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Abstract. To effectively model complex applications in its state variables. This preserves the uniformity of the en-
which constantly changing situations can be represented, tire set of objects contained in that specific class. Should
database system must be able to support the runtime spedhe need arise for schema changes, these are applied to the
fication of structural and behavioral nuances for objects orschema classes and have to be propagated to all the objects
an individual or group basis. This paper introduces the rolecontained in the classes under update. The restructuring of
mechanism as an extension of object-oriented databases tbjects in consequence of a schema change is necessary to
support unanticipated behavioral oscillations for objects thapreserve consistency between the type associated with each
may attain many types and share a single object identityclass and the structure and behavior of the class member
A role refers to the ability to represent object dynamics byobjects.
seamlessly integrating idiosyncratic behavior, possibly in re-  This traditional class-instance relationship requires dis-
sponse to external events, with pre-existing object behaviotinguishing statically between the schema elements that
specified at instance creation time. In this manner, the samare intended to describe a common structure and behav-
object can simultaneously be an instance of different classei®r, namely classes, and those that are expected to be id-
which symbolize the different roles that this object assumesiosyncratic, viz. the objects. During the development phase
The role concept and its underlying linguistic scheme sim-of a database application the designer can often foresee
plify the design requirements of complex applications thatcommonalities between different parts of the application,
need to create and manipulate dynamic objects. leading to a desire to share structure and behavior be-
tween those similar parts. In several situations it is, how-
Key words: Object-oriented database systems — Dynamicever, highly beneficial for a system to have the ability to
object re-classification — Object role model — Dynamic classattach idiosyncratic behavior to an individual object or a
hierarchy — Object migration set of objects within one or more classes at a later stage.
For instance, consider Fred dingineer object. Fred
may be promoted to the level of a principal engineer;
hence this object should dynamically acquire the proper-
ties of classPrincipalEngineer (and become an in-
1 Background stance of this class), while also retaining the properties of
anEngineer . At some point in his life Fred is first classi-
Object-oriented data models possess the ability to represefied as an Engineer . Later through some process, Fred
many different complex types of data and their relation-is re-classified as BrincipalEngineer . Yet at another
ships with depth and precision. As a result, existing objectoint, Fred may becomeMemberOfTheBoard . This be-
oriented database systems are employed successfully in areBgvior may continue until retirement is reached or Fred be-
which require performing manipulations on large collectionscomes unemployed! Figure 1 shows the linear succession of
of complex objects. transitions for an object called Fred during its lifespan. This
To model objects in a particular application domain, figure shows that Fred who started his professional career
object-oriented database systems rely on the class concegs anEngineer object at timet; was first transformed
All domain objects are pre-classified and assigned to a sinto aPrincipalEngineer object at timet,, and then to
gle class as its instances. All objects of a certain type havé MemberOfTheBoard object at timets until he became
exactly the same set of state variables and methods captuunemployed at time;.
ing their structure and behavior, respectively, and are treated Unfortunately, stating behavior at design time puts se-
strictly uniformly. Once an object is instantiated and pop-Vere restrictions on the kinds of unanticipated structure
ulates a class, the only changes permissible are changes &\d behavior that can be introduced in an object-oriented

database system without modifying existing database schema
Correspondence taB.J. Kramer
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Fig. 1. Life cycle of the Fred object

classes and all their instances. There is currently no lin-2. Another category of dynamic objects are those that
guistic support to allow an object to alter its own behavior  evolve in a pseudo-random fashialepending on the
separately from the other members of the class to which occurrence of an external event. For instance, an aca-
it belongs. For example, every time that the Fred object demic may serve as a member of the university advisory
needs to be re-classified (e.g., changes from an instance of committee, academic board and research advancement
classEngineer to PrincipalEngineer ) it would have committee depending on years of service, performance
to first be removed from its original class and then be re- and availability. These changes may be transient as they
generated with the properties of its new class, thereby losing come and go with time (the lifetime of such commit-
its original identity. tees is certainly short and their membership changes fre-
What is required is a linguistic framework which allows quently).
us to selectively seed new functionality to a distinguish-
able set of objects within a given class at runtime. In this ~ When viewed externally, an object belonging to either of
way, it would be possible for members of a class to dy-these two categories appears to oscillate among a set of dif-
namically acquire different state variables and respond tderent behaviorsOnly some of these can be foreseen when
different messages. This is not possible with conventionathe database schema is designed. It is thus highly desirable
object-oriented database systems because it would involvé® adapt existing objects to new application requirements,
changing the membership of an object from one class to anwhile maintaining a single object identity. However, when
other at runtime. This strictness of traditional object-orienteddesigning an object system that enables objects to transit
systems was first pointed out by proponents of prototypefrom one class to another, a number of issues have to be

based languages [LIE87] [StLU89]. addressed. These include the following:
— How can the effects of dynamic changes to existing ob-
1.1 The need for object dynamics jects and classes be kept under control, so that they do

not impact the structure of the database.
Because application and user needs are rarely stable, ad— Should the framework allow a member of some class to
ditional functionality needs to be constantly integrated into  become a member of any other class or only of classes
existing objects. To effectively model complex applications  that it is related to, e.g., by subtyping.
in which constantly changing situations can be represented,— What restrictions need to be imposed on object transi-
a system must be able to support the evolution and re- tions in order to balance expressiveness with the require-
configuration of individual objects. The strict uniformity of ment of type safety?
objects contained in a class is unreasonable: runtime struc-
tural and behavioral nuances should be specifiable for objectfs tionalit h td lies in the fact that i
on an individual basis without restructuring the database Jnctionality, an inherent danger fies in the fact that pro
schema or reorganizing the database contents. grammers do not have the means to ensure that the object

. L : identifier of an evolving object is identical to the object iden-
An object that evolves by changing its type dynamically Ik . - . .
is able to represent changing situations as it can be an int_|f|er of the object from which it evolved. This problem is

sance of diferent tpes i moment o moment. Sagh < 00% SOPOUTER Lo e e Ster conar
namic objectgnay fall into two broad categories. g object.

to create tables containing pointers to all potentially change-

1. Objects which need tdransform in a linear succes- able objects and access them only through these table indices
sion from a beginning state to an end state. For exam-{usually called handles). Another solution is to create a new
ple, consider the object Fred, who begins his profes-object every time an object changes class and then copy the
sional life as arEngineer object and then becomes a appropriate properties of the old object to the new object and
PrincipalEngineer and finally aMemberOfThe finally purge the old object. Yet another solution might be
Board object (Fig. 1). Although the properties of Fred the Common Lisp approach, whereby every object identifier
may vary in each of these phases they relate to the vers represented by a pair of references: one pointing to the
same person (and, hence, need to relate to the same oblass and the other referring to the storage. However, such
ject) under different guises. solutions are not only artificial but also introduce storage

In an object system that does not provide this kind of
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and performance overheads as well as adding a high degrderther motivates the approach through an illustrative exam-

of complexity and coupling. Moreover, they are error-proneple. The model is then formalized in Sect.3 to provide a

and may result in corrupting already existing database obprecise foundation for the specification of a handful of el-

jects. ementary operations to manipulate class DAGs. These are
From what has been stated above, it becomes obvioumtroduced in Sect. 4. High-level database operations, com-

that we require linguistic mechanisms for object-orientedposed on the basis of these elementary operations, are then

databases to support unanticipated behavioral oscillations fantroduced in Sect. 5. Section 6 discusses related work, while

individual objects, or sets of objects, that have many typesSect. 7 presents our summary and future work.

and share a single object identity. A language facility sup-

ports dynamic object properties best if new behavior can be

introduced by stating to the system the differences betwee@ Basic concepts and definitions

the existing behavior and the new desired behavior. Such

language properties are known to suppmfect dynamics ~ The discussion that follows introduces basic concepts and
terminology and focuses on objects which have the charac-

teristics described below. We refer to these characteristics
1.2 Contributions as the basic object model characteristics as they provide a
sound basis for integrating the concept of a role into object-
oriented databases. The object-oriented modeling concepts

In this paper, we propose a model designed to extend th ; Lo
capabilities of object-oriented database systems so that thqﬁn&?&g&qﬂggy{;g&%a this paper are based on those found

can support object dynamics. Central to our linguistic mech-

anisms is the concept oble. A role refers to the ability to

change the classification of an object, so that the same objest 1 gasic object model characteristics

can simultaneously be an instance of different classes some

of which are created dynamically. A role is an interface- The hasic object model constituents gees objects classes

based specification implemented on the basis of pre-existingnd relationships

objects in a way that allows a pre-existing object to gain o i

(or shed) state and behavior dynamically while retaining itsTYP€S: In & similar manner to abstract data types in pro-

original identity. Roles designate significant, semantically ~gramming languages, types define sets of structured data

meaningful shifts in object behavior (obtained dynamically) ~ together with operations to modify such data in a con-

that are correlated with existing object properties and can trolled manner. A type consists of a unique type name,

be queried exactly as other conventional class objects. In @ collection of typed attributes and a set of operations

summary, a role is determined on the basis of the collection (Of methods). All types pertinent to a particular appli-

of properties that are attached to the object in the center cation are organized in @irected acyclic type graptor

of interest and area responsible for bringing the role into  YP® DAG The nodes of the DAG are labeled with type

existence. names and are associated with a type specification, while
This paper introduces the object role model (ORM), a the edges represent a partial ordering relationship among

model which integrates the concept of a role into object- types_that defines constraints on their type specifications

oriented database technology in order to represent object ,(Cf- Fig. 2). . . i -~

dynamics. The linguistic facilities supported by the ORM Objects: All objects are instantiated from one type specifi-

introduce several special operators for creating roles and for ~cation defining their structure and behavioral interface.

allowing objects to be accessed in terms of particular roles Each object has a uniquebject identifier(oid) and a

that they may undertake. ORM is closely aligned with the ~ State. The oid serves as a unique handle to reference

ODMG-93 specifications for object databases. Thus, it offers ~ the object in order to access or modify its state. Object

the possibilities for a variety of object-oriented data models ~ identity is implemented via system-generated logically
to provide the following features: unique identifiers for each object at the time of its cre-

ation [MZ0O89].

1. Support for objects with changing type: objects which Classes: A class is based on a type specification and de-
dynamically change the current roles that they play —by  termines a set of objects. A class includes the runtime
gaining or retracting behavior. notions ofobject creationby cloning the prototype for

2. Control of such forms of object evolution in accordance  the class, and thextent which denotes the set of all ob-
with application semantics by allowing objects to react  jects that are instances of the class’ type at a given point

to external events, in order to modify their behavior. in time. Classes are organized into a class DAG, which is
3. Respect of the structural and behavioral consistency of isomorphic to the corresponding type DAG. Whenever
typed objects. a new object is created as an instance of a typis

object identifier is automatically added to the extent of
The research presented in this paper builds on preliminary the corresponding clagsand to the extent of all super-
work reported in [PAP91], [PaKB94] where we illustrated classes ot (if any). Thus, an object can be a member of
how roles may improve the versatility and modeling power  more than one classes at a time (multiple class member-
of object-oriented database systems. In the remainder of this ship). The top element class in the class DAG is called
paper we develop our model in detail. The following sec- Object and all objects in the database are members of
tion informally presents central concepts of the ORM and this class.
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Relationships: An association in the object-oriented worldis not only included in the extent of its corresponding class
can be modeled as a first-class object that has its owiPrivateCorporation but also in the extent of its super-
attributes and is existent dependent on its arguments. ThelassEmployer . Formal definitions of the class and type
typeshires andowns in Fig.2 are examples of rela- DAG are also given in Sect. 3.
tionships. Many object-oriented data models support an
explicit relationship construct, such as, for instance, CO-

COON [SCH92]. Thus, the type DAG can be enriched 2.3 Extending the basic model with roles

by user-defined relationship types. The extent of a rela-

tionship class contains a set of pairs of object identifiers A role may be thought of as a typadbstract channegbrovid-
ing an alternative perspective on an existing object. A role
ascribes properties that possibly vary over time and is im-

2.2 Example: type and class DAG plemented as an extension of existing objects. The purpose

of a role is to model different “active” (application-specific)

Figure 2 illustrates a schema portion of a sample employerrepresentation alternatives for the same object in terms of

employee object base in the form of a type DAG. Theboth structure and behavior. A particular object may con-

graphic illustration is based on a variant of an ER diagramcurrently exhibit many roles which are obtained dynamically
where diamonds represent binary relationship types andhroughout its lifespan. This type of object dynamism can be
boxes represent conventional types. This figure shows thachieved by subdividing and grouping together distinguish-
type Employer has as subtypes the two typPsivate able (and related) objects contained in the DAG classes and

Corporation  and GovernmentBranch , whereas type by defining subclasses or super-classes dynamically to en-

Employee has as subtypes the typdanager andCompa- compass these object groupings. Each of the new classes

nyOwner . Type Employee is seen to be related to type created in this manner israle-defining classThe purpose

Employer via a relationship typemployed by, whereas of role-defining classes is to partition an object into differ-

the inverse relationship typeires associateEmployer ent forms which are specific to the application in which the
with Employee types.Relationshipdetween types can be object occurs.
constrained as usual to a 1-1 association (e.gzmaployee The example depicted in Figs.2 and 3 has been chosen

employedBy a singleEmployer is indicated by a sin- only for reasons of simplicity. It is not characteristic of the
gle arrowhead from typ&mployee to type Employer ); usage of the role model. Typical complex systems where
1-N (e.g., anEmployer hires a set ofEmployee s is  roles can be of benefit may be, for example, design, product
indicated by a double arrowhead); or M-N (e.g., a set ofdevelopment and knowledge applications. With such appli-
CompanyOwners own multiplePrivateCorporation S). cations there is a need for designers and knowledge workers
Figure 3 depicts the class hierarchy derived from theto experiment with their environments (by using role objects)
type DAG in Fig.2. Ovals in Fig.3 denote class extents,and they also require effective database support to store use-
while dashed rectangles denote relationship extents. Ovalfal stable and tested role objects as part of an object base
and dashed rectangles are shown to contain the oids of thehared between many applications.
instances associated with the types introduced in Fig.2. To Figure 4 extends the context of Fig. 3 with dynamic ob-
fully understand the context of Fig.3, consider an objectjects to satisfy the needs of a particular application. The bot-
of type PrivateCorporation with the oidpcl. When  tom half of Fig. 4 shows how the class DAG can be privately
this object is created as an instance of that class, its oi@xtended to support role objects. A different application may
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use the same class DAG and extend it with different kindsthe role setp(e;) = {Employee , EducatedEmployee ,
of roles meaningful to its context. Therefore, it is useful to Shareholder , Engineer , EngineerShareholder }
perceive a role as a customizable slant into an object whiclincludes all the roles that objects of the tygenployee
constitutes a form of abstraction that configures this object ircan perform. We use the ter@ncestor role(s)to denote
a way that is dictated by the needs of the application withinall the roles above a given role in the class DAG. The
which the role occurs. term parent role is reserved for the role(s) immediately
By default, a role isvisible only within the scope of the above a given role, whereas the tedmescendant role(s)
specific application that created it. Only in special circum-is used to denote all the roles below that role in the class
stances can a role be shared between applications or becorPAG. For example, the ancestral roles fengineer are
permanent, i.e., become part of the type DAG. This will be EducatedEmployee and Employee , its parent role is
explained in detail in Sect.5.3.4. EducatedEmployee and its set of descendant roles con-
To comprehend how roles relate to object dynamics andsists of EngineerShareholder . Users can thus access
how they may impact upon the behavior of objects, consideand query objects from a particular perspective.
the case of aftmployee object with oide, which dynam- The main objective of roles in the ORM is to customize
ically obtains the role of aikducatedEmployee and an  objects — according to application needs — so that they be-
Engineer through a role defining operation (as explained come equipped with their own idiosyncratic behavior. In this
in Sect.5.1). The dashed ovals in Fig.4 indicate the existespect, roles present some similarity with views, however,
tence of roles which an object may assume or relinquishtunlike views their objective is to cater for dynamic object
during its lifespan in addition to the properties acquired migration and automatic re-classification — without affect-
upon creation. Such roles include, for instance, the rolesng the database schemdrhis implies that the semantics
EducatedEmployee andEngineer for the Employee of the ORM operations arebject-preservingn the sense
object with oide,. Thus, to describe this situation, the DAG that they return part of the extents of their input classes.
is extended by including two new (role-defining) classes,More importantly, the extension of the class DAG — due to
namelyEducatedEmployee andEngineer that do not the introduction of role-classes — does not change the set
correspond directly to the schema types in Fig. 2. As rolesof objects contained in the class DAGs. These and other
are used to facilitate migration of objects in the class DAG,virtues of object-preserving operations and transformations
both rolesEducatedEmployee andEngineer contain  have been addressed by [BER91] and [SCH92]. The empha-
in their extent theEmployee object with oid e;. Ac- sis is on preserving the consistency of (existing) evolving
cordingly, the object with oice, co-exists now in the ex- objects rather than creating new objects. New objects are
tent of the classeEmployee , EducatedEmployee and  created only through pre-existing DAG classes and are re-
Engineer . Roles allow the introduction of new classes into classified into roles either eagerly or lazily, depending on the
the class DAG without having to modify the definitions of case. If the role operations resulted in the generation of new
existing classes. This implies that their effects are localizedbjects, there will be a necessity for the system to maintain
to the context of the application that created and uses thenand cross-correlate multiple snapshot object configurations
Roles are transient in nature. They have a finite lifesparfrom diverse application programs.
which is defined by the application program that has created
them. Roles are created by individual application programs,
are stored in an object repository local to the programs thaB Formalization of the ORM

created them, and they have no global scope and effects, . ) . ) )
i.e., they cannot be “seen” outside the context of the ap_In this section we formalize the ORM. First we introduce

plication that created them. They normally do not become€lémentary concepts such as data types, objects, values, and
persistent unless there is an explicit requirement for this tgn€thod signatures. These form basic constituents of our def-
happen (cf. Sect.5.3). Each role introduces additional atinition of type and class DAGs. Our notion of well-formed
tributes and methods to existing objects — through a set oftNd type-safe class DAGs is then derived in several steps
role-specific operations — thereby permitting the representalfom the definition of type DAGs. It relies on typing con-
tion of behavioral shifts and increments. As roles re-definec€Pts which are also introduced in this section. In our defi-
behavior defined in their classes of origin, the system maylitions we adopt and extend concepts of thedata model

give different answers depending on how a particular objec@S defined in [Kal R92].

is viewed. For example, assume that we defined a method

income for Employee objects which gives their annual
salary. This method might be re-defined when we conside
the role ofEmployee object as a&Shareholder to give

us a combinedEmployee andShareholder income.

The set of roles played by an object is obviously deter-
mined by its position in the class DAG. The existence of
all the roles of interest for a given object, isle set fully
characterizes this object. The term role set is used here t&: a set ofattribute symboldor naming object attributes;
aggregate information about how an object is evolving, and ~ We use variables, a’, a1, az, . . . as typical elements of
is determined by the set of classes in whose extent the object  A.
identifier occurs. These classes form a connected subgraph1 the dgifferences between roles and views are covered in some detail in
of a given class DAG extended with roles. For instance,sect. 6 which describes related research work.

?.l Data types, values and methods

In the definition of the syntax and semantics of schema types,
classes, objects and roles below, we assume the following
pairwise disjoint sets serving éssic syntacti@ndsemantic
domainsin subsequent definitions:
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ST: a set ofschema-type names They provide a method name, a class name € C the
RT: a set ofrole-type names method is associated with, an argument and a result type
R: a set ofrelationship namesvith variablesr, rq,ro, . .. t1,t2 € types(C), respectively.

denoting arbitrary elements &.
ID: denotes the set of all oids and variablgs!, i1, 7o, . ..

are assumed to range ovi&r. 3.2 Schema-type DAGs

From ST andRT, we form the seC := STURT of class-
type namesand we use variables ¢/, ci,co,... to range A schema-type DAG (or simply type DAG) defines the static
over C. From C and R, we form the sefl ;= CUR; it part of a database. It organizes a database in the form of a
allows us to refer collectively to class and relationship nameglirected acyclic graph. The nodes of the graph are labeled
whenever the distinction is irrelevant or can be deduced fronwith schema-type and relationship names and are associated
the context.Object identifiersare modeled as pairs:, () with data types and method signatures which determine the
with n a natural number imN. structure and behavior of instances of these types, respec-
The structure of objects is defined by means of two typetively.
constructors which allow us to form record and pair types

to describe the structure of class and relationship instance,%zefinition 3. A type DAGis a quadrupleT; <, 7, u), where

is a subset of class and relationship type$ imom which
Definition 1. For a subse€ of C, the set ofdata types over we derive the following two disjoint subsets:

C, written types(C), is defined as follows: -
ypes(C) C =T N ST, a finite set of schema-type names and

1. class names i’ are intypes(C); R :=TnNR, afinite set of binary relationship names;
2. every @ :ci,...,a, : cy)is in types(C) and is called (T, <) : is a partially ordered s&t < denotes aris a rela-
a record type provided that the:;; occur inC and the tionshipand is disjoint onC' and R;
attribute names are distinct, i.e,;,# a; for 1 <i < j < 7 1 is a mapping fromIl" to types(C) such that, for allc
n,0 < n; in C, 7(c) is a record type and, for alt in R, 7(r)
3. if ¢1,¢, are elements o€, every (binary)relationship is a relationship type, respectively; is called atype
typeof the form g1, ¢2) is in types(C). assignment
. . I _ 1 & is a mapping fronC' into a set of method signatures of
For reasons of S|mpl|c¢y, th|§ definition does not admit re- the forme.m : t1 — t, such thate € C and ty, ty €
cursive record or relationship typeRecord typesas AT- types(C).
tribute hames must be unique. Each attribute naméor
i1=1,...,nof arecord typedy : c1,...,a, : ¢,) isviewed For any two classes,c with ¢ < ¢ in C, c is called a
as anattribute functiona; : ¢ X ¢z X - -+ X ¢,—¢; mapping  subclasof ¢’ andc’ is called asuper-clasof c.
each instance of the record type intodtth component. To By ¢* we refer to the sef{c’|c < ¢’} of super-classes

access the source and destination clasandc, of any re-  and*®c denotes the sefic’|c’ < ¢} of subclasses of the class
lationship type {1, c2), we also use the generfmrojection .

functionssrc anddest respectively. Henceforth we use the According to this definition, the type DAG presented in
variablest, t’,t1,t, ... to denote data types. Fig. 2 reads as follows:

Values are instances of data types. They are used to de-
fine the state of objects. C = {EMPLOYEEMANAGERCOMPAN'YOWNER

EMPLOYER
Definition 2. For a subsef of ID, we inductively define the PRIVATE CORPORATIONGOVERNMENBRANCH
set ofvalues overl, written val(I), as follows: R ={hires ,employed by,owns,owned by }
S ] src(hires ) = des{employed by)=EMPLOYER
1. every element i is in val(); desthires ) = src(employed by) = EMPLOYEE

2. the special symbal is a distinct element inal(f); it Z -

denotes thaindefinedvalue; (sjg:s(%vvcrs]g) :d;scrégngg B;g _ COMPANYOWNER
3. ifvq,...,v, are inval(l), so is the labeled record{ = PRIVATE CORPORATION

v1,...,a, = v,) for n > 0, provided that all attributes <= {(MANAGEREMPLOYEE

a,; are distinct;
4. if vy,v2 # L are inwval(I), then all pairs 41, v2) are in Eggmgmgmggﬁgfgfgg
val(l). (PRIVATE CORPORATION
In the sequel, the variables v’, v, ... are used to denote EMPLOYER (GOVERNMENBRANCHEMPLOYER
values. T7(EMPLOYEE= (name: ... ,address :...,
Operations, often called methods in object-oriented setsalary :...)
tings, capture the behavior common to all instances of certain- -
types.Method signaturesire of the form (hires ) = (r(EMPLOYERT(EMPLOYER

cmity — . w(EMPLOYEE=...

2 To simplify the formal definition, we omit standard atomic data types 3 That is, < is a reflexive, antisymmetric and transitive relationship over
such asBoolean integer, string, or real. T.
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The isa relationship of a type DAG may be used to induce a
sub typing relationship on class names. Moreover, a record
can be used whenever another rectrid expected, but only

if ¢ has at least the same attributest’aand the types of the
attributes oft are subtypes of the types of the corresponding
attributes oft’. Similarly, a relationship type is a subtype

of another relationship type if the source and destination

types ofr are subtypes of the source and destination types

of r'.

Definition 4. The subtyping relationshipver a type DAG
(T, =<, T, ), denoted by<, is defined by the following min-
imal set of rules:

1. ¢1 < cp impliese; < ey
2. (0,1 Tty ., G,
(a1 :ty, ..., am th,,)
if t;, <t/ fori=1...,m;
3. (t1,t2) < (ty,th) if t1 <t} andt, < t5.

. tm+k,) S

: tma Am+1 - tm+17 sy Otk

The previous definition includes no integrity constraints that
would prevent the specification of ill-formed type DAGs. We
consider a type DA@H to be ill-formed if its isa relation-

ships on classes and relationships do not conform with the

subtyping relationship according to the type assignmeoit
TH, or if method signatures do not conform with the type

structure. Such deficiencies are excluded by the following

definition of well-formed type DAGSs.

Definition 5. A type DAG (I, <, 7, i) is well-formedif for
all ¢1,coin C :=TNST and, for allry andr, in R :=TNR,
the following conditions hold:

1. r1 < rp impliessrc(r(ry)) < src(r(r2)) anddesi(7(r1))
< des{(7(r2));

c1 < cp implies 7(c1) < 7(c2);

for all ¢ in C, we have thaj(c) = {c.m : t1 — t2};

if ¢ < ¢ and methodn is defined inc with signature
cem @ t1 — tp and inc with signaturec’.m : t} — 5,
thent; < ¢} andt, < ¢, must hold.

2.
3.
4.

3.3 Objects, classes and relationships

Classes are inhabited by objects that are simply viewed as
pairs associating an object identifier with a value according
to Definition 2.

Definition 6. An objectis a pair ¢, v).

In Definitions 1 and 2, we defined independently how
data types and values are formed correctly. But as objects are
instantiated from data types, we must ensure that the value
associated with a particular oid is compatible with the type of
that oid. This is made precise in the definition below which
indicates to what set of values the data types associated with
the type names in a type DAG can be instantiated. We call
this the interpretation of a type.

Definition 7 For any type DAG T, <, 7, 1) with ¢, ¢, . ..,
cm € C :=TNST theinterpretationof a typet in types(C)
underr, denoted by {J .., is defined as follows:

1. [, = {ili = (¢,n),d € C, < ¢,n € N}U{L},

i.e., oids of objects that were instantiated as members of
subclasses of clagsare allowed as values of type

I[(al CCLy e, A Cm)]l'r = {(al = U1,...,0m
Am+l = Umtly - - - Om+k = Um+k)|vi € |[Ci]7-7i = 1; B
m+k,k > 0}, i.e., only those records that have at least
the set of attributes of the record type and whose at-
tributes assume values of subtypes of the corresponding
attribute types are accepted as values of the record type;
[(c1, )] = {(v1,v2)|v1 € [ca]l -, v2 € [ 2]+ }, €., only
pairs of values whose first and second component assume
values of subtypes of the first and second component of
the relationship type are taken as values of the relation-
ship type.

= /Uma

3.

In the above definition, each class hamis interpreted by

the set of oids naming objects of any subclasg Ghclud-

ing ¢ becausex is reflexive), each record type by the set of
records that have at least as many components as the record
type and assign a value out of the interpretation of the at-
tribute ¢; to the corresponding attributg and, finally, each
relationship type is interpreted by the set of pairs of oids of
the proper source and destination class type.

Further, we assume that multiple-inheritance conflicts may  \ye allow the undefined valug to be used as an at-

not occur. This can be excluded explicitly using a sufficient
condition as given in [KaLR92]. Condition 3 of the above
definition ensures that is prefix closed with respect to class
names. Conditions 2 and 4 ensuype safetyon attributes
and methods by requiringovariance(restriction) for class
names and result types aedntravariance(expansion) for
arguments of methods.

Informally, the use of argument contravariance and resul

covariance can be explained as follows. Assume we expeg

a function or methodf to have typet; — t, and therefore
considert; arguments as permissible when callifigNow
assumef actually has type) — t, with ¢; < t{. Then we
can pass all the expected permissible arguments of type
without type violation;f will return results of type’, which

is permissible ift, < ¢, because the results will then also
be of typet, and are therefore acceptable as they do no
introduce any type violations.

tribute value in records to cope with situations where no
well-defined value is known.

3.4 Class hierarchies and roles

s mentioned in the previous section, objects can play sev-
ral roles at a time and they can change their roles during
eir lifetime. This dynamics is captured in the notion of a
class DAG which is derived from a type DAG by adding

a setw of instantiated objects and specifying an oid assign-
mentr, that maps each class type (and relationship) into the
set of (pairs of) oids of objects that were created as instances
of that class. Moreover, it maps each role class into a set of
oids of role objects acquired from other classes by explicit
tobject migration.

In the remainder of this paper when speaking about a 4 Henceforth we will refer to a class DAG as the class hierarchy to avoid

type DAG we always mean a well-formed type DAG .

any confusion with the notion of a type DAG.
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Note that this overloaded interpretation of is only = assume new (and relinquish old) behavior by introducing
possible becausee do not allow role classes to have their new classes in (and dropping old classes from) the class hi-
own instances erarchy presents a serious threat to the type safety of the
system. To avoid these potential problems, the ORM bases
its type-checking mechanisms on the notiontgbe con-
formance Conformance is a relation between types which
determines whether objects of one type can be used in lieu of

Definition 8. Given a well-formed type DAGTH = (T, <
, T, 1t), then a class hierarchy derived froftd, class hier-
archy for short, is a structur€H = (77, <', 7/, i/, w, 7,),

where objects of another as discussed in the context of Definition 5.
T CT': such that T'\T) N ST = @, i.e., the additional A number of object-based or object-oriented languages
elements inT” are role classes; such as Emerald [BLA87], Trellis-Owl [SCH85], Eiffel
(T",<’) : is a partially ordered set such that the restriction[MEY88] and object models such as TEDM [MZ089] and

of <’ to elements i7" is equivalent to<, i.e., <’ |7 =<; FROOM [MaB90] have adopted the notion of conformance
7/ 1 is a type assignment such that the restrictionroto to determine whether an object is of the specified type by
the domain ofr is identical tor, i.e., 7’|r = 7; comparing its interfaces with the interface specified by the

w1’ : is a method assignment identical goon the restriction  type in question.

of u/ to the domain ofu, i.e., 1| = 1; ) . . .
w: is a set of objects; Observation 1. The signatures, i.e. type definitions and

. is a function, callecbid assignmentwhich maps each method signatures, of any two subclass-related classes in a
o ’ Y .
class name: € T’ and each relationship namee 7/ Well-formed class hierarchy conform.

o 2 f'.?.'te set of 'de”tf!f'ers and a finite set of Pairs Tis ohservation holds due to the conditions of Definition 9.
8. iaentifiers Eamlng 0 JeCtSd'w'l respeﬁpve YiTo :cs IIAn elaborate discussion about method conformance in the
Isjoint on schema types and relationships, 1.e., for allyegence of covariance for class names and result types and

classesy, o’ € T' with a # o/, we require thatro(2) N ntravariance of argument types can be found in [ScZ94
mo(a’) = 0; m,(c) denotes the set afwn instance®f o and [ScC95]. 9 P [ |

if a € T and it denotes the set dfansient instance#
a is role class name iffi"\T'; the extentof each class or

relationshipa in 7" is given by the extensiom of =, 3.6 Type union and intersection

defined by
m(a) = U To(a') . To support dynamic specialization and generalization, we
a’eta need to introduce two partial operators that define the union
By oids(CH) we denote the setti|(i, v) € w}. and intersection of record types.

Like type hierarchies, class hierarchies may be ill-formedpefinition 10. Let ¢ and¢’ be two record types formed over
if, for instance, the value associated with some object idena given class hierarchy_ Moreover, let
tifier 4 in the extent ofr(c) of some class: is incompati-
ble with the typer(c) of ¢, or if the additional role classes ¢ = (a1 ity o 0k Dty Gt thads oo Qpotm - Eem)
and their associated methods do not satisfy the conditions irt’ = (a1t ek Dt Qg S g s Qg t L)
Definitions 5.2, 5.3, and 5.4. The following definition gives with ¢; <t/ fori=1...k
a number of integrity constraints that a well-formed class i .
hierarchy must satisfy. The first condition in the following Then thetype uniont Li ¢’ is the record type
definition states that the values of objects mustbmpati-

ai it1,...,0K D tg, Qpe1 - a1, - -
ble with their typeunder the given type assignment. (ar:ta bt e T

O+m * Etms a’;c+1 . t;<;+17 cee 7a;¢,+n . t;f,+n) >
with a; # o) fori=k+1,... k+mandj =k+1,... . k+n.
Dually, thetype intersectiort 1 ¢’ is the record type

Definition 9. A class hierarchy T, <, 7, i, w, 7,) is well-
formedif conditions 2, 3, and 4 of Definition 5 and, addi-
tionally, the following conditions hold:

1. for all objects {,v) in w and all classes € T with (a1 : 84, ..., ax 1 ty,).
1 € w(c), we require thav € [7(c)] ,;
2 © d [~ In all other cases, we set /¢’ = T andtM¢ = L. Note
that Ll andr are only partially defined. If defined, they are
U mo(0) = {il(i, v) € w} . associative, as the order of attributes in a record type is
ceT semantically irrelevant. Therefore, we omit parenthesis when

forming the union or intersection of multiple types.

3.5 Type safety Observation 2. If ¢t LI ¢’ and ¢ M ¢’ are defined, then <
tut’ andtmnt’ <t hold.

One of the core features of the approach to roles is preserv-

ing an object’s identity while allowing it to change behav-

ior and structure. An object may participate in many roles,4 Elementary operations on class hierarchies

but it has a unique oid. The only reference to an object is

through its object identifier in conjunction with the specifica- The ORM provides elementary operations to modify class

tion of a role-class name. Allowing objects to dynamically hierarchies. These include operations to:
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1. modify the class hierarchy by adding and deleting role addRoleClassc asSubclassOfty, . . ., ¢k

classes, ; ; rr /
2. migrate objects from existing classes to new role classe%r?ger into anew class hierarchy Ufc}, <', 7', ', w, 7o),
3. modify the type definition of a role class by adding at-

tributes and possibly new methods. 1. cin RT,

Although these operations may appear to be similar t02'

schema update operations, they introduce a new dimension  <'=< U{(c, cy), ..., (c,cx)} U

when combined with object migration. We assume that all , ,

elementary operations introduced below are strict, i.e., they U {(c.etu...u U {(c.cb)}

are undefined whenever a constituent operator such as the <€*c cpEcn

type union or intersection are undefined. Moreover, we as-5 7(¢) = (1)U - -Ur(ex) andr'(a) = 7(a) foralla € T
sume that the operations are undefined whenever at least ong 1() =0 and /() = u() for all ¢ in T '
of their preconditions fails to hold. In this case, they have ¢~ () = 0, 7'(c) = 0, and, for alla in T, we have that
no effect on the given well-formed class hierarchy. ' (a) = - (@) andw”(a) :'W(a) ’

In this paper, we consider roles that can be defined as ° ° '
sub- and super-classes of existing classes and objects thakovided that the same conditions as in Definition 11 hold.
can migrate into sub- or super-classes. This allows us t
provide a comprehensive set of operations that guarante
type safety and consistent class DAGs. The implications of!
relaxing these constraints to apply to classes other than sub- . . .
or super-classes are the subject of ongoing research. Sonfinition 13. The operation
preliminary results have been reported in [PKS95]. markDeleteRoleClassc

Throughout this section, we use the sym@8#l to denote
the following well-formed class hierarch¥'(<, 7, i, w, m,).

bservation 3. Both operations preserve the well-formed
ess ofCH and are thus type-safe.

mapsCH into a shadow class DAGT", <, 7/, /', w, ),
provided thatc occurs inT/ N RT, where

1. classe, all subclasses of, all relationships that depend

on classes in*c disappear, i.e.,T” = T\(*c U {r €

T| src(r(r)) vV des(r(r)) € °c});
2. the isa-relationshiprelationshipis reduced by all pairs
whose first or second component is no longer a member
of T, i.e.,, <'= {(a1, @) €< |ag, a2 € T'};
the type and method assignments of all remaining classes

4.1 Modifying the structure of a class DAG

The following operation supports tlgeneralizatiorof exist-
ing classes, ..., c, into a new clasg acting as the direct
super-class of the former such that the type associatedcwith
is the intersection of the type associated withsubclasses.
Generalization is, for instance, useful for adding common 3. - . g,
behavior to unrelated classes in a class DAG, as needs arise, nd relationships do not change, i.€(a) = 7(e) and
by forming a common super-class and associating the new F‘/(O‘) = o) foralla € T ) )
behavior with that super-class from which it is automatically 4 ™ (@) = (1(@)\71(c))Umo(a) and (@) = mo(@)V a € T".
inherited. We have thatr'(«) = (...) U mo(c).
Definition 11. The operation The continuous addition of role classes to a given class DAG
is likely to reduce data space and affect the performance of
ORM implementations. From a system designer’s point of
mapsCH into a new class hierarch§'(U{c}, <’, 7/, p/,w, ),  view, it is tempting to provide an operation for purging role
where classes that become obsolete. However, as there may be ref-
1. ¢in RT erences to role objects, m_ethods and cl_asses that we wish
2. = U,{(cl ey (ers ), to delete, instead of prowdmg a conventlonal_ o_IeIete opera-
3. () = T(cl’) n...0 T’(ck) and 7'(a) = r(a) for all  fon. we rather rely on the existence of an efficient garbage
a €T (ie. v is the same as for all old classes and collector and provm_le an operation to mark these roles that
relationships irT), are designated as invalidated by the users. We then let the
4. 1/(c) = 0 and i/(¢) = u() for all ¢ in T garbage collector perform th_e dgle'uon when no further ref-
erences to that role class or its instances exist. If no garbage
collector is available, special provisions can be made at the
systems level, e.g., by building up a cross-reference table,

addRoleClassc asSuperclassOf, . . ., ¢k

5. 7l(c) =0, 7'(c) = m(cr)) U--- Um(cy), and, for alla in
T, we have thatt/ (a) = 7,(a) and7’(«) = ()

if the following conditions hold: to keep track of the establishment and destruction of refer-
1. ¢ does not occur i, ences and thus prohibit dangling references upon deletion of
2. ci,...,ci are elements of’, and objects, methods or attributes. The abowark-deleteoper-

3. (T U{c}, <) is a partial order. ation extends this type of deletion marking to all subclasses

.__of the selected class and to all relationships that have any of
. \ 1alIZ€he marked classes as source or destination. As role objects
§evera| classe, ..., ci dynamlcally into & more special- are not destroyed, there are no dangling references. Also new
ized role class:. Its type is the union of the types of the | oerences to an invalidated role, as well as the dispatching
former. of messages to invalidated role objects, result in trappable
Definition 12. The operation errors.
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The effect of this operation on a given class DAG is or transient oids (for some of which it is the smallest class).
illustrated in Fig.5. This figure shows that, when marking The effects of migrating an object into a subclasf the
a class as deleted, all of its descendant classes as well géven classc; are that: (a) the oid of the migrated object
relationships, which have this class either as origin or destibecomes a member of the set of transient objecis;ofb)
nation, are also marked as deleted. All remaining classes ar® becomes the new smallest class of the migrated object;
shaded to denote the existence of a shadow DAG as defineghd (c) the extents of any super-classesoére extended
above. by the oid of the migrated object.

4.2 Migrating objects 4.3 Adding attributes and methods

Two types of object migration are potentially useful in a classDefinition 15. The operation

DAG: migration from a class to a subclass or super-class of addAttribute « : ¢ = v to RoleClassc
c or to an arbitrary class. The former supports the dynamic

specialization or generalization of objects, while the lattermapsCH into (7', <, 7/, u,w, m,) Where

models the case where an object discontinuously changes iti ) = (a1 c ar t cma t ) i () = (ar
structure and behavior. In the framework of this paper we ™ Lo Pl o Ok - SR - 1
) ) Co C1,...,a - cp) and () = 7(a) for all « # c € T
consider object migration into subclasses and super-classes and
only. 2. for any oidi € 7(c) occurring in the extent of the mod-
Definition 14. The operation ified class, we have that(i) = v,
migrateObject i fromClass c; toSubclasscs provided thatc is a role class, i.e.c € T N RT, ¢ has
i , . no subclasses, i.e?t¢c = 0, a # a; for j = 1,...,k, and
mapsCH into (I, <, 7, u,w, 7,), provided that v = (', n) with ¢/ < t.
l.cgeTandc; e TNRT, Definition 16. The operation
2. co < eq, and ’
3. i € my(ca), i.e., identifiers int(c;) that are not owned addMethod c.m : t; — t, to RoleClassc
or transient '§0c1 but stem from other subclasses @f mapsCH into a new class hierarch{( <, 7, i/, w, 7,), with
cannot be migrated. () = p(c”) Tor all ' # cin T and /() = p(c’) U{e.m :
Then t1 — to}, provided that

1. a) i becomes a new member of the set of transient ob-1. ¢=¢, ¢ € TNRT, *c =9, _
jects ofcy, i.e., 7! (c2) = molc2) U {i}, 2. for all ¢’ € ¢* and for all¢’.m : t] — t5 in (), we
b) while the sets of own and transient objects of all _ have thatty < ¢ andt, < ¢; holds, and o
other class and relationship typas# c, remain the 3. there is no other method with signatufem : t; — t;

same, i.e.;’ () = 7,(a), in u(c’).
c) for all super-classes € c of c,, their extents are  congition 2 ensures method conformance. This condition
augmented by, i.e., w'(c) = m(c) U {i}, . guarantees that all methods defined in a class have a unique
d) while the extents of all other classesin T'\c; re-  pame, It can be verified in practice by checking just the sets
main unchanged, i.ex’(a) = m(a), and of equally named methods in direct super-classes.of

2. the value of each attributein 7(c,) that does not occur
in 7(cy) is treated as. whenever objecti(v) is accessed Observation 5. Object migration, method and attribute ex-
as an object of class. tension, and deletion marking can also be shown to preserve

the well-formedness and thus the type safety of a class DAG.

The only exception is when no reference is made to any of

Observation 4. Each objectin a class DAGH hasasmall- the deleted entities (role class, relationship, oid). However,

est class, i.e., for al(i,v) € w, there is ac € T such that this type of reference can be trapped at the system level.

i € mo(c) and, for all other classeg’ € *c U (T\c*), we

have thati ¢ =(c').

Classc; is called theparent roleof ¢ with respect tai.

For a complete proof of this observation, we have to show
that, under the premise that the operations are defined, none
By definition of a well-formed class hierarchy each object in of the conditions presented in the definition of well-formed

w is created as an instance of exactly one schema type angipe and class DAGs (Definitions 5 and 9) and none of the
occurs in the extent of all super-classes of its correspondingonstraints of oid assignments and method signature assign-
class. The class where objects dnare created is called ments are violated.

their smallest classThe extent of each role clagsin the

ORM is empty upon creation (cf. Def.11). The only way

to populate the extenty(c) of classc with oids is through 5 Role class operations

object migration. One way of achieving object migration

in the ORM is by placing objects of a given classinto In this section, we introduce some higher level ORM op-
its descendants extents. This class may include in its setrations for creating and manipulating roles. The semantics
m,(c) objects of its own (for which it is the smaller class) of these operations are introduced in terms of compositions
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N

\
Fig. 5. Effect of deleting a role class and the remaining shadow DAG

of the elementary role operations defined in Sect. 4. In the ACADEMIC
definitions below, we assume the existence of a well-formed
class hierarchy®, <, 7, p, w, 7,).
It is important to note that the role creation operations
described in the following do not only physically create roles is—a is—a is—a
but also automatically instantiate their respective role classes
and populate them with selected objects from their originat-

ing classes.
PROFESSOR STUDENT ASSISTANT

. . . Fig. 6. A schema subportion for a university database
5.1 Role operations based on the grouping of objects

5.1.1 Creation of roles by enumeration a1 ti=v1,...,a 0t =

The first and simplest role-defining mechanismbisenu-  t0 capture additional state information and new method sig-
meration Here, roles can be defined by identifying the role- natures such as:

creating objects by means of their object identifiers. The comy ity =t ey Lty — t
operation and method implementations to capture new behavior for the
createRoleClass: asSubclassOfy, . . ., ¢, identified object. The operations in the statemeritClass
for i1,...,0n, iN c1: Body extend the semantics of the high-level operatios-
< roleClassBody > ateRoleClass— as described above — by the following se-
for ji, ..., jn, in c2 guence of class hierarchy operations (described in Sect. 4.3).

< roleClassBody > i
addAttribute a; : t; = v1 toRoleClassc;

for k1,...,kn,, IN ¢y
< roleClassBody > addMethod c.m; : t; — t; toRoleClassc;
creates a new role clagsnto which oidsiy, . . ., ip,, j1, - - -
Jngs -« -3 k1 - .., kn,, — from the super-classes,...,c,, 0

This has as effect the creation of an additional facet for
an object which retains its original object identifier.

In the ORM, we can generate role classes as generaliza-
tions of already existing classes. If we use generalization as
addRoleClassc asSubclassOf, . . ., ¢! a means to define a new role class, saycommon to a set
migrateObject i1 fromClass ¢; toSubclassc; of Cla_sse5c1, ey Cm — the extent of would automatically

i contain the union of the extents of all classes...,c,,.

Consider the following statement in conjunction with Fig. 6
migrateObject i,,, fromClass c; toSubclassc; which describes a schema portion of a university database.

< roleClassBody >

classc — are migrated. This operation is the result of the
following sequential composition of elementary role class
operations defined in Sect. 4:

createRoleClassTutor asSuperclassOf

. . . Professor, Student, Assistant
migrateObject j; fromClass ¢, toSubclassc;

The above statement has the semantics of the operation

migrateObject j,, fromClass ¢, toSubclassc; addRoleClassTutor asSuperclassOfProfessor,
Student, Assistant
< roleClassBody > A new subclass relationship is introduced between the
smallest common super-class Bfofessor, Student
migrateObject &, fromClass c,, toSubclasse and Assistant , namely Academic , and the new class

Tutor . The operation is undefined if there is no smallest
The operation is only defined if the constituent elementarycommon super-class of ariwo or moresuper-classes. The
operations are all defined. The statemeateClassBody new role class factors out commonalities between existing
may include the addition of new attributes such as: classes. The semantics of the above operation result in the



85

ACADEMIC for 4,...,4,, in Professor
for ja,...,jn, in Student
is—a for k1,...,k,, In Assistant

with < roleClassBody >
in conjunction with the schema subportion of a univer-

TUTOR sity database depicted in Fig.6. This figure shows that
Academic s compriseProfessor s, Student s andAs-
sistant  s.

The above ORM statement creates a new role, namely
is—a is—a is—a Tutor (a kind of teaching assistant), for objects that be-

long to different classes, namely the clasfeefessor
Student and Assistant . Notice that after the execu-
tion of this statement the new role clabstor is generated
PROFESSOR STUDENT ASSISTANT for the enumerated objects, contained in the role creation
Fig. 7. Factoring out class commonalities and representing them as roles Statement, as a direct subclassAwfademic . This is due
to the fact thatAcademic is the common (direct) super-
class of all these three classes. The new mMigor in-
properties of the clas$utor being the common proper- cludes in its extent all the objects enumerated in the role cre-
ties of classedrofessor , Student andAssistant .  ation statement. Autor is a role assumed by some and
This situation is shown in Fig. 7. The extent of the new role not all the objects in the class&sofessor , Student
classTutor is formed by taking theunion of the extents  and Assistant , further specializations of this new role
of the classesProfessor , Student and Assistant class are also automatically generated by employing multi-
according to Definition 11. The addition of the role class ple inheritance to represent the roR®fessor-Tutor s,
Tutor guarantees that all the re-arrangements in the classtudent-Tutor s andAssistant-Tutor s. This situ-
DAG result in a well-formed DAG (cf. Definition 9), as this ation is depicted in Fig. 8.
operation is only defined if all its constituent elementary op-
erations are well defined and, hence, the conjunction of their
preconditions is satisfied. 5.1.2 Value-based creation of roles
The above operation is not flexible as it does not per-
mit to exercise explicit control over subsets of objects inValue-basedoles may be defined using an expression based

specialized classes which can migrate into the more genef@n attributes of the object in question. The semantics of
alue-based role class operations are defined in a similar

alized cla_ss_. To selectively migrat_e objects from the eXten%anner as enumeration-based operations on the basis of
of a specialized class to a generalized class we may use thge elementary operations introduced in Sect. 4. Value-based

following operation: roles are defined according to the following syntax.
createRoleClass: asGeneralizationOfecy, . .., ¢, createRoleClassc asSubclassOf asGeneralizationOf¢’ grouped by e:

for i1,...,0n, iN c1: < roleClassBody >

for ju, ..., Jn, I c2: wheree denotes an expression referring to attribute values

of particular attributes. Here a new role clas$s created

as subclass (super-class) of clasand then all identifiers

1 € m,(c’) of objects {,v) with v =e.

This operation generates a subclass (role class) naged For example, if we wish to introduce a new role for
for each class of origin; (for i = 1,...,m) and makes the educated employees (employees with a University degree),
role classc become their common parent class. The semanwe would declare a role class as follows:

tics of th.'? operation are captured by the fOllOWIﬂg SequentlalcreateRoIeCIassiducatedEmponee asSubclassOEmployee
composition of elementary role class operations: grouped by Employee.degree not null

< roleClassBody >

for k1,...,kn,, IN cpt
with < roleClassBody >

createRoleClassc;-c asSubclassOt for iy, ..., i,,in 1
The statementoleClassBody includes the definition of at-
tributes and methods and is treated in the same manner as

createRoleClass:,,-¢ asSubclassOt,,, for ki,...,k, X . . A
" " ! o explained in the previous subsection.

in ¢,
addRoleClassc asSuperclassOt;-c, . . ., ¢p-c

Moreover, if there exists a smallest common super-ctass 5.1.3 Predicate-based creation of roles

of the classes;, ..., cn, thend becomes a parent class of

¢ in the resulting class DAG. Roles can be also created by means of predicates which must

: : : . be satisfied by all the members of a role class. This distin-
mer-]rtoir']”gsérat_e this concept, consider the following St""te_guishing property of ORM is usually found in classifica-

' tion languages such as KL-ONE [BrS85]. This role creation
createRoleClassTutor asGeneralizationOfProfessor ,  mechanism forms predicate-based roles, which are defined
Student , Assistant according to some predicate satisfied by all members of
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ACADEMIC

PROFESSOR STUDENT ASSISTANT TUTOR
{i1, .., in1j1, ... ,jn2, K1, ..., kn3}

is—a

PROFESSOR-TUTOR STUDENT-TUTOR ASSISTANT-TUTOR Fig. 8. Definition of roles for the
schema in Fig. 6 involving multiple in-

{i1, ..., in1} {i1, ..., jn2} {k1, ..., kn3} heritance

any particular role class as specified by the following state-associated role class, e.g¢ademic . This leads to an au-
ment: tomatic classification of newly createstcademic objects

createRoleClass asSubclassQfasGeneralizationOf ¢ grouped b into one of the three role classelighlyPaidAcademic ’
& . - .
casey ..., caser: grouped by ModeratelyPaidAcademic , andLowlyPaidAcade-

< roleClassBody > mic .

where each role is individually defined through a case-like

statementase; using the following structure for each case: 5.2 Role operations based on inter-object relationships
sl The following role-creating operations allow one group of
wherec; are the new role classes and the predic&tefer  objects to be defined in terms of another in some other class
to particular properties of the given class of originThe  in the DAG. The role-creating operations permit dynamic
condition of the last case may be the keywotter, which  control over the patterns of inter-object linking and are also
applies only if all other cases failed. Note that, if the casesconstructed as before using the elementary role operations
are not logically disjoint, the sequence of cases determinedefined in Sect. 4.
the role in which those objects matching multiple conditions  The semantics of role operations based on inter-object
are placed. relationships correspond to a sequencaddRoleClassc;
Again the semantics of this operation correspond to sasSubclassOf: and migrateObject elementary operations.
sequence ohddRoleClassc; asSubclassOfe and migra-
teObject elementary operations such that only those objects
that satisfy the conditio®; migrate to the new role class. 5.2.1 Reference-induced roles
For example, in case that we wish to divide academics

according to their pay rate, we would declare the following Roles can be created by inter-relating object classes. The role

role classes: operations described in this subsection exhibit the general
createRoleClass asSubclass@cademic grouped by form: < ob]e.ct — sely > referenlces < object — 86?2 >
HighlyPaidAcademic is Academic .Salary > 100K The semantics of the reference-induced role creation opera-
< roleClassBody > tion are reminiscent of the division operation of the relational
ModeratelyPaidAcademic  is Academic .Salary > 50K: algebra and require that the operation returns a subset of ob-
< roleClassBody > jects from theobject-set,, where all the members of that
LowlyPaidAcademic is other : subset are associated with all the membersigct-set,.

< roleClassBody > Theobject-set; signifies a subset of the class extent of class

¢, whereas thebject-set, corresponds to the oids, . . . , ix

This facility introducesparameterized role classeshich in the following operation:
provide a way to define a template for a set of objects whose
members behave in a similar manner. Different parameteri%‘fitl‘ERo'eZ'a;isz;f‘s asSubclassOty < referenced — class >
zations of a parameterized class, eArademic , produce "< roleClassBody >
different roles, e.g.HighlyPaidAcademic

The above role-generating conditions are applied to and'he reference can be in the form of a symbolic pointer such
affect the extents of the classes mentioned in the role creas an attribute of a particular class which may have its do-
ation statement, e.gAcademic , at the time of execu- main in another class, e.g., the cld&svateCorpora-
tion of this statement. After the execution of this state-tion may have an attribute callezbntracted-to de-
ment, the role-generating conditions act as demons on aolared as ¢tontracted-to: setOf Government
if-instantiatedbasis and are evaluated “lazily” whenever a Branch ". Consider the following example where a new role
new object is instantiated and inserted into the extent of theiis created for the clasBrivateCorporation named
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Alternatively, the reference may be substituted by a
EMPLOYER method in the body of; which returns a set of objects

of the type of objects belonging to the setobject-set, >.

For example, instead of having a reference to objects of type
GovernmentBranch , we may have a method which re-
turns these objects. The method must obviously be declared
in the body of the class which contains in its extent the object

is—a is—a set object-set;, i.e., PrivateCorporation . Consider
the method signatu?¢ PrivateCorporation .Contrac-
PRIVATE | contracted—td GOVERN- tedto:() — ’GovernmentBranch " and the follow-
CORPORA-|® = MENT Ing statement:
TION BRANCH
createRoleClassContractedToGvtBranch

asSubclassOPrivateCorporation

(@) PrivateCorporation.Contracted-to 0:
GOVERN- < roleClassBody >
MENT
BRANCH The above statement creates a new role class, naGualy
PRIVATE tractedToGvtBranch for all PrivateCorporation
CORPORA- '
TION objects that are contracted @overnmentBranch es.
We can also create a new role classPoivateCor-
gbl poration  objects which are related to a particu@overn-
ocl ® m_entBranch by using the above statement in conjunction
- gb2 with a predicate:
Pz hd createRoleClassContractedToGvtBranch
pe3 asSubclassOfPrivateCorporation
gh5 PrivateCorporation.Contracted-to()
b4 grouped by GovernmentBranch.name = “Health™
"‘ < roleClassBody >
=7 S
4 5.2.2 Creation of roles through explicit linkages
_ There are roles which can be specified through explicit inter-
I5a object linkages which resemble dynamic role-relationships in
. KL-ONE [BrS85]. In the ORM, a relationship may be used
to act as a predicate and capture the commonality among
Pc.l _ a set of individual role-playing objects. Therefore, relation-
YCONTRACTED-TO ships which associate two classes of objects may be used to
pen IGIVIOP\(/DERRT’\'IAAI)IENT generate a new role for a subset of the_obje_cts which are con-
/ BRANGH tained in the extent of the class at their point of destination.
Thus, the operation
"""" createRoleClassc, from r(z, setOf cy):
(b) < roleClassBody >
Fig. 9. Defining dynamic object roles via the use of references creates a new role clags as a subclass of class and
migrates toc,. all the objects in the extent,(cy) of ¢4 that
. - are related toi in its relationshipr, i.e., m,(c,) = {i’ €
C_ontra_lctedTo ImportantGvtBranch in association mo(ca)|(i, ') € 7}, provided thatpcd is a su(bc)lass{of the
with Fig. 9a. destinationdes{(r) of relationshipr andi is an element in
createRoleClassContractedTolmportantGvtBranch the extentr,(c) of some subclassof the source classrc(r).
asSubclassOfPrivateCorporation We call ¢, therole class generated bywrt ¢, and.
PrivateCorporation.Contracted-to Additionally, predicates relating a particular object iden-
for gbl, gb2, g5 in GovernmentBranch : tifier in the source (or destination) class of a relationship to
< roleClassBody > objects in its destination (or source class) are also admis-

Figure 9b shows some sample data for the above Situas_ibIe. This operation is exemplified by the following situ-

tion. From the context of this figure it can be deducedation' Consider the relationship typires(Employer,
setOf Employee) between the type&mployer and

that thePrivateCorporation objectspc, andpc,, are d ; , .

contracted-to I?he PrivateCorpojratioﬁ ' s?oecified Employee (Fig. 1.0)' This rglat|onsh|ptype accepts the class
in the above statement. As a result, the @@tractedTo of Employer  objects as its source arifimployee  class
ImportantGvtBranch is generated for the objectx | 5 27 A denotes the powerset df, i.e., the set of all possible subsets of

andpc,,. A.
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Fig. 10. Defining dynamic object
roles via the use of relationships

objects as its destination (indicated by the presence of #ypes in Fig.2, we have chosen to represent them as unidi-
double arrowhead) and imposes the constraint that a singlesctional for reasons of simplicity.

Employer
objects.
The following statement:

object may be related to a set Bimployee

createRoleClassEngineerForPrivateCorporation
from hires (pcl,setOf Engineer ):
< roleClassBody >

generates a new role call&hgineerForPrivateCor-
poration  pc, and populates it with th&ngineer ob-
jects that are associated with the particuRrivate
Corporation  identified by the object identifignc,. The
new role is a subclass of the cldssgineer which, in turn,

is a subclass of the destination of the role-defining relation-principalEngineer

ship hires . This situation is illustrated in Fig.10, where
oidsel ande2 in the extent of clasgEngineer , as they

In Fig.10, we have introduced the relationship type
hiresPrincipalEngineer as destination class as a
subtype of the relationship tyg@res . This subtype rela-
tionship  associates PrivateCorporation with
PrincipalEngineer objects. By employing the
hiresPrincipalEngineer relationship, we may now
generate a new role callerincipalEngineerFor-
PrivateCorporation pc , for thePrivateCorpora-
tion identified by the object identifigsc ,. It is interesting
to note that, since the rolengineerForCorporation
pc; was created by the relationship typees andhires
PrincipalEngineer is its subtype (by virtue of its def-
inition in Fig. 10), the class associated with that role, namely
ForPrivateCorporation
pc,, is a subclass oEngineerForCorporation pc;.
This fact is checked by the system which applies the fol-

are the only ones that also occur in the pairs of the extenfowing invariant that is based on thestriction relation in
of relationship exhires. The presence of the double-headeg| -ONE.

dashed arrow indicates the generation of a new role via the

use of a role-defining relationship, e.@ires . Although

Invariant 1. If a classe; which is the (subclass of the) des-

the relationships in this figure conform to the relationshiptination of a relationship type; has a subclass,, and if a

6 In fact, this relationship is a polymorphic one, since, according to

relationship typer,, defined as having, as (a subclass of)
its destination, is a subtype of, then every role class gen-

the principle of argument contravariance, its argument domains may beérated byr, wrt c; and some oid in the extent of a subclass

expanded by subclassesaither its origin andor its destination.

of the source of+, is a subclass of the role class generated



89

by r1 wrt ¢; and 4, provided that the source class of is Rule r;1 is a conditional statement that evaluates to true
either the same or a subclass of thatrgf saycs. Moreover,  or false, following the computational semantics of standard
r, satisfies all the constraints imposed on bethand r;. rule-based systems, e.g., Prolog. If the rule evaluates to true,

o _ then the objecCustomer is effectively asserted (added)
Observe that in Fig. 10 the lower and upper bounds whichg the role-defining clasSteadyJobCustomer . Thus,
define the range cardinalities for the set of objects gentjassSteadyJobCustomer s created dynamically after
erated by the role-defining relationship are both set to 1ihe execution of ruler; and contains a subset of the ob-

meaning that there is only a singreincipalEngineer jects in the clas€ustomer which satisfy the antecedents
ForPrivateCorporation , indicated by a single-headed of the ruler;. The entire situation is depicted in Fig. 11,
c1 = Engineer , c; = PrincipalEngineer  , and  gteadyJobCustomer , QualifiesForHomeLoan  and
c3 = PrivateCorporation » While 7, = hires and  QualifiesForCarLoan . Notice that the roles
r2 = hiresPrincipalEngineer : QualifiesForHomeLoan and QualifiesForCar

Loan are mutually exclusive according to the definitions

. . in rule 7. Mutually exclusive roles is the subject of the
5.2.3 Role creation through reasoning following section.

Finally, as an analogy to role-defining relationships, we may
have roles generated througtasoning We exemplify this
situation by using an example relating to a loan-securing ap
plication, whereby a relatively “intelligent” object-oriented
database system (employing production rules) helps a huAdditional ORM operations on role classes are defined be-
man intermediary with respect to the factors which must below. In contrast to the operations covered in the previous,
satisfied by a bank customer to secure a loan of a certaithese operations accept already existing roles as input. The
type. For this purpose we shall use a simple rule-based sul®perations either operate on the extents of role classes or on
language. an entire role class. In the former case, the role operations
Rules can derive new patterns of associations among okassume a role class as input and add/remove or migrate ob-
jects of selected classes. This situation is similar to the usgects to/from it, whereas, in the latter case, they accept a role
of triggers, which is covered in Sect.5.3. Consider, for in-class as input and operate on its entire extent as a whole.
stance, how the following two rules andr, operate in the The set of role operations described in the following is
context of Fig. 11. In this figure, we assume that the classegepresentative of the possible operations on roles. There are
Employee andCustomer are populated by schema type other simpler operations which traverse the class DAG and

5.3 Additional role operations

instances, whereas the class8geadyJobCustomer compute role transitive closures such fa®d-roleSet find-
QualifiesForHomeLoan and QualifiesForCar Class-of-origin find-parent find-descendantsf a role and
Loan are roles created from these classes. so on, which together with elementary operations covered

in Sect. 4 help construct the operations that follow. We will
not consider them any further, as their semantics and impli-
cations are easily understood.

rl:if  employedBy(Customer, Employer) is
GovernmentBranch
or Customer.LengthOfEmployment >=5
then createRoleClassSteadyJobCustomer(Customer)
asSubclassOfCustomer :
< roleClassBody >

r2 :if  SteadyJobCustomer(Customer) 5.3.1 Assuming a role

and Customer.Disposable-Income >
(2.5 x repaymentRate ) The following statement illustrates how an object may as-
then createRoleClasQualifiesForHomeLoan sume a new role.
(Customer) asSubclassOfCustomer :
< roleClassBody > assumeRoleClass for
else createRoleClasQualifiesForCarLoan i1, ..y in | < ValueBasedExpression > |
asSubclassOfSteadyJobCustomer < PredicateBasedExpression >;

< roleClassBody >
An object may assume an already existing role by using
) ) ) this operation. The convention is that an object cannot as-
These two rules describe a situation whexestomer s (& gyme a role unless a role-defining class for this role already
subclass oEmployee class) are Char,aCte”Zed Sgeady exists. The statements ValueBasedExpression > and
JobCustomer s on the basis of their employment. SUb' < PredicateBasedExpression > have a syntax similar
sequently, customers are assessed whether they satisfy the that introduced in Sect.5.1. Consider, for example, the

conditions required for securing a particular type of |Oan,f0||owing statements in the context of Fig. 4.
e.g., home or car loan. The antecedent of rylés the poly-

morphic relationship typeemployedBy in Fig.2, which  assumeEngineer for

associates objects of typeémployee (and consequently EducatedEmployee grouped by EducatedEmployee.Degree
Customer as a subclass dEmployee ) with objects of = “Engineering”

type Employer (or subtypes thereof).
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FOR \ \
HOME-LOAN sk\ sk\
\ \
\~ A Fig. 11. Defining dynamic object roles via reasoning
5.3.2 Delaying operations and role transformation EducatedEmployee

with Engineer Academic  mutex SocialWorker

5.3.2.1 Blocking rolesRole interaction is taken to mean how
objects in one role class extent may interact with objects in ] ) )
another role class. Role interaction is mainly exemplified by The previous statement introduces mutually exclusive roles
the concept of mutual exclusion, which leads to role block-(@nd objects). This is indicated in Figs.12 and 11 by arcs,
ing. Two roles having a common ancestor aratually ex-  intercepted by the symbol X, that are directed from the
clusiveif an object is prohibited from joining both of these blocking towards the blocked roles. Obviously, nothing pre-
roles and is forced to select either one. vents anEngineer object from simultaneously being an

Consider, for example, thEducatedEmployee ob- ~ Academic (although this is not shown in this figure). This
jects in Fig. 12, which may wish to assume the additionaltype of role-blocking may be thought of as a set exclusion
roles ofEngineer , Academic andSocialWorker ob- ~ Operation.

jects. It might be desirable to block objects of tylprgi- | ant 2. If t le-defini | N
neer and Academic from being SocialWorker  ob- hvanant 2. 11 two or more role-defining classes are mutu-

jects at the same time. Thus, we designate their respec@”y exclusive, then all of their subclasses are also mutually
tive role classes as being mutually exclusive, i.e., object&XCIUSIve.

which appear in the extents of the clas§#mineer , Of  Thisinyariant guarantees that descendants oEtigineer
Academlc , are not allo_vved to appear in the extent of ClaSSroIe objects, e.g.EngineerShareholder objects, do
SocialWorker , and vice versa. not become members of the claSscialWorker , and
constrainRoleClassEngineer , Academic , SocialWorker  for vice versa.
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5.3.2.2 Automatic role transformatiofhe most common objects, in favor of some other specified role. The following
mechanism for the transformation of roles in the ORM is statement illustrates how an object may relinquish a role.
provided by means .of triggers. A'tr|gger in the ORM is relinquish RoleClass for

thought of as a monitor on a data item (which may change i1, yin | < ValueBasedEwpression > |

value) or as a logical condition-action pair. When the con- < PredicateBasedExpression >

dition is fulfilled, the action is executed. Consider the fol- [resume RoleClass] | [resume RoleClass when < event >];

lowing example. An object may relinquish its current role and assume ei-

trigger TransformToAcademic  when this ther: its immediate parent role (default case if tesume

(CasualLecturer.Degree = “Phd” statement is missing) or a specified role in its role-set by
and CasualLecturer.Appointment = “FullTime” ) means of theesumestatement, or finally, revert to the class

ond tt:?ésg;asuawecwrer becomesAcademic were it originated from. The operation relinquish is imple-

mented by invoking the elementary operatremoveObject

for objects that satisfy the relinquish criterion. Consider the
Shareholder  object with oides in the context of Fig. 4
and the following statement:

The previous example shows how an object witasual
Lecturer role may become amcademic . This trig-
ger, like a method, is defined in the body of the class
CasualLecturer . The result of this operation is that relinquish Shareholder for es;
the object in question, say identified by the aigl is re-
moved, by invoking operatioremoveObject from the ex-
tent of classCasuallLecturer and joins the extent of
class Academic , by invoking the operatioraddObject.

This relationship is signified by the horizontal arcs inter- In the followin o will explain the use of a simpie-
cepted by the symbab and directed from the current role, wing, we will expla use Imp!
sumestatement in conjunction with thelinquishoperation.

i.e., CasuallLecturer to the target role (the role class Th f i q i f le will b
after the current object’s role is changed; see Fig. 12). The € use ol an event-triggered resumption of a role will bé )
ORM upgrades the object in question automatically to theexplamed when we consider role suspension. The statement:
structure and behavior of the target role class. This may in+elinquish Shareholder for ez
volve deleting and adding properties and behavior. The type- resume Employee;
safety invariants which govern this type of transformation

have some resemblance with those used for the generic fun

tion update-instance-for-different-clags CLOS [KEE89]. o hjies that this particular object abandons all of its roles

The trigger conditions are not only applied to the currentang reverts to its class of origin. Role relinquishing (and

extents of the classes qulved n the conqun part Qf.thesuspension, see below) are governed by the following two
trigger, they are also applied lazily to any objects joining

th tents of th | t & later ot invariants which apply automatic coercion of relinquished
€ extents of these classes at a later stage. roles with existing role objects in the DAG and, in general,

control how an object canhangea role it currently plays.
The above statement is implemented by multiple invocations
5.3.3 Controlling role changes of the operatiorremoveObject The operatiorresumeuti-
lizes, in general, the elementary operatesdObject, mi-
The following operations control how objects may changegrateObiject, provided that the selected oid does not already
the current role that they are playing. The simplest operaexist in the extent of the class specified by thenoveOb-
tion is to relinquish a current role, for an object or a set ofject operator.

this statement results in relinquishing the r&learehol-

der for the objectes. This object then is deleted from the
extent of this role class. This implies that the object with oid
eg still keeps its role agEducatedEmployee

results in the object with oigs; being removed from all
Blass extents betwe&tmployee andShareholder . This



92

Invariant 3. If an object relinquishes (suspends) its current 5.3.4 Sharing and solidifying roles
role, it also relinquishes (suspends) all of its current role’s
descendent roles, if any. Roles act in general like snapshot objects and cannot out-
) . o ) survive the duration of the application program that created
Invariant 4. An object that relinquishes its current role may them. Normally, there is no need for all roles to become
assume its parent role, or any role in its current role set, globally persistent and hence visible by other application
provided that this role is an ancestral role of the role that the programs and users. However, in several situations, there are
ObjeCt released. We call these roles valid roles. Alternatively,some roles which m|ght be useful for a |arge number of users
it may assume any other role which is a direct or indirect and application programs. To provide for additional model-
descendant of a valid role in its role set provided that thereing flexibility, the ORM allows roles (and individual role
exists a non-exclusive relationship between any of the rolegpjects in their extent) to be shared between applications or
in its valid role set and the one just assumed. to be promoted to persistent types and objects, respectively.
To allow roles to be shared between applications, we use

Invariant 4 deserves some explanation. Consider, for examy, following operation:

ple, theEngineerShareholder object with oide;. If the
application semantics dictate that this objects should changghare RoleClass with aps, ..., apm

its role from EngineerShareholder (i.e., relinquish [for i1,...,in | ValueBasedExpression |
EngineerShareholder) to Academic (i.e., resume Predicate Based Ezpression]

Academic), then the sequence of role changes correspondrhs gperation extends the visibility dtoleClass from its
ing to these two operations is permissible. This object is reqgqg) application context to other applicationg; (for ¢ =

moved from the extent of the roleEngineer 1...m>1).
Shareholder , remains in the extent of the rolésnployee , Role classes and selected objects in their extent may be
EducatedEmployee , Engineer and Shareholder made persistent by invoking the operasotidify. Solidified

and joins the extent of the roldcademic . This new (gl classes have their definitions become automatically part
role is allowed, as its parent role is a valid role, i.e., 5f the type DAG and thus can no longer be distinguished
EducatedEmployee , in the role set of the objecti.  from other database classes. In other words, this operation
However, object; is not permitted to join the rol8ocial results in the evolution of the object base as it automatically

Worker after dropping the rol&ngineerShareholder . 54gs new types and their respective instances. The syntax of
This is because the rolengineer in its role set and the pig operation is as follows:

new role SocialWorker  clash by definition, i.e., they

have been defined as mutually exclusive. solidify RoleClass

The following operation is used for synchronization pur- [for i, -, in | ValueBasedExpression |

poses, mainly in conjunction with a trigger-like event speci- PredicateBasedEwpression]

fication. It results in suspending further actions of an objectwhen making a role class persistent, other role classes may
(under a particular role) until a certain event occurs. also be solidified transparently. If a role is solidified, all
objects included in its extent must also become permanent.

suspendRoleCl for . . . . .
P oA This process is governed by the following invariant.

i1, .y in | ValueBased Expression |
PredicateBased Expression

resume RoleClass when < event >: Invariant 5. To solidify (share) a role, we must also solidify

(share) all roles appearing in all reachable paths between
This operation is a further specialization of the operationthe role’s class of origin and the defining class for that role.
relinquish The main difference between these two opera-Moreover, all role-defining classes referred to in the method
tions is that objects specified by the operation suspend magignatures and in the role’s definition statements must also
remain suspended or “frozen” for an indefinite period of be made permanent (sharable).
time, as the application demands, and then resume their pre-
vious role by means of the operat@sumeonly when a
pre-specified event has occurred. Such objects may be af Related work
lowed to change role only in accordance with the invariants

3 and 4. In the database literature, the idea of role modeling was first
Consider the following example. exemplified by the seminal work of Bachman on the role
data model [BAC77]. The definition of the role concept in
suspendAcademic for Academic.Degree  # “Phd” Bachman’s model is taken from the theatrical context and is
and Academic.YrsOfService > 3 used to mean a behavioral pattern which may be assumed by
res“ﬁ"f?PAhcdé},dem'c when this (EducatedEmployee.Degree modeled entities in a problem domain. The role data model
and EducatedEmployee.Appointment = “FullTime” ) introduced a static part for modeled objects, calledettmity,
which establishes existence, and a dynamic type, called the
The above statement specifies that an object of Aqaale- role-class establishing behavior for that entity.
mic may lose its academic status for an indefinite period In the following, we summarize current research activi-
of time and resume its parent, i.&ducatedEmployee ties which share some concern about the evolution of objects

role until an event occurs, i.e., a condition is fulfilled, which and outline their differences from roles. Of particular inter-
makes it possible for this object to revert to its suspendedest to us are research activities in connection with views, as
role. they are also derived from already existing DAG classes.
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6.1 Views and roles Finally, view objects are normally generated every time
the view definition query is invoked, while the role mecha-
Views are used in object-oriented systems to define logicahism allows the dynamic formation of groups of objects as a
partitioning of classes according to user authorization and acresult of monitoring and reacting to conditions which apply
cess privileges. Most approaches for view definition suggesto a class of objects as a whole. The role-generating condi-
the use of query language expressions for specifying virtuations are evaluated lazily (incrementally) [FeMZ94] when-
classes, i.e., views [He90], [ScLT91], [ScST94], [RUN92], ever a new object is inserted into a DAG class.
[KIM95] from stored classes in the class DAG. Alternative
approaches use special object algebra operators for defin-
ing views [RUN92]. The definition of a view consists of all .
scghema eIEaments ]that can be included in a virtual class amd%l2 Roles and schema evolution
query (algebraic operation) that defines how the view is pop-
ulated by selecting instances from one or more stored schemBhe management of objects that evolve dynamically over
classes (and/or other views). The extent of these view classasne has been of some concern to research activities in the
is usually not stored explicitly but rather computed from the context of schema evolution [SkZ87], [ZDO90] [BAN87],
view-defining query upon request [ScLT91]. In contrast to [ZIK91].
views, roles have a different objective: their purpose is to  Schema evolution addresses the problem of schema up-
support dynamic object migration and re-classification — indates applied to an object base due to changing application
a way that does not affect the database schema. The obequirements. There are two approaches to schema evolu-
servable differences relate to semantic preservation (viewsjon: conversionandversioning The former restructures the
vs. semantic upgrades (roles); object generation and updatedfected instances to conform to classes which have been
(views) vs. strict object preservation (roles); differences inmodified during the schema evolution process [BAN87],
the treatment of object identity; and, finally view vs. role ma- [BRE89]. These changes are introduced at the schema level
terialization techniques. These issues are addressed briefly and are propagated to all instances of a type in the database
the following. that is affected by the changes. The objective is not only
Views are in general semantics preserving as they into provide mechanisms for schema updates but also to make
troduce only new information as computed attribute valuescertain that the structural and behavioral consistency of types
e.g., by merging existing attributes, or by hiding attributesand objects is respected [ZIK91]. This requires writing trans-
and importing existing schema classes [AbB91], [ScLT91],formation functions to allow compatibility with application
[RUN92]. In contrast to views, roles tend to refine seman-programs that utilize the original classes and instances. To
tics by attaching additional meaning — in the form of new avoid the pitfalls of class redefinition and conversion, a class
(or unanticipated) behavior — to objects that have a specialersioning approach can be employed, whereby the existing
meaning for an application. Additional semantics are correclass definition is not changed, but rather a new version of
lated with existing object semantics. the class definition is created which incorporates the required
Views can be object-generating as they may generatehanges. Instances and applications are then associated with
new types of objects (not included originally in the schema)a particular version of a class and the runtime support is
if view definition queries involve more than one stored responsible for simulating the semantics of the new class in-
classes, e.g., join operations. Some approaches escape tiisface on top of instances of the old, or vice versa [SkZ87],
trend by adhering to the concept of object preservationBjH89]. These approaches guarantee minimal compatibility,
[ScLT91], [ScST94], [RUN92]. Views are also used to cre- as they rely on the existence of exception handlers to emulate
ate new objects and update already existing objects, providetthstances and provide default values that are present in one
that there exists a one-to-one correspondence between a meersion and not in another. A variant of this approach sug-
terialized instance of a view and the stored class on whiclgests the changing of the schema as a whole rather than the
the view is defined [KiKS92]. In the ORM, new objects are piecemeal changing of individual classes [LeH90], [M0oS93].
created only through classes in the DAG and are automatiThe approach of [MoS93], in particular, provides facilities
cally re-classified into role classes — provided that they meefor allowing database schemas to evolve both forward and
the role conditions. backwards for each class change. A serious problem with
Another important difference is the treatment of oids. this approach is that users and application developers have
With views, the most common approach is to create a newo define their own update and backdate methods.
oid for each materialized view [KIM95], [AbB91]. This is In contrast to roles, the emphasis with schema evolution
a direct consequence of the fact that views may be defineés placed on mechanisms that facilitate the migration of an
by joining two or more stored classes (and/or views), orentire class population to a new (evolved) class by either
alternatively by hiding attributes from stored classes. In bothdropping or re-adjusting the old class definition. In general,
cases, it is not possible to identify the materialized viewschema evolution requires human intervention, i.e., the in-
classes in terms of the o0id(s) in the stored classes from whickolvement of a database administrator, to apply the schema
they were produced. Hence, mechanisms are introduced tchanges and check the consistency of the database schema.
map the oid assigned to each materialized view to the oid(spuch issues do not affect roles. However, research activities
of the instance of the stored class(es) from which the viewrelating to object-oriented schema type evolution [ZD0O90],
originates. These concerns are not shared by roles, as thg®kZ87] and parametrized primitives for schema updates in
identifying instances share the same oid with objects in theilO, [ZIK91], in particular, have influenced our work on dy-
classes of origin. namic objects.
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6.3 Roles and other approaches 6.4 Roles and programming languages

The notion of role has also been used in expressing potentidfhe Common Lisp Object System, CLOS [KEES89], has
object states and behavior in the context of office informa-some similarities with the ORM. It offers a genecicange -
tion systems [PER90]. Roles in this model are static: theyclass method to facilitate switching an instance from one
are specified in their totality at the schema level and are notlass to another. Methods can be added or deleted from ex-
created dynamically on demand. In this model, the behavioisting classes and new classes can be added to an application.
of an object can be derived by means of an abstract stat€he meta object protocol of Common Lisp specifies clearly
which defines all of its active roles and roles instantiations.what happens if the target class supports additional or less
This particular model places emphasis on defining mechattributes or methods. However, except for the semantics in-
anisms for coordinating multiple instantiations of a single herent in interpreters and compilers, no formal definition has
role, on specifying rules for expressing valid role-state se-been given for this framework and static type-checking is of
quences and on placing constraints on the possible life cycleao concern to this approach.
of objects.

Aspects [RiS91] is another approach which attempts to
address dynamic object behavior and schema evolution if Summary and future work
general. Aspects are used in a strongly typed object-oriented
environment, which introduces sharp dichotomy between abThe inability of contemporary object-oriented database sys-
stract data types and implementations to support multiple intems to represent evolution and re-configuration of individ-
dependent object views. The key difference between aspectsal objects may lead to a loss of modeling assumptions and
and the role model proposed in this paper is that entities innter-object dependencies. This limitation makes the mainte-
the aspect model may have many different unrelated typesance of consistency of dynamic objects almost impossible.
and unlike roles they do not simply evolve from one type In this paper, we have presented an extension to the object-
into another by means of pre-specified conditions or inter-oriented paradigm which supports a natural way of repre-
object relationships. senting object dynamics and addresses such shortcomings.

Remote similarity exists with the concept of multiple More specifically, we introduced the ORM as an extension
substitutability as defined in [MoZ92], where the principle of object-oriented databases to support unanticipated behav-
of information hiding is used so that an object can either bejoral oscillations for individual objects, or groups of objects,
addressed as any of its constituents or as a whole, depen¢hat have many types and share a single object identity. Up-
ing on the situation. The part-of relationship is employed togrowths of behavior in the ORM are known as roles that
enforce the different fashion constructs that an object maybjects play which can be assumed and relinquished dy-
obtain. This allows an object to behave as any of its connamically to reflect shifting modeling requirements.
stituent fashions and to route a message directed to it to The purpose of the ORM is to add more modeling power
the appropriate fashion object. Fashions do not share thand flexibility to the object-oriented approach by capturing
same concerns with views. They are specified statically (theidifferent kinds of object dynamics. They do so by being
binding occurs at runtime), have all different oids, and arebased either on conditions which apply to an individual ob-
not concerned with object migration. ject, groups of objects from a class, or on explicit/implicit

Some similarities exist between the ORM and the Fi-inter-object relationships. The ORM allows dynamic object
bonacci object-oriented database programming languagfeatures to be fully synthesized with conventional object-
[ALB93]. The main concern of Fibonacci is to provide a oriented database characteristics.
sound programming environment, where objects may ac- The ORM linguistic facilities provide operations that
quire new types and behavior while retaining their iden-support pre-existing objects to change their type, while re-
tity. Major concerns lie in designing an environment sup-taining their original identity. They control such forms of
porting strong typing and late binding in conjunction with object evolution in accordance with application semantics,
message dispatching to resolve ambiguities due to multiplicwhile respecting the structural and behavioral consistency of
ity of types at runtime. Objects are not created or maniputhe typed objects. Object groups may be constructed on the
lated directly: they are always created and accessed throudly as a result of monitoring and reacting to conditions which
their roles. In this way, roles essentially become part of theapply to the scope of a class as a whole. Such conditions
database schema and are not transient as in the ORM. Fare evaluated “lazily” (incrementally) whenever a new object
bonacci focuses mainly on implementation issues such as thig inserted into a DAG class. The ORM linguistic features
use of delegation for implementing inheritance and messagttroduce modeling flexibility and give applications more or-
passing. No attention is given to linguistic facilities neededganizational clarity by simplifying the design requirements
to support automatic migration of objects between classespf complex applications that need to create, relinquish and
forming roles as groupings of objects and creating roles frommanipulate dynamic objects.
inter-object relationships. Moreover, in Fibonacci, the issue  An initial prototype of the ORM was implemented in the
of controlling role semantics in accordance with application-object-oriented database system ONTOS 2.2 and the pro-
specific events is also not considered. All these concept argramming language C++. An extension of this early proto-
supported by the ORM and have influenced its design contype based on an amalgamation of the ONTOS implementa-
siderations. tion and the expert system shell CLIPS has also been imple-

mented. Its purpose is to provide more natural and powerful
primitives for the ORM. In this way, reasoning facilities
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can be used for defining and manipulating role objects. Fo[kaLR92] Kanellakis P, Lecluse C, Richard P (1992) Introduction to the
example, rules are used as a way to define role classes in
terms of associations between selected objects from exist-

ing classes. Currently, a more flexible re-implementation of
the ORM in ObjectStore, using its meta-object protocol, is
underway.

[KEE89]

[KIM89]

The ORM can be extended by capturing another aspect
of application semantics, namely the temporal aspect. The
ORM was developed under the assumption that the object
base contains only the current "snapshot” of the role datd<!M95]
we are interested in. This may prove to be too restrictive in
many situations where it is desirable to maintain terminatedyiksgz]
roles, or old role versions, and associate them with current

roles for reasoning purposes. We are currently investigatin
an adaptation of this scheme to the ORM.
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