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Abstract. In most database systems, the values of many imtion in relation attributes), the physical schema (e.g., index
portant run-time parameters of the system, the data, or thg/pes), the values of the system parameters (e.g., number
guery are unknown at query optimization time. Parametricof available buffers), and the values of the query constants.
query optimization attempts to identify at compile time sev- Some of these assumptions, however, may be violated at
eral execution plans, each one of which is optimal for arun time: the database contents and the physical schema
subset of all possible values of the run-time parameters. Thehange incessantly [ML86], the multiprogramming level of
goal is that at run time, when the actual parameter valueshe system and the resource needs of concurrently running
are known, the appropriate plan should be identifiable withqueries cannot be predicted, and queries may be executed
essentially no overhead. We present a general formulatiowith different bindings for their constants, e.g., a selection
of this problem and study it primarily for the buffer size within a for-loop in a query embedded ia C program,
parameter. We adopt randomized algorithms as the main amr calls to recursive rules in deductive databases. When
proach to this style of optimization and enhance them withthese optimization-time assumptions are violated at execu-
a sideways information passinigature that increases their tion time, re-optimization is needed or performance suffers.
effectiveness in the new task. Experimental results of these
enhanced algorithms show that they optimize queries fo
large numbers of buffer sizes in the same time needed b
their conventional versions for a single buffer size, without
much sacrifice in the output quality and with essentially zero
run-time overhead.

Motivated by the above, we have studied the problem
of optimizing queries for all possible values of run-time
}Sarameters that are unknown at optimization time (a task
that we call parametric query optimization so that the
need for re-optimization is reduced. This study has also
been motivated by recent results on flexible buffer alloca-
tion [NFS91, FNS91]. It has been shown that, in deciding
how many buffers to allocate to a query, taking run-time
conditions into account leads to improvement in system per-
1 Introduction formance (e.g., throughput). The reported improvement has
been obtained based on fixed plans that assume a specific
number of allocated buffers. Further improvement in perfor-
mance is expected if a plan is not fixed and can be chosen
to match the actual number of allocated buffers.

Relational query optimization is an expensive process, pri
marily because the number of alternative access plans for
qguery grows at least exponentially with the number of rela-
tions participating in the query. The application of several In principle, the optimal plan generated by parametric
useful heuristics eliminates some alternatives that are likelyquery optimization may be different for each distinct value
to be suboptimal [SAC79], but it does not change the com- combination of all the possible run-time parameters. In prac-
binatorial nature of the problem. In the future, database systice, however, the total cost of generating all these plans
tems will need to optimize queries over much larger setswould be prohibitive. A different approach would seek to
of alternative plans. The traditional, heuristically pruning, produce distinct plans for values of a selected subset of run-
almost exhaustive query optimization algorithms are inad-time parameters in less time. It is this approach that we
equate to fulfill the increased requirements, and new algostudy in this paper, where we focus on the number of buffer
rithms need to be developed. pages allocated to a query (theffer siz¢ as the unknown
One of the primary reasons for the increase in the numparameter. We propose the use of randomized algorithms
ber of alternative plans is that optimization will be required to address the tremendous increase in the number of alter-
for many different values of important run-time parametersnative plans. Such algorithms have been successfully ap-
whose actual values are unknown at optimization time. Toplied to various combinatorial optimization problems in the
avoid the above, current database systems make certain gsast, including the optimization of queries with many joins.
sumptions about the database contents (e.g., value distribéWe adapt three such algorithmsirfiulated annealingSA)
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[KGV83, IW87], iterative improvemenfll) [NSS86, SG88], parametric query optimization that is applicable to arbitrary
and two-phase optimizatioi2PO) [IK90, IK91]) for para- parameters and not only buffer size. (In that respect, the work
metric query optimization of select-project-join queries, andof Graefe and Ward is also general [GW89].) Second, we
present experimental results that show the effectiveness afevelop complete parametric query optimization algorithms
the devised adaptations. that produce multiple plans as output. These algorithms are
Several projects have considered supporting multiplenot based on any assumptions like those made in the XPRS
plans for a query. The earliest significant work in this area isproject [HS91], so they are much more generally applicable.
by Graefe and Ward [GW89]. They discuss the implemen-Third, the experimental results of these algorithms on the
tation of dynamic query plans the Volcano optimizer gen-  buffer size parameter show that generality is not achieved at
erator [GM91]. These are plans that includeteose-plan  the expense of efficiency or output quality. Hence, we ex-
operator, which chooses among multiple available convenpect that these algorithms can easily be incorporated in the
tional plans given the values of certain run-time parameterssystems mentioned above, without jeopardizing their perfor-
The proposal is for choose-plan operators to be introducednance goals.
in all places of a plan where the choice of subplans under-  This paper is organized as follows. As a background,
neath is sensitive to the values of these parameters. ThiSect. 2 gives preliminary descriptions on SA, Il, and 2PO.
work introduces many important concepts related to paraSection 3 introduces a general framework for parametric
metric query optimization but does not include a completequery optimization and provides experimental evidence for
search strategy to identify the dynamic plans and the pothe need of obtaining multiple plans for different run-time
sitions where the choose-plan operators should be placedalues of the buffer size parameter. Section 4 presents the
A complete method based on this approach has been sulfamily of algorithms that we have developed, discusses sev-
sequently developed by Cole and Graefe [CG94]. Due taeral of their characteristics, and provides evidence on how
its importance, it is discussed in detail in Sect. 8. Its mainthey are expected to perform. Section 5 contains the re-
difference from our approach is that it does have some opsults of several experiments with these algorithms, showing
timization overhead at run time, and that it uses dynamictheir effectiveness with respect to both running time and out-
programming instead of randomized algorithms. put quality. Section 6 discusses several issues related to our
The XPRS project proposes to select at run time astudy. Section 7 gives some ideas on how our approach can
parallel plan from a set of plans based on buffer allo-be used for parameters other than the buffer size, as well
cations [SKPO88]. Two different optimization algorithms as for multiple parameters. Section 8 presents an informal
have been proposed for this task. In an earlier referencand preliminary comparison of randomized algorithms and
[SKPOB88], a ‘binary-search’ approach is advocated, wheralynamic programming in the context of optimization with
a query is first optimized for the smallest) and the largest unknown run-time parameters. Finally, Sect.9 summarizes
(M) possible buffer size; if the two obtained plans are farour overall approach and presents some directions for fu-
from optimal for the buffer size for which they were not cho- ture work. The appendix lists the cost formulas used in the
sen, the query is optimized again for the midpoint betweeralgorithms.
m and M, and the process is repeated. The disadvantage
of this approach is that the amount of time spent in query
optimization grows linearly with the number of buffer sizes . . .
for which the query is optimized, which may be prohibitive. g I?iﬁﬂggtrigﬁed algorithms for conventional query
Also, as has been pointed out elsewhere [GW89], this ap- P
proach may work for one or two parameters, but would not
scale up. In a more recent reference [HS91], the assumptioln this section, we briefly describe randomized algorithms
is made that the buffer size is greater than the minimumas they have been applied to conventional, non-parametric
required for efficient execution of hash-join. Based on thatquery optimization. This is a necessary basis for the descrip-
assumption, experimental evidence is provided that the option of the parametric query optimization algorithms in the
timal plan is in general insensitive to buffer size. Hence, anfollowing sections.
enhanced version of a conventional query optimizer for a  Each solution to a combinatorial optimization problem
fixed buffer size is proposed. The enhancements deal witltan be thought of as atatein a space, i.e., a node in a
some special cases where the insensitivity claim does nagraph, that includes all such solutions. Each state has a cost
hold, and consist of essentially introducing choose-plan opdefined by some problem-specific cost function. The goal of
erators [GW89]. an optimization algorithm is to find a state with the glob-
The Starburst project has also considered incorporatally minimum cost. Randomized algorithms perforamdom
ing a second optimization phase that chooses plans at ruwalksin the state space via a seriesndves The states that
time [HP88]. To the best of our knowledge, however, nocan be reached in one move from a state S are called the
technique has been developed to find those plans. Also, Conreighborsof S. A move is callediphill (downhill) if the cost
nell and Yu [CY89] use an integer programming model to of the source state is lower (higher) than the cost of the des-
optimize queries and their buffer allocations in a transactiontination state. A state islacal minimumif, in all paths start-
environment. Even though their concern is different froming at that state, every downhill move comafter at least
ours, their technique still produces only one plan per querypne uphill move. It is alobal minimumif it has the lowest
and that plan is susceptible to changes in buffer allocationscost among all states. It is onmateauif it has no lower
Our work differs from all the proposals mentioned above cost neighbor, and yet it can reach lower cost states with-
in several aspects. First, we present a general framework fasut uphill moves. Using the above terminology, we briefly
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outline three randomized optimization algorithms that have Possible Parameter Values Actual Pargieter Value
been used for query optimization [IW87, SG88, IK90, IK91]. u

First, Il perfOfmS a Iarge number ddcal Optimizations Query PARAMETRIC| (P1,API) Optimal Plan (AP5)
A local optimization starts at a random state and improves o R [ eNaAPN) || CHOOSER =

the solution by repeatedly accepting random downhill moves
until it reaches a local minimum. Its output at the end is the
least cost local minimum that has been visited. Compile time <——> Run time

Second, SA starts at a random state and proceeds by rans S erall archi ¢ , S
dom moves, which, if uphill, are only accepted with certain - 1+ ©Overall architecture of parametric query optimization
probability. As time progresses, this probability gradually

decreases until it becomes zero, which signifies the terminag single plan that is optimal fd,. 2PO has been shown to

tion of the algorithm. The output of the algorithm as usedye the dominant algorithm for a wide range of valuesf

in practice is again the least cost state that has been visiteg,o main reason for this is that, in all cases, the shape of the
_Third, 2PO is divided into two phases. In the first phase, st function of the plan space forméveell’ . That is, some

Il 'is run for a small period of time, i.e., a few local opti- gma|| percentage of local minima in the space have high

mizations. The output of that phase is the initial state of thecost, but most of them have low cost, and the connection

next phase, where SA is run with very low initial probability ¢osg petween local minima is still relatively low compared

for uphill moves. _ o , to the cost range in the whole space. 2PO takes advantage
_ When the above generic optimization algorithms are ap-y the first fact in its Il phase to reach the ‘well’ bottom

plied to query optimization, three parameters need 0 bgyickly and then takes advantage of the second fact in its

specified: the state space, the neighbors of each state, argh phase to explore the ‘well’ bottom without climbing over
the cost function. Each state in query optimization corre-yery high hills.

sponds to araccess planor simply plan) of the query to
be optimized. By performing selections and projections as

early as possible and excluding unnecessary cross—préductg Problem formulation and justification
[SAC*79], a plan can be represented agom processing

treg i.e., a tree whose leaves are base relations, internag.l Problem formulation

nodes are join operators, and edges indicate the flow of data.

If all internal nodes of such a tree have at least one leaf a
a child, then the tree is calledeep Otherwise, it is called
bushy In this study, we deal with the plan space that in-

%hroughout this paper, we usg to denote the set of all
plans that can be used to answer a given query. We also
usec to denote the vector of all those parameters whose

cludes both deep and bushy tre_es. L . values are assumed to remain unchanged between optimiza-
The neighbors of a state, which is a join-processing tre€ion and run time. Each plam in S has an associated

(i.e., a plan), are determined by a set of transformation rUIeSCOStc(& ¢). The goal of any conventional optimization algo-

Each neighbor is the result of applying one of these rules WQithm is to find the plansg in S that satisfies the condition

some internal nodes of the original plan once, replacing then}(s0 ¢) = min{c(s,c) | s € S}. In reality, many parameters

by some new nodes, and usually leaving the rest of the nodeg, ot 4re part ofc in the above formulation do not remain

of the plan unchanged. There are several sets of ransformggnsiant hetween optimization and execution time. Hence,

tion rules .from Wh'Ch one CC.)UId choose. With B, andC if we usep to denote the parameters that can change, the

_bemg arbitrary join-processing formulas, the ones adoptec&Ost of a plans is more appropriately written ag(s, p, ).

in this study are described below [IK90, IK91]: The task of parametric query optimization is to optimize

the cost of query answering for all possible values of the

p vector. More formally, gplan functions() is of the form

s() : P — S, whereP denotes the domain qf. Hereafter,

we use the notatiorifj to denote the set of all such plan

functions. Parametric query optimization finds the optimal

plan function in.%, i.e., the one that generates as output the

0optimal plan for any vector of values pfthat may be given

as input; given the vector of actual valuespoht run time,

the plan function returns the plan that should be used by

éhe query processor. This is schematically shown in Fig. 1,
here P1,..., PN denote possible parameter values, and

APL, ..., APN denote the corresponding optimized plans.

1. Join method choiceA ®.ethod; B — A Mimethod; B
2. Join commutativity'A x B — B x A '
3. Join associativity(A 1 B) x C < A x (B x C)
4. Left join exchange(A x By x C — (Ax C) x B
5. Right join exchangeA x (B x C) — B x (A x C)

Rule 1 changes the join method of a join, e.g., from neste
loops to merge scan.

Finally, the cost of every plan is usually a combination of
the 1/0 and CPU cost of the plan. The above algorithms hav
been successfully applied to conventional, non-parametri
guery optimization [SG88, 1K90, IK91], which assumes a

certain number of bufferg, for a given query, and produces In general, for every plan functios(), P can be parti-

1 The exclusion of cross-products follows the experience with both dy- tioned so that, for alp,, p, in the same partition, the plans
namic programming and randomized algorithms on conventional query op-s(P;) ands(p,) are identical. These partitions are caliet
timization and does not affect the results of this paper in any way. Itsage partitions The image partitions in the optimal plan func-
only effect is that it removes large parts of the plan space that include
almost always suboptimal plans, thus making the optimization algorithms 2 Roughly, the connection cost is the height (cost) of the hills that need
significantly more efficient. to be climbed to reach one local minimum from another.
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tion are not known a priori but are identified by the para- optimal for all vectorsp € P. We present experimental re-
metric query optimizer as part of the process of identifying sults to show that, at least for the buffer size parameter, the
the optimal plan for each parameter value. above is not the case; this justifies the use of parametric
Having defined these notations, we introduce below twoquery optimization.
equivalent formulations of parametric query optimization.
Formulation A There are|P| separate optimization prob-
lems, each one identical to the traditional, non-parametri
case with a differenp vector:

Throughout this paper, we usg(b) to denote the (ap-
éroximately optimal) plan produced by 2PO foruffers.
urthermore, for notational simplification, we drop the vec-
tor ¢ of parameters that remain constant between optimiza-
VpePfindsge S tion time and run time, and usgso(bo), b) to denote the cost
s.t. ¢(so, P, €) = Min{c(s, p,C)|s € S}. of the plan that is optimal foby buffers when executed in
Formulation B There is a single optimization problem over the presence df buffers. If the difference between the costs
plan functions: c(so(bo), b)_ and c_(so(b), b) were generally small, parametric
) o query optimization for the buffer size parameter would not
find so() € .4 be needed. Figure 2 shows that this difference can be quite
S.L.Vp € P c(so(p), p, €) = min{c(s(p), P, 0)[s() € A4} - high as buffer size changes. The x-axis is the buffer size

; i hich varies from 2 to 150 pages. The y-axis is the ratio
Example 1.Suppose parametric query optimization is ap-" . .
plied to two parameters: buffer size and the kind of in- c(s0(bo), b)/c(so(b), b), which we callrelative costof so(bo)
dex available for a certain relation. Let the buffer size With bbuffers. Since by definition the costso(b), b) is very
values of interest be in the rangg=[2,151] and the set Cl0S€ to the actual minimum for buffer size the closer
of possible indices bd = {no index, clustered Btree the relative cost is to 1, the higher the quality sgbo) is.
non clustered Btrec). The domainP ’is the cross pro’d— Throughout this paper, the notion of relative cost is used to

uct B x I andp = (15,no index) is one of the 450 possible Judge the quality of plans and plan functions.
vectors of values defined in the domain. Under Formulation  Figure 2 includes three typical curves for plasngbo)
A, there are 450 different, non-parametric query optimiza-with by = 2,20, and 150. These curves are obtained by
tion problems that must be solved. The optimal plan func-running ten 20-join queries five times each and show the
tion can be obtained by integrating all the plans found inaverage relative cost over all queries of the average over
those optimizations. Under Formulation B, there is a singlethe five runs. The specifics of how the queries and corre-
optimization problem, whose solution is the optimal plan sponding data sets are generated are given in Sect.5.2. In
function. each case, the same general behavior is observed. For buffer
sizes close tdg, the relative cost is close to 1. As the buffer
size moves away frondg, however, the relative cost may
increase significantly. Part of the reason why this pattern is
formed is that when there is a sufficient number of buffers,
the costs of hash joins are lower than those for merge scans
3.2 Justification for using parametric query optimization ~ @nd nested loops, but when buffers are scarce, the converse
is true [Sha86]. Thus, as the buffer size grows, the optimal
One may argue that the conventional approach of optimizplan for that size tends to include more and more hash joins
ing for a single vectop, produces a plan that is (close to) and fewer and fewer merge scans and nested loops. The op-

In principle, the two formulations are equivalent. In practice,
while Formulation A is simpler to conceptualize, Formula-
tion B is more efficient to process.
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timal ordering of the joins is affected by the value tofs
well. Consequently, based on the results of Fig. 2, paramet-
ric query optimization appears to be necessary for efficient
processing of queries at all buffer sizes.

4 Randomized algorithm for parametric query
optimization

4.1 Basic algorithm

Consider a rangé},;», bmaz] Of buffer sizes. Applying For-
mulation B of parametric query optimization for the buffer
size parameter (and ignoring the vectoof constants) re-
sults in the following problem:

Find so() € .%f s.t.
Vomin < b < bnas c(s0(b), b) = min{c(s(b), b)|s() € A4} -

Let R be any randomized algorithm of the type described

procedure sipR()
begin
B = {b ‘ bmin < b < bmax };
s := random plan inS;
foreach b € B do s(b) := s;
while B # () do
begin
b := random buffer size irB;
t := neighborRp](s(b));
foreachb= — k < b < b*+k do
begin
compare&moveR['](s(b), t);
if movedR}p’] then B := BU {b'};
end
if finishedRp] then B := B — {b};
end
end

Fig. 3. Algorithm sipR¢)

Consider the image partition of the current plan function

in Sect. 2 (I, SA, and 2PO are simply three examples). In-g() in which b belongs. Lety~ andb* be the minimum and
stead of using R to optimize a given query separately formaximum buffer size, respectively, of that image partition.
each buffer sizeb,in < b < bpae, Which would be the  Given the natural total order that exists on buffer sizes, we
case under Formulation A, we proceed concurrently for allhave chosen the friends of &[to be all the co-routines
buffer sizes. Abstractly, for each buffer sizgethere is one  R[p'] whereb~ — k < ¥/ < b* +k, k > 0. Thus, there is
co-routine Ry] that runs R on the conventional plan space sideways information passing from the co-routiné)]Rp

G[Y] to identify the optimal plan for the given query when the co-routines associated with buffer sizes that are similar
b buffers are availabfe These co-routines have synchro- to b. The value of determines thelepthof the sideways in-
nization points. When the running co-routine reaches one oformation passing. If: = 0, no information is shared among
these points, it releases control to another co-routine that ithe co-routines that have different current plans. In that case,
randomly chosen among those still running. In our study.the algorithm can be thought of as a smart implementation
the synchronization points of R[have been chosen to be of Formulation Al (separate optimizations for each buffer
right in between attempted moves (from the current plan tosize), since at any point co-routines of buffer sizes in the
one of its neighbors) in R. After the active co-routinedR[  same image partition are always friends and exchange infor-
attempts a move to a neighbor of its current plan (successmation. This information, however, is in some sense trivial,
fully or not), another co-routine gains control to attempt asince it is always a plan that is a neighbor of the current plan

move to a neighbor of its own current plan.

of the recipient co-routine. Thus, in terms of graph traversal,

this algorithm is identical to the non parametric cAse that
sense, in the rest of the paper, we refer to the case=00

4.2 Sideways information passing

as featuring no sideways information passingt ¥ oo, the

active co-routine sends its new plan to all other co-routines,
The above concurrent version of the optimization does noso there is complete information passing. Other values of
offer many advantages compared to a serial optimizatiorrepresent intermediate situations. This concurrent version of
for each buffer size separately, because essentially therdae optimization algorithm R that employs sideways infor-
is no communication among the co-routines. We enhancénation passing at depthis denoted by sipR).

the above co-routines with the ability to share information.

To be more concrete on how sideways information pass-

Specifically, lets() be the current plan function defined by ing works, we present in Fig. 3 pseudo-code for sipRés
the current plans of the individual co-routines. When the ac-it traverses a single random path. The code fully captures SA

tive co-routine R§] attempts to move from plar(b) to a
neighbort of s(b) in G[b], it communicates and sendso

(or the second phase of 2PO), whereas it captures a single
local optimization of Il (or of the first phase of 2PO). For II,

a preselected subset of the remaining co-routines. The cdhe code shown is executed as many times as it is necessary

routines in this preselected set are calfeends of R[}].
Each recipient R[] of ¢ comparesc(t,d’) with c(s(b'),d)

to perform local optimizations, and then some postprocess-
ing integrates the results of these local optimizations. The

(which is the cost of its current plan), and then decides orcode in Figure 3 captures the concurrent execution of all co-
whether to move td or not in exactly the same way as if routines together by showing at all times which one is active.

t and s(b’) were neighbors irG[b']. We use the ternside-

For that, it uses the following notation for parts of these co-

ways information passintp refer to this exchange of plans routines: neighborR] is the part of Rp] that accepts a plan

between co-routine friends.

4 Except that, in the non parametric case, independent optimization for

3 The graph structure ofi[b] is the one described in Sect.2 and is different buffer sizes may generate different random neighbors for a plan,
identical for all values ob, but the node costs may differ. That is why we whereas in our case, if the plans belong in the same image partition, they

distinguish each graph by the indéx

always attempt to move to the same neighbor.



R[13] R[14] R[15]

WAN
2

R[16]

/\
VAN

137

sipR algorithm, where the foreach-loop that implements the
sideways information passing becomes

foreach v’ s.t.r[b] — k < r[b'] < r[b] + k do.
To distinguish between the two versions of the algorithms,
we use sipRs (for ‘'s’ize) to denote the original one and sipRr

R3 R2
plan S1 plan S2 plan 2 plan 3 (for ‘range) to denote the modified one.
[ L
MS/\R3 4.3 Maintenance of image partitions
m/\m Since the sipR algorithm may start from any random plan
plan S4 function, we choose to generate a random plan and start
with a plan function with a single image partition that covers
A/‘/@&‘m\\\_ the entire range of parameter values. As the sipR algorithm
plan S4 plan S4 plan S2 plan S3 proceeds, the set of image partitions is enlarged or shrunk

with each call to the compare&moveR function. The current
set of image partitions can be maintained in several ways,
three of which are given below:

as input and returns one of its_ neighbor_s as .out_put.baseq_ Keeping a separate copy of a plan (as a tree) for each
on the R algorithm; finished®] is a predicate indicating parameter value;

whether R] has finished or not; compare&moveRRlakes 5 keeping a separate copy of a plan (as a tree) for each
two planss(b) andt as input, calculates their costs for buffer image partition; and
sizeb, and then decides whether or not to move fref®) 3 Keeping a global graph of plans that combines the trees

to ¢ based on the R algorithm; and movedRE a predi- corresponding to the plans for all image partitions, where
cate indicating whether the comparison in compare&moveR  -ommon subplans (subtrees) are shared.

succeeded. Note that the foreach-loop within the while-loop
captures the sideways information passing. Having 0  Solution 2 simply improves space efficiency compared to
in this line essentially eliminates this feature, as only co-solution 1, since by definition all parameter values in an
routines for buffer sizes within the same partition are allowedimage partition correspond to the same plan. Solution 3 im-
to share information. proves space efficiency even further, since, by the nature of
the transformation rules, one expects to have many subplans

Example 4.1.Suppose at the beginning of the current itera-that are common among plans of various image partitions.
tion of the while-loop there are three image partitions for theOn the other hand, solution 3 makes the maintenance of
buffer sizes from 13 to 16. As illustrated in Fig.4, is the  plans quite a bit more complex and expensive, as common
plan in the image partition for 13, the one for 14 and 15, nodes may have to be separated and separate nodes may have
and Ss the one for 16. Suppose the random buffer size choto be merged during transformations. Based on the overall
sen in this iteration i = 14. GivenS, as input, suppose that trade-off, we have decided to adopt solution 2.
the routine neighborR[14] returns the pl&k which uses a
merge scan, instead of a nested loop, for the join between
relationsR; and R,. Furthermore, let be 1 for the scenario 4.4 Plan space abstraction
described in Fig.4. Then the routines compare&movgR][
are invoked forb’ = 13 14,15,16. Let us assume for this Any analysis of the performance and behavior of random-
example thatS, is a cheaper plan thasy and S, for buffer ized algorithms requires that the three problem-specific pa-
sizes 13 and 14, respectively, but that it is not as good asameters mentioned in Sect. 2 be specified. When sipR does
S> and Sz for buffer sizes 15 and 16, respectively. Conse-not incorporate any nontrivial sideways information pass-
guently, at the end of this iteration, there are three imageng (k¢ = 0), it is equivalent to running R separately for
partitions: S, for buffer sizes 13 and 149, for buffer size  each buffer sizé in exactly the same way as in conven-
15, andS3 for 16. tional query optimization. With sideways information pass-

If there is no sideways information passing, i.k.= ing, however, the notion of neighbors becomes more compli-
0, then compare&moveR] will only be invoked forb’ = cated, although the set of plans and the cost function remain
14, 15. ConsequentlyS:, S, S» and Sz will be the plans  the same for each co-routine. This is due to the communica-
for buffer sizes 13, 14, 15, and 16, respectively. tion of plans occurring among friends. The current piéh)

of R[b] may be replaced by an arbitrary plamvhen a friend

As shown in Fig. 3, the depth of sideways information attempts to move te, even if s(b) and¢ are not neighbors
passing is measured in terms of buffer sizes. We have alsm G[b].
experimented with a different algorithm, where the dépth In order to model R{] with sideways information pass-
measured in terms of the image partitions of the current plaring as a regular randomized algorithm always moving be-
function. Let these partitions be identified by their distancetween neighbors, we construct below a new graifp] that
(measured in number of partitions) from the lowest buffercan be used as the abstract space on whidhiRpxecuted,
sizeb,,;, and letr[b] be the image partition whekebelongs.  following the conventional steps of R and without any com-
This algorithm can be seen as a modification of the originalmunication with any other co-routines. For every nade

Fig. 4. lllustration for Example 4.1
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Type-1
Type-2
G[b] @ G*[b]
Fig. 5. Constructing the graph abstractiai[b] from the conventional plan spadg[b]
G[b], there is a set of nodef(s, s’) | s’ € S} in G*[¥], i.e., Based on the above, in the next subsection, we use all

s generates as many nodes as there are plass Planss the results derived for each conventional optimization al-
ands’ are called theprimary andsecondaryplan of a node  gorithm R to understand sipR better and draw conclusions
(s, s'), respectively. The intuition behind the above is that about its behavior. We should note, however, that running
signifies the current plan of B[while s’ signifies the cur- R on G*[b] represents only an abstraction, which, if imple-
rent plan of a friend of R{]. The edges of5*[b] are defined mented directly, would be extremely expensive due to the
as follows. First, any pair of nodes with the same primarysize of G*[b].
plan are directly connected by a type-1 edge, i.e., all nodes
with the same primary plan form a clique. Second; &nd
u are neighbors ir7[b], then for all s there is a type-2 edge 4.5 ‘Well’ shape of cost function
between §,¢) and (u,v) in G*[b]. Figure 5 shows a simple
example of how the above graph abstraction is constructeds mentioned in Sect. 2, the key factor that determines the
from a conventional plan spateNote that, because of the success or failure of randomized algorithms is whether or
cliques formed by the type-1 edges, starting from any nodenot the cost functiorr forms a ‘well’ over the plan space.
in G*[b], it is possible to move to some node with an arbi- We claim that theG*[b] graph constructed as above forms
trary primary plan in at most two moves. Finally, the cost a very definitive ‘well’. Specifically, leyy be a global mini-
of a node §, ') is equal toc(s, b) for all s’, which implies  mum plan in the conventional plan spa&p]. As mentioned
that each aforementioned clique forms a plateau. in the previous subsection, the distance between any node
We claim that running Rf on the conventional plan (s,s’) of the graph and node(g) is at most 2. Moreover,
spaceG[b] under control of sipRf) with sideways infor-  the intermediate node that connects them is of the farrt) (
mation passingi > 0) is equivalent to running B[ on  Wheret is a conventional neighbor @fin G[b]. Comparing
G*[b] with no communication to any other co-routines. To the costs of the three nodes yields
see why this is thg case, first note that tr_]e rando_m choicg:- og((& $),b) = (s, 1), b),
buffer-size/co-routine and the sideways information passing
(first statement and foreach-loop in the while-loop of Fig. 3,
respectively) are the only parts that need attention.sls¢  <((s,t),b) > ¢((g,9),b),
the current plan of Rj and (s, s) be the current node of K[ becausg is a global minimum inG[b].
in G*[b] (cf. Fig.5). Choosing a new buffer sizZé in the . ,
first statement of the while-loop of sipR( such that Rf] ~ Hence, the only local minimums in the new gra@h[t] are
is a friend of Rp] based on the value o, is equivalent to also global minimums, anle they are a!l_mutually connected.
moving from 6, s) to (s, ) in G*[b], wheret is the current The above |m_pl|es that a perfect_well is for.med.
plan of RP]. Clearly, the two nodes are connectedi[b] The effectiveness of randomlzed algorithms does not
via a type-1 edge and have the same cost, so the move Ry depend on the formation of a ‘well’, but also on the
always legal and always successful. Choosing a neighbd?"€CiSe node con‘nect,|ons that give rise to the ‘well’. In the
w of ¢ in R[b'] under sipRk) and sending it to its friend above case, the vyell was f_ormed in somewhat of a Prute-
R[5] for a possible move is equivalent to attempting to fol- force way, by having all pairs of nodes of the form )
low a type-2 edge froms(t) to (u,u) in G*[b]. Therefore, and (,t) for somes be conne‘cted’lnto a cligue with the
sincec(s, b) = (s, t),b) and c(u, b) = ¢((u, u), b), the two ~ S&ME cost. In general, su_ch a ‘well shou!d not be expected
algorithmic abstractions are equivalent. to be useful, since choosmg the appropriate neighbat) (
of (s,s’) so that a downhill move tog(g) can then be-
5 syrictl i g h q - come possible is equivalent to choosing randomly among
rictly speaking, some nodes, such assf and ¢, 1), in Fig.5 are all conventional plans. Thus, the graph structure does not
connected by both type-1 and type-2 edges. However, for the purpose o . . : . ,
randomized algorithms, it makes no difference whether two nodes are connatura"y gu'de a random'_zed algonthm towards the .We” -
nected directly once or twice. The two types of edges discussed here ar@0ttom and the global minimum. Nevertheless, we claim that
merely for the purpose of presentation. G*[b] is very good for executing R in a way that captures

by construction of the clique, and
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the behavior of Rj] on G[b] under the control of sipRf), G*[b] and, for all buffer sized’ such that Rf] is a friend
because, when moving froms,(s’) to (s, t), t is the current  of R[], (s(b), s(b')) is also an r-local minimum irG*[b].

plan of some friend of Rf. Hence, the choice is not random This definition has been used to end a local optimization
among all plans, but actually guided by the sideways infor-both in this experiment and the ones reported in Sect.5 on
mation passing. Given the fact that the cost to buffer ratio isthe behavior of the algorithms. In all results presented in the
monotonically decreasing, good plans for one buffer size areest of the paper, whenever we refer to a local minimum
likely, though not necessarily, to be good for similar buffer (individual plan or plan function), the intended meaning is
sizes as well. Thus, the expectation is that the combinatiomlways that of an r-local minimum.

of the ‘well’-shape ofG*[b] with execution control that is Using the r-local minimum approximation, we run
based on sideways information passing is very powerful forsip|is(;) for each value ofk on five 20-join queries for
effective parametric query optimization. the buffer range [2,70]. (See Sect.5.2 for more details on

To verify the above theory on the ‘well-shape of a cost the experiments.) Typically, around 25 local minimum func-
function and also the effectiveness of sideways informatiortions were found for each run of siplkg( Figure 6 shows the
passing, we present below two sets of experimental resultgverage relative cost of local minimum plan functions found
The first experiment involved running many local optimiza- by siplis§), £ = 0,1,2,3,5, andoco. (Recall from Sect. 3.2
tions under sipllsf) for k = 0,1, 2, 3,5, andoo, and compar-  that the relative cost is the ratio of the actual cost over the
ing the cost of theaveragelocal minimum plan functions cost of the plan function found by individual conventional
obtained by sipllsf), & > 0, with those obtained by run- query optimizations for each buffer size.)
ning siplls(0). As mentioned above, siplls(0) captures the  Note the dramatic drop in the cost wheincreases from
conventional case where no nontrivial sideways informationg to higher values. This is due to sideways information pass-
passing occurs. ing, which allows plans that are perceived as local minima

Before presenting the results of this experiment, we firstoy Siplis(0) to be compared with plans of lower costs, and
describe the approximation that we used for identifying lo-therefore to be no longer regarded as local minima. This
cal minimum plan functions. When no sideways information has the effect of removing some of the high-cost local min-
passing occurs, a plan is considered to be a local minimuniMa, Which also reduces the average local minimum cost.
in G[b] after n randomly chosen neighbors of it are tested AS Shown in Fig. 6, for all buffer sizes, the cost reduction
(possibly with repetition), where is the actual number of its P&tweenk = 0 andk = 1 is substantial. On the other hand,
neighbors, none of which has lower cost. Note that this doedurther increases in the value &fdo not give further reduc-
not guarantee that all neighbors are tested, since some maipns in cost. This is due to the fact that, as long as there is
be chosen multiple times. A plan that satisfies the abovesdéways information passing, the plan associated with some
operational definition is called anlocal minimum(r for ~ buffer size is influenced directly or transitively by changes
random, since it is based on examining random neighbors)" the plans associated with all other buffer sizes.
to distinguish it from an actual local minimum. When side- One additional interesting result of the above experiment
ways information passing occurs, we need to approximatés that, with sideways information passing, not only are the
entire local minimum plan functions. We again use an op-average local minimum costs lower, but their standard de-
erational definition, but this tim&*[b] is the underlying viations are also dramatically reduced. Table 1 shows the
graph. A plan functiors() is anr-local minimum functiorif, standard deviation of the plan costs over all buffer sizes
for every buffer sizé, (s(b), s(b)) is an r-local minimum in  of a local minimum plan function when siplfsy( is used
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Table 1. Average standard deviation of local minimum functions found by we discuss the most important details of these implementa-

siplis(k) tions, in particular, the overall data structure for a state, the
siplis(0) ~ siplis(1) ~ siplis(2)  siplis(3) siplls(5)  siplis¢) data structure for maintaining the costs of the various plans
70.0%  128%  12.8%  136%  107% = 15.4% in a state and the individual joins in each plan for different

o o buffer sizes, and the timing of when these costs were up-
Table 2. Percentage of local minima replaced due to hill-jumping for dated. The values of various parameters of the randomized

siplis(k) algorithms are also important to their implementation. For
siplis(1)  siplis(2) siplls(3) siplis(5)  siplis) those, we adopted the setup that has been used for conven-
25% 26% 27% 31% 32% tional query optimization [IK90, Kan91].

Recall that a state in parametric query optimization is a
plan function. As we discussed in Sect. 4.3, the plans in dif-
with & = 0,1,2,3,5, andoo. The standard deviations are ferentimage partitions of the current plan function may have
expressed as percentages to their respective averages. kymmon subplans which can be shared. However, the over-
example, over the buffer range [2,70], the average standarflead of maintaining a plan graph where sharing common
deviation for siplis(0) is 70% of the corresponding averagesubplans may be shared across image partitions is quite ex-
cost, while that for siplis(1) is only about 13% of the corre- pensive. We thus implemented sharing only within the same
sponding average cost. As these figures indicate, the ‘wellimage partition, i.e., the plan function is an array, with one
of the cost function without SideW&yS information passing iSentry for each image partition, h0|d|ng the Corresponding
much bumpier than the corresponding ‘well’ with sideways plan. The entries in the array are in sorted order of the buffer
information passing. sizes of the corresponding partitions. This reduces the time
The second experiment that we performed is based on thgiken to find the friends of a given partition.
following observation. Due to sideways information passing,  The plan in each entry of the above list is maintained as
a plans in G[b] may be replaced by another plarin G[b]  a tree structure, with several pieces of pertinent information
such that the following condition holds: for any path con- stored in each node. The key difference between the above
nectings andt, there exists some third plafiwhose costis  and the corresponding tree structure for conventional query
higher than both the costs efandt. This kind of replace-  optimization is that, for parametric query optimization, each
ment, which we refer to asill-jumping, is one major reason  join node maintains cost information for many buffer sizes.
why sideways information passing is beneficial. Ideally, aSpecifically, for each join node, an array is used with as
direct way to verify the benefits of sideways information many entries as the number of buffer sizes examined in the
passing would be to count the number of times hill-jumping experiment. Each entry of the array holds the cost of that
occurs. This is, however, very costly to implement. Instead,join for the buffer size corresponding to the array entry. A
while running the experiment described above, we countedimilar array is associated with the entire plan to hold its
the occurrences of a special kind of hill-jumping, i.e., re- cost for the different buffer sizes.
placement of an r-local minimum ig[b] (or equivalently An important question is whether or not we should al-
replacement of an r-local minimum of the form, §) in ways maintain the costs in all entries for the arrays in all
G*[b]). More specifically, we counted the number of times join nodes of a plan. Doing so has the advantage that, when
that a plan that has been identifieals an r-local minimum 3 plan is transformed to one of its neighbors, the cost in each
in G[b] is replaced due to hill-jumping. Table 2 shows the array entry for only a couple of join nodes must be updated
average of that number over all buffer sizes in the form of a(except when interesting sort orders change and the change
percentage over the total number of r-local minima identifiedmust be propagated to more join nodes). This update can be
for siplis(k), k = 1,2, 3,5, andoo. Clearly, this special kind  done in constant time for each array entry. The disadvantage
of hill-jumping occurs quite frequently, thus verifying once of this approach is that many of these entries are overwritten
more the ‘well’-shape of the cost function and the benefitspefore ever being used, and thus computing them represents
of sideways information passing. pure overhead. A small set of experiments showed that the
Very similar results with respect to the average cost ofoverhead outweighed the benefits of the constant-time cost
local minima, its standard deviation, and the occurrence otalculation. Hence, we decided to calculate cost entries on
hill-jumping were obtained when siplir was used instead ofan as-needed basis. Specifically, when a neighbor plan is
siplls, so we comment on those experiments no further.  generated, the costs of all the join nodes and the total cost
of the new plan are calculated and stored only for the buffer
sizes in the rangeb[ — k,b" + k], whereb™ andb* are the
5 Algorithm behavior minimum and maximum buffer sizes of the image partition
of the current plan, respectively, akds the depth of the al-
gorithm. If for a buffer sizé’ in the above range the relevant
costs of the current plan are known, then the corresponding
costs of the new plan can be found in constant time. (This
is true at least for alb~ — k < V' < b* + k.) Otherwise,
all these costs are calculated from scratch in a bottom-up
61t is possible that before its minimality can be detected, an r-local faShI.On for the entire pl_an tree.
minimum is replaced due to sideways information passing. We are not Fl_gure 7 is used to illustrate some of the data structures
able to capture this phenomenon in our counts, so the numbers included ifentioned above, the costs that are calculated at each step of
Table 2 represent lower bounds. the algorithms, and in general their overall flow. Specifically,

5.1 Algorithm implementation

We implemented all four algorithms siplisk)( and
sip2POs/rk) for several values of the depikh In this section,
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Fig. 7a—d. Steps of siplis(1)

it shows four steps of siplls(1) starting from a state with a  The table at the top of each step represents the plan
single random plan. The buffer range in the figure isgR  function corresponding to the current state. For example,
and all other numbers for costs are artificial and are usedhe table in Fig. 7a indicates th#&tl is the current plan for

for illustrative purposes only. To keep the example simple,buffer size range [25]. The array called ‘Plan Cost’ above
we also confined ourselves to using only the join methodeach plan represents the total cost of the plan for each buffer
transformation rule to create neighbors. size, and the array in each join node of a plan represents the



142

relative cost
1.20 |
1.18 | “7 5
1.16 .|
1.14

112 4

1104 IS

1.08 -} ..

T 7 siplIr(1) (150 s)
1.06 1 N

sip2POr(1) (1000 s)

1.04 1

sip2POr(1) (2200 s)

1.02 1

1.00 —}

f t } buffer size
0 10 20 ' ‘ ‘ éo 70

Fig. 8. Output quality of sip2POr(1) and siplir(1)

cost of the corresponding join for each buffer size. Since5.2 Experiment testbed
the range of operation has four buffer sizes, all these arrays
have length 4 as well. In plaf*1, the join costs of the two e ran several experiments to test the effectiveness of the
joins for buffer size 2 are 4 and 8. Thus, the total cost of theimplemented algorithms for query optimization. The ma-
plan for buffer size 2 is equal 12 (the sum of the individual chine used for the experiments was a DECstation 3100. The
costs). For each step, the rightmost plan shown is a neighbaiigorithms were run on tree queries [UlI82] consisting of
of some plan in the current state and is the one examinegdquality joins only. The size of these queries, which were
for a possible move to it. generated randomly, ranged from 1 to 20 joins. They were
In step 1,P2 is a neighbor ofP1 and is obtained by tested with a randomly generated relation catalog where re-
changing the join method of the internal join BfL.. Because lation cardinalities ranged from 1000 to 100000 tuples, and
the costs for all buffer sizes are available i1, all the the numbers of unique values in join columns varied from
corresponding entries fdP2 are calculated in constant time. 10% to 100% of the corresponding relation cardindlity
A comparison of these costs results in the plan functionEach page of a relation was assumed to contain 16 tuples.
shown at the top of Fig. 7b. Each relation had four attributes, and was clustered on one of
In step 2, planP3 is generated, which is again a neigh- them. If a relation was not phyS|caIIy.sorteq on thg clustered
bor of P1. Since the image partition d?1 is [2..3] and the  attribute, there was a 'Biree or hashing primary index on
depth isk = 1 buffer size, the cost oP3 must be calcu- that attribute. These three alternatives were equally likely.
lated for the buffer range [2..4] for comparison. Again, all FOr each of the other attributes, the probability that it had a
these calculations may be done in constant time (assumin§econdary index was 1/2, and the choice between-trée
that no sort order needs to be propagated). The entries fdf"d hashing secondary index were again uniformly random.
buffer size 5 remain empty for all cost arrays B8. If at ~ ~S for join methods, we used block nested loops, merge
some later point these costs are needed, they will have t§¢@n: and simple and hybrid hash-join [Sha86]. The query

be calculated from scratch. A comparison of the generateSt Was a weighted sum of the CPU time and the number
costs with those o1 and P2 for ranges [2..3] and [4..4], of 1/0 accesses. The weight was chosen so that the cost of

respectively, results in the plan function shown at the top ofn€ disk read or write corresponded to 30 ms. Cost formulas
Fig. 7c. are listed in the Appendix. In what follows, unless otherwise

stated, the results presented for each algorithm are averages
of five runs of the algorithm on each of ten queries with sim-
ilar characteristics. The values of the buffer size parameter
were those in the range [20].

For every specific query instance, we first ran 2PO sep-
arately for each buffer size (which resulted in the (approxi-
mately) optimal plan functiorg() as described in Sect. 3.2)
'and obtained its average running time over all buffer sizes.
We then allowed sipll to run for exactly that amount of time

In step 3, a neighbor aP2 is generated (pla®4) and

its costs for buffer size range .[3] are calculated similarly
to step 2. The resulting plan function is shown at the top
of Fig.7d. In step 4, a neighbor dP4 is generated (plan
P5). Because the image partition B# is [3..5], the cost of
PS5 for the entire buffer size range.[8] must be calculated.
This is slightly more complicated than in the previous steps
because the cost d?4 for buffer size 2 is unknown. Hence,
the cost of P5 for that buffer size must be calculated from

scratch, while .the costs fOlf the buffer size range5Bmay 7 This was the most varied catalog (catalog ‘relcat3’) that we used in
be calculated in constant time. previous experiments [IK90].
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Table 3. Output quality of siplirk) and siplisk) Table 4. Average time given to sipll&{ for queries of different sizes
k=0 k=1 k=2 k=5 k=10 k=00 Query size (joins) 1 3 5 7 10 20
siplir(k)  1.67 110 111 117 1.20 1.17 T (s) 2 14 27 42 62 158

siplis(k)  1.67 1.08 1.08 1.08 111 117

on the query. Thus, sipll used the same amount of time td:onsistently find sipli(1) to be the best among sip)l{or
optimize a query over a range of buffer sizes as 2PO used oﬂ” values of. ] ) )

the average to optimize that query for a single buffer size, ~Table 3 also serves to compare siplls with sipllr and
On the other hand, sip2PO was run for as long as its seconi@lentify some differences between them. First, unlike

phase (SA) needed to converge. sipllr(k), for small values oft > 1, the output quality of
siplls(k) is comparable to that of siplls(1): any small value

of the depthk is equally optimal for sipligf). This result is
5.3 Sip2PO versus sipll consistent with the fact that the optimal deptkfor siplir(k)

is 1, for an image partition of the optimal plan function
We first present results that compare the effectiveness andhrely consists of more than five buffer sizes. Second, for
performance of sip2PO and sipll. These results have coneorrespondingk values, the output quality of siplls) is
sistently indicated that, unlike the situation for conventional consistently better than that of sipt)€. The reason is that
query optimization, sipll is very competitive with sip2PO. an image partition of the current plan function in sipty(
As a representative, Fig. 8 shows the relative costs of thenay consist of more than one buffer size, and thus siglir(
output plan functions found by sip2POr(1) and siplir(1) for is more prone to the effect of over-comparing than sighls(
five 20-join queries. The figure includes the results of twoSince siplls(1) appears to be the dominant algorithm for
different versions of sip2POr(1) that took around 1000 s ancparametric query optimization, we devote our full attention
2200s, respectively. When compared with sipllr(1), whichto it in the rest of the paper.
only takes around 150s, the relative output costs of both
versions of sip2POr(1) are lower by a mere 1-4% on the
average.

The fact that sipllr compares favorably with sip2POr 5.5 Effect of query size and running time

is actually not surprising. Recall from Sect. 4.5 tliat[b]
forms a ‘perfect well’. In addition, even the r-local minimum . . . .
approximations found by sipllkj and siplisg), k > 0, have I this subsection, we show the effectiveness of siplis(1) for
much lower costs than those found by siplir(0) and sip”S(O),optlmlzmg queries of various sizes as well as how this is

respectively (both with respect to their average and theidected when the time consumed by the algorithm varies.

standard deviation). Hence, the second phase of sip2PO ({&/¢ Present results for queries with 1, 3, 5, 7, 10, and 20

not really necessary. Based on the above, in the remaindd?ns. With respect to the running time of the algorithm, re-
of this paper we concentrate on sipll only. cgll that fqr the results presented so far, the amount of time
given to siplls(1) was equal to the average time needed by
2P0 to optimize a query for a single buffer size. llethe
5.4 Optimal depth for sideways information passing that time. The average values Bffor various query sizes
is shown in Table 4. We performed additional experiments
To evaluate the effectiveness of sideways information passwhere the amount of time given to siplis(1) Was3, 21'/3,
ing, we compare the performance of sipis@nd siplir¢) T, and 2ZI'. Figure 9 shows the results of the combined ex-
for various values of. Table 3 shows the average relative periments. Specifically, it shows the average over the buffer
costs over the buffer size range [2,70], of the plan functionssize range [2,70] of the relative cost of the output plan func-
found by siplisg) and siplirg), for k£ = 0,1,2,5, 10, andoo tion of siplls(1). As expected, more time gives better results
(given an equal amount of time). The specific results are foifor any query size. The surprising result, however, is that
20-join queries, but similar results were obtained for otherfor small queries, even a time @¥3 is sufficient to produce
queries as well. As Table 3 shows, the improvement froma plan function that is within 1% of the optimal (i.e., a rela-
depthk = 0 to k = 1 is significant. This demonstrates the tive cost of 1). As for larger queries, such as 20-join queries,
usefulness of sideways information passing and is consister& time of 2I" produces a plan whose average cost is within
with the results on the ‘well’-shape of the cost functions over4% of the optimal one. These results are very promising and
G*[b] presented in the previous section. indicate that, by using siplls(1), parametric query optimiza-
On the other hand, as the depthincreases beyond 1, tion can be efficiently supported in current systems. As in
there is a gradual degradation in performance. This is du@pplying Il to conventional query optimization, an interest-
to the fact that as the number of plan cost comparisons ining question that arises in parametric query optimization is
creases, the time consumed by such comparisons more th&@w to determine the running time of a query optimizer for
offsets the benefits of a friend occasionally finding a lowerreal applications. This is an issue that requires further study
cost plan. In general, the larger the difference between thén the form of a comprehensive performance evaluation on
buffer sizes of friends, the less likely that the comparisonsiplI.
between the costs of their associated plans is beneficial.
Throughout this paper, we refer to this phenomenooves- 8 The two algorithms coincide whek=0 or k = co but behave differ-
comparing Indeed, due to over-comparing, our experimentsently for intermediate values d.
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6 Other issues We have used siplls(1) to solve this modified parametric
query optimization problem for the buffer size parameter.
6.1 Incomplete sets of buffer sizes For any setB’ of buffer sizes, the friends of B[ are all co-

routines R}’] where?d’ belongs to the same image partition
In this subsection, we study the effect on the optimizer effecasb or v’ is the immediately largest or immediately smallest
tiveness of dealing only with a subset of all possible valuesbuffer size in3’ outside of the image partition of We have
of the unknown run-time parameter. This may be necessargxperimented with3’ being equal to each of the following
when the domain of parameter values is very large, in whicHour sets:
case generating plans for each different value is impractical.
In that case, the resulting partial plan function wouldiine
plicitly extended to the full domain of values by some form g1 =
of ‘interpolation’. For example, if the actual parameter value
at run time is not in the optimized subset, then the plans gen-
erated for its ‘nearest neighbors’ should be examined and thdS52 =
best one among them should be chosen for processing. {b]2 < b < 70 andb is even}

{b]2 < b < 70}, (canonical case based on Formulation B)
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BS3 = form groups such that the members of each group belong
{2,3,4,5,7,10,15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70} in a plateau and can therefore be replaced in a simple post-
BS4 = processing step by a single plan without affecting the output
quality. The resulting average number of image patrtitions of

{2,5,10,20,30,50, 70} . such a step is shown in the third column: the dramatic drop

to very reasonable numbers is clear. This number may still
be high for some applications, so we have also experimented
with two other postprocessing steps, which put plans in the
same group if their costs for the corresponding buffer sizes
differ by no more than 5% and 10%, respectively. These
results are shown in the last two columns of Table 5. The
5% experiment brings another factor of 2 reduction in the
number of image partitions, whereas the 10% experiment
Hoes not offer any further significant improvements, indi-
cating that for efficient processing of a query over a large
ange of buffer sizes, one needs to store approximately six
r seven distinct plans.
Hence, using siplls(1) with some postprocessing step of
form mentioned above appears to be adequate with re-
spect to the final number of plans. In fact, the second row

o . X - of Table 5 shows that, even without any postprocessing, the
them. Each of the remaining of the ten queries with Wh'Chspace required to store the alternative plans is not really
we experimented was similar to one of these four. For almosgignificant

all queries (Q1-Q3), using the contiguous range [2,70] (set
BS1) gave the best results. Even for query Q4 whBi$2
and B.S3 were better, the results fétS1 were close. Almost . -
always, as the buffer size set became smaller, the outpfi-3 Overhead for run-time decision
guality became worse. On the other hand, the output quality ] ) o
degradation was not dramatic: between BS1 and BS4, th&ecall that the primary goal of parametric query optimiza-
cardinality of the buffer size sets dropped by an order oftion is to have minimal run-time optimization overhead, i.e.,
magnitude, while the relative cost of the output plan barelyall optimization occurs at compile time and a simple table
increased by 10% in the worst case (Q3). These generdPok-up determines the appropriate access plan at run time
observations were true not only for the average plan cosfFig. 1). As shown below, our measurements of the run-time
over all buffer sizes but for most individual buffer sizes as overhead verify that this goal has been achieved.
well. Hence, we conclude that at least for the buffer size ~ Our implementation of the run-time optimal-plan selec-
parameter and for the ranges that we discussed, if given thion is based on storing the plan of each image partition as
choice, using the full domain of values is preferred, but using? Separate tree and building a 1-level index on top of the
a much smaller subset of it is also quite effective. set of all plans, like the array at the top of every part of
Fig.7. That is, given an image patrtition (i.e., its boundary
buffer sizes), the index returns a pointer to the corresponding
6.2 Storage overhead of output plan functions plan. Even without any grouping of_ Fhe final plan functiqn_,
the average number of image partitions was 51 for 20-join

gueries (Sect. 6.2), so the entire index occupies a single disk

Another issue t_hat arises i_n_ parametric query optimizatk_)n isDlock. In addition, each 20-join query access plan occupies
the number of image partitions of the output plan funCt'on'one or two additional blocks. So, the entire I/O cost of the

|deally, one wants to have considerably fewer partitions thar}un—time decision has been two to three block accesses. The

tsr,:grggmagﬂeoggpaﬁa?;mon’ so that only a few plans arecorresponding CPU time comes essentially from performing
T id f' ling f hether this | . a handful of comparisons within the index block to identify
0 provide some Tfeeling for whether 1nis 1S a Serious ,q appropriate plan and is, therefore, insignificant. Hence,

. ; ) the overall overhead of the run-time optimal-plan selection
from our experiments with the buffer size parameter. The, b P

. . . . ~is essentially zero (i.e., far less than 1s); the method has
first row of the table contains numbers of image partitions , .piaved our original goal

and is the focus of most of the rest of the discussion, whereas '
the second row contains the size of the corresponding storage

space in bytes. All numbers are averages over ten 20-join . .

queries. With respect to the columns of Table 5, the first’ Algorithm extensions

column is provided only for reference and contains the total

number of buffer sizes examined, which is an upper bound’-1 Parametric query optimization for other parameters

on the number of image partitions. The next column shows

the average number of image partitions based on the outpuur focus so far has been on the single parameter such as
plan function of siplls(1). This number turns out to be very buffer size and index parameters. To examine the effective-
high (clearly impractical). However, many of these plansness of the devised algorithms for general parametric query

The sets have been constructed in a way so\thdBS(: +

1)| < |BSi|. The specific choices for the ‘nonuniform’ sets
BS3 and BS4 were motivated by the observation that the
image partitions of small buffer sizes tend to be smaller
than those of large buffer sizes. Hence, in béth3 and
BS54, the density of small buffer sizes is higher. For all sets
BS2 — BS54, the plan associated with a missing buffer size
is the better of the plans associated with the closest buffe
sizes (one larger and one smaller) that are in the set.

For each one of the above sets, siplls(1) was given th
same amount of time. Figure 10 shows the average over a
buffer sizes of the relative cost of the output plan function
for each set. It contains data for four representative 20-joiry,
queries (Q1-Q4), which differ in how close to the optimal
plan function was the output plan function of siplis(1) for
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Table 5. Average size of the output plan function of siplls(1)

Number of No = 5% 10%
buffer sizes  grouping grouping grouping  grouping
Number of image partitions 69 51.4 21.4 6.2 5.0
Storage space (Kbytes) 62.2 17.7 6.4 55

Table 6. Output quality of siplis(1) for the index parameter 7.2 Scaling to multiple parameters

Query size 1ljoin 3joins 5joins 7 joins 10 joins

Relative cost 100 1.00 ~ 1.00 101 113 Abstractly, applying our parametric query optimization ap-
proach to multiple parameters is straightforward. The only
difference is that the parameter space for the plan functions
becomes multidimensional. This requires an efficient multi-

Lo I . dimensional data structure to maintain the image partitions
optimization, we have performed a limited set of experi-

ts with the ind ter. We ch thi i in the plan function, during the execution of the algorithm
ments wi € Index parameter. We Chose thiS parametel,y 455 when storing the final result for use at run time. In
because most others are similar to the buffer size parame

) : - ) .t%{ddition, friends should be defined in multiple dimensions,
n tha.t there is a natgral continuity and total order in thelrbut otherwise the notion of sideways information passing re-
domain of values, which are expected to make those Paray, Jins identical. Other than that, our implementation remains
eters behave similarly in parametric query optimization. Wevalid and can be easily applied. Of course, in practice, the

%pimgegﬁdlggz: dv‘gg].g?: qLLIJLSrriI:sS r;nagr:n?nfrct)rr;r; %njgg)]( E)Ofkey guestions that arise include the running time of the algo-
oné relétion does ot a#“fectqthe co’st of glar?s that muchrlthm, the_cost of the resulting plan fun_ct|op relative tp.the
. ) v with 10-ioin queries was enouah act.ual optlma!, and the number of resulting image partitions,

_Sl_cr)] explerlmerfm?]g pr&y wi J q ken f h 9N \hich determines the run-time overhead as the multidimen-
€ values o the index parameter were taken rom’t € S€ional index on the plan function is traversed. Investigating
{no index, non clustered Btree, non clustered hashing, — yne offectiveness of our parametric query optimization tech-

clustered Btree, clustered hashing}. These values were iy o0 tor multiple parameters is beyond the scope of this
considered to be ordered as in the above set, and Co'rou“g?aper but is part of our current and future effort
r 1 .

friends were determined based on that order, as for the buff
size case. The specific ordering tried to approximately cap-
ture some monotonicity between the index value and the co
of a relation scan, although there were clearly many case
where this approximation was inaccurate.

Dynamic programming algorithms

All current relational database systems that we are aware of

Table 6 contains the average relative cost of the output/Se & heuristically pruning, dynamic programming algorithm
plan function of siplis(1) as a function of the query size. for query optimization, usually an enhanced and tuned-up
For all queries with up to seven joins, siplis(1) found a version of the original algorithm of System R [SAT9].
plan function that is very close to the optimal. For 10-join 1he randomized algorithms that we have discussed in this
queries, the relative cost of the output was higher than th@@Per represent a completely different style of optimization.
corresponding cost found when the buffer size parametelt has already been shown that for small queries (approxi-
was varied. As mentioned above, for such queries, the codhately up to ten joins), dynamic programming is superior to
is relatively insensitive to a single index change. Therefore fandomized algorithms, whereas for large queries the oppo-
the opportunities for hilljumping are very limited, and the site holds [Kan91]. In this section, we provide a prellmlnary
algorithm behaves similarly to the case where a fixed indexdiscussion of how the two approaches compare when dealing
type is considered, where the second phase of 2P0 is nedith unknown run-time parameters. We distinguish between
essary for effective optimization. Nevertheless, the overalfhe case of allowing essentially no run-time optimization
results are very promising and indicate that randomized al9verhead, which we have called parametric query optimiza-
gorithms enhanced with sideways information passing ma)pon and has been the focus of our work, and the case where

be the generic answer to parametric query optimization fo’ontrivial run-time overhead is allowed, as proposed by Cole
arbitrary parameters. and Graefe in what they calledynamic query optimization

[CG94].

Both the buffer size and the index type are discrete pa-
rameters. In reality, there are continuous run-time parameters
as well, e.g., predicate selectivity. Clearly, for such parame8.1 Zero run-time overhead
ters, one cannot deal with all their possible values, because
there is an infinite number of them. One simple extensionWe believe that, for parametric query optimization, where
of our algorithms to handle this case is to use some seene wants no run-time overhead, the break-even point be-
lected parameter values during optimization, as was donéwveen randomized algorithms and dynamic programming is
with incomplete sets of buffer sizes in Sect. 6.1. Then, givenat smaller queries than for conventional query optimization.
a specific parameter value at run time, the algorithm wouldThis belief is supported by the fact that dynamic program-
choose between those plans found for the selected parametating or any of its heuristic variants cannot take advantage
values closest to the given one. of sideways information passing. For aaway join query,
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these algorithms proceed by optimizing &#way join sub-  Table 7. Symbols used in cost formulas

queries of the original query for all values &f from 1 Crjo  number of page accesses

to n. For parametric query optimization, consider the co- Ccpu  number of CPU instructions

routine abstraction again, where each co-routine runs such’ (&) :mg:: gi fua%:: ,l?;

a_dynamlc programming al_gorlthm. In that_ case, co-routine V(A.R) number of unpique values for attribute A

friends are not helpful. Using the buffer size parameter asp 4 gy number of buckets in hash table for attribute Afin

an example, we observe that knowing the best plan for azpy ~ number of leaf pages of indek

subquery found by R] does not provide any information to  D(/)  depth of B-tree index

R[b'] about the best plan that it should find.R[still has Ceomp  NuUMber of instructions to compare keys in main memory

to compare all alternatives among themselves and procee@naesn ~ number of instructions to hash akey

accordingly. Thus, any extensions to dynamic programming " number of instructions to move a tuple in main memory
. . . . . . swap number of instructions to swap two tuples In main memory

that remain faithful to the principles of the algorithm will

have to operate in a way similar to sipR(0). The running time

of the extended algorithms should increase significantly for  \ynether systems should strive for zero run-time over-
the same size queries compared to their conventional velheaq or not is a question whose answer may be partly based
sions. Thus, siplls(1) should be preferred over dynamic progp, philosophical and stylistic grounds. Beyond that, how-
gramming for parametric query optimization for many more ayer, it also depends on the exact comparison of the compile-
(smaller) queries than 2P0 s for non-parametric query optime costs of siplis(1) and the Cole-Graefe dynamic pro-
timization. gramming algorithm. Such a comparison is beyond the scope

Clearly, the above needs further investigation and alsgyf this paper, but will be part of our future work.
experimental verification. It is conceivable that heuristics can

be added to dynamic programming that not only find an ap-
proximation to the optimal plan function but which can make 9 Conclusions and future work
use of sideways information passing. Although we believe
that siplis(1) will still remain the preferred algorithm, we We have formalized the problem of parametric query opti-
plan to study these alternatives and resolve these issues. mization and studied it primarily with regard to the buffer
size parameter. We have adopted randomized algorithms as
the main approach to this style of optimization and have
8.2 Non-zero run-time overhead introduced sideways information passing to increase the ef-
fectiveness of these algorithms in the new task. Extensive
To obtain an effective algorithm based on dynamic program-experimentation has shown that these enhanced algorithms
ming, Cole and Graefe proposed thgnamic query opti- optimize queries for large numbers of buffer sizes in the
mization approach [CG94], which leaves part of the opti- same time needed by their conventional versions for a single
mization process for run time. Specifically, this approach isbuffer size, without much loss in the output quality. These
based on the notion adhcomparability of costsIn particu-  experiments have also identified siplls(1) as the most effec-
lar, the cost of a plan is not a single value but an interval oftive of the randomized algorithms for a very broad spectrum
values, corresponding to the minimum and maximum cost obf cases. Finally, we have provided evidence that these al-
the plan obtained over the entire range of possible paramegorithms are applicable to the general form of parametric
ter values (e.g., buffer sizes). Alternative plans are compareduery optimization. Experiments with the index parameter
based on their cost intervals. When the minimum cost of éhave shown that siplls(1) once again can obtain multiple
plan is higher than the maximum cost of another, then thequery plans with very comparable output quality in short
former can be pruned, but when the two cost intervals overtimes.
lap, then both plans are kept until run time. In other words,  To the best of our knowledge, the approach presented in
instead of spending significant amount of compile time tothis paper for parametric query optimization is the first of
identify the exact image partitions and the correspondingts kind, since it offers a complete query optimization algo-
optimal plans, partial ordering of plans is allowed. At run rithm that has a plan function as output, makes no assump-
time, the cost of the partially ordered plans is re-evaluatedions about any properties of the plan costs, and incurs no
using the actual run-time parameter values, and the optimalun-time overhead. We believe that incorporating siplis(1)
plan for the occasion is identified. into a query optimizer will significantly enhance the perfor-
Clearly, this approach significantly reduces the requiredmance of queries. When a query is ready to be executed,
compile time by shifting some of the decisions to run time, the database system will know the precise values of the pa-
where parameter values are known, and makes dynamic preameters that were unknown at query optimization time. It
gramming effective. The resulting run-time overhead, how-will take a simple table look-up with the parameter values to
ever, may be significant, since essentialy plans stored identify the appropriate plan for the execution. The savings
must be read from disk and have their cost re-evaluatedin execution cost of using a plan that is specifically tailored
Although sharing of common nodes across partially orderedo the actual parameter values as opposed to one obtained
plans reduces not only the storage space but also the time fior typical parameter values could be very significant.
takes to re-evaluate the cost of the plans, that time may still  There are several issues that we plan to address in our
be non-negligible. For example, in the experiments of Colefuture work. The most important ones are a detailed com-
and Graefe, the run-time decision overhead went up to 74%arison of randomized algorithms and the dynamic program-
of the query processing time [CG94]. ming algorithm (especially the Cole and Graefe approach)
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for parametric query optimization, and comprehensive ex-Ccpy = T(R) * T(S) * Ceomp
perimentation with large vectors of diverse parameters to (R)
understand the scalability of the developed algorithms. The C1/0 = P(R) + (b N 1] * P(S) .
results of these studies will complement those presented in

this paper and shed some new light into how parametric

guery optimization should be approached in future database .
systems. A.2 Hash index forS

There are two cases: one where the hash index is a primary
Appendix index, and the other where the index is a secondary index.

Cost formulas for joins
) o o A.2.1 Primary hash indexIf we use the primary hash index
This appendix lists all the cost formulas for joins that we for S, the CPU cost is given by:
used in our experiments. Selectivities, relation sizes, and (S)
buffer sizes are parameters of these formulas, which include; =T(R) % (Cy ., + «C. )
both /O and CPU costs. These formulas are based on the " = (F) * (Chash B(A,S) comp)

assumptions that i) values in each column are uniformlyha /0 cost depends on the number of buffersf b is

disctjri_t_)_uiﬁd, ii). LRUdistthehpo!icy _ustehd in pageﬂ:etplacer:nent,not larger than the average number of pages in each bucket,
o ) her 15 o dte g it sense that o2 UeTfore el i < (1-+ 1) ) we assume tha

Table 7 defines the symbols used in the cost formu-We only give one buffer t&5. Then the I/O cost becomes:
las. While most of these symbols are self-explanatory, it P(9)
is worth pointing out that we express CPU costs in units ofC1/0 = P(R) + T(R) « (1 + [B(A S)D'
CPU instructions, and 1/O costs in units of page accesses. ’
In our experiments, we assume that each CPU instruction Now, whenb > (1 + [Bi(f)sﬂ)* we assume that we give
takes 0.001 ms, and that each 1/0O takes 30 ms. .Furthermorg—:,,L times of (14 .7¢%). 1) buffers toS, wherem is the largest
as we use Shapiro’s cost formulas for hash joins [Sha86], B(4,9) P(3)
we SetClomp, Chashs Cmove aNd Cipap 10 3, 9, 20 and 60 integer such_thaﬁ ZIm*(1+ f_f_z(A,sﬂ)- In other_words, the
units, respectively, to ensure compatibility of our formulas buffers are divided inten. partitions, each of which can con--
with his. Finally, we use the notatioR x 4 S to represent tain all the pages of an average bucket. Then the accessing
a join between the outer relatioR and the inner relation ©Of pages inS can be viewed as a random reference to the
S on attribute A. Joins on more than one attribute are not buckets. In [NFS91], we derive the following formula for
considered here and in our experiments. approximating (very closely) the expected number of page

There are three join methods considered in our experiaccesses for a random reference of lerigtb a file of size
ments — hash join, nested loops, and merge scan. Here, wd¥ usings buffers:
only include the formulas for the latter two methods; theC ~ 1)
formulas for hash join are listed in [Sha86]. 1/o

N x[1—-1—-1/N)k]  k<ko
{s + (k — ko) * (L— s/N) otherwise ’
A Nested-loops joins
whereko = In(1—s/N)/ In(1—1/N). Applying Eq. 1 by

In this section, we examine three different cases for nestegetting N = B(A4, 5), k = T(R), ands = m, we obtain the
loop joins R x4 S. We first consider the case when there I/O cost for the case whetlh=m * (1 + [Blzgsfgﬂ):
is no index on attributed for the inner relationS. Then we ’
study the cases when there is either a hash index or a B-trder/o ~
index for 5. In all three cases, we use file scan for relation ( p(Rr) + (1 +[ %) 1)« B(A,8) «[1 — (1 — B(}A,S))ko]

R B(A,S)
’ T(R) < ko
P(R)+ L+ 507 # [m+ (T(R) = ko) * (L= /5 )]
A.1 File scan forS otherwise

If both the outer and inner relations have no indexprthen ~ Whereko = In(1— ¥ ) / In(1 - B_(jys))- This completes
there are two cases, depending on the number of availableur analysis when the hash index is a primary index.
buffersb. If P(S) < (b— 1), we can read in all pages 6f

Then, the formulas for CPU and /O costs are: ) ) o
A.2.2 Secondary hash indedow consider the situation

Copu =T(R) * T(S) * Ceomp , when we use a secondary hash index. Ldie the index
Crjo = P(R)+ P(S). and B(A, I) denote the number of buckets fér Then the

In calculating the CPU costs, we assume in our experiments(,:PU cost is given by:

that the cost of opening and closing a relation or an index _
is 0. WhenP(S) > (b — 1), the cost formulas become: Cepy = T(R) * (Chasn *+

7(S)

Ba,p " )
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As for the I/O costs, it again depends on the number ofC;,, ~

bufferb. If b < (3 + [szf({)[ﬂ) we give one buffer each to P(R)+ [ LED ] 5 V(A4,S)  [L — (1 — V(j‘ S));%]

. V(A,S)
R, S andI. Then the I/O cos;t()je)comes.T(S) +T(R) * (?P((II)) 1+ vﬂsé)) T(R) < ko
CI/O:P(R)+T(R)*(1+|—B(A I)-|+V(A S)) P(R)+’—V(A,S)-| *[m;((g;(R)_kO)*'(l V(A S’))]

’ ’ +T'(R) « (D(I) — 1+ V(A S)) otherwise
Otherwise, wherb > (3 + [ ;{",1), we give 1 buffer to

wherekg = In(1— VAS))/ In(1- V(j S)). This completes

P
each of R and 5, butm « (1 +[ 1) buffers tol. The our analysis when the B-tree index is a secondary index.

) B(A,I)
I/O cost is then:

Crjo = - B Merge-scan joins
P(R) + (1 + ’VB(A [)-|) * B(A,I) * [1 - (1 - B(j ]))ko]
YT(R) * T(S)S)D T(R) < ko B.1 M-way sort-merge
P(R)+(1+ B(,Ef)lﬂ) #[m+ (T(R) — ko) x (1 — (i 1)l Before we proceed to present the cost formulas we used for
+T(R) * fozq) otherwise merge-scan joins, we first give the formulas for sorting a

. relation. The sorting procedure we assumed is M-way sort-
whereky = In(1— B(Z})I))/ In(1-— B(j‘yl)). This completes  merge, the costs of which are summarized below.

our analysis when the hash index is a secondary index. Crsort
Cepu(R) =
T(R) *b

A.3 B-tree index forS T(R) * Inz P(R) * (Ceomp + Cimove) ¥
A.3.1 Primary B-tree indexIf we use the primary B-tree (MIny P(R)] = 1) % T(R) * (b * Ceomp + Crmove) @)
index, the CPU cost is given by: f;’g(R) =2x% P(R) * [In, P(R)] . 3)
Copu = T(R) * (9) «Cor . Given b buffers, the merge-sort takét, P(R)| passes. In

V(A,S) P the first pass,”{ sorted runs are produced, each of which
As for the 1/0 cost, ifb < (3+ /%) 1), the cost is: is b pages. To sort the = Tl(alfz){;b tuples in each run, a CPU

’ cost proportional ta In, n is required. Thus, the total CPU
P(S)
Cr/o = P(R)+ T(R) * (D(I) + 1. cost for the first pass is given by the first line of Equation 2.
V(A,S) Merging occurs in the second and subsequent passes. In each

step in a merging pasé,tuples are compared, and the tuple
with the minimum search-key value is output to a file for
subsequent passes. This gives rise to a total (merging) cost

Otherwise, wherb > (3 + [ﬁfgﬂ), we give one buffer to
R, one buffer to the root node of the index, one buffer to a
leaf page of the index, bubr(x [ %) 1) buffers toS. The

: : V(4,5) corresponding to the second line of Equation 2. As for the
/O cost is then given by: I/O cost, 2« P(R) page accesses are required for each pass.
Crjo =~
P(R) + [Viﬁf’s)] * V(A 8) *[1— (1~ 1 o)™ B.2 No index for the outer relatiof®

+T'(R)«(D(I)—1) T(R) < ko
P(R)+ [ (41 [m+ (T(R) — ko) * (L —
+T(R) x (D(I) — 1) otherwise

m ] There are three cases to be considered if there is no index
V(4.9 for R (and thusR has to be sorted).

whereko = In(1— ¥ &)/ In(1— & 5)- This completes

. . . . ) B.2.1 No index foiS. First, consider the case whehhas
our analysis when the B-tree index is a primary index.

to be sorted as well. Then the combined costs are:

Cepu = CEpy(R) + CEEy(S) + CEHy" (R, S),
A.3.2 Secondary B-tree indeXf we use a secondary B-tree cru cry cru

index, the CPU cost is: Crjo = 0;73(]%) + 0;73(5) + O?}Joom(Rv ).
o —T(R T(S) o The sorting costs fo andS are given by Egs. 2 and 3. The
cru = T(R)+ V(A,S) * Seomp - costs C%y" (R, S) and C}’}JO‘”"(R, S) represent the CPU
. LP(I) . and 1/O costs of performing a merge join éhand S, after
As for the I/O cost, ifb < (3+ (V(AS)D’ the I/O cost is: these relations are sorted. These costs depend on the number
_ LP(I) T(S) of available buffersh. If b < (min(,/{%,, /) + 1), we
Crjo = P(R)+T(R) = (D) + [V(A, 5)] * V(A4, 5))' give one buffer to each aR and.S. Then the costs become:
. . . T
Otherwise, we give one buffer to each of relatldth;aDr(]I()jS, gllj;&m(R S) = T(R) * (S) % Coomp,
one buffer to the root node of the index, but ¢ [ ;,'g) ) V(4,9)

buffers to the leaf pages of the index. The I/O cost then
becomes:

P(S)

O™ (R, S) = P(R)+ T(R) * | A8
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Table 8. Extra symbols used in merge-scan cost formulas

CS"”(R) number of page accesses for sortiRg
CS"T@(R) number of CPU instructions for sorting
?}g’m(R S)  number of page accesses for performing a merge joilR@and S

¢rmioin

Cepy (R,S)  number of CPU instructions for performing a merge join rand .S

Otherwise, suppose without loss of generality tbﬁf}a > B.3 Primary B-tree index for the outer relatidt

P(S) ' Then we give one buffer t& and ,/(°). buffers to
V4 g . , V(4,9 There are once again three cases to be considered, depending
S. The costs are then given by:

on whetherS has an index or not.
T(5)

* Cchnp
V(4,5) B.3.1 No index fotS. The situation here is very similar to
Cf}]O‘””(R, S) = P(R) + P(S) the one analyzed in Sect. B.2.2. The only difference is that
instead ofR, now S is the relation to be sorted. Thus, the

This completes our analysis of the case witemloes not  costs are given by:
have any index. . ioin
Copu = CEpy(9) + Copy (R, S),

_ _ _ Crjo0 = Ci75(S) + O™ (R, 9),
B.2.2 Primary B-tree index fo5. Now consider the case
when we use the primary B-tree index. Then the combinedvhere the costsCet(S), CLL%™(R, S), 0;73(5) and

CrIein(R, S) = T(R) *

costs simply become: C75" (R, S) are exactly the same as those before.
Coru = CEpy(R) + CEby™ (R, S),
Cro = 157’3(3) + C;’}g’m(R, S), B.3.2 Primary B-tree index faf. The situation here is very

similar to the one analyzed in Sect.B.2.1. The only differ-
where the costs0s7%:t (R), an%n(R’ s), Cf;’g(R) and  ence is that now no sorting costs are required:

C15"™(R, S) are exactly the same as those given in theCcpy = Cidli™ (R, S),

previous subsection. Cro = C,]’rr;joozn(R7 s),

where the costﬁgﬁ‘,}"(R S) and Cm]‘””(R S) are given
B.2.3 Secondary B-tree index féf. Finally, consider the py the same formulas listed in Sect B.2.1.
case when we use a secondary B-tree index. While the CPU
cost is still given byCcpy = C254(R)+ Oty (R, S), the _ o _
/O cost varies according tl If b < (2+ W(Z(Q)D the cost B-3.3 Secondary B-tree index fét. The situation here is
' very similar to the one studied in Sect. B.2.3. The only dif-

is: 0 - ference is that now the cost for sortidgcan be saved:
/e LP I + T m o
Crjo = Cijo(R)+ DI+ PIR) + T(R)x 00y o7 Copu = CEhy"(R.S)

andCy,o is given by the three formulas in Sect. B.2.3, with-

. PI) LP(I) t(S)
On the other hand, if (2 )) <b<(1+ N ), out the cosC;jg(R) in each case.

V(A,S V(A,S) V(A,S)/
we give one buffer to each dt and S, and ‘f(i(g) buffers
to the index. The I/O cost is then: . )

B.4 Secondary index for the outer relatidh
Crjo=
(S) There are three cases depending on wheshkeas an index

C776 (R) + D(I) + P(R) + LP(I) + T(R) * V(AS)” or not.

Finally, if b > (1+ 7% + /L), then we give one buffer

to R, ‘f(’;(g) buffers to the index, and as many bufféisas

B.4.1 No index forS. The CPU cost is given by:
Cepu = CFpy(S) + CEpy" (R, S)

possible toS (i.e. by = b — 1 — /). The /O cost then v
becomes: where C¢5t (S) and CLEy " (R, S) are the same as before.
The 1/0O cost depends dn If b < (2 + Vl(jf’s)) the cost is:

Crjo= }7’3(1%) + D(I)+ P(R)+ LP(I)

{P(S) x(1—(1— 5%9))’“0) if V(A R)* (% < ko
T(R)

b1+ (V(A, R) VIAS) ko) * (1 — P(S))) otherwise FT(R) = (1 + V](lelsk)g))’

whereko = In(1— %)/ In(1 — ply). where I denotes the index foR.

Cirjo = = C394(S) + D(Ir) + LP(Ix)



vi(fé)), we give one buffer to

buffers to.S, and as many buffers; as

v](jf(f?é))- The 1/O cost then

Otherwise, ifb > (2 +
; P(S
the index, V(f(‘})s)
possible toR (i.e. by =b—1—
becomes:
Crj0 = C176(S) + D(Ig) + LP(Ig) + P(S)

PR)*(1—(1— P(lR))ko) if T(R) < ko
by + (T(R) — ko) * (1 — P?;%) )) otherwise ~ ’

whereko = In(1— ;7%))/IN(L = ple)-

B.4.2 Primary B-tree index fof. The situation here is al-

most identical to the one analyzed above. The only differ-

ence is that now the CPU and /O costs for sortthgan be
saved. In other words, the CPU cost is given by:

Cepu = CEE (R, S)

and the 1/O cost is given by the two formulas in Sect.B.4.1,

without the cos();;’TOt(S) in each case.

B.4.3 Secondary B-tree index f6r The CPU cost is exactly
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