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Abstract. Over the past decade, significant research has
been done towards developing transaction management al-
gorithms for multidatabase systems. Most of this work as-
sumes a monolithic architecture of the multidatabase system
with a single software module that follows a single trans-
action management algorithm to ensure the consistency of
data stored in the local databases. This monolithic architec-
ture is not appropriate in a multidatabase environment where
the system spans multiple different organizations that are dis-
tributed over various geographically distant locations. In this
paper, we propose an alternative multidatabase transaction
management architecture, where the system is hierarchical
in nature. Hierarchical architecture has consequences on the
design of transaction management algorithms. An implica-
tion of the architecture is that the transaction management
algorithms followed by a multidatabase system must becom-
posable– that is, it must be possible to incorporate individual
multidatabase systems as elements in a larger multidatabase
system. We present a hierarchical architecture for a multi-
database environment and develop techniques for concur-
rency control in such systems.
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1 Introduction

A multidatabase system (MDBS) is a facility, developed
on top of local database management systems (DBMSs),
that provides users of a DBMS access to data located in
other heterogeneous data sources. Early prototype MDBSs
(Templeton et al. 1983; Breitbart and Tiemann 1985; Lan-
ders and Rosenberg 1982) ignored the transaction manage-
ment problem and did not support any scheme to coordinate
the execution of the global transactions. These systems were
designed to only provide read accesses to remote data. How-
ever, even if each global transaction is read-only, it can be
shown (Mehrotra et al. 1992a), that the resulting schedule
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may be non-serializable and the read-only global queries
may retrieve inconsistent data. Transaction management is-
sues, and the difficulty in supporting updates in MDBS envi-
ronments were subsequently discussed in Gligor and Luck-
enbaugh (1984), Gligor and Popescu-Zeletin (1985, 1986),
Breitbart and Silberschatz (1988), Breitbart et al. (1990),
Mehrotra et al. (1990), and Elmagarmid and Du (1989). The
difficulty arises due to the following two characteristics of
MDBS environments:

– Heterogeneity.Each local DBMS may follow different
concurrency control protocols and recovery algorithms.

– Autonomy. The participation of a local DBMS in the
MDBS must not result in a loss of control by the local
DBMS over its data and its local transactions.

Over the past decade, significant research has been done
to identify mechanisms for effectively dealing with the prob-
lems that arise due to the heterogeneity and the autonomy
of the local systems, e.g., Pu (1988), Breitbart (1988, 1990),
Wolski and Veijalainen (1990), Mehrotra et al. (1992a, b),
Elmagarmid and Du (1990), Batra et al. (1992). This re-
search has resulted in transaction management algorithms
that ensure correctness without sacrificing the autonomy of
the individual systems. A large number of these proposed
solutions have, however, considered the MDBS as a cen-
tralized software module. Clearly, if the local DBMSs are
geographically distributed over different nodes of a world-
wide computer network, then having a centralized MDBS
will result in numerous undesirable consequences. For ex-
ample, under high global transaction load, the site at which
the MDBS software resides will become a bottleneck, re-
sulting in the degradation of the system performance. More
importantly, a failure of the site at which the MDBS resides
will result in the MDBS being unavailable for processing
global transactions, even though the transactions were to
execute at only the sites that are operational.

Some of the above problems will be alleviated if the
MDBS follows a distributed transaction management algo-
rithm for concurrency control. A distributed mechanism for
concurrency control in MDBSs have been suggested in Batra
et al. (1992). However, developing the MDBS as a mono-
lithic system in which the MDBS uses a single transaction
management algorithm, whether distributed or centralized,
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may still be undesirable. To see this, let us consider a typ-
ical MDBS environment in which users wish to execute
transactions that span database systems belonging to mul-
tiple branches of an organization. Additionally, users also
wish to execute transactions that span different autonomous
organizations. One way to provide such a service is to de-
velop a single monolithic MDBS system which integrates
all the branches of all the organizations. However, depend-
ing upon the nature of transactions that execute within an
organization, the computing resources available, and the re-
liability of the network, different organizations may prefer
different MDBS transaction management algorithms for pro-
cessing transactions local within the organization. For ex-
ample, if a high degree of concurrency is critical for good
performance in a certain organization, that organization may
prefer a centralized MDBS transaction management algo-
rithm for processing transactions local within the organiza-
tion. On the other hand, if databases belonging to various
branches of another organization are geographically distant
and the network is not reliable, the organization may prefer
a fully decentralized MDBS transaction management algo-
rithm for processing transactions that execute within its dif-
ferent branches. Thus, it is preferable to develop the MDBS
as a hierarchical system – each organization (or a set of or-
ganizations) has its own MDBS to control the execution of
transactions within the organization. Furthermore, an inter-
organization MDBS controls the execution of transactions
that access data belonging to branches of different organi-
zations. Note that using a single monolithic MDBS system,
whether distributed or centralized, will adversely impact the
performance of transactions that execute within an organi-
zation. In contrast, in a hierarchical MDBS, each organiza-
tion can use a specialized transaction management algorithm
suited to their environment.

The above scenario illustrates why it is desirable for
the MDBS architecture to be hierarchical. If the architecture
of the MDBS is hierarchical, different component MDBSs
may follow different transaction management algorithms for
ensuring consistency of the data they integrate. However,
the transaction management algorithms followed by indi-
vidual MDBSs must be such that it is feasible to compose
the MDBSs into a larger MDBS. In this paper, we present
a hierarchical architecture for MDBSs. We adopt serializ-
ability as the correctness criterion and study how existing
techniques for ensuring global serializability in MDBS en-
vironments can be extended to ensure serializability in hier-
archical MDBSs.

The rest of the paper is organized as follows. In Sect. 2,
we discuss the motivation behind the transaction manage-
ment problem in MDBSs and provide a summary of the
progress that has been made over the last decade in this
area. In Sect. 3, we formally define our MDBS architecture.
In Sects. 4–6, we describe our mechanism for concurrency
control in hierarchical MDBSs. Section 7 is on related work.
Finally, in Sect. 8, we offer concluding remarks and present
directions for future work. Proofs of the theorems developed
in the paper are included in the appendix.

2 Transaction management in MDBSs

The transaction management problem in MDBSs consists
of developing a software module to facilitate the execu-
tion of transactions that may span multiple heterogeneous
and autonomous local DBMSs. If each local DBMS fol-
lows thetwo-phase lockingprotocol (Bernstein et al. 1987),
is capable of participating in atwo-phase commitprotocol
(Bernstein et al. 1987), and conforms to the X/Open DTP
standard (Gray and Reuter 1993), then, from the perspective
of transaction management, the local DBMSs can be inte-
grated using existing transaction processing monitors (e.g.,
Encina by Transarc; Gray and Reuter 1993). There are three
major reasons why this approach is unacceptable. These rea-
sons collectively have motivated the research on transaction
management in MDBSs.

First, the local DBMSs may be pre-existing legacy sys-
tems that may have been developed independently, without
any regard to the possibility that these systems will be in-
tegrated into a MDBS at a later date. Legacy DBMSs may
not adhere to current standards and may not even support an
interface for the execution of the two-phase commit proto-
col. Requiring that the data from these pre-existing systems
be migrated to a new system that is capable of interoper-
ation may not be a feasible cost-effective solution to in-
tegration. Second, it is possible that the local DBMSs are
highly specialized data management systems (as opposed
to general-purpose systems) which have been developed for
a specific application domain and they use special-purpose
concurrency control and recovery algorithms. For example, a
local DBMS may be a full-text database system used within
an organization for storage and retrieval of office docu-
ments. Such a system may use a special-purpose transaction-
processing scheme to preserve consistency of the document
index. It may not be possible to integrate such specialized
“home-brewed” local DBMSs into a MDBS using existing
transaction-processing monitors. Another compelling reason
why existing transaction-processing software does not suf-
fice for the task of MDBS integration is that the usage of
standard transaction management protocols (viz., the two-
phase commit protocol) results in the violation of the local
autonomy (Breitbart et al. 1990, 1992a, b; Veijalainen and
Wokki et al. 1990; Mehrotra et al. 1992b). This is due to
the fact that a two-phase commit protocol requires transac-
tions to hold onto their locks (even at remote sites) for an
unbounded period of time under certain adverse conditions
(Bernstein et al. 1987; Gray and Reuter 1993). This can be
viewed as a violation of the local autonomy, since it re-
sults in a local system losing control over its data and its
applications.

Most of the approaches developed for transaction man-
agement in MDBSs treat local DBMSs as “black boxes”
that cannot be modified for the sake of integration. Fur-
thermore, in keeping with the autonomy requirement, which
dictates that the applications local to a DBMS execute com-
pletely under its control, transactions are classified into two
classes:local transactionsthat execute at a single DBMS,
andglobal transactionsthat accesses more than one DBMS.
While global transactions execute under the control of the
MDBS software, local transactions execute outside its con-
trol. Each local DBMS is assumed to support an interface us-
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ing operations belonging to subtransactions of global trans-
actions which can be submitted for execution to the local
DBMS. The nature of the interface supported affects the
transaction management mechanism, including the mecha-
nism developed in this paper, and we will discuss its im-
pact after we have developed our scheme. Furthermore, it
is assumed that each local DBMS ensures ACID proper-
ties of (sub)transactions that access data at the DBMS. That
is, each local DBMS ensures serializability of the schedule
local to it, and atomicity of the local transactions and the
subtransactions of the global transactions that access data at
its site.

Research on transaction management in MDBSs has
been done along two complementary directions. A signif-
icant amount of work has been done to develop correctness
criteria that are weaker than serializability, but nonetheless,
can be implemented relatively efficiently in an environment
where local DBMSs may follow heterogeneous transaction
management protocols. These approaches are based on the
assumption that the data integrity constraints in an MDBS
environment are of a restricted nature. For example, it may
be reasonable to assume that there are no data integrity
constraints between data residing at two autonomous local
DBMSs. Such a restriction on the nature of data integrity
constraints can be exploited to develop correctness crite-
ria, weaker than serializability, that preserve the constraints.
Two examples of this approach are the notion ofquasi-
serializability (QSR; Du and Elmagarmid 1989) andtwo-
level serializability(2LSR; Mehrotra et al. 1991). In Mehro-
tra et al. (1991), besides developing the correctness criterion
2LSR, a spectrum of MDBS models for which 2LSR ensures
data integrity constraints is explored. Protocols for ensuring
2LSR have been developed in Mehrotra et al. (1992c) and
Ouzzani et al. (1995).

The limitation of the above mentioned approaches lies
not only in their inapplicability in domains where the re-
strictions on data integrity constraints are not valid, but as
argued in Mehrotra et al. (1992c), preservation of the data
integrity constraint may itself not be a sufficient consistency
guarantee, – that is, executions that preserve all data integrity
constraints may still be incorrect from the perspective of the
user. To see this, consider an MDBS consisting of two bank-
ing databases located at sitess1 ands2. Further, letA1 and
A2 be two accounts belonging to banking databases at sites
s1 and s2 respectively such that there is no data integrity
constraint that relates the two accounts. In such a case, if
a transaction that transfers money from one account to the
other executes concurrently with a transaction that reads both
the accounts, then it is possible that the transaction that reads
both the accounts sees a sum that differs from the true bal-
ance of the two accounts which may be unacceptable. Thus,
even though each transaction sees a consistent state (that is,
a state in which no data integrity constraints are violated)
and the final state of the database is consistent, the execution
is still undesirable.

The reason why preservation of data integrity constraint
may not be sufficient consistency guarantee is that it is im-
possible to capture all the consistency requirements of the
executions using integrity constraints over the data. This
is a surprising observation, since most standard text on
databases and concurrency control (Bernstein et al. 1987;

Papadimitriou 1986; Gray and Reuter 1993) motivate the
need for serializability using the preservation of data in-
tegrity constraints as the theoretical basis of correctness.

Another significant body of research exists on mecha-
nisms to ensure serializability in MDBS environments (Bre-
itbart and Silberschatz (1988); Breitbart et al. (1990); Wolski
and Veijalainen 1990; Pu 1988; Mehrotra et al. 1992a; El-
magarmid ad Du et al. 1990). One of the first significant
approaches developed was in Pu (1988) where a notion of
o-elementwas introduced. An o-element corresponding to a
transaction is one of its operations that satisfies the following
property— if a transactionT1 is serialized before transaction
T2, then the o-element ofT1 occurs before the o-element
of T2. Using the notion of o-elements, the authors devel-
oped a validation based protocol that ensures serializability
in an MDBS environment. Similarly, in Elmagarmid and
Du (1990), the authors developed a scheme based on con-
servative timestamp ordering using the notion of o-elements
(they refer to the o-element as the theserialization event). In
Mehrotra et al. (1992a), it was shown that a notion similar
to o-elements can be used to reduce the problem of ensuring
serializability in MDBSs to that of ensuring serializability
in traditional DBMSs. Using the reduction, any of the con-
currency control schemes developed for traditional DBMSs
can be employed to ensure serializability in MDBSs. This is
a significant step in understanding the concurrency control
problem in MDBSs, since it effectively overcomes the prob-
lems resulting from heterogeneity without jeopardizing the
autonomy of the local DBMSs. It provides a framework for
design and development of the concurrency control schemes
for MDBSs, and facilitates comparison between previously
published schemes that were developed in an ad-hoc fashion.

Much of the previous work on MDBS transaction man-
agement discussed above has not considered the impact of
the MDBS architecture on the design of the transaction man-
agement software. As discussed in the introduction, there are
compelling reasons for MDBSs to be developed as hierarchi-
cal systems. In the remainder of the paper, we describe a hi-
erarchical transaction management architecture for MDBSs
and study how existing techniques for ensuring serializability
in MDBSs can be extended to hierarchical MDBSs. Con-
currency control techniques for hierarchical MDBSs have
previously been studied in Pu (1988) in the context of the
superdatabasearchitecture. However, the developed tech-
nique does not provide the complete benefits of the hierar-
chical architecture. We will provide a detailed comparison
of our scheme with the superdatabase approach in Sect. 7.

Notice that, in this paper, we will only study how ap-
proaches to ensuring serializability can be extended to en-
sure serializability in hierarchical MDBSs. Concurrency con-
trol schemes and the consistency guarantees that results
in hierarchical MDBSs in which different MDBSs in the
hierarchy may follow different correctness criteria (e.g.,
2LSR, QSR) is not addressed and is an interesting av-
enue for future work. Furthermore, we did not consider
the issue of failure-resilience in this paper. Failure-resilience
is complicated, since the requirement of autonomy preser-
vation renders the usage of atwo-phase commitprotocol
(Bernstein et al. 1987) unsuitable for MDBS environments.
In the absence of a two-phase commit protocol, it is possi-
ble that certain subtransactions of a multi-DBMS transaction
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Fig. 1. An example MDBS environment

commit, whereas others abort, thereby violating the atomic-
ity property. The problem of ensuring atomicity in MDBS
environments has been studied in Breitbart et al. (1990),
Wolksi and Veijalainen (1990), Mehrotra et al. (1992b, d),
Zhang et al. (1994). These approaches can be suitably
adapted to achieve fault tolerance in hierarchical MDBSs.
However, due to space limitations, we do not further ad-
dress this issue.

3 Hierarchical MDBS architecture

An MDBS is an integrated collection of pre-existing lo-
cal databases, DBMS1, DBMS2, . . ., DBMSm, that per-
mits users to execute transactions that access multiple local
DBMSs. Each DBMSi contains a set of data items that are
denoted byDBi. To describe the architecture of the MDBS,
we associate with the MDBS environment a set ofdomains
denoted by∆ with an ordering relation@. A domainD ∈ ∆
is either

– a set of data items in DBi, for somei = 1, 2, . . . ,m, or
– a union of the set of data items in other domains
D1, D2, . . . , Dn, denoted by

⋃{D1, D2, . . . , Dn}, where
Di ∈ ∆, i = 1, 2, . . . , n,

The ordering relation@, referred to as thedomain ordering
relation, is such thatDi @ Dj iff Di ⊂ Dj . We useDi v Dj

to denote that eitherDi @ Dj or Di = Dj . Let Di andDj

be domains in∆. We refer toDi as the child ofDj , denoted
by child(Di, Dj), if Di @ Dj and for allDk ∈ ∆, either
Di 6@ Dk or Dk 6@ Dj . We refer toDj as a parent ofDi,
denoted byparent(Dj , Di), if child(Di, Dj). We refer to
a domainDj as asimple domainif, for all Di such that
parent(Dj , Di), Di = DBk for some local DBMS. That is,
a simple domain is simply a collection of local DBMSs. We
denote the set of domains{D| for all Dk ∈ ∆,D 6@ Dk}
by TOP .

A transactionTi = (OTi ,≺Ti ), whereOTi is the set of
operations and≺Ti is a partial order over operations inOTi .
We assume that a transactionTi that executes at a local
DBMS (or a set of local DBMSs) consists of a set ofread
(denoted byri) andwrite (denoted bywi) operations. This
assumption is not central to the approach, and is made only
for pedagogical reasons in the development of the examples.
Further, each transactionTi hasbegin (denoted bybi), and
commit (denoted byci) or abort (denoted byai) opera-
tions. A transaction that executes at multiple DBMSs may
have multiple begin and commit (or abort) operations1, one

1 In contrast, theri andwi operations of the transaction on each data
item are unique. Since, in this paper, we do not consider the problem

D2

DB2 DB3 DB4
DB1

D1

Fig. 2. Domain ordering for Fig. 1

for each DBMS at which it executes. We denote bybik and
cik (aik), the begin and commit (abort) operations of a trans-
actionTi in DBMSk, respectively.

A transactionTi is said to execute in a domainD ∈ ∆,
if there exists aDBj , DBj v D, such thatTi accesses
data items inDBj . A transactionTi may execute in mul-
tiple domains subject to the restriction that, ifTi accesses
data items inDB1, DB2, . . . , DBk, then there must exist a
domainD ∈ ∆ such thatDBj v D, j = 1, 2, . . . , k. Such a
domainD is denoted byDom(Ti). Thus, ifTi accesses data
items inDBj , thenDBj v Dom(Ti). A transactionTi is
said to beglobal with respect to a domainD ∈ ∆, denoted
by global(Ti, D), if Ti executes inD and there exists a do-
mainD′, D′ 6v D andD 6v D′ such thatTi executes inD′.
A transactionTi is local with respect to a domainD, denoted
by local(Ti, D), if Ti executes inD and¬global(Ti, D). We
illustrate the above-defined notations by the following exam-
ple.

Example 1. Consider an MDBS environment consisting
of four local DBMSs as illustrated in Fig. 1. The set
of domains,∆ = {DB1, DB2, DB3, DB4, D1, D2}, where
domain D1 =

⋃{DB1, DB2, DB3} and domainD2 =⋃{DB3, DB4}. The domain ordering relation for the MDBS
environment depicted in Fig. 1 is illustrated in Fig. 2.
Suppose a transactionT1 accesses data items in domains
DB1 and DB2. Then, Dom(T1) = D1, global(T1, DB1),
global(T1, DB2), andlocal(T1, D1). Suppose another trans-
action T2 accesses data in domainsDB3 andDB4. Then,
global(T2, D1), global(T2, D2) andDom(T2) = D2. Finally,
suppose a transactionT3 wishes to access data inDB1
andDB4. T3 will not be permitted to execute, since there
does not exist any domainD ∈ ∆ such thatDB1 @ D
as well asDB4 @ D. However, if there was a domain
D3 =

⋃{D1, D2}, then the transactionT3 would be permit-
ted andDom(T3) = D3.

Let S = (τS ,≺S) be a schedule, whereτS is a set of
transactions and≺S is a partial order over the operations
belonging to transactions inτS . The partial order≺S satisfies
the property that≺Ti⊆≺S , for eachTi ∈ τS . Let d be a set
of data items.Sd denotes the projection ofS onto data items
in d. Formally, scheduleSd is a restriction2 of the schedule
S over the set of data items ind. For notational brevity,
we denote the projection ofS over the set of data items in
DBk; that is,SDBk , by Sk.

of replica control, we consider different copies of the same data item as
independent data items with an equality constraint between them.

2 A set P1 with a partial order≺P1 on its elements is arestriction of
a setP2 with a partial order≺P2 on its elements ifP1 ⊆ P2, and for all
e1, e2 ∈ P1, e1 ≺P1 e2 if and only if e1 ≺P2 e2.
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Fig. 3. Example of a non-serializable execution

In a scheduleS = (τS ,≺S), transactionsTi, Tj ∈ τS
are said toconflict, denoted byTi  S Tj , if there exist
operationsoi in Ti andoj in Tj such thatoi andoj conflict
in S andoi ≺S oj . Operationsoi andoj are said to conflict
if they access the same data item and at least one of them
is a write operation. We denote the transitive closure of the
conflict relation S among transactions in a scheduleS by
the relation

∗
 S .

With each domainDi a domain managerDM (Di) is
associated. The domain manager for a domainDi, along
with the domain managers of each domainDj , Dj @ Di,
controls the concurrent execution of transactions that ex-
ecute inDi in such a way that the consistency of data
within a domain is preserved. LetD be a domain such that
DBj @ D, j = 1, 2, . . . , k. The domain managers of the
domainsD′ v D, in our architecture, constitute the MDBS
software for an MDBS that integrates DBMS1, DBMS2, . . . ,
DBMSk. Note that, if there exists a simple domainD ∈ ∆
such that for eachDBk, k = 1, 2, . . . ,m, parent(D,DBk),
then our MDBS architecture reduces to a single monolithic
system. In this case, the existing solutions for transaction
management developed for such systems in Mehrotra et al.
(1992a), Elmagarmid and Du (1990) and Breitbart et al.
(1990) can be used by the domain manager forD to control
the concurrent execution of the transactions.

4 Concurrency control in hierarchical MDBSs

In this section, we present a framework for the design of
concurrency control mechanisms for hierarchical MDBSs.
In a hierarchical MDBS, for the global scheduleS to be
serializable, the projection ofS onto data items in each do-
mainD ∈ ∆ (that is,SD) must be serializable. However, as
illustrated in the following example, ensuring serializability
of SD, for eachD ∈ ∆, is not sufficient to ensure global
serializability.

Example 2. Consider an MDBS environment consisting of
local databases: DBMS1 with data itema, DBMS2 with data
item b, DBMS3 with data itemc, and DBMS4 with data item
d. Let the domain ordering relation be as illustrated in Fig. 3.
The set of domains∆ = {DB1, DB2, DB3, DB4, D1, D2},
whereD1 =

⋃{DB1, DB2, DB3}, andD2 =
⋃{DB2, DB3,

DB4}. Consider the following transactionsT1, T2, T3, and
T4:

T1 : b11 w11(a) b13 w13(c) c11 c13
T2 : b22 w22(b) b21 w21(a) c21 c22
T3 : b34 w34(d) b32 w32(b) c32 c34
T4 : b43 w43(c) b44 w44(d) c44 c43

Note thatDom(T1) = D1, Dom(T2) = D1, Dom(T3) = D2
andDom(T4) = D2. Consider a scheduleS resulting from
the concurrent execution of transactionsT1, T2, T3, andT4
such that the local schedules at DBMS1, DBMS2, DBMS3
and DBMS4 are as follows:

S1 : b11 w11(a) b21 w21(a) c11 c21
S2 : b22 w22(b) b32 w32(b) c22 c32
S3 : b43 w43(c) b13 w13(c) c43 c13
S4 : b34 w34(d) b44 w44(d) c34 c44

Note that the above scheduleS is not serializable, even
though for, each domainD ∈ ∆, the schedulesSD are
serializable.

To ensure global serializability, besides ensuring serial-
izability of SD, for eachD ∈ ∆, we need to impose cer-
tain restrictions on the domain hierarchy∆. In Sect. 5, we
develop a concurrency control mechanism for ensuring se-
rializability of the scheduleSD. In Sect. 6, we identify the
required restrictions on∆ such that the mechanism for ensur-
ing serializability ofSD (developed in Sect. 5) is sufficient
to ensure global serializability. The remainder of this section
is devoted to developing a design framework on which our
mechanism for ensuring serializability of the scheduleSD

(in Sect. 5) is based.
Before we discuss how serializability of the scheduleSD

can be ensured for an arbitrary domain in the domain hierar-
chy, let us first consider how it can be ensured for a simple
domain. Since a simple domain consists of a collection of
local DBMSs, serializability ofSD can be ensured using
the techniques developed for ensuring global serializability
in monolithic MDBSs. Below, we develop a mechanism for
ensuring serializability ofSD for simple domains, which is
based on the technique for ensuring global serializability in
monolithic MDBSs developed in Mehrotra et al. (1992a).
Crucial to the mechanism is the notion ofserialization func-
tions (Mehrotra et al. 1992a), which is similar to the notion
of o-elementdeveloped in Pu (1988) and that of theserial-
ization eventintroduced in Elmagarmid and Du (1990).

Let S = (τS ,≺S) be a serializable schedule. Letτ ′ ⊆
τS . A serialization function of a transactionTi ∈ τ ′ in a
scheduleS with respect to the set of transactionsτ ′, denoted
by serS,τ ′ (Ti) is a function that mapsTi ∈ τ ′ to some
operation inTi such that the following holds:

For allTi, Tj ∈ τ ′, if Ti
∗
 S Tj , thenserS,τ ′ (Ti) ≺S

serS,τ ′ (Tj)

In the remainder of the paper, we will denote the function
serS,τ ′ by serS . The set of transactionsτ ′ will be clear from
the context. For numerous concurrency control protocols that
generate serializable schedules, it is possible to associate a
serialization function with transactionsTi in the scheduleS
such that the above property is satisfied.

For example, if thetimestamp ordering(TO) concurrency
control protocol is used to ensure serializability ofS and the
scheduler assigns timestamps to transactions when they be-
gin execution, then the function that maps every transaction
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Ti ∈ τS to Ti’s begin operation is a serialization function
for transactionTi in S with respect to the set of transactions
τS .

For a scheduleS, there may be multiple serialization
functions. For example, ifS is generated by atwo-phase
locking (2PL) protocol, then a possible serialization func-
tion for transactions inS maps every transactionTi ∈ τS to
the operation that results inTi obtaining its last lock. Alter-
natively, the function that maps every transactionTi ∈ τS
to the operation that results inTi releasing its first lock is
also a serialization function forTi in S.

It is possible that, for transactions in a schedule gener-
ated by certain concurrency control protocols, no serializa-
tion function may exist. For example, in a schedule generated
by aserialization-graph-testing(SGT) scheduler, it may not
be possible to associate a serialization function with trans-
actions. However, in such schedules, serialization functions
can be introduced by forcing direct conflicts between trans-
actions (Georgakopoulos et al. (1991). Letτ ′ ⊆ τ be a set
of transactions in a scheduleS. If each transaction inτ ′ ex-
ecuted a conflicting operation (say a write operation on data
item ticket) in S, then the functions that maps a transaction
Ti ∈ τ ′ to its write operation onticket is the serialization
function for the transactions inS with respect to the set of
transactionsτ ′.

Associating serialization functions with global transac-
tions makes the task of ensuring serializability ofSD rela-
tively simple. Since at each local DBMS the order in which
transactions that are global with respect to the local DBMSs
are serialized is consistent with the order in which their
serSk operations execute, serializability ofSD can be en-
sured by simply controlling the execution order of theserSk
operations belonging to the transactions global with respect
to the local DBMSs. To see how this can be achieved, for a
global transactionTi, let us denote its projection to its seri-
alization function values over the local DBMSs as a trans-
action T̃D

i . Formally, T̃D
i is defined as follows.

Definition 1. Let Ti be a transaction andD be a simple
domain such thatglobal(Ti, DBk), for someDBk, where
child(DBk, D), T̃D

i is a restriction ofTi consisting of all
the operations in the set

{serSk (Ti) | Ti executes inDBk,
and child(DBk, D)}

Further, for the global scheduleS, we define a schedule
S̃D to be the restriction ofS consisting of the set of opera-
tions belonging to transactions̃TD

i . Thus,S̃D = (τS̃D ,≺S̃D ),
where

τS̃D = {T̃D
i | global(Ti, DBk) for someDBk,

where child(DBk, D)},

and for all operationsoq, or in S̃D, oq ≺S̃D or, iff oq ≺S or.
In the schedulẽSD the conflict between operations is defined
as follows:

Definition 2. Let S be a global schedule. Operations
serSk (Ti) and serSl (Tj) in scheduleS̃D, Ti /= Tj , are said
to conflict if and only ifk = l.

It is not too difficult to show that the serializability of
the scheduleSD can be ensured by ensuring the serializabil-
ity of the scheduleS̃D. Essentially, ensuring serializability
of S̃D enforces a total order over global transactions (with
respect to the local DBMSs), such that ifTi occurs before
Tj in the total order, thenserSk operation ofTi occurs be-
fore serSk operation ofTj for all sites sk at which they
execute in common, thereby ensuring serializability ofSD

(see Mehrotra et al. 1992a for a detailed explanation).
Notice that operations in the scheduleS̃D consist of only

global transactions. Thus, since global transactions execute
under the control of the MDBS software, the MDBS soft-
ware can control the execution of the operations inS̃D to
ensure its serializability, thereby ensuring serializability of
SD. How this can be achieved – that is, how the MDBS
software can ensure serializability ofS̃D is a topic of the
next section. Recall that the above-described mechanism for
ensuring serializability ofSD has been developed under the
assumption thatD is a simple domain. In the remainder of
this section, we extend the mechanism suitably to ensure se-
rializability of the scheduleSD for an arbitrary domainD.
One way we can extend the mechanism to arbitrary domains
in hierarchical MDBSs is by suitably extending the notion
of the serialization function to the set of domains.

Definition 3. Let D be any arbitrary domain in∆. An ex-
tended serialization function is a functionsf (Ti, D) that
maps a given transactionTi, and a domainD, to some oper-
ation ofTi that executes inD such that the following holds.

For all Ti, Tj , if global(Ti, D), global(Tj , D), and
Ti

∗
 SD Tj , thensf (Ti, D) ≺SD sf (Tj , D).

We refer to sf (Ti, D) as a serialization function of
transactionTi with respect to the domainD. To see how
such a serialization function will aid us in ensuring serial-
izability within a domain, consider a domainD /= DBk,
k = 1, 2, . . . ,m. To develop the intuition, let us assume that
the above-defined serialization function exists for transac-
tions in every child domain ofD, that is, for everyDk,
wherechild(Dk, D). If such a serialization function can be
associated with the child domains, we can simply use the
mechanism developed for simple domains to ensure serial-
izability of SD. We will, however, have to appropriately ex-
tend our definitions of the transactioñTD

i , and the schedule
S̃D with respect to the newly defined serialization function.
This is done below.

Definition 4. Let Ti be a transaction andD be a domain
such thatglobal(Ti, Dk) for someDk, wherechild(Dk, D).
T̃D
i is a restriction ofTi consisting of all the operations in

the set{sf (Ti, Dk) | Ti executes inDk, andchild(Dk, D)
}.

As before, schedulẽSD is simply the schedule consisting
of the operations in the transactions̃TD

i . That is, S̃D =
(τS̃D ,≺S̃D ), where

τS̃D = {T̃D
i | global(Ti, Dk)

for someDk, where child(Dk, D)},
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and for all operationsoq, or in S̃D, oq ≺S̃D or, iff oq ≺S or.
Similar to the case of simple domain, two operations inS̃D,
whereD is an arbitrary domain, conflict if they are both se-
rialization function values of different transactions over the
same child domain.

Definition 5. Let S be a global schedule. Operations
sf (Ti, Dk) and sf (Tj , Dl) in scheduleS̃D, Ti /= Tj , are
said to conflict if and only ifk = l.

It it not difficult to see that similar to the case of simple
domains, serializability ofSD can be ensured, whereD is
an arbitrary domain, by ensuring the serializability of the
scheduleS̃D, under the assumption that, for all child do-
mainsDk of D, the scheduleSDk is serializable and further
a serialization functionsf can be associated with transac-
tions that are global with respect toDk (see Lemma 1 in
the appendix for a formal proof). In fact, this result can be
applied recursively over the domain hierarchy to ensure se-
rializability of the schedulesSD for arbitrary domainsD
in hierarchical MDBSs. To see this, consider a hierarchical
MDBS shown in Fig. 4. To ensure serializability ofSD3, it
suffices to ensure serializability of the scheduleS̃D3, under
the assumption thatSD1 andSD2 are serializable and further
that an appropriate serialization functionsf can be associ-
ated with transactions that are global with respect toD1 and
D2. In turn, serializability ofSD1 (SD2) can be ensured by
ensuring that the schedulẽSD1 (S̃D2) is serializable, under
the assumption thatSDB1 andSDB2 (SDB3 andSDB4) are
serializable and further that an appropriate serialization func-
tion sf can be associated with transactions that are global
with respect toDB1 and DB2 (DB3 and DB4). The re-
cursion ends whenD is a simple domain, since the child
domains are local DBMSs and by assumption the schedule
at each local DBMS is serializable. Thus, if we can associate
an appropriate serialization functionsf with transactions in
each domainD ∈ ∆, we can ensure serializability ofSD,
by ensuring serializability ofS̃D for all domainsD ∈ ∆.
Note that, for a domainD = DBk, the functionsf is sim-
ply the functionserSk introduced earlier. We now define the
function sf for an arbitrary domainD ∈ ∆, which is done
recursively over the domain ordering relation.

Definition 6. LetD be a domain andTi be a transaction such
thatglobal(Ti, D). The serialization function for transaction
Ti in domainD is defined as follows:

sf (Ti, D) =

{
serSk (Ti), if for someDBk, D = DBk.
serS̃D (T̃D

i ), if for all DBk, D /= DBk

Let us illustrate the above definition of the serialization
function using the following example.

Example 3. Consider an MDBS environment consisting of
local databases: DBMS1 with data itema, DBMS2 with data
item b, DBMS3 with data itemc, and DBMS4 with data item
d. Let the domain ordering relation be as illustrated in Fig. 4.
The set of domains:

∆ = {DB1, DB2, DB3, DB4, D1, D2, D3},
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DB1 DB2 DB3 DB4

D1 D2

D3

Fig. 4. Domain ordering for Example 3

where D1 =
⋃{DB1, DB2}, D2 =

⋃{DB3, DB4}, and
D3 =

⋃{D1, D2}. Consider the following transactionsT1,
T2, andT3 that execute:

T1 : b11 w11(a) b13 b14 w13(c) w14(d) c11 c13 c14
T2 : b22 w22(b) b24 b23 w23(c) w24(d) c22 c24 c23
T3 : b31 w31(a) b32 w32(b) c31 c32

Note thatDom(T1) = D3, Dom(T2) = D3, andDom(T3) =
D1. Further, global(T1, D1), global(T2, D1) and
local(T3, D1). Similarly, global(T1, D2), global(T2, D2).
Consider the global scheduleS resulting from the concurrent
execution of transactionT1, T2 and T3 such that the local
schedules at DBMS1, DBMS2, DBMS3 and DBMS4 are as
follows:

S1 : b11 w11(a) b31 w31(a) c11 c31
S2 : b32 w32(b) b22 w22(b) c32 c22
S3 : b13 b23 w13(c) c13 w23(c) c23
S4 : b24 b14 w14(d) w24(d) c14 c24

Let the functionsserSi , i = 1, 2, 3, 4 be defined. LetserS1

andserS2 be functions that map transactions to their begin
operation. Furthermore, letserS3 andserS4 be functions that
map transactions to their commit operations. By Definition 6,
sf (T1, DB1) = b11, sf (T2, DB2) = b22, sf (T3, DB1) = b31,
sf (T3, DB2) = b32, sf (T1, DB3) = c13, sf (T1, DB4) = c14.
sf (T2, DB3) = c23, and
sf (T2, DB4) = c24. As a result, transactions̃TD1

i , and T̃D2
i ,

i = 1, 2, 3, are as follows.

T̃D1
1 : b11 T̃D1

2 : b22 T̃D2
1 : c13 c14

T̃D2
2 : c24 c23 T̃D1

3 : b31 b32

The schedules̃SD1 and S̃D2 are as follows:

S̃D1 : b11 b31 b32 b22 S̃D2 : c13 c14 c24 c23

Consider the schedulẽSD2 that contains transactions̃TD2
1

andT̃D2
2 . Let serS̃D2 be a function that maps the transaction

T̃D2
i to its first operation inS̃D2. That is,serS̃D2 (T̃D2

1 ) = c13

andserS̃D2 (T̃D2
2 ) = c24. The functionserS̃D2 satisfies the re-

quirement of the serialization function for the scheduleS̃D2.
To see this, note that, iñSD2, operationc13 conflicts with
c23 andc14 conflicts withc24. As a result, transactioñTD2

1 is
serialized beforeT̃D2

2 in S̃D2. SinceserS̃D2 (T̃D2
1 ) = c13 oc-

curs beforeserS̃D2 (T̃D2
2 ) = c24, the functionserS̃D2 satisfies

the requirement of the serialization function forS̃D2. Thus,
by Definition 6,sf (T1, D2) = c13 andsf (T2, D2) = c24. Fi-
nally, consider the schedulẽSD1 that contains transactions
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T̃D1
1 and T̃D1

2 and T̃D1
3 . Let serS̃D1 be a function that maps

the transactionT̃D1
i to its first operation inS̃D1. That is,

serS̃D1 (T̃D1
1 ) = b11 and serS̃D1 (T̃D1

2 ) = b22. Note that the
function serS̃D1 satisfies the requirements of the serializa-
tion function for the schedulẽSD1. Hence, by Definition 6,
sf (T1, D1) = b11 andsf (T2, D1) = b22.

Using the above-described functionsf , serializability of
the the scheduleSD, D ∈ ∆ can be ensured by simply en-
suring the serializability of the schedulesS̃D. We state this
formally in the following theorem.

Theorem 1. Consider an MDBS environment with the set
∆ of domains. LetS be a global schedule andD be an
arbitrary domain in∆. ScheduleSD is serializable if the
following three conditions hold:

– For eachDBk such thatDBk @ D, Sk is serializable
and further there exists a functionserSk such that, for all
transactionsTi, Tj , if global(Ti, DBk), global(Tj , DBk),
andTi

∗
 Sk Tj , thenserSk (Ti) ≺S serSk (Tj).

– For all domainsD′ ∈ ∆ such thatD′
@ D and

D′ /= DBk, k = 1, 2, . . . ,m, S̃D
′

is serializable and
further there exists a functionserS̃D′ such that, for all
transactionsTi, Tj , if global(Ti, D′), global(Tj , D′), and
T̃D′
i

∗
 S̃D′ T̃

D′
j , thenserS̃D′ (T̃

D′
i ) ≺S serS̃D′ (T̃

D′
j ).

– S̃D is serializable.

To see the implication of Theorem 1 consider again the
execution in Example 3. In Example 3, the schedulesS̃D1,
S̃D2 and S̃D3 are as follows:

S̃D1 : b11 b31 b32 b22 S̃D2 : c13 c24 c14 c23
S̃D3 : b11 b22 c13 c24

Theorem 1 states that serializability of the scheduleSD3

can be ensured if the domain managers of domainsD1, D2
andD3 ensure the serializability of the schedulesS̃D1, S̃D2

and S̃D3, respectively. Thus, our task of ensuring serializ-
ability of the scheduleSD reduces to that of developing a
mechanism using which the domain managerDM (D) can
ensure serializability of the schedulẽSD. We develop such
a mechanism in the following section.

5 Ensuring serializability of SD

Before we describe how a domain managerDM (D) for an
arbitrary domainD ∈ ∆ ensures serializability of the sched-
ule S̃D, let us first discuss how the domain manager for a
simple domain can ensure serializability ofS̃D. Later we
will extend the described mechanism to the domain man-
agers for an arbitrary domain.

5.1 Ensuring serializability in simple domains

Recall that, since the operations inS̃D belong only to global
transactions, the domain managers do not need access to
operations belonging to local transactions (which execute
outside the control of the MDBS software) in order to ensure

serializability of S̃D. The concurrency control mechanism
works as follows.

Before submitting an operation belonging to a global
transactionTi for execution at the local DBMS, the domain
manager forDBk (that is,DM (DBk)) determines whether
or not the operation is aserSk (Ti) operation for some trans-
action Ti. If it is a serSk (Ti) operation,DM (DBK) for-
wards the operation toDM (D), else, it submits the operation
for execution to the local DBMS. On receipt of theserSk (Ti)
operation,DM (D) submits the operation to the local DBMS
at sitesk for execution (viaDM (DBk)). DM (D) controls
the order in whichserSk operations corresponding to global
transactions execute at the local DMBSs by controlling the
order in which it submits these operations for execution to
the local DBMSs. In particular, it ensures serializability of
S̃D (which consists of theserSk operations) by using a con-
currency control protocol (e.g., TO, 2PL, SGT) to control the
order in which it submits the operations to the local DBMS
for execution.

To see how the approach works consider the execu-
tion in Example 3. Let us assume that the domain man-
agerDM (D1) follows the 2PL protocol to control the sub-
mission order of theserSk operations to the local DBMS
for execution. Assume thatT1 requests executionb11 oper-
ation first. Recall that the begin operations of transactions
are theserSk operations at DBMS1 and DBMS2. Thus, the
domain managerDM (DB1) forwards the operationb11 to
DM (D1). Since no other transaction holds a a conflict-
ing lock, DM (D1) submits the operationsb11 for execu-
tion to the local DBMS for execution (viaDM (DB1)). Let
us assume that nextT3 requests ab31 operation. Sinceb31
operation is theserS1(T3) operation, the domain manager
DB(DB1) forwards the operation toDM (D1). The sub-
mission of the operation will be delayed sinceT̃D

1 holds a
conflicting lock. OnceT̃D

1 releases the lock (according to
the 2PL protocol),DM (D1) may submitb31 for execution.

5.2 Assumptions behind the approach

The above description of the concurrency control mechanism
to ensure serializability of the scheduleS̃D implicitly makes
the following two assumptions:

1. The serSk (Ti) operations can be associated with each
global transactionTi for all local DBMSs.

2. The interface supported by the local DBMSs for the
global transactions is such that the MDBS software sub-
mits each database operation, including theserSk (Ti)
operations, explicitly for execution to the local DBMSs,
and the local DBMSs acknowledge the execution of the
submitted operation. We refer to such an interface as the
operationinterface.

Below, we argue that the assumption 1 is reasonable in prac-
tice. Furthermore, we argue that if assumption 2 does not
hold for a particular MDBS, it remains possible to use our
approach with only a minor changes, and some loss of con-
currency.

The basis of the first assumption has been discussed ear-
lier. Depending upon the concurrency control protocol fol-
lowed by the local DBMS, it may or may not be possible to
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associate a serialization function with the transactions. If the
concurrency control scheme followed by the local DBMS is
such that serialization function cannot be associated with
transactions, serialization functions can be artificially intro-
duced for global transactions by forcing every two global
transactions that execute at some common sites to conflict
directly at those sites. This can be accomplished by aug-
menting global transactions to execute a write operation on
a common data itemticket at the site. It should always be
possible to add a data item to the local DBMS, but in the
case that neither the concurrency control protocol used by
the local DBMS supports a serialization function, and nor
does the local DBMS provide a mechanism for defining new
data items, the scheme developed in this paper, as well as
other approaches to concurrency control in MDBSs devel-
oped previously, will not be usable to ensure global serial-
izability. Such a situation is extremely unlikely to occur in
practice and, thus, the first assumption is reasonable from
the practical standpoint.

Unfortunately, the second assumption may not be valid,
since some existing local DBMSs do not support an opera-
tion interface. Instead, a local DBMS may support aservice
interface (Breitbart et al. 1992a) in which the local DBMS
only permitsDM (DBk) to submit a request for execution
of an existing local application on behalf of the global trans-
action (and not the read and write operations that constitute
the application). Alternatively, a local DBMS may support
an SQL interface, that permitsDM (DBk) to request mul-
tiple SQL statements (or expressions in the local data ma-
nipulation language) as part of the global subtransaction, the
execution of each being acknowledged by the local DBMS.
The submitted SQL query (or the service request in the case
of the service interface) may result in multiple read and write
operations over the data and the index structures (e.g., B-
trees) maintained by the local DBMS. The domain manager
DM (DBk) may be unaware of these resulting operations,
as well as of the mechanisms used by the local DBMS for
processing the SQL queries (e.g., protocol for B-tree traver-
sal: Mohan and Levine 1989; key range locking for phantom
protection: Lomet 1993).

If the local DBMSs do not support an operation inter-
face, DM (DBk) does not have direct control over when
serSk (Ti) operations execute at the local DBMSs. However,
the relative order in whichserSk operations execute can
still be controlled by controlling the submission of opera-
tions that causethe execution of theserSk (Ti) operation
at the local DBMS. To see this, consider a local DBMS
at sitesk that supports an SQL interface. Furthermore, as-
sume that the local DBMS atsk follows a TO protocol that
assigns timestamps to transactions when they begin execu-
tion. That is,serSk (Ti) is the first database operation be-
longing to Ti at site sk. DM (D) can control the relative
order in whichserSk (Ti) operations execute atsk by con-
trolling the order in which it submits the first SQL query
for each global transactionTi to the local DBMS at site
sk (via the domain managerDM (DBk)). This is possible
sinceserSk (Ti) for a global transactionTi executes only af-
terDM (D) submits the first SQL query ofTi for execution
to, and before receiving an acknowledgment from, the local
DBMS atsk (via DM (DBk)). Thus, if local DBMSs do not
support an operation interface, our scheme can still be used

to ensure serializability for̃SD with the following modifi-
cation: DM (DBk) forwards the operation that will cause
the execution ofserSk (Ti) at the local DBMS toDM (D)
for processing.DM (D), in turn, forwards the operation for
execution to the local DBMS (viaDM (DBk)). As before,
DM (D) uses a concurrency control protocol (e.g., TO, 2PL,
SGT) to control the order in which it submits the operations
to the local DBMS for execution, thereby ensuring serializ-
ability of S̃D.

Notice that the nature of the interface supported by the
local DBMS affects the degree of concurrency afforded by
the developed approach. For example, in the case of a service
interface, the entire service or the subtransaction is consid-
ered as a single operation byDM (DBk), and it forwards
the request for service invocation toDM (D) for execution.
Since DM (D) uses a concurrency control protocol (e.g.,
2PL) to control the order in which it forwards the service re-
quest to the local DBMS for execution, the service request at
the local DBMS causes the execution of theserSk operation
for the transaction, and theserSk operations of two different
transactions at the same site conflict, only a single service
request is allowed to execute at the same DBMS at a given
time. Thus, the scheme essentially results in global transac-
tions executing sequentially at each local DBMS. In contrast,
in the case of the operation interface, multiple global transac-
tions may execute concurrently at a given time at each local
DBMS as long as the concurrently executing operations are
not theserSk (Ti) operations.

For the remainder of the paper, we will assume that the
local DBMSs support an operation interface. This assump-
tion is made only for the sake of simplicity of the presenta-
tion and does not compromise the generality of our solution
as explained above.

5.3 Ensuring serializability in arbitrary domains

Recall that our discussion so far has considered only the de-
sign of the domain managerDM (D), for simple domains.
We now turn our attention to the design of the domain man-
ager for an arbitrary domainD ∈ ∆ such thatD 6∈ TOP
and D /= DBk, for all k = 1, 2, . . . ,m. DM (D) consists
of the following three componentsDM1(D), DM2(D) and
DM3(D) as illustrated in Fig. 5:

– DM1(D): The componentDM1(D) receives the
sf (Ti, Dk) operations belonging to transactionsT̃D

i from
the domain manager of each domainDk at whichTi ex-
ecutes, wherechild(Dk, D). DM1(D), on receipt of the
operationsf (Ti, Dk), determines if the transactionTi is
local to D. If Ti is local to D (that is, local(Ti, D)),
then DM1(D) forwards the operationsf (Ti, Dk) to
DM3(D) for processing. Else, ifTi is global to D
(that is,global(Ti, D)) and further if the operationo =
sf (Ti, Dk) is also the serialization function value ofTi
with respect to the domainD, that is, o = sf (Ti, D),
thenDM1(D) submits the operation to the domain man-
agers of every domainD′ such thatparent(D′, D) for
processing3. Else, if o /= sf (Ti, D), then it submits the

3 Recall that a domainD, in our MDBS architecture, may have multiple
domainsD′ such thatparent(D′, D).
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domain managers of child domains ofD

domain managers of parent domains ofD

sf (Ti, Dk)

sf (Ti, D)

ack(sf (Ti, D))

ack(sf (T i,Dk))

ack(sf (Ti, D))

DM1(D)

DM2(D)

exec(sf (Ti, Dk))

exec(sf (Ti, D))

exec(sf (Ti, D))

exec(sf (Ti, D))

DM (D)

DM3(D)

Fig. 5. Components of a domain manager

operation toDM3(D). The componentDM3(D) is re-
sponsible for ensuring serializability of̃SD.

– DM2(D): The componentDM2(D) receives requests for
the execution of the operationso = sf (Ti, D) (that is,
exec(sf (Ti, D)) requests) from the domain managers of
the domainsD′, whereparent(D′, D). In case there are
multiple domainsD′ such thatparent(D′, D), DM2(D)
waits until it receives requestsexec(sf (Ti, D)) from
each domainD′, whereparent(D′, D). On receipt of
the request fromeachof the parent domains, it submits
the operation for execution to the componentDM3(D).
On receipt of the acknowledgement for the success-
ful execution of the operationsf (Ti, D) (denoted by
ack(sf (Ti, D))) from DM3(D), DM2(D), in turn, for-
wards the acknowledgement to the domain managers of
each of the domainsD′, whereparent(D′, D).

– DM3(D): The componentDM3(D) is responsible for
scheduling the operations of the transactionsT̃D

i to the
local DBMSs for execution (via the domain managers
of the child domains ofD) in such a fashion that the
scheduleS̃D is serializable.DM3(D) receives request
for the execution of operationso = sf (Ti, Dk), where
child(Dk, D) from DM1(D) (if either o belongs to a
transactionTi such thatlocal(Ti, D), or if o /= sf (Ti, D))
and from the componentDM2(D) (if global(Ti, D) and
furthermore the operationo = sf (Ti, Dk) is also the op-
erationsf (Ti, D)). DM3(D), in turn, submits the request
for the execution of the operationsf (Ti, Dk), to the do-
main manager of the domainDk, wherechild(Dk, D).
Further, on receipt of the acknowledgement for the op-
eration o = sf (Ti, Dk) (that is, ack(sf (Ti, Dk))) from
the domain manager of the domainDk, in case the op-
eration is also the serialization function ofTi with re-
spect toD (that is, sf (Ti, D)), DM3(D) forwards the
acknowledgement to the componentDM2(D) which, as
mentioned previously, acknowledges the execution of the
operation to the domain managers of each of the parent
domains ofD. DM3(D) controls the submission order
of the operationssf (Ti, Dk) to the domain managers of
the domainsDk, wherechild(Dk, D), in such a fashion
that the schedulẽSD is serializable.

Above, we have described the components of the do-
main manager for a domainD, where D 6∈ TOP and

further D /= DBk, k = 1, 2, . . . ,m. The domain manager
for the domainD ∈ TOP differs from the above in that
it does not contain the componentDM2(D). Note that if
D ∈ TOP , then there does not exist a domainD′ such
that parent(D′, D). Thus, the componentDM1(D) of the
domain manager for a domainD ∈ TOP , on receipt of
the any operationso = sf (Ti, Dk), where child(Dk, D),
submits a request for the execution ofsf (Ti, Dk) (that is,
exec(sf (Ti, Dk)) to the componentDM3(D) directly.

Finally, we consider the domain manager for a domain
D = DBk, for somek = 1, 2, . . . ,m. The domain man-
ager for a domainD = DBk is responsible for forwarding
operationsf (Ti, DBk) (that is, the operationsserSk (Ti)),
whereglobal(Ti, DBk) to the domain manager for the par-
ent domains ofDBk. Furthermore,DM (DBk), on request
for the execution of thesf (Ti, DBk) operations from the
parent domains ofDBk submits the operation for execu-
tion to the local DBMS. Finally, on receipt of an acknowl-
edgement from the local DBMS for the execution of the
sf (Ti, DBk) operation, it forwards the acknowledgement to
the domain managers of the parent domains ofD. Thus, the
domain manager for a domainD = DBk differs from the
domain manager defined above in that it does not contain a
componentDM3(D).

In our design of the domain manager for a domainD,
the operationo = sf (Ti, Dk), wherechild(Dk, D), does not
execute inS until the componentDM3(D) of the domain
manager for domainD submits a request for the execu-
tion of the operationsf (Ti, Dk), that is,exec(sf (Ti, Dk))
to the domain manager of domainDk. Note that this is
true, since the componentDM2(Dk) of the domain man-
ager for the child domainDk waits to receive a request for
the execution of the operationsf (Ti, Dk) from each parent
domain ofDk. Furthermore, for each operationsf (Ti, Dk),
the componentDM3(D) of the domain manager for the do-
mainD receives the acknowledgement for the execution of
sf (Ti, Dk), wherechild(Dk, D), sometime after the execu-
tion of sf (Ti, Dk) in S. This is true, since we assume that
each DBMSj acknowledges the execution of the operations
belonging to the transactions that are global with respect to
DBj to the domain manager ofD = DBj , and the domain
manager for each domainD, in turn, acknowledges the exe-
cution of the operationsf (Ti, D), to the domain managers of
each of its parent domains. Thus, the operationsf (Ti, Dk)
executes inS afterDM3(D) submitssf (Ti, Dk) for execu-
tion to the domain manager ofDk, and beforeDM3(D) re-
ceives the acknowledgement for the execution ofsf (Ti, Dk)
from the domain manager ofDk. Hence, to ensure that the
scheduleS̃D is serializable, the componentDM3(D) can
use any concurrency control protocol that ensures serializ-
ability (e.g., 2PL, TO, SGT) to schedule the submission of
the operations belonging to transactionsT̃D

i to the domain
managers of the child domains. Note that, since the schedule
S̃D is distributed over the domainsD1, D2, . . . , Dk, where
child(Dj , D), j = 1, 2, . . . , k, DM3(D) can follow any dis-
tributed or centralized concurrency control protocol to ensure
serializability of S̃D.
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Fig. 6. Example of∆ that satisfiesR1

6 Ensuring global serializability

In the previous section, we developed a mechanism that the
domain managers can use to ensure that the projection of
the schedule to their domains is serializable. However, as we
mentioned at the beginning of Sect. 4, ensuring serializability
of the schedulesSD, D ∈ ∆ alone may not guarantee global
serializability in a hierarchical MDBS (see Example 2). To
ensure global serializability, the set of domains∆ must be
restricted appropriately. In the remainder of this section, we
consider a restriction on∆ such that, if the mechanism de-
veloped in the previous section for ensuring serializability
of SD, D ∈ ∆ is used, then the resulting global schedule is
serializable. That is, we identify the required restrictions on
∆ such that, if each domain manager ensures serializability
of S̃D, then the resulting global scheduleS is serializable.

To identify the appropriate restriction on∆, let us reex-
amine the non-serializable execution in Example 2. Let us
assume that each DBMSi, i = 1, 2, 3, 4, follows a timestamp
scheme for concurrency control in which a timestamp is as-
signed to a transaction when it begins execution. Since each
local DBMS follows the timestamp scheme and the times-
tamp is assigned to a transaction when it begins execution,
the serialization function for a transaction with respect to
DBi, i = 1, 2, 3, 4, is the transaction’s begin operation at
the local DBMSs. Thus, the transactionsT̃i for the transac-
tions T1, T2, T3, T4 with respect to each of the domainsD1
andD2 are as follows:
T̃D1

1 : b11 b13 T̃D1
2 : b22 b21 T̃D1

3 : b32 T̃D1
4 : b43

T̃D2
1 : b13 T̃D2

2 : b22 T̃D2
3 : b34 b32 T̃D2

4 : b43 b44

The schedules̃SD1 andS̃D2 for the scheduleS in Example 2
are as follows:

S̃D1 : b22 b43 b11 b32 b21 b13

S̃D2 : b22 b43 b34 b32 b13 b44

In scheduleS̃D1 operationsb11, b21, operationsb22, b32, and
operationsb43, b13 conflict. Thus,S̃D1 is serializable in the
order T̃D1

4 , T̃D1
1 , T̃D1

2 , T̃D1
3 . Similarly, in the schedulẽSD2

operationsb22, b32, operationsb43, b13, and operationsb34,
b44 conflict. Thus,S̃D2 is serializable in the order̃TD2

2 , T̃D2
3 ,

T̃D2
4 , T̃D2

1 . Since bothS̃D1 andS̃D2 are serializable, the ex-
ecution in Example 2 could have been generated (if, for ex-
ample, the domain managers ofD1 andD2 were following
the SGT scheme to ensure serializability ofS̃D1 andS̃D2, re-
spectively). Note that, in the execution, the domain manager
of D1 serialized the transactioñTD1

1 beforeT̃D1
3 . In contrast,

the domain manager ofD2 serializesT̃D2
3 before transac-

tion T̃D2
1 , thereby resulting in the loss of serializability. If,

however, there existed a domainD3 =
⋃{DB2, DB3} (illus-

trated in Fig. 6), then the order in which the domain manager
for domainD1 serializes transactioñTD1

i and T̃D1
j , and the

order in which the domain manager ofD2 serializes transac-
tions T̃D2

i and T̃D2
j must be the same (identical to the order

in which the domain managerD3 serializes the transactions).
Hence, if there existed a domainD3 =

⋃{DB2, DB3}, then
the non-serializable execution in Example 2 would not re-
sult. We therefore consider the following restriction on the
set∆ of domains:

R1. For all domainsDi, Dj ∈ TOP , there exists a
Dk ∈ ∆, such thatDk = Di ∩Dj .

In the domain ordering relation illustrated in Fig. 3, since
DB2 @ D1, DB2 @ D2, andDB3 @ D1, DB3 @ D2, the
domainD1∩D2 does not exist. Thus, the corresponding set
∆ does not satisfyR1. In contrast, in the domain ordering
relation illustrated in Fig. 6, the domainD3 = D1 ∩ D2.
Thus, the corresponding set∆ satisfies the restrictionR1.

Unfortunately, even if the set of domain∆ satisfies the
restriction R1, and each domain manager ensures serializ-
ability of the scheduleS̃D, the resulting global schedule
may still not be serializable. To see this let us consider the
following example.

Example 4. Consider an MDBS environment consisting of
local databases: DBMS1 with data itema, DBMS2 with
data item b, and DBMS3 with data item c. Let the do-
main ordering be as illustrated in Fig. 7. The set of do-
mains ∆ = {DB1, DB2, DB3, D1, D2, D3}, whereD1 =⋃{DB1, DB2}, D2 =

⋃{DB2, DB3}, and D3 =⋃{DB1, DB3}. Further, the setTOP = { D1, D2 ,D3 },
D1 ∩ D2 = DB2, D2 ∩ D3 = DB3, andD1 ∩ D3 = DB1.
Hence,∆ satisfies the restrictionR1. Consider the following
transactionsT1, T2, andT3 that execute:

T1 : b11 w11(a) b13 w13(c) c11 c13
T2 : b21 w21(a) b22 w22(b) c21 c22
T3 : b32 w32(b) b33 w33(c) c32 c34

Note thatDom(T1) = D3, Dom(T2) = D1, and
Dom(T3) = D2. Suppose that each local DBMS follows a
timestamp scheme for concurrency control in which a times-
tamp is assigned to a transaction when it begins execution.
Then, the serialization function for a transaction with respect
to DBi, i = 1, 2, 3, is the transactions’ begin operation at the
local DBMSs. Thus, the transactions̃Ti for the transactions
T1, T2, T3 with respect to each of the domainsD1, D2 and
D3 are as follows:

T̃D1
1 : b11 T̃D1

2 : b21 b22 T̃D1
3 : b32

T̃D2
1 : b13 T̃D2

2 : b22 T̃D2
3 : b32 b33

T̃D3
1 : b11 b13 T̃D3

2 : b21 T̃D3
3 : b33

Consider a scheduleS resulting from the concurrent exe-
cution of transactionsT1, T2, and T3 such that the local
schedules at DBMS1, DBMS2, DBMS3 are as follows:

S1 : b11 w11(a) b21 w21(a) c11 c21
S2 : b22 w22(b) b32 w32(b) c22 c32
S3 : b33 w33(c) b13 w13(c) c33 c13

Furthermore let the schedules̃SD1, S̃D2 and S̃D3 be as fol-
lows:
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Fig. 7. A domain ordering with a cyclic DG

S̃D1 : b11 b21 b22 b32

S̃D2 : b22 b32 b33 b13

S̃D3 : b11 b21 b33 b13

In scheduleS̃D1 operationsb11, b21, and operationsb22, b32,
conflict. Thus,S̃D1 is serializable in the order̃TD1

1 , T̃D1
2 ,

T̃D1
3 . In the schedulẽSD2 operationsb22, b32, and operations

b33, b13 conflict. Thus,S̃D2 is serializable in the order̃TD2
2 ,

T̃D2
3 , T̃D2

1 . Similarly, in the schedulẽSD3 operationsb11, b21,
and operationsb33, b13 conflict. Thus,S̃D3 is serializable in
the orderT̃D3

3 , T̃D3
1 , T̃D3

2 . Thus, each schedulẽSD1, S̃D2

and S̃D3 is serializable. However, the global scheduleS is
not serializable.

The above example illustrates that, even if∆ satisfies
the restrictionR1, ensuring serializability ofS̃D for each
domainD may not ensure global serializability. To identify
conditions under which global serializability is ensured, we
need to introduce the notion of adomain graph. A domain
graph (DG) for a set of domains∆, is an undirected graph
whose nodes correspond to the set of domainsD ∈ TOP .
Let Di and Dj be two nodes in DG. There is an edge
(Di, Dj) in DG if there exists a domainDk ∈ ∆ such that
Dk @ Di andDk @ Dj .

Theorem 2. Consider an MDBS environment with the set
∆ of domains. LetS be a global schedule. Further, let each
of the following three hold:

– For eachDBk such thatDBk @ D, Sk is serializable
and further there exists a functionserSk such that for all
transactionsTi, Tj , global(Ti, DBk), global(Tj , DBk),
andTi

∗
 Sk Tj , thenserSk (Ti) ≺S serSk (Tj).

– For all domainsD ∈ ∆ such thatD 6∈ TOP , S̃D is
serializable and further there exists a functionserS̃D
such that for all transactionsTi, Tj , if global(Ti, D),
global(Tj , D), and T̃D

i
∗
 S̃D T̃D

j , thenserS̃D (T̃D
i ) ≺S

serS̃D (T̃D
j ).

– For all domainsD ∈ ∆ such thatD ∈ TOP , S̃D is
serializable.

If ∆ satisfiesR1 and the DG is acyclic, thenS is serializable.

Note that Theorem 2 states that, under the hypothesis of
Theorem 1, global serializability is ensured if the domain
hierarchy satisfies the restrictionR1 and the domain graph
DG does not contain any cycles. The DG for the set of

D2

D1

D3

D4

DB1 DB2 DB3 DB4
DB5 DB6

Fig. 8. A domain ordering such that LDG contains no undesirable cycles

domains∆ corresponding to the domain ordering relation
illustrated in Fig. 6 contains nodesD1 andD2 and an edge
(D1, D2). Since this DG is acyclic and the set of domains∆
satisfiesR1, it follows that, in order to ensure global serial-
izability, it suffices to ensure that the schedulesS̃D, for each
domainD ∈ ∆, is serializable. In contrast, the DG for the
set of domains corresponding to the domain ordering rela-
tion illustrated in Fig. 7 contains a cycle (D1, D2), (D2, D3)
and (D3, D1). Hence, even if for each domainD ∈ ∆, the
scheduleS̃D is serializable and the set of domains∆ satis-
fies restrictionR1, loss of global serializability may result.

The restriction imposed on the domain hierarchy in The-
orem 2 can be relaxed since not every cycle in the domain
graph DG would result in a potential loss of serializability.
Consider, for example, DG for the set of domains corre-
sponding to the domain ordering relation illustrated in Fig. 8.
Note that DG contains a cycle (D2, D3), (D3, D4), (D4, D2).
However, for the set of domains corresponding to the domain
ordering relation illustrated in Fig. 8, if for eachD ∈ ∆,
the domain manager forD ensures that the schedulẽSD is
serializable, then it can be shown that the resulting global
scheduleS is serializable. Thus, certain cycles in DG do
not result in a potentially non-serializable global schedule.
Below we formalize the nature of the cycles that can be per-
mitted in DG. To do so, we first introduce the notion of the
labeled domain graph(LDG).

An LDG is a domain graph in which each edge (Di, Dj)
has a label, referred to aslabel(Di, Dj), wherelabel(Di, Dj)
= Di∩Dj . Let (D1, D2), (D2, D3), . . ., (Dr−1, Dr), (Dr, D1)
be a cycle in the LDG. We refer to the cycle in the LDG as
a undesirable cycleif and only if for all k, l, k = 1, 2, . . . , r,
l = 1, 2, . . . , r, if k /= l, then label(Dk, D(k+1)mod r) /=
label(Dl, D(l+1)mod r). Note that the LDG for the set of do-
mains corresponding to the domain ordering relation illus-
trated in Fig. 8, has edges (D2, D3), (D3, D4) and (D4, D2),
where label(D2, D3) = label(D3, D4) = label(D4, D2) =
D1. Thus, LDG does not contain any undesirable cycles.
In contrast, the LDG for the set of domains corresponding
to the domain ordering illustrated in Fig. 7 contains a cycle
(D1, D2), (D2, D3), (D3, D1), wherelabel(D1, D2) = DB2,
label(D2, D3) = DB3, label(D3, D1) = DB1. Hence, LDG
contains an undesirable cycle. If the LDG for the set of
domains∆ does not contain any undesirable cycles, then
ensuring thatS̃D, for each domainD ∈ ∆ would ensure
global serializability as is stated in the following theorem.

Theorem 3. Consider an MDBS environment with the set
∆ of domains. LetS be a global schedule. Further, let each
of the following three hold:
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– For eachDBk such thatDBk @ D, Sk is serializable
and further there exists a functionserSk such that, for all
transactionsTi, Tj , global(Ti, DBk), global(Tj , DBk),
andTi

∗
 Sk Tj , thenserSk (Ti) ≺S serSk (Tj).

– For all domainsD ∈ ∆, such thatD 6∈ TOP , S̃D

is serializable and further there exists a functionserS̃D
such that, for all transactionsTi, Tj , if global(Ti, D),
global(Tj , D), and T̃D

i
∗
 S̃D T̃D

j , thenserS̃D (T̃D
i ) ≺S

serS̃D (T̃D
j ).

– For all domainsD ∈ ∆ such thatD ∈ TOP , S̃D is
serializable.

If ∆ satisfiesR1 and LDG contains no undesirable cycles,
thenS is serializable.

Since the domain graph DG contains a cycle if and only
if the labeled domain graph LDG contains a cycle, Theo-
rem 3 relaxes the requirement in Theorem 2 for DG to be
acyclic to the requirement that LDG does not contain any
undesirable cycles for our scheme to ensure global serializ-
ability.

7 Related work

Relevant related work on transaction management in MDBSs
was discussed in Sect. 2. As we mentioned there, hierar-
chical transaction management architecture for MDBSs has
previously been studied in Pu (1988), where the author pro-
posed asuperdatabasearchitecture for MDBSs. In this sec-
tion, we compare our approach with the concurrency con-
trol scheme developed in Pu (1988) for the superdatabase
architecture. Furthermore, we discuss the relationship of our
work with the hierarchical concurrency control schemes that
have been studied in the context of multilevel transactions
(Weikum and Schek 1984, 1991; Beeri et al. 1988).

A superdatabase can be seen as a hierarchical MDBS
with the following restriction on∆:

For all domainsDi, Dj ∈ ∆, if child(Di, Dj), then,
for all Dk /= Dj , ¬child(Di, Dk).

An example of a superdatabase architecture is the domain
ordering illustrated in Fig. 4. It is easy to see that a super-
database is a special instance of a hierarchical MDBS for
which the set of domains∆ satisfies the restrictionR1 and,
further, the domain graph corresponding to∆ is acyclic.
Thus, from Theorem 2, it follows that a concurrency control
scheme based on ensuring the serializability ofS̃D for each
domainD ∈ ∆ can be used in superdatabases to ensure
global serializability.

The concurrency control scheme for superdatabases de-
veloped in Pu (1988) is very different from our approach. In
contrast to our scheme, where, for each domainD, the do-
main managerDM (D) ensures serializability of the sched-
ule S̃D, Pu (1988) developed a protocol, referred to as the
hierarchical validation, in order to ensure global serializ-
ability. In the hierarchical validation protocol, the domain
manager for a domainD, D 6∈ TOP , for each transac-
tion Ti such that¬local(Ti, DBk), k = 1, 2, . . . ,m, (that is,
transactions that are not local to any local DBMS), submits
the operations

{serSk (Ti) |DBk v D andTi accesses data item inDBk}
to the domain manager of the domainD′, where
parent(D′, D)4. Further, the domain managerDM (D) of
a domainD considers any two operationsserSk (Ti) and
serSl (Tj), belonging to transactionsTi andTj , to conflict if
k = l, and uses SGT certification (Bernstein et al. 1987) to
ensure the serializability of the projection of the scheduleS
to the operations

{serSk (Ti) | DBk v
D andTi accesses data item inDBk}.

Notice that, unlike our approach in which different do-
main managers could follow different concurrency control
protocols (centralized or distributed), in hierarchical vali-
dation, each domain manager follows the SGT certification
protocol. However, this is not the only difference between
the two approaches. A more subtle and a very important
difference is that in the case of the hierarchical validation,
the domain managerD submits theserSk (Ti) operations to
the parent domain manager irrespective of whether or not
the transaction is local toD. For example, if hierarchical
validation is used to control execution in Example 3, even
though the transactionT3 executes only atDB1 andDB2
and is local to the domainD1, its serialization operations
serS1(T3) and serS2(T3) will be forwarded to the domain
managerDM (D3). Thus, the execution of transactions that
are local to a domainD1 will not only be controlled by
the concurrency control protocols followed by the domain
manager of domainD1 (and the domain managers of the de-
scendent domains ofD1 at whichT3 executes), but also by
the concurrency control protocols followed by the domain
managers of all the ancestor domains ofD1. In particular,
the domain manager of the root domain in a superdatabase
will control the concurrent execution of all the transactions
that are global with respect to any local DBMS.

If, in the hierarchical validation protocol,DM (D) does
not submit the operationsserSk (Ti), where
local(Ti, D), to the parent domain ofD, then the protocol
may not ensure global serializability. We illustrate this in the
following example.

Example 5. Consider an MDBS environment consisting of
local databases: DBMS1 with data itema, DBMS2 with data
item b, DBMS3 with data itemc, and DBMS4 with data item
d. Let the domain ordering relation be as illustrated in Fig. 4.
The set of domains:

∆ = {DB1, DB2, DB3, DB4, D1, D2, D3},
where D1 =

⋃{DB1, DB2}, D2 =
⋃{DB3, DB4}, and

D3 =
⋃{D1, D2}. Note that the set of domains∆ con-

forms to the superdatabase architecture. Consider the fol-
lowing transactionsT1, T2, T3 andT4 that execute:

T1 : b11 w11(a) b13 w13(c) c11 c13
T2 : b22 w22(b) b24 w24(d) c22 c24
T3 : b31 w31(a) b32 w32(b) c31 c32
T4 : b43 w43(c) b44 w44(d) c43 c44

4 Note that in the superdatabases each domain may have at most one
parent.
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Note thatDom(T1) = D3, Dom(T2) = D3, Dom(T3) = D1
andDom(T4) = D2. Further,global(T1, D1), global(T2, D1)
andlocal(T3, D1). Similarly, global(T1, D2), global(T2, D2)
andlocal(T4, D2). Suppose that each local DBMS follows a
timestamp scheme for concurrency control in which a times-
tamp is assigned to a transaction when it begins execution.
Consider a scheduleS resulting from the concurrent execu-
tion of transactionsT1, T2, T3, andT4 such that the local
schedules at DBMS1, DBMS2, DBMS3 and DBMS4 are as
follows:

S1 : b11 w11(a) b31 w31(a) c11 c31
S2 : b32 w32(b) b22 w22(b) c32 c22
S3 : b43 w43(c) b13 w13(c) c43 c13
S4 : b24 w24(d) b44 w44(d) c24 c44

Note that the above scheduleS is not serializable. However,
it could have been generated even if a hierarchical validation
protocol is used for concurrency control in case the domain
managerDM (D1) does not submit operations belonging to
the transactionT3 to DM (D3), andDM (D2) does not sub-
mit operations belonging to the transactionT4 to DM (D3)
sincelocal(T3, D1) and local(T4, D2). To see this, consider
that each domain manager follows an SGT certification pro-
tocol. SinceDM (D1) does not submit the operations ofT3
(that is,serS1(T3) andserS2(T3) operations), andDM (D2)
does not submit the operations ofT4 (that is,serS3(T4) and
serS4(T4) operations) toDM (D3) the schedules at the do-
main managersDM (D1), DM (D2), andDM (D3), denoted
by S1, S2, andS3, respectively, are as follows:

S1 : b11 b31 b32 b22

S2 : b24 b43 b44 b13

S3 : b11 b22 b24 b13

In the above schedules note that operationsb11, b31, oper-
ations b32, b22, operationsb24, b44, and operationsb43, b13
conflict. Thus, each of the schedulesS1, S2 andS3 are se-
rializable. Hence, the scheduleS would be permitted by the
hierarchical validation protocol even though it is not serial-
izable.

In contrast, in our approach, for a transactionTi and a
domainD such thatlocal(Ti, D), the domain manager of
D does not submit any information to the parent domain of
D and the execution of the operations ofTi is controlled
by only the domain manager forD (and its descendents on
which Ti executes). For example, in the execution in Exam-
ple 5, the execution of the operationb31 andb32 (which are
the serialization function values ofT3) will be controlled
by only the domain manager ofD1 (and its descendents)
and not by the domain manager ofD3, sinceT3 is local to
theD1. Similarly, sinceT4 is local toD2, the execution of
the operationsb43 andb44 is controlled by only the domain
manager ofD2 (and its descendents). Not only does this in-
crease scalability of our approach, but it also preserves the
autonomy of the individual MDBSs, since the transactions
local to a domainD are controlled by only the domain man-
ager ofD (and its descendants). Furthermore, since, in our
approach, only transactions global with respect to a domain
D pay the overhead of the concurrency control at the parent
domain ofD, our approach will have better performance as
compared to the hierarchical validation protocol in which

every transaction that is global with respect to some local
DBMS pays the concurrency control overhead at multiple
levels.

Hierarchical concurrency control schemes have also been
previously studied in the context of multilevel transactions
(Weikum and Schek 1984, 1991; Beeri et al. 1988). A mul-
tilevel transaction is a special type of a nested transaction
(Moss 1987; Gray and Reuter 1993) in which levels of the
transaction represent a hierarchy of abstract data types. Op-
erations at a given leveli are implemented completely using
operations at the next lower leveli− 1. The recursion stops
at level 0, the operations at which are assumed to be atomic
and indivisible. In multilevel systems, concurrency control is
done hierarchically at each level. The concurrency control
scheme at leveli, ensures isolation of the leveli opera-
tion under the assumption that the leveli− 1 operations are
atomic, which are made atomic by the concurrency control
scheme of leveli−1, and so on. The objective is that view-
ing transactions in the multilevel framework allows for the
exploitation of the application semantics to enhance concur-
rency. Two transactions, even though they result in oper-
ations that conflict at the lower abstraction level may not
conflict at the higher level. To see this, consider a two-level
system in which transactions are implemented as a sequence
of operations on tuples, and each tuple-level operation is
implemented as a sequence of page-level operations. Two
transactions that access/modify different tuples on the same
page, even though they execute conflicting page-level op-
erations, do not conflict at the level of the tuples. Multi-
level concurrency control enables such transactions to exe-
cute concurrently, thereby enhancing concurrency.

Besides the fact that both our approach for MDBS envi-
ronments, as well as the mechanisms developed for multi-
level transactions, are hierarchical concurrency control pro-
tocols, there is not much similarity between them. For exam-
ple, in multilevel concurrency control schemes, each trans-
action is defined over a given abstraction hierarchy, and its
execution is controlled by the concurrency control scheme
at each level. There is no concept similar to local and global
transactions as is the case with transactions in MDBS envi-
ronments. Furthermore, in the MDBS environments consid-
ered in this paper, the hierarchy of MDBSs represents only
a structural hierarchy, and there is no implied hierarchy of
abstractions as is the case with multilevel transactions.

Note that we are not claiming that the notion of mul-
tilevel transactions is orthogonal to the MDBS transac-
tion management problem. In fact, one of the proposals
(Sheck et al. 1991; Weikum et al. 1991) for concurrency
control in MDBSs is to consider global transactions as two-
level transactions in which each subtransaction is consid-
ered as a lower level operation. However, such approaches
are based on exploiting the semantics of the application do-
main, and do not ensure global serializability. Hence, such
approaches are not directly related to the scheme developed
in this paper.

An interesting observation is that similar to our work
(Sect. 6), recently, efforts have also been made to de-
velop concurrency control protocols for multilevel systems
in which the abstraction hierarchy may not necessarily be a
true hierarchy. Specifically, in Muth et al. (1993), the authors
develop a technique for concurrency control in multilevel



166

systems, in which not every transaction has a representation
at each abstraction level. For example, consider a two-level
system discussed earlier, in which the levels correspond to
the tuples and pages. The authors develop a multilevel con-
currency control scheme for a system in which not every
transaction has a representation at both the tuple as well as
the page abstraction level. Instead some transactions may be
implemented as operations on the pages directly. The moti-
vation for their work comes from trying to map the applica-
tions in object-oriented databases to multilevel transactions
for the purpose of concurrency control. One way to do so
is to map the method invocation hierarchy to the abstraction
hierarchy of the multilevel transaction. However, it is not too
difficult to see that the hierarchy for most systems will not
be a true hierarchy as is traditionally assumed in the work on
multilevel transactions. Similar to our work on identifying
limitations that must be imposed on the domain hierarchy
for the developed concurrency control approach (that is, en-
suring serializability ofS̃D) to ensure global serializability
in hierarchical MDBSs, it will be interesting to study lim-
itations on the abstraction hierarchy that might need to be
imposed for the scheme developed in Muth et al. (1993) to
ensure serializability in multilevel systems.

8 Conclusions

A multidatabase system (MDBS) is a facility, developed on
top of pre-existing local DBMSs, that provides users of a
DBMS access and update privileges to data located in other
heterogeneous data sources. Over the past decade, substan-
tial research has been done to identify mechanisms for ef-
fectively dealing with the problems that arise due to the
heterogeneityand autonomyof the local systems. This re-
search has resulted in transaction management algorithms
for MDBSs that ensure correctness without sacrificing the
autonomy of the individual system. Most of the proposed
approaches have, however, considered an MDBS as a single
monolithic system which, executing on top of the existing
local DBMSs, controls the execution and commitment of the
global transactions(transactions that execute at multiple lo-
cal DBMSs) in such a way that consistency of the individual
systems is not jeopardized.

In this paper, we have proposed a hierarchical architec-
ture for multidatabase systems and studied how concurrency
control can be done in such systems. We believe that a large
MDBS, that spans multiple organizations geographically dis-
tributed over nodes of a worldwide computer network will
not be developed as a single monolithic system. Instead,
it will be developed as a hierarchical system in which an
MDBS that integrates certain local DBMSs may itself be a
part of a larger MDBS. In a hierarchical MDBS, depending
upon the nature of the transactions that execute, the comput-
ing resources available, and the reliability of the network,
different component MDBSs may follow different transac-
tion management schemes to ensure the consistency of the
data they integrate. However, the transaction management
algorithms followed by the individual MDBSs must be such
that it is feasible to compose them as elements of a larger
MDBS.

To describe the architecture, with an MDBS environment
we associate a set ofdomains∆ with an ordering relation@.
A domain is either a set of data items at some local DBMS,
or it may consist of a union of the set of data items in other
domains. The execution of the transactions within a domain
D ∈ ∆ is controlled by thedomain managerof D. We de-
veloped a mechanism using which the domain managers can
ensure that the concurrent execution of the transactions does
not result in a loss of serializability within their domains.
More specifically, for a global scheduleS and a domainD,
we identified a schedulẽSD such that, ifS̃D is serializable,
and for all domainsD′

@ D S̃D
′

is serializable, then the
serializability of the projection ofS to data items inD (that
is SD) is ensured. We developed a mechanism using which
the domain manager ofD can control the order in which the
operations that belong tõSD execute such that̃SD is serial-
izable. In our mechanism, the domain manager may use any
concurrency control protocol known for traditional DBMSs
(distributed or centralized) to ensure serializability ofS̃D.
Finally, we identified restrictions that need to be imposed
on the architecture of the hierarchical MDBSs such that our
mechanism of ensuring serializability ofS̃D for each domain
D ∈ ∆ results in global schedules that are serializable.

In this paper, we did not consider the issue of failure-
resilience. Failure-resilience in MDBSs is complicated since
the requirement of autonomy preservation renders the usage
of atomic commit protocols(Bernstein et al. 1987) unsuit-
able for MDBS environments. In the absence of atomic com-
mit protocols, it is possible that certain subtransactions of a
multisite transaction commit, whereas others abort, thereby
violating the atomicity property. The problem of ensuring
atomicity in MDBS environments has been studied in Breit-
bart et al. (1990), Wolksi and Veijalainen (1990), Mehrotra
et al. (1992b, d) and Zhang et al. (1994). We need to fur-
ther study how these schemes can be adapted for hierarchi-
cal MDBSs. Finally, in this paper we concentrated only on
developing mechanisms for ensuring global serializability
in hierarchical MDBSs. Since ensuring global serializabil-
ity in an MDBS environment is both complex and expen-
sive, and schemes that ensure serializability may not offer
the desired degree of concurrency, substantial research has
been done to develop correctness criteria for MDBSs that
are weaker than serializability but ensure database consis-
tency under appropriate assumptions about the MDBS envi-
ronment (Du and Elmagarmid 1989; Mehrotra et al. 1991).
It will be interesting to study concurrency control schemes
and the consistency guarantee that results in hierarchical
MDBSs in which different domains may follow different
notions of correctness.
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Appendix Proofs of the theorems

In this appendix, we prove Theorems 1–3 stated in the paper.
We begin by first proving Theorem 1. To prove the theorem,
we first need to develop the following two lemmas.

Lemma 1. Consider an MDBS environment with the set
∆ of domains. LetS be a global schedule andD be an
arbitrary domain in∆. ScheduleSD is serializable, if each
of the following three conditions hold:

1. For each domainDk such thatchild(Dk, D), schedule
SDk is serializable.

2. For each domainDk, such thatchild(Dk, D), there ex-
ists a serialization functionsf such that the following
holds:

For all transactionsTi, Tj , if global(Ti, Dk),
global(Tj , Dk), andTi

∗
 SDk Tj , then

sf (Ti, Dk) ≺S sf (Tj , Dk).

3. ScheduleS̃D is serializable.

Proof. Assume thatSD is not serializable. Since by (1) each
SDk is serializable, there exist transactionsT1, T2, . . . , Tn
such thatT1

∗
 

S
Dk1

T2, T2
∗
 

S
Dk2

T3, . . ., Tn−1
∗
 

S
Dkn−1

Tn, Tn
∗
 S

Dkn
T1, wherechild(Dki , D), global(Ti, Dki ),

and global(T(i+1)mod n, Dki ), i = 1, 2, . . . ,n.
By (2), sf (T1, Dk1) ≺S sf (T2, Dk1), sf (T2, Dk2) ≺S

sf (T3, Dk2), . . ., sf (Tn−1, Dkn−1) ≺S sf (Tn, Dkn−1),
sf (Tn, Dkn ) ≺S sf (T1, Dkn ). Thus, by the definition of
conflicts in S̃D, T̃D

1  S̃D T̃D
2 , T̃D

2  S̃D T̃D
3 , . . ., T̃D

n−1

 S̃D T̃D
n , T̃D

n  S̃D T̃D
1 . Hence,T̃D

1
∗
 S̃D T̃D

1 which is a
contradiction sinceS̃D by (3) above is serializable. Hence
proved.

We next prove that the functionsf defined in the paper
meets the requirement of a serialization function for a do-
mainD.

Lemma 2. Consider an MDBS environment with the set
∆ of domains. LetS be a global schedule with transac-
tions Ti, and Tj , and let D be an arbitrary domain in
∆. If global(Ti, D), global(Tj , D) and Ti

∗
 SD Tj , then

sf (Ti, D) ≺S sf (Tj , D).

In the proof of Lemma 2, we will need the following
notion of a level of a domain:

level(D) ={
1, if D = DBk for some local database DBMSk
maximum(level(Dk)) + 1, wherechild(Dk, D)

Proof. The proof is by the induction over the level of the
domains.
Basis (level(D) = 1): If level(D) = 1, then for some
DBk, D = DBk. Hence, for all transactionsTi, Tj , if
global(Ti, D), global(Tj , D), andTi

∗
 Sk Tj , then by defi-

nition of serSk , serSk (Ti) ≺S serSk (Tj). Hence,sf (Ti, D)

≺S sf (Tj , D).
Induction. Assume that the lemma is true for all domains
D such thatlevel(D) ≤ p. Let

D =
⋃{D1, D2, . . . , Dn}

be an arbitrary domain such thatlevel(D) = p+1. LetTi, Tj
be transactions such thatglobal(Ti, D), global(Tj , D), and
Ti

∗
 SD Tj . There are two cases to consider:

– (Ti
∗
 SDk Tj for someDk such thatchild(Dk, D)):

Sinceglobal(Ti, D) and global(Tj , D) and Ti, Tj exe-
cutes inDk, global(Ti, Dk) and global(Tj , Dk). Thus,
by IH, sf (Ti, Dk) ≺S sf (Tj , Dk). Hence, by definition
of a conflict in S̃D, T̃D

i  S̃D T̃D
j . As a result, by the

definition of sf (T,D), sf (Ti, D) ≺S sf (Tj , D)
– (There exist transactionsT1, T2, . . . , Tn such thatTi∗
 

S
Dk1

T1, T1
∗
 

S
Dk2

T2, . . ., Tn−1
∗
 

S
Dkn−1

Tn,

Tn
∗
 S

Dkn
Tj , where child(Dkl , D), l = 1, 2, . . . , n):

Note thatglobal(Tl, Dkl ), l = 1, 2, . . . , n, and
global(Tl+1, Dkl ), l = 1, 2, . . ., n− 1. Thus, by IH,

sf (Ti, Dk1) ≺S sf (T1, Dk1),
sf (T1, Dk2) ≺S sf (T2, Dk2), . . .,

sf (Tn−1, Dkn−1) ≺S sf (Tn, Dkn−1), sf (Tn, Dkn ) ≺S

sf (Tj , Dkn ).

Hence, by definition of a conflict iñSD, T̃D
i  S̃D T̃D

1 ,
T̃D

1  S̃D T̃D
2 , . . ., T̃D

n−1  S̃D T̃D
n , T̃D

n  S̃D T̃D
j .

Hence,T̃D
i

∗
 S̃D T̃D

j . As a result, by the definition of
sf (T,D), sf (Ti, D) ≺S sf (Tj , D). Hence proved.

Proof of Theorem 1.The proof is by the induction over the
level of the domainD.
Basis (level(D) = 1): If level(D) = 1, then, for someDBk,
D = DBk. SinceSk is serializable, for allk = 1, 2, . . . , n,
SD is serializable.
Induction. Assume that the theorem is true for eachD
such thatlevel(D) ≤ p. We show it to be true for each
domain, D such thatlevel(D) = p + 1. Let D be such
a domain and further letD =

⋃{D1, D2, . . . , Dn}. Since
level(Dk) ≤ p, child(Dk, D), by IH, SDk is serializable.
Further, sincechild(Dk, D), Dk 6∈ TOP . Thus, the function
serS̃Dk exists. By Lemma 2,sf (Ti, Dk) = serS̃Dk (Ti) satis-
fies the property that for allTi, Tj , such thatglobal(Ti, Dk),
global(Tj , Dk), Ti

∗
 SDk Tj ⇒

sf (Ti, Dk) ≺S sf (Tj , Dk). Thus, by Lemma 1, sincẽSD is
serializable,SD is serializable. Hence proved.

Proof of Theorems 2 and 3.Note that Theorem 2 directly
follows from Theorem 3, since for a given set of domains
∆ and a domain ordering@ if DG is acyclic, then the corre-
sponding LDG does not contain any undesirable cycles, We,
thus, restrict ourselves to proving Theorem 3 which is done
in the remainder of the appendix. To do so, let us consider
a scheduleS that is not serializable. Thus, there exist trans-
actionsT1, T2, . . . , Tn such thatT1 DB1 T2, T2 DB2 T3,
. . ., Tn−1 DBn−1 Tn, Tn  DBn T1.5 Let D ∈ TOP such
thatDB1 @ D. If, for all DBi, i = 1, 2, . . . , n, DBi @ D,

5 For notational brevity, we denote SDBi (or Si ) by DBi .
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thenT1
∗
 SD T1 which is a contradiction, since, as shown in

Theorem 1, for each domainD ∈ ∆, our scheme ensures that
SD is serializable. Thus, to prove that under the hypothesis
of Theorem 3, the resulting global scheduleS is serializable,
we can restrict ourselves to the case in which there exists
a DBi 6@ D. Let DBk be the first suchDBi, that is, for
all DBi, 1 ≤ i < k, DBi @ D and furtherDBk 6@ D. In
this case, since transactionTk executes on bothDBk−1 and
DBk, global(Tk, D) and further,Tk

∗
 S Tk. We will show

that in this case it must be the case thatT̃D
k

∗
 S̃D T̃D

k which
is a contradiction sincẽSD is serializable.

Thus, our task of proving Theorem 3 reduces to that
of establishing that under the hypothesis of Theorem 3, if
there exists transactionTi, Tj , such thatglobal(Ti, D) and
global(Tj , D), andTi

∗
 S Tj , thenT̃D

i
∗
 S̃D T̃D

j . The proof
of this is a little involved. Let us first consider the case in
which the conflictTi

∗
 Tj arises due to a direct conflict

betweenTi andTj at some DBMSk; that is,Ti  DBk Tj .
In this case, there are two possibilities– eitherDBk v D, or
DBk 6v D. If DBk v D, thenTi

∗
 SD Tj . The following

lemma shows that ifTi
∗
 SD Tj , thenT̃D

i
∗
 S̃D T̃D

j .

Lemma 3. Let Ti andTj be transactions andD be a domain
such thatglobal(Ti, D) andglobal(Tj , D) andlevel(D) ≥ 2.
If Ti

∗
 SD Tj , thenT̃D

i
∗
 S̃D T̃D

j .

Proof. Let p = level(D) The proof is by induction onp.
Basis (p = 2): Thus,D = {DB1, DB2, . . . , DBm} for some
local database DBMSk, k = 1, 2, . . . ,m. SinceTi

∗
 SD Tj ,

there exists transactionsT1, T2, . . . , Tn such thatTi
∗
 DBk1

T1, T1
∗
 DBk2

T2, . . ., Tn−1
∗
 DBkn

Tn, Tn
∗
 DBkn+1

Tj ,
where

global(Tl, DBkl ) andglobal(Tl, DBk(l+1)), l = 1, 2, . . . , n.

Hence, by definition of the serialization functionsf ,

sf (Ti, DBk1) ≺S sf (T1, DBk1),
sf (T1, DBk2) ≺S sf (T2, DBk2), . . .,

sf (Tn−1, DBkn ) ≺S sf (Tn, DBkn ), and
sf (Tn, DBkn+1) ≺S sf (Tj , DBkn+1).

Thus, by definition ofT̃i, T̃D
i  S̃D T̃D

1 , T̃D
1  S̃D T̃D

2 , . . .,
T̃D
n−1 S̃D T̃D

n , andT̃D
n  S̃D T̃D

j . Hence,T̃D
i

∗
 S̃D T̃D

j .
Induction. Assume that the lemma holds for all domains
such thatlevel(D) ≤ p. We show that it holds for domains
such thatlevel(D) = p + 1. Let D =

⋃{D1, D2, . . . , Dm}
be an arbitrary domain such thatlevel(D) = p + 1. Since
Ti

∗
 SD Tj , there exist transactionsT1, T2, . . . , Tn, n ≥ 0,

such thatTi
∗
 

S
Dk1

T1, T1
∗
 

S
Dk2

T2, . . ., Tn−1
∗
 S

Dkn
Tn,

and Tn
∗
 

S
Dkn+1

Tj . Since child(Dkl , D), level(Dkl ) <

level(D). Thus, by IH,T̃
Dk1
i

∗
 

S̃
Dk1

T̃
Dk−1

1 , T̃
Dk2
1

∗
 

S̃
Dk2

T̃
Dk2
2 , . . ., T̃

Dkn

n−1
∗
 S̃

Dkn
T̃
Dkn
n , and T̃

Dkn+1
n

∗
 

S̃
Dkn+1

T̃
Dkn+1
j . Hence, by definition of the serialization functionsf ,

sf (Ti, Dk1) ≺S sf (T1, Dk1), sf (T1, Dk2) ≺S sf (T2, Dk2),
. . ., sf (Tn−1, Dkn ) ≺S sf (Tn, Dkn ), andsf (Tn, Dkn+1) ≺S

sf (Tj , Dkn+1). Thus, by definition ofT̃i, T̃D
i  S̃D T̃D

1 ,
T̃D

1  S̃D T̃D
2 , . . ., T̃D

n−1  S̃D T̃D
n , T̃D

n  S̃D T̃D
j . Hence,

T̃D
i

∗
 S̃D T̃D

j . Hence proved.

Recall that we were considering the proof of the fact
that if there exist transactionsTi, Tj , such that,global(Ti, D)
and global(Tj , D), andTi  DBk Tj , then T̃D

i
∗
 S̃D T̃D

j .
If in case,DBk v D, then the above developed lemma
shows thatT̃D

i
∗
 S̃D T̃D

j . We next consider the case in
which DBk 6v D. Let DBk v D′, whereD′ ∈ TOP .
Note that, sinceglobal(Ti, D) and global(Tj , D), it must
be the case thatglobal(Ti, D′) and global(Tj , D′). Thus,
by Lemma 3, we have that̃TD′

i
∗
 S̃D′ T̃D′

j . To prove

that T̃D
i

∗
 S̃D T̃D

j , we will show that if for any pair
of transactionsTi, Tj and domainsD,D′ ∈ TOP , where
global(Ti, D) and global(Tj , D), if T̃D′

i
∗
 S̃D′ T̃D′

j , then

T̃D
i

∗
 S̃D T̃D

j .

Lemma 4. Let the set∆ satisfy restrictionR1 and the
LDG be acyclic. Further, letTi, Tj be transactions and
D,D′ ∈ TOP be domains such thatglobal(Ti, D′) and
global(Tj , D′). If T̃D

i
∗
 S̃D T̃D

j , thenT̃D′
i

∗
 S̃D′ T̃

D′
j .

To prove Lemma 4, we first develop the following two
lemmas that relate conflicts between transactions in domains
D,D′, whereD′

@ D.

Lemma 5. Let D be a domain andTi, Tj be transactions
such thatglobal(Ti, D) and global(Tj , D). If there exists a
D′ v D such thatT̃D′

i
∗
 S̃D′ T̃

D′
j , thenT̃D

i
∗
 S̃D T̃D

j .

Proof. The proof in by induction on the level of the domain
D, whereD′ v D.
Basis(level(D) = level(D′)): SinceD′ v D, it must be the
case thatD′ = D. Thus,T̃D

i
∗
 S̃D T̃D

j .
Induction. Assume that the lemma is true for all domains
D, D′ v D such thatlevel(D) ≤ level(D′) + p. We show
that the lemma is true for all domains such thatlevel(D) =
level(D′) + p + 1. LetD be such a domain. SinceD′ v D,
there exists a domainD′′, D′ v D′′, wherechild(D′′, D).
Further, sinceglobal(Ti, D) andglobal(Tj , D), and sinceTi
andTj execute inD′′, it must be the case thatglobal(Ti, D′′)
and global(Tj , D′′). Thus, by IH,T̃D′′

i
∗
 S̃D′′ T̃

D′′
j . Since

T̃D′′
i

∗
 S̃D′′ T̃D′′

j , by definition of sf , sf (Ti, D′′) ≺S

sf (Tj , D′′). Thus, by definition ofT̃i, T̃D
i  S̃D T̃D

j . Hence,

T̃D
i

∗
 S̃D T̃D

j .

Lemma 6. Let Ti, Tj be transactions and letD be a domain
such thatT̃D

i
∗
 S̃D T̃D

j . For all D′, D′
@ D, if Ti andTj

execute inD′, thensf (Ti, D′) ≺S sf (Tj , D′).

Proof. Let there exists aD′ such that sf (Tj , D′) ≺S

sf (Ti, D′). Thus, there exists a domainD′′ such thatD′′ v
D, parent(D′′, D′) such thatT̃D′′

j  S̃D′′ T̃
D′′
i . Hence, by

Lemma 5,T̃D
j  S̃D T̃D

i . Thus,S̃D is not serializable, which
is a contradiction. Hence, such aD′ does not exist. Thus,
for all D′, D′

@ D, sf (Ti, D) ≺S sf (Tj , D).
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Proof of Lemma 4.There are two cases to consider.

– (D ∩ D′ /= ∅:) We first show that bothTi and Tj ex-
ecute atD ∩ D′. If Ti does not execute atD ∩ D′,
then, sinceTi executes atD, there exists aDB1 @ D
and aDB2 @ D′ such thatTi executes atDB1 and
DB2, whereDB1 6@ D ∩ D′ and DB2 6@ D ∩ D′.
SinceTi executes atDB1 andDB2, there exists a do-
main D′′ ∈ TOP , Dom(Ti) @ D′′, such thatD′′ /= D
andD′′ /= D′. Consider the labeled domain graph LDG.
In LDG, since DB1 @ D and DB1 @ D′′, there
is an edge (D,D′′) such thatDB1 @ label(D,D′′).
Further, sinceDB2 @ D′ and DB2 @ D′′, there
is an edge (D′, D′′) such thatDB2 @ label(D,D′′).
Since D ∩ D′ /= ∅, there exists an edge (D,D′) in
LDG. Thus, LDG contains a cycle (D,D′′), (D′′, D′),
(D′, D). SinceDB1 6@ D′, DB1 6@ label(D,D′). Fur-
ther, sinceDB2 6@ D, DB2 6@ label(D,D′). Hence,
the cycle (D,D′′), (D′′, D′), (D′, D) is an undesirable
cycle. Thus, it must be the case thatTi executes in
D ∩ D′. Similarly, it is the case thatTj executes in
D∩D′. SinceT̃D

i
∗
 S̃D T̃D

j , by Lemma 6, we have that
sf (Ti, D ∩D′) ≺S sf (Tj , D ∩D′). Thus, by Lemma 5,
since global(Ti, D′) and global(Tj , D′), we have that
T̃D′
i

∗
 S̃D′ T̃

D′
j .

– (D ∩ D′ = ∅:) SinceTi executes atD as well asD′,
let Ti executes atDB1, DB3, whereDB1 @ D and
DB3 @ D′. Further, sinceTj executes atD as well as
D′, let Tj executes atDB2, DB4, whereDB2 @ D and
DB4 @ D′. We show that there exists a domainD′′ such
thatDB1 @ D′′, DB2 @ D′′, DB3 @ D′′, DB4 @ D′′.
Say, such a domainD′′ does not exist. SinceTi executes
at DB1 andDB3, there exists a domainD′′′ ∈ TOP ,
such thatDom(Ti) @ D′′′ and thusDB1 @ D′′′ and
DB3 @ D′′′. Further, sinceTj executes atDB2 and
DB4, there exists a domainD′′′′ ∈ TOP , such that
Dom(Tj) @ D′′′′ and thusDB2 @ D′′′′ and DB4 @

D′′′′. If D′′′ = D′′′′, thenDB1 @ D′′′, DB2 @ D′′′,
DB3 @ D′′′, andDB4 @ D′′′. Hence,D′′′ /= D′′′′. Thus,
D /= D′ /= D′′′ /= D′′′′. Consider the labeled domain
graph LDG. In LDG, there is an edge (D,D′′′) such that
DB1 @ label(D,D′′′), there is an edge (D′′′, D′) such
that DB3 @ label(D,D′′′), there is an edge (D′, D′′′′)
such thatDB4 @ label(D′, D′′′′), and there is an edge
(D′′′′, D) such thatDB2 @ label(D′′′′, D). Thus, LDG
contains a cycle (D,D′′′), (D′′′, D′), (D′, D′′′′),
(D′′′′, D). We next show that LDG contains a undesir-
able cycle. There are two cases to consider:
– (D′′′ ∩ D′′′′ = ∅ :) Since DB1 @ label(D,D′′′),
DB1 @ D′′′. SinceD′′′ ∩ D′′′′ = ∅, DB1 6@ D′′′′.
Thus, DB1 6@ label(D′′′′, D) and furtherDB1 6@
label(D′′′′, D′). Similarly, since DB1 6@ D′,
DB1 6@ label(D′, D′′′). Hence, label(D,D′′′) /=
label(D′, D′′′), label(D,D′′′) /= label(D′, D′′′′), and
label(D,D′′′) /= label(D,D′′′′). Using similar rea-
soning, we can show that
label(D,D′′′) /= label(D′′′, D′) /= label(D′, D′′′′) /=
label(D′′′′, D).
Hence, the cycle (D,D′′′), (D′′′, D′), (D′, D′′′′),
(D′′′′, D) is an undesirable cycle.

– (D′′′ ∩ D′′′′ /= ∅ :) If D′′′ ∩ D′′′′ /= ∅, then LDG
contains an edge (D′′′′, D′′′) and thus LDG, besides
containing the cycle (D,D′′′), (D′′′, D′), (D′, D′′′′),
(D′′′′, D), also contains cycles (D,D′′′), (D′′′, D′′′′),
(D′′′′, D) and (D′, D′′′), (D′′′, D′′′′), (D′′′′, D′). Note
that, sinceD ∩ D′ = ∅, it must be the case that
DB1 6@ label(D′, D′′′) andDB1 6@ label(D′, D′′′′).
Further,DB2 6 @ label( D′, D′′′) andDB2 6@
label(D′, D′′′′).
Similarly, DB3 6@ label(D′, D′′′),
DB3 6@ label(D′, D′′′′), DB4 6@ label(D,D′′′) and
DB4 6@ label(D,D′′′′). Thus, if the cycle (D,D′′′),
(D′′′, D′), (D′, D′′′′), (D′′′′, D) is not an undesirable
cycle, then eitherlabel(D,D′′′′) = label(D,D′′′) or
label(D′, D′′′′) = label(D′, D′′′). Note that
label(D,D′′′′) = label(D,D′′′) andlabel(D′, D′′′′) =
label(D′, D′′′) both cannot hold, since thenD3 would
be such thatDB1 @ D3, DB2 @ D3, DB3 @ D3,
andDB4 @ D3. If label(D,D′′′′) = label(D,D′′′),
and label(D′, D′′′′) /= label(D′, D′′′), then the cycle
(D′, D′′′), (D′′′, D′′′′), (D′′′′, D′) is an undesirable
cycle. Else, if

label(D′, D′′′′) = label(D′, D′′′),
and

label(D,D′′′′) /= label(D,D′′′),
then the cycle (D,D′′′), (D′′′, D′′′′), (D′′′′, D) is an
undesirable cycle.

Hence, there must exist a domainD′′ such thatDB1 @

D′′, DB2 @ D′′, DB3 @ D′′, and DB4 @ D′′.
Sinceglobal(Ti, D ∩D′′) andglobal(Tj , D ∩D′′), and
T̃D
i

∗
 S̃D T̃D

j , by Lemma 6, sf (Ti, D ∩ D′′) ≺S

sf (Tj , D ∩ D′′). Hence, by Lemma 5, and the defini-
tion of T̃i, T̃D′′

i
∗
 S̃D′′ T̃

D′′
j . Sinceglobal(Ti, D′ ∩D′′)

and global(Tj , D′ ∩ D′′), and T̃D′′
i

∗
 S̃D′′ T̃D′′

j , by
Lemma 6,sf (Ti, D′ ∩D′′) ≺S sf (Tj , D′ ∩D′′). Hence,
by Lemma 5, and the definition of̃Ti, T̃D′

i
∗
 S̃D′ T̃

D′
j .

Hence proved.

Using Lemmas 3 and 4 we can establish that if there ex-
ists transaction Ti, Tj , such that global(Ti, D) and
global(Tj , D), andTi  DBk Tj , thenT̃D

i
∗
 S̃D T̃D

j . Recall
that to prove Theorem 3 we needed to show that under the
hypothesis of Theorem 3, if there exists transactionTi, Tj ,
such thatglobal(Ti, D) and global(Tj , D), andTi

∗
 S Tj ,

then T̃D
i

∗
 S̃D T̃D

j . We have already proved the above un-

der the assumption that the conflictTi
∗
 Tj arises as a

result of a direct conflict between transactionsTi and Tj ;
that is, there exists aDBk such thatTi  DBk Tj . We next
relax the assumption and show that, for any arbitrary conflict
Ti

∗
 S Tj , the claim holds. To do so, we will require the

following lemma that establishes how the presence/absence
of certain edges between the nodes in an LDG impacts the
nature of the conflicts between transactions that can occur
in the system.

Lemma 7. Let T1, T2, . . . , Tn, n > 2, be transactions such
that T1  DB1 T2, T2  DB2 T3, . . ., Tn−1  DBn−1 Tn.
Let D′ and D′′, D′ ∈ TOP , D′′ ∈ TOP , be domains
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such thatDB1 v D′ and DBn−1 v D′′. There exists a
path (D′, D1), (D1, D2), . . ., (Dr−1, Dr), (Dr, D

′′) in LDG
such that for allDi, i = 1, 2, . . . , r, there exists aDBj ,
j = 1, 2, . . . , n− 1, such thatDBj @ Di. Further, let edges
(D′, D1), (D1, D2), . . ., (Dr−1, Dr), (Dr, D

′′) have labels
L1, L2, . . . , Lr, respectively. For allLi, i = 1, 2, . . . , r, there
exists aDBj , j = 1, 2, . . . , n− 1, such thatDBj @ Li.

Proof. The proof is by induction onn.
Basis (n = 3): Thus, T1  DB1 T2 and T2  DB2 T3,
whereDB1 @ D′ and DB2 @ D′′. Consider the domain
D ∈ TOP such thatDom(T2) v D. If D = D′, then, since
DB2 @ D′′ andDB1 @ D′, there is an edge (D′, D′′) in
LDG. Further,DB2 @ label(D′, D′′). Else, ifD = D′′, then
sinceDB1 @ D′ andDB2 @ D′′, there is an edge (D′, D′′)
in LDG. Further,DB1 @ label(D′, D′′). Else, ifD /= D′ and
D /= D′′, then there are edges (D′, D) and (D,D′′) in LDG
such thatDB1 @ label(D′, D) andDB2 @ label(D,D′′).
Induction. Assume that the lemma holds forn = m − 1,
m ≥ 4. We show it holds forn = m. Thus, we have
T1  DB1 T2, T2  DB2 T3, . . ., Tm−1  DBm−1 Tm. Let
DBm−2 @ D′′′, whereD′′′ ∈ TOP . If D′′′ = D′, then
by base case, the lemma holds. Else, ifD′′′ = D′′, then
T1  DB1 T2, T2  DB2 T3, . . ., Tm−2  DBm−2 Tm−1,
whereDB1 v D′ andDBm−1 v D′′. Hence, by IH, the
lemma holds. Else,D′′′ /= D′ andD′′′ /= D′′. By IH, there
exists a path (D′, D1), (D1, D2), . . ., (Dr−1, Dr), (Dr, D

′′′)
in LDG such that for allDi, i = 1, 2, . . . , r, there ex-
ists a DBj , j = 1, 2, . . . ,m − 2, such thatDBj @ Di.
Further, for all Li, i = 1, 2, . . . , r, there exists aDBj ,
j = 1, 2, . . . ,m − 2, such thatDBj @ Li. By the base
case, sinceTm−2  DBm−2 Tm−1 andTm−1  DBm−1 Tm,
there exists a path (D′′′, D′

1), (D′
1, D

′
2), . . .,(D′

r′−1, D
′
r′ ),

(D′
r′ , D

′′) such that for allD′
i, i = 1, 2, . . . , r′, there exists

aDBj , j = m−2,m−1, such thatDBj @ D′
i. Further, for

all Li, i = 1, 2, . . . , r′, there exists aDBj , j = m−2,m−1,
such thatDBj @ Li. Hence, for somes there exists a
path (D′, D1), (D1, D2), . . ., (Ds−1, Ds), (Ds, D

′′) in LDG
such that for allDi, i = 1, 2, . . . , s, there exists aDBj ,
j = 1, 2, . . . ,m − 1, such thatDBj @ Di. Further, for all
Li, i = 1, 2, . . . , s, there exists aDBj , j = 1, 2, . . . ,m− 1,
such thatDBj @ Li.

Lemma 8. Let the set∆ of domains satisfy the restric-
tion R1 and let LDG be acyclic. Further, letD ∈ TOP
be a domain,level(D) ≥ 2, andT1 andTn be transactions
such thatglobal(T1, D) andglobal(Tn, D). If T1  DB1 T2

T2 DB2 T3, . . ., Tn−1 DBn−1 Tn, thenT̃D
1

∗
 S̃D T̃D

n .

Proof. The proof in by induction onn.
Basis (n = 1): Thus,T1  DB1 T2. There are two cases to
consider.

– (DB1 v D:) In this case,T1  SD T2. Thus, by
Lemma 3, sinceglobal(T1, D) and global(T2, D), we
have thatT̃D

1
∗
 S̃D T̃D

2 .
– (DB1 6v D:) Let DB1 @ D′, whereD′ ∈ TOP . By

Lemma 3, T̃D′
1

∗
 S̃D′ T̃D′

2 . Since global(T1, D) and
global(T2, D), by Lemma 4,T̃D

1
∗
 S̃D T̃D

n .

Induction. Assume that the lemma holds for alln ≤ m−1.
We show that it holds forn = m. Thus, we haveT1  DB1

T2, T2  DB2 T3, . . ., Tm−1  DBm−1 Tm. There are two
cases to consider.

– (there existsi, i = 1, 2, 3, . . . ,m − 1, DBi @ D:) Let
DBk @ D, 1 ≤ k ≤ m − 1. Further, letDBk1 and
DBk2, 1 ≤ k1 ≤ k, andk ≤ k2 ≤ m − 1, be such that
for all DBi, i = k1, k1 + 1, . . . , k, k + 1, . . . , k2, DBi @

D, DBk1−1 6@ D and DBk2+1 6@ D. If k1 = 1 and
k2 = m − 1, then by Lemma 3, since for allDBi, i =
1, 2, . . . ,m − 1, DBi @ D, T̃D

1
∗
 S̃D T̃D

m . So we only
need to consider the case in which either 1< k1 or
k2 < m− 1. There are two cases to consider:

– (1 < k1:) Consider transactionTk1. Note thatTk1−1
 DBk1−1 Tk1 and furtherTk1  DBk1

Tk1+1. Since
DBk1−1 6v D, DBk1 v D, and transactionTk1 exe-
cutes onDBk1 andDBk1−1, global(Tk1, D). Hence,
by IH, T̃D

1
∗
 S̃D T̃D

k1
and furtherT̃D

k1

∗
 S̃D T̃D

n .

Hence,T̃D
1

∗
 S̃D T̃D

n .
– ( k2 < m − 1:) Consider transactionTk2. Note that
Tk2  DBk2

Tk2+1 and furtherTk2+1  DBk2+1 Tk2+2.
Since DBk2+1 6v D, DBk2 v D, and transaction
Tk2+1 executes onDBk2 andDBk1+1, global(Tk2, D).
Hence, by IH,T̃D

1
∗
 S̃D T̃D

k2+1 and furtherT̃D
k2+1

∗
 S̃D

T̃D
n . Hence,T̃D

1
∗
 S̃D T̃D

n .
– (for all i, i = 1, 2, 3, . . . ,m− 1, DBi 6@ D:) Let DB1 @

D′, D′ /= D, whereD′ ∈ TOP andDom(T1) v D′.
There are two cases to consider:
– (DBm−1 v D′:) We first show thatT̃D′

1
∗
 S̃D′

T̃D′
m . It will follow from Lemma 4 that T̃D

1
∗
 S̃D

T̃D
m . SinceDBm−1 v D′, we have thatT1  DB1

T2, T2  DB2 T3, . . ., Tm−1  DBm−1 Tm, where
DB1, DBm−1 @ D′. If for all DBi, i = 1, 2, . . . ,m−
1,DBi @ D′, then, sinceT1

∗
 SD′ Tm, by Lemma 3,

we have thatT̃D′
1

∗
 S̃D′ T̃

D′
m . Thus, by Lemma 4,

T̃D
1

∗
 S̃D T̃D

m . Else, there exists aDBk, k =
2, 3, . . . ,m − 2, such thatDBk 6@ D′. Let k1 be
such thatDBk1 6@ D′ and for allk = 1, 2, . . . , k1 −
1, DBk @ D′. Thus, Tk1−1  DBk1−1 Tk1 and
Tk1  DBk1

Tk1+1, whereDBk1−1 @ D′ andDBk1 6@
D′. SinceTk1 executes both onDBk1−1 andDBk1,
global(Tk1, D

′). Hence by IH,T̃D′
1

∗
 S̃D′ T̃

D′
k1

and

T̃D′
k1

∗
 S̃D′ T̃

D′
m . Hence,T̃D′

1
∗
 S̃D′ T̃

D′
m . Thus, by

Lemma 4,T̃D
1

∗
 S̃D T̃D

m .
– (DBm−1 6v D′:) Let DBm−1 @ D′′, whereD′′ ∈
TOP and Dom(Tm) v D′′. Note thatD′′ /= D′
and furtherD′′ /= D. SinceT1 executes in bothD
andD′, andDom(T1) v D′, LDG contains an edge
(D,D′). Let label(D,D′) = L′. Similarly, sinceTm
executes in bothD andD′′, andDom(Tm) v D′′,
LDG contains an edge (D,D′′). Let label(D,D′′) =
L′′. We first show that it must be the case thatL′ =
L′′.
Assume on the contrary thatL′ /= L′′. SinceT1 DB1

T2, T2  DB2 T3, . . ., Tm−1  DBm−1 Tm, where
DB1 @ D′ andDBm−1 @ D′′, by Lemma 7, there
exists a path (D′, D1), (D1, D2), . . ., (Dr−1, Dr),
(Dr, D

′′) such that for allDi, i = 1, 2, . . . , r, there
exists aDBj , j = 1, 2, . . . ,m − 1, DBj @ Di
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and further, for all edges in the path (Dl, Dm),
there exists aDBj , j = 1, 2, . . . ,m − 1, DBj @

label(Dl, Dm). Since for allDBj , DBj 6@ D, the
path does not containD. Hence, LDG contains a
cycle (D,D′), (D′, D1), (D1, D2), . . ., (Dr−1, Dr),
(Dr, D

′′), (D′′, D). We next show, using induction
on r, that LDG contains an undesirable cycle.
Basis (r = 0:) Thus, LDG contains an edge (D′, D′′).
Let
label(D′, D′′′) = L′′′. Since there exists aDBj such
that DBj @ L′′′, and further sinceL′

@ D and
L′′
@ D, it is the case thatL′′′ /= L′′ andL′′′ /= L′′.

Since by assumptionL′ /= L′′, the cycle, (D,D′),
(D′, D′′), (D′′, D) is an undesirable cycle.
Induction. Assume that if there is a cycle (D,D′),
(D′, D1), (D1, D2), . . ., (Dr−2, Dr−1), (Dr−1, D

′′),
(D′′, D), then LDG contains an undesirable cycle.
We next show that if there exists a cycle

(D,D′), (D′, D1), (D1, D2), . . ., (Dr−1, Dr),
(Dr, D

′′), (D′′, D)
in the LDG, then LDG contains an undesirable cy-
cle. Consider the cycle (D,D′), (D′, D1), (D1, D2),
. . ., (Dr−1, Dr), (Dr, D

′′), (D′′, D). Let the labels
on the edges (D′, D1), (D1, D2), . . ., (Dr−1, Dr),
(Dr, D

′′) be L1, L2, . . . , Lr, respectively. By as-
sumption L′ /= L′′. Further, since, for eachLi,
there exists aDBj , j = 1, 2, . . . ,m − 1 such that
DBj @ Li, and since,L′

@ D, L′′
@ D, and

since for allDBj , j = 1, 2, . . . ,m − 1, DBj 6@ D,
it is the case thatL′ /= Li and L′′ /= Li, for all
i = 1, 2, . . . , r. Thus, if the cycle (D,D′), (D′, D1),
(D1, D2), . . ., (Dr−2, Dr−1), (Dr−1, D

′′), (D′′, D),
is not a undesirable cycle, then there must exist la-
belsLr1, Lr2 in the cycle such thatLr1 = Lr2. Con-
sider domainsDr1−1, Dr2+1. SinceLr1 @ Dr1−1 and
Lr2 @ Dr2+1, there is an edge betweenDr1−1 and
Dr2+1 with a labelL such thatLr1 @ L. Hence, there
exists a cycle in LDG, (D,D′), (D′, D1), (D1, D2),
. . ., (Dr1−1, Dr2+1), (Dr2+1, Dr2+2), . . ., (Dr−1, Dr),
(Dr, D

′′), (D′′, D) such that the length of the cycle
is less thanr. Thus, by IH, there exists an undesir-
able cycle in LDG.
Hence, it must be the case thatL′ = L′′. Since
Dom(Tm) v D′′, and Tm executes inD, Tm ex-
ecutes inL′′. Since L′′ = L′ and L′

@ D′, it
is the case thatTm executes inD′. Further, since
global(Tm, D), it is the case thatglobal(Tm, D′).
Hence, we have thatT1 DB1 T2, T2 DB2 T3, . . .,
Tm−1  DBm−1 Tm, where global(T1, D

′),
global(Tm, D′) andDB1 @ D′ andDBm−1 @ D′′.
SinceD′ /= D′′, there exists ak such that for all
i, 1 ≤ i < k, DBk @ D′ and DBk 6@ D′.
Hence, sinceTk−1 DBk−1 Tk, andTk  DBk Tk+1,
whereDBk−1 @ D′ andDBk 6@ D′, we have that
global(Tk, D′). Thus, by IH, we have that̃TD′

1
∗
 S̃D′

T̃D′
k and T̃D′

k
∗
 S̃D′ T̃D′

n . Thus, T̃D′
1

∗
 S̃D′ T̃D′

n .
Hence, by Lemma 4,̃TD

1
∗
 S̃D T̃D

n . Hence proved.

Since we had reduced our task of proving Theorem 3 to
that of proving that under the hypothesis of Theorem 3, if

there exists transactionTi, Tj , such thatglobal(Ti, D) and
global(Tj , D), andTi

∗
 S Tj , thenT̃D

i
∗
 S̃D T̃D

j , the proof
of Lemma 8 completes our task of proving Theorem 3. We
summarize the proof of Theorem 3 below.

Proof of Theorem 3.If S is not serializable, then there exist
transactionsT1, T2, . . . , Tn such thatT1 DB1 T2, T2 DB2

T3, . . ., Tn−1  DBn−1 Tn, Tn  DBn T1. Let D ∈ TOP
such thatDB1 @ D. If for all DBi, i = 1, 2, . . . , n, DBi @

D, thenT1
∗
 SD T1. Hence, by Lemma 3,̃TD

1
∗
 S̃D T̃D

1 ,
which is a contradiction. Thus, there exists aDBk 6@ D.
Let, for all DBi, 1≤ i < k, DBi @ D and furtherDBk 6@
D. Hence, since transactionTk executes on bothDBk−1
andDBk, global(Tk, D). Consider the sequence of conflicts
Tk  DBk Tk+1, Tk+1  DBk+1 Tk+2, . . ., Tn−1  DBn−1

Tn, Tn  DBn T1, T1  DB1 T2, . . ., Tk−1  DBk−1 Tk.

Sinceglobal(Tk, D), by Lemma 8,T̃D
k

∗
 S̃D T̃D

k which is
a contradiction. Hence, the sequence of transactions cannot
exist. Thus,S is serializable.
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