new
role is allowed, as its parent role is a valid role, i.e.,
EducatedEmployee , in the role set of the objecte1.
However, objecte1 is not permitted to join the roleSocial
Worker after dropping the roleEngineerShareholder .
This is because the roleEngineer in its role set and the
new role SocialWorker clash by definition, i.e., they
have been defined as mutually exclusive.
The following operation is used for synchronization pur-
poses, mainly in conjunction with a trigger-like event speci-
fication. It results in suspending further actions of an object
(under a particular role) until a certain event occurs.

suspendRoleClass for
i1, ..., in | V alueBasedExpression |
PredicateBasedExpression

resumeRoleClass when < event >;

This operation is a further specialization of the operation
relinquish. The main difference between these two opera-
tions is that objects specified by the operation suspend may
remain suspended or “frozen” for an indefinite period of
time, as the application demands, and then resume their pre-
vious role by means of the operatorresumeonly when a
pre-specified event has occurred. Such objects may be al-
lowed to change role only in accordance with the invariants
3 and 4.
Consider the following example.

suspendAcademic for Academic.Degree /= “Phd”
and Academic.YrsOfService ≥ 3
resumeAcademic when this (EducatedEmployee.Degree

= ‘‘Phd’’
and EducatedEmployee.Appointment = ‘‘FullTime’’ )

The above statement specifies that an object of typeAcade-
mic may lose its academic status for an indefinite period
of time and resume its parent, i.e.,EducatedEmployee ,
role until an event occurs, i.e., a condition is fulfilled, which
makes it possible for this object to revert to its suspended
role.

5.3.4 Sharing and solidifying roles

Roles act in general like snapshot objects and cannot out-
survive the duration of the application program that created
them. Normally, there is no need for all roles to become
globally persistent and hence visible by other application
programs and users. However, in several situations, there are
some roles which might be useful for a large number of users
and application programs. To provide for additional model-
ing flexibility, the ORM allows roles (and individual role
objects in their extent) to be shared between applications or
to be promoted to persistent types and objects, respectively.

To allow roles to be shared between applications, we use
the following operation:

shareRoleClass with ap1, . . . , apm
[for i1, . . . , in | V alueBasedExpression |

PredicateBasedExpression]

This operation extends the visibility ofRoleClass from its
local application context to other applicationsapi (for i =
1 . . .m ≥ 1).

Role classes and selected objects in their extent may be
made persistent by invoking the operatorsolidify. Solidified
role classes have their definitions become automatically part
of the type DAG and thus can no longer be distinguished
from other database classes. In other words, this operation
results in the evolution of the object base as it automatically
adds new types and their respective instances. The syntax of
this operation is as follows:

solidify RoleClass
[for i1, ..., in | V alueBasedExpression |

PredicateBasedExpression]

When making a role class persistent, other role classes may
also be solidified transparently. If a role is solidified, all
objects included in its extent must also become permanent.
This process is governed by the following invariant.

Invariant 5. To solidify (share) a role, we must also solidify
(share) all roles appearing in all reachable paths between
the role’s class of origin and the defining class for that role.
Moreover, all role-defining classes referred to in the method
signatures and in the role’s definition statements must also
be made permanent (sharable).

6 Related work

In the database literature, the idea of role modeling was first
exemplified by the seminal work of Bachman on the role
data model [BAC77]. The definition of the role concept in
Bachman’s model is taken from the theatrical context and is
used to mean a behavioral pattern which may be assumed by
modeled entities in a problem domain. The role data model
introduced a static part for modeled objects, called theentity,
which establishes existence, and a dynamic type, called the
role-class, establishing behavior for that entity.

In the following, we summarize current research activi-
ties which share some concern about the evolution of objects
and outline their differences from roles. Of particular inter-
est to us are research activities in connection with views, as
they are also derived from already existing DAG classes.
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6.1 Views and roles

Views are used in object-oriented systems to define logical
partitioning of classes according to user authorization and ac-
cess privileges. Most approaches for view definition suggest
the use of query language expressions for specifying virtual
classes, i.e., views [He90], [ScLT91], [ScST94], [RUN92],
[KIM95] from stored classes in the class DAG. Alternative
approaches use special object algebra operators for defin-
ing views [RUN92]. The definition of a view consists of all
schema elements that can be included in a virtual class and a
query (algebraic operation) that defines how the view is pop-
ulated by selecting instances from one or more stored schema
classes (and/or other views). The extent of these view classes
is usually not stored explicitly but rather computed from the
view-defining query upon request [ScLT91]. In contrast to
views, roles have a different objective: their purpose is to
support dynamic object migration and re-classification – in
a way that does not affect the database schema. The ob-
servable differences relate to semantic preservation (views)
vs. semantic upgrades (roles); object generation and updates
(views) vs. strict object preservation (roles); differences in
the treatment of object identity; and, finally view vs. role ma-
terialization techniques. These issues are addressed briefly in
the following.

Views are in general semantics preserving as they in-
troduce only new information as computed attribute values,
e.g., by merging existing attributes, or by hiding attributes
and importing existing schema classes [AbB91], [ScLT91],
[RUN92]. In contrast to views, roles tend to refine seman-
tics by attaching additional meaning – in the form of new
(or unanticipated) behavior – to objects that have a special
meaning for an application. Additional semantics are corre-
lated with existing object semantics.

Views can be object-generating as they may generate
new types of objects (not included originally in the schema)
if view definition queries involve more than one stored
classes, e.g., join operations. Some approaches escape this
trend by adhering to the concept of object preservation
[ScLT91], [ScST94], [RUN92]. Views are also used to cre-
ate new objects and update already existing objects, provided
that there exists a one-to-one correspondence between a ma-
terialized instance of a view and the stored class on which
the view is defined [KiKS92]. In the ORM, new objects are
created only through classes in the DAG and are automati-
cally re-classified into role classes – provided that they meet
the role conditions.

Another important difference is the treatment of oids.
With views, the most common approach is to create a new
oid for each materialized view [KIM95], [AbB91]. This is
a direct consequence of the fact that views may be defined
by joining two or more stored classes (and/or views), or
alternatively by hiding attributes from stored classes. In both
cases, it is not possible to identify the materialized view
classes in terms of the oid(s) in the stored classes from which
they were produced. Hence, mechanisms are introduced to
map the oid assigned to each materialized view to the oid(s)
of the instance of the stored class(es) from which the view
originates. These concerns are not shared by roles, as their
identifying instances share the same oid with objects in their
classes of origin.

Finally, view objects are normally generated every time
the view definition query is invoked, while the role mecha-
nism allows the dynamic formation of groups of objects as a
result of monitoring and reacting to conditions which apply
to a class of objects as a whole. The role-generating condi-
tions are evaluated lazily (incrementally) [FeMZ94] when-
ever a new object is inserted into a DAG class.

6.2 Roles and schema evolution

The management of objects that evolve dynamically over
time has been of some concern to research activities in the
context of schema evolution [SkZ87], [ZDO90] [BAN87],
[ZIK91].

Schema evolution addresses the problem of schema up-
dates applied to an object base due to changing application
requirements. There are two approaches to schema evolu-
tion: conversionandversioning. The former restructures the
affected instances to conform to classes which have been
modified during the schema evolution process [BAN87],
[BRE89]. These changes are introduced at the schema level
and are propagated to all instances of a type in the database
that is affected by the changes. The objective is not only
to provide mechanisms for schema updates but also to make
certain that the structural and behavioral consistency of types
and objects is respected [ZIK91]. This requires writing trans-
formation functions to allow compatibility with application
programs that utilize the original classes and instances. To
avoid the pitfalls of class redefinition and conversion, a class
versioning approach can be employed, whereby the existing
class definition is not changed, but rather a new version of
the class definition is created which incorporates the required
changes. Instances and applications are then associated with
a particular version of a class and the runtime support is
responsible for simulating the semantics of the new class in-
terface on top of instances of the old, or vice versa [SkZ87],
[BjH89]. These approaches guarantee minimal compatibility,
as they rely on the existence of exception handlers to emulate
instances and provide default values that are present in one
version and not in another. A variant of this approach sug-
gests the changing of the schema as a whole rather than the
piecemeal changing of individual classes [LeH90], [MoS93].
The approach of [MoS93], in particular, provides facilities
for allowing database schemas to evolve both forward and
backwards for each class change. A serious problem with
this approach is that users and application developers have
to define their own update and backdate methods.

In contrast to roles, the emphasis with schema evolution
is placed on mechanisms that facilitate the migration of an
entire class population to a new (evolved) class by either
dropping or re-adjusting the old class definition. In general,
schema evolution requires human intervention, i.e., the in-
volvement of a database administrator, to apply the schema
changes and check the consistency of the database schema.
Such issues do not affect roles. However, research activities
relating to object-oriented schema type evolution [ZDO90],
[SkZ87] and parametrized primitives for schema updates in
O2 [ZIK91], in particular, have influenced our work on dy-
namic objects.
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6.3 Roles and other approaches

The notion of role has also been used in expressing potential
object states and behavior in the context of office informa-
tion systems [PER90]. Roles in this model are static: they
are specified in their totality at the schema level and are not
created dynamically on demand. In this model, the behavior
of an object can be derived by means of an abstract state
which defines all of its active roles and roles instantiations.
This particular model places emphasis on defining mech-
anisms for coordinating multiple instantiations of a single
role, on specifying rules for expressing valid role-state se-
quences and on placing constraints on the possible life cycle
of objects.

Aspects [RiS91] is another approach which attempts to
address dynamic object behavior and schema evolution in
general. Aspects are used in a strongly typed object-oriented
environment, which introduces sharp dichotomy between ab-
stract data types and implementations to support multiple in-
dependent object views. The key difference between aspects
and the role model proposed in this paper is that entities in
the aspect model may have many different unrelated types,
and unlike roles they do not simply evolve from one type
into another by means of pre-specified conditions or inter-
object relationships.

Remote similarity exists with the concept of multiple
substitutability as defined in [MoZ92], where the principle
of information hiding is used so that an object can either be
addressed as any of its constituents or as a whole, depend-
ing on the situation. The part-of relationship is employed to
enforce the different fashion constructs that an object may
obtain. This allows an object to behave as any of its con-
stituent fashions and to route a message directed to it to
the appropriate fashion object. Fashions do not share the
same concerns with views. They are specified statically (their
binding occurs at runtime), have all different oids, and are
not concerned with object migration.

Some similarities exist between the ORM and the Fi-
bonacci object-oriented database programming language
[ALB93]. The main concern of Fibonacci is to provide a
sound programming environment, where objects may ac-
quire new types and behavior while retaining their iden-
tity. Major concerns lie in designing an environment sup-
porting strong typing and late binding in conjunction with
message dispatching to resolve ambiguities due to multiplic-
ity of types at runtime. Objects are not created or manipu-
lated directly: they are always created and accessed through
their roles. In this way, roles essentially become part of the
database schema and are not transient as in the ORM. Fi-
bonacci focuses mainly on implementation issues such as the
use of delegation for implementing inheritance and message
passing. No attention is given to linguistic facilities needed
to support automatic migration of objects between classes;
forming roles as groupings of objects and creating roles from
inter-object relationships. Moreover, in Fibonacci, the issue
of controlling role semantics in accordance with application-
specific events is also not considered. All these concept are
supported by the ORM and have influenced its design con-
siderations.

6.4 Roles and programming languages

The Common Lisp Object System, CLOS [KEE89], has
some similarities with the ORM. It offers a genericchange -
class method to facilitate switching an instance from one
class to another. Methods can be added or deleted from ex-
isting classes and new classes can be added to an application.
The meta object protocol of Common Lisp specifies clearly
what happens if the target class supports additional or less
attributes or methods. However, except for the semantics in-
herent in interpreters and compilers, no formal definition has
been given for this framework and static type-checking is of
no concern to this approach.

7 Summary and future work

The inability of contemporary object-oriented database sys-
tems to represent evolution and re-configuration of individ-
ual objects may lead to a loss of modeling assumptions and
inter-object dependencies. This limitation makes the mainte-
nance of consistency of dynamic objects almost impossible.
In this paper, we have presented an extension to the object-
oriented paradigm which supports a natural way of repre-
senting object dynamics and addresses such shortcomings.
More specifically, we introduced the ORM as an extension
of object-oriented databases to support unanticipated behav-
ioral oscillations for individual objects, or groups of objects,
that have many types and share a single object identity. Up-
growths of behavior in the ORM are known as roles that
objects play which can be assumed and relinquished dy-
namically to reflect shifting modeling requirements.

The purpose of the ORM is to add more modeling power
and flexibility to the object-oriented approach by capturing
different kinds of object dynamics. They do so by being
based either on conditions which apply to an individual ob-
ject, groups of objects from a class, or on explicit/implicit
inter-object relationships. The ORM allows dynamic object
features to be fully synthesized with conventional object-
oriented database characteristics.

The ORM linguistic facilities provide operations that
support pre-existing objects to change their type, while re-
taining their original identity. They control such forms of
object evolution in accordance with application semantics,
while respecting the structural and behavioral consistency of
the typed objects. Object groups may be constructed on the
fly as a result of monitoring and reacting to conditions which
apply to the scope of a class as a whole. Such conditions
are evaluated “lazily” (incrementally) whenever a new object
is inserted into a DAG class. The ORM linguistic features
introduce modeling flexibility and give applications more or-
ganizational clarity by simplifying the design requirements
of complex applications that need to create, relinquish and
manipulate dynamic objects.

An initial prototype of the ORM was implemented in the
object-oriented database system ONTOS 2.2 and the pro-
gramming language C++. An extension of this early proto-
type based on an amalgamation of the ONTOS implementa-
tion and the expert system shell CLIPS has also been imple-
mented. Its purpose is to provide more natural and powerful
primitives for the ORM. In this way, reasoning facilities
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can be used for defining and manipulating role objects. For
example, rules are used as a way to define role classes in
terms of associations between selected objects from exist-
ing classes. Currently, a more flexible re-implementation of
the ORM in ObjectStore, using its meta-object protocol, is
underway.

The ORM can be extended by capturing another aspect
of application semantics, namely the temporal aspect. The
ORM was developed under the assumption that the object
base contains only the current ”snapshot” of the role data
we are interested in. This may prove to be too restrictive in
many situations where it is desirable to maintain terminated
roles, or old role versions, and associate them with current
roles for reasoning purposes. We are currently investigating
an adaptation of this scheme to the ORM.
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[BjH89] Bj örnerstedt A, Hulten C (1989) Version control in an object-
oriented architecture. In: Kim W, Lochovsky F (eds) Object-
Oriented, Concepts, Databases & Applications, Academic-
Press, London, pp 451-486

[BrS85] Brachman R, Schmolze J (1985) An overview of the KL-ONE
representation system. Cognitive Sci 9:171-216

[BRE89] Bretl R, et al. (1989) The GemStone data management sys-
tem. In: Kim W, Lochovsky F (eds) Object-Oriented Concepts,
Databases & Applications, Academic-Press, London, pp 283-
308

[FeMZ94] Ferrandina F, Meyer T, Zikari R (1994) Implementing lazy
database updates for an object database system. In: Bocca JB,
Jarke M (eds) Proc 20th VLDB Conf., Morgan Kaufmann, San
Mateo, Calif., pp 261-272

[He90] Helier S, Zdonik S (1990) Object views: extending the vision.
In: Proc Int’l Conf. on Data Engineering, IEEE, Los Alamitos,
Calif., pp 86-93.

[KaLR92] Kanellakis P, Lecluse C, Richard P (1992) Introduction to the
data model. In: Banchilhon F, Delobel C, Kanellakis P (eds)
Building an Object-Oriented Database System: The Story of
O2, Morgan-Kaufmann, San Mateo, pp 61-76

[KEE89] Keene SE (19989) Object-oriented programming in Common
Lisp. Addison-Wesley, Reading, Mass.

[KIM89] Kim W (19989) A model for queries in object-oriented
databases. In: Apers PMG, Wiederhold G (eds) Proc Int’l
Conf. on Very Large Databases, Morgan Kaufmann, San Mateo,
Calif., pp 423-432.

[KIM95] Kim W, Kelley W (1995) On view support in object-oriented
database systems. In: Kim W (ed) Modern Database Systems,
Addison-Wesley. Reading, Mass., pp 108-129

[KiKS92] Kifer M, Kim W, Sagiv Y (1992) Querying object-oriented
databases. In: Stonebraker M (ed) Proc SIGMOD-1992, ACM,
New York, pp 393-402

[LeH90] Lerner B, Habermann AN (1990) Beyond schema evolution to
database reorganization. SIGPLAN Notices 25:67-76

[LIE87] Lieberman H (1987) Using prototypical objects to implement
shared behavior in object-oriented systems. In: Meyrowitz NK
(ed) Proc OOPSLA’87 Conference, ACM, New York, pp 214-
223.

[MZO89] Maier D, Zhu J, Ohkawa H (1989) Features of the TEDM object
model. In: Kim W, Nicolas JM, Nishio S (eds) Proc First Int’l.
Conf. on Deductive and Object-Oriented Databases, Elsevier,
Amsterdam, pp 511-530

[MaB90] Manola F, Buchmann A (1990) A functional/relational object-
oriented model for distributed object management. GTE Labs,
technical memorandum, TM-03331-11-90-165

[MoZ92] Moerkotte G, Zachmann A (1992) Multiple substitutability
without affecting taxonomy. In: Pirotte A, Delobel C, Gott-
lob D (eds) Proc Extending Database Technology Conference
1992, Springer, Berlin, LNCS 580, pp 120-135

[MEY88] Meyer B (19989) Object-oriented software construction.
Prentice-Hall, Englewood Cliffs, N.J.

[MoS93] Monk S, Sommerville I (1993) Schema evolution in OODB
using class versioning. SIGMOD Record 22:16-22

[PAP91] Papazoglou MP (1991) Roles: a methodology for represent-
ing multifaceted objects. In: Karagiannis D (ed) Proc DEXA-
91: Database & Expert Systems Applications Conf., Springer,
Berlin, pp 7-12
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