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Abstract. Businesses today are searching for information
solutions that enable them to compete in the global mar-
ketplace. To minimize risk, these solutions must build on
existing investments, permit the best technology to be ap-
plied to the problem, and be manageable. Object technology,
with its promise of improved productivity and quality in ap-
plication development, delivers these characteristics but, to
date, its deployment in commercial business applications has
been limited. One possible reason is the absence of the trans-
action paradigm, widely used in commercial environments
and essential for reliable business applications. For object
technology to be a serious contender in the construction of
these solutions requires:

– technology for transactional objects. In December 1994,
the Object Management Group adopted a specification
for an objecttransaction service(OTS). The OTS spec-
ifies mechanisms for defining and manipulating trans-
actions. Though derived from the X/Open distributed
transaction processing model, OTS contains additional
enhancements specifically designed for the object envi-
ronment. Similar technology from Microsoft appeared at
the end of 1995.

– methodologies for building new business systems from
existing parts. Business process re-engineering is forc-
ing businesses to improve their operations which bring
products to market.Workflow computing, when used in
conjunction with “object wrappers” provides tools to
both define and track execution of business processes
which leverage existing applications and infrastructure.

– an execution environment which satisfies the require-
ments of the operational needs of the business. Transac-
tion processing (TP) monitor technology, though widely
accepted for mainframe transaction processing, has yet
to enjoy similar success in the client/server marketplace.
Instead the database vendors, with their extensive tool
suites, dominate. As object brokers mature they will re-
quire many of the functions of today’s TP monitors. Mar-
rying these two technologies can produce a robust exe-
cution environment which offers a superior alternative
for building and deploying client/server applications.

Key words: Objects – transaction processing – Workflow

1 Introduction

Today’s transaction processing(TP) systems provide an
environment for executing applications which are critical
to the operational needs of business. These systems have
evolved over a 30-year period from mainframe-centric en-
vironments supporting fixed function terminals to today’s
client/server environments where application function is dis-
tributed among many cooperating processors.

The world’s businesses have massive investments in the
applications that make up these systems – estimates exceed a
trillion lines of application code, and the business processes
implemented by these systems are“mission critical” ; they
have no manual backup. The TP systemis the business. If
the system is not functional, orders go unprocessed, business
is lost to competition, and even survival can be threatened.

A TP system contains the business rules and processes
to collect and analyze data from business events and use
that data to make operational decisions. The system soft-
ware that enables these applications embodies the following
components:

– A transaction managerwhich provides theACID prop-
erties (Atomicity, Consistency,Isolation andDurability)
essential to the integrity of the system.

– A lightweight scheduler which acts as a switch connect-
ing a very large number of clients with a modest number
of re-usable servers to process client requests.

– A set of administration facilities, including performance
analysis and tuning, accounting, change management,
and problem determination, which consistently manage
the applications and data within its domain.

Today these functions are packaged in a monolithic soft-
ware package, commonly referred to as aTP monitor. IBM’s
CICS, BEA’s Tuxedo, and Transarc’s ENCINA are exam-
ples of successful TP monitors. TP monitors, together with a
database system and a set of application development tools,
enable today’s customers to build and operate mission crit-
ical commercial transaction processing applications.

Object technology will change that. The possibility of
thousands of objects communicating with each other in ways
not even imagined by their designers will allow businesses
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Fig. 1. A transaction processing system

to assemble more sophisticated applications more rapidly,
enabling the business to react to new opportunities in the
marketplace.

1.1 Customer environment

Since its beginning, information technology has been syn-
onymous with change. Ledger books became card files,
which became disk files and then databases. Today they are
an information resource, vital to the operation of the com-
pany. Business environments have been changing as well.
Local and national markets became global and competition
is also world-wide. The sophistication of a company’s in-
formation resource can make the difference between staying
ahead or becoming a casualty of today’s highly competitive
environment.

Information technology (IT) systems are an integral part
of a corporation’s strategy to compete. Whether it is sophis-
ticated reservations software to maximize revenue per seat or
customized long-distance calling plans, today’s information
systems are a vital part of today’s businesses. They form
an electronic infrastructure, essential to daily operation and
management of the enterprise, and enable new services not
previously possible.

Computer-buying decisions based on hardware platform
are a thing of the past. Today customers look first for ap-
plications to give them a competitive edge; then the requi-
site hardware and software. Applications are becoming more
specialized, tailored to the requirements of a specific industry
or even a niche within an industry. Application development
must become more productive and responsive. New business
opportunities cannot be exploited without a supporting in-
formation system. The time to develop a new application
directly impacts the competitiveness of the corporation.

1.2 Industry trends

The rate of technological change continues to accelerate. At
the same time, the cost of computing continues to plummet.
Communications bandwidth that seemed inconceivable only
a few years ago is taken for granted today. But technological

change is more than just decreasing costs. New technologies
make possible capabilities not previously envisioned.

1.2.1 Distributed computing

Distributed systems are critical to the future of computing.
Competitiveness demands the maximum use of a company’s
information assets. Previously independent systems must be
linked together whether they are within an enterprise or be-
tween enterprises. As people need to communicate, so do
their business systems. Distributed computing is more than
just cost-effective technology; it is the ultimate representa-
tion of business organization.

Increasingly, end-users interact with these systems
through personal computers. PCs offer significant improve-
ments in end-user interface technology. An airline reserva-
tions clerk can make seat assignments by viewing a graphical
display of the aircraft and selects an empty seat by pointing
at the desired location. This makes these applications easier
to use and more intuitive.

Departmental servers make it possible for computations
to be performed at multiple locations. For example, much
of the information required to operate a warehouse, is in
fact local to that warehouse. Departmental systems allow
data to be easily shared among the users of the warehouse,
independent of the corporate system and network, allowing
response times to be faster and availability to be improved.

Inter-enterprise networking,electronic data interchange
(EDI), is showing explosive growth across all industries.
Customers are connecting to suppliers. Funds are transferred
electronically. Stocks and bonds are bought and sold at com-
puter speeds. Customer engineers order parts with hand-held
computers over cellular networks. Inter-enterprise network-
ing is no longer the exception; it is the normal way of con-
ducting business.

1.2.2 Middleware

Distribution leads to heterogeneity in both hardware and
software. The number of IT suppliers continues to explode
and the need for standards that allow disparate systems
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to work together has never been greater.Middleware, the
“glue” necessary to make this collection of piece parts work
together in a cohesive manner, bridges disparate hardware
and software environments to enable real business solutions.

Middleware comes in many flavors:

– communication software which permits the computers to
talk to each other,

– data access software which manipulates data stored in
databases from multiple vendors,

– messaging software which enables applications on differ-
ent platforms to communicate, independent of the com-
munications network,

– TP monitors which provide tools and an environment for
deploying distributed applications,

– Object request brokers (ORBs)which provide infrastruc-
ture to support distributed object computing.

– Systems management tools which make it possible for
the enterprise to cost-effectively manage a heterogeneous
collection of hardware and software.

1.2.3 Systems management

Substantial pressure is being placed on IT professionals to
support more users on increasingly more complex hetero-
geneous systems, often with fewer people. With computing
power and data dispersed across the network, systems man-
agement becomes even more complex.

– Every system needs some form of configuration.
– Software requires corrective service which must be ap-

plied and distributed.
– Problem determination and performance management are

far more complex.

Whether distribution occurs by deploying robust mainframe
technology on the desktop or by evolving proven desktop so-
lutions to support the enterprise, there are issues of scalabil-
ity and manageability that dwarf the issues of the glasshouse
environment of only a decade ago. Making these systems
manageable, at reasonable cost, is the biggest challenge the
industry faces to fully exploit the potential of distributed
computing.

1.3 The promise of object technology

An important element of this middleware and one destined to
have a major impact on information technology in the com-
ing years isobjects. Object technology holds the promise of
significant improvements in programmer productivity and
quality [14]. This promise is derived from the strong po-
tential for re-use in the object properties of encapsulation,
inheritance, substitution, and polymorphism. As a result:

– object technology is ideally suited to distributed process-
ing.
Encapsulation allows an object to be located anywhere
in the distributed system. Locality based on today’s per-
formance and availability requirements can be changed
administratively tomorrow as the business environment

changes without changing the object’s users. This con-
trasts markedly with today’s procedural distribution tech-
niques which require function placement decisions to be
made at application design time and require significant
application re-work to adapt to changing requirements.

– Object technology mirrors the enterprise by modelling
its business processes.
In an analysis of companies that have shown signifi-
cant increases in productivity through the use of infor-
mation technology,Business Weekconcluded that the key
to achieving these benefits is coupling the use of tech-
nology directly to business engineering efforts [24]. This
allows the information system to mirror the business in-
frastructure, eliminating translation errors, and making
the system more adaptive to future change.

– Object technology encourages incremental adoption.
With simplewrapperingtechniques, legacy applications
can be easily integrated into new object-oriented applica-
tions based on the enterprise business model. This makes
it an ideal strategy for building new applications to ex-
ploit new opportunities while leveraging the existing ap-
plication infrastructure.

– Object technology provides independent software ven-
dors (ISVs) the tools and techniques to bring new appli-
cations to market quickly.
The “software component industry”, will be made pos-
sible by re-using the objects of existing applications in
producing new ones, allowing applications to be assem-
bled from existing parts and thereby constructed more
rapidly. With widespread deployment in the industry,
the software developer is offered a significant market,
regardless of the underlying computer systems in use.

1.4 OMG’s object management architecture

An architecture for distributed objects capable of commu-
nicating with each other across a myriad of network proto-
cols is being developed by theObject Management Group
(OMG). Theobject management architecture(OMA) defines
the primary components of a distributed object environment
available on each platform in the network. The overall ar-
chitecture of OMA is depicted in Fig. 2.

The central component of the OMA is the ORB. The
ORB enables objects to send messages to other objects [18].
The ORB provides location transparency and hides the de-
tails of communications.

CORBAservicesis a collection of services with object
interfaces that provide basic functions for realizing and
maintaining objects [19]. Services to support object-naming,
event notification, life cycle operations, and persistent stor-
age of objects were adopted in 1993. Specifications for trans-
actions, concurrency control, relationships, and externaliza-
tion were adopted in 1994. In 1995, services for query, prop-
erties, and licensing were added and security and time ser-
vices are imminent.

CORBAfacilitiesare high-level application services that
provide uniform interfaces and semantics used to build well-
formed applications in a distributed object environment and
developed on a CORBA-conformant ORB. The OMG is
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Fig. 2. Object management architecture overview

initially focusing on cross-industry requirements, including
compound documents and systems management.

Application objects are specific to particular industry do-
mains and are being addressed by vertical industry special
interest groups (SIGs). In early 1996, the OMG re-organized
to increase its emphasis on business objects in the applica-
tion domain.

1.5 Why objects are ideal for transaction processing

To date, object technology has been most successfully de-
ployed in environments which either have no need for trans-
action semantics (e.g. graphical end-user interfaces) or in
application areas where traditional transaction technology is
inadequate (e.g. engineering design). But this will change.
Distributed objects can be used to construct client/server
applications from self-managing components which interact
with each other independent of network or operating system
[22]. To realize these benefits in traditional OLTP environ-
ments, transaction technology must be added to objects.

– The OMG took this step in 1994 when it adopted the
Object Transaction Service(OTS) specification for its
object broker, CORBA.

– Microsoft released a specification (OLE/TP) for adding
transactions to OLE and its object broker, COM, in late
1995.

So the stage is set. With the marriage of transactions and
objects, object technology is poised to have a major impact
on TP. This will happen for three reasons.

1. Reusable components are the key to rapid development
of new business applications, and these applications re-
quire transaction semanticsto support shared data access
with integrity.
Introducing these semantics to object technology is a
critical component of any solution and must be done in

a way which encourages widespread component re-use
for building commercial applications. This is explored in
Sect. 2.

2. Incremental enhancement of existing TP systems re-
quires the re-use of legacy applications with new ap-
plications to support new business processes developed
through today’s re-engineering efforts.
Business processes tend to be long running and involve
people as well as programs. Today’s TP systems under-
stand only short-duration transactions and have limited
interactions with people. To support long-running busi-
ness processes, a mechanism for specifying and recover-
ing processes as well as data is required. This is explored
in Sect. 3.

3. Many commercial applications are deployed in TP mon-
itor environments.
Is ORB technology compatible with TP monitors? Are
TP monitors even relevant in this new environment? If
so, what changes are necessary to make them work well
together? This is explored in Sect. 4.

2 Transactional applications with objects

The transaction [6] concept is an important programming
paradigm for simplifying the construction of reliable busi-
ness applications. First deployed in commercial applications,
where it was used to control shared access to data in cen-
tralized databases, it has more recently been extended to the
broader context of distributed computing. Today, it is widely
accepted that transactions are the key to constructing reliable
distributed applications.

2.1 The transaction paradigm

The term, “transaction” is often used rather loosely, but
there are a multiplicity oftransaction models. Each model
defines a set of rules for providing the ACID transaction
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Fig. 3. A transaction hierarchy

properties. The most commonly used models are described
briefly below.1

2.1.1 Flat transactions

The flat transaction model provides the mechanisms for re-
lating a set of computations which demonstrate the ACID
properties. All accesses torecoverabledata within the scope
of a transaction exhibit

– atomicity– the set of computations is either completely
done (committed) or completely undone (rolled back).
The state of all recoverable data changes uniformly and
only at transaction boundaries.

– consistency– the effects of a transaction preserve invari-
ant properties.
The state of recoverable data is visible to other applica-
tions only when committed.

– isolation – intermediate states are not visible to other
transactions.
Transactions appear to execute serially, even if they are
performed concurrently.

– durability – the effects of a completed transaction are
persistent.
Changes to recoverable data survive even in the event of
system failure.

The flat transaction model is widely supported in the indus-
try. Implemented by TP monitors, databases, files, and queu-
ing systems – flat transactions are the basis for the X/Open
Distributed Transaction Processing (DTP) model [26] and
the ISO OSI-TP standard [10].

2.1.2 Nested transactions

Nested transactions [16] allow the creation of transactions
embedded within an existing transaction to form a transac-
tion hierarchy (Fig. 3). The existing transaction is called the
parentof the embedded transaction. The embedded transac-
tion is a subtransactionand is referred to as achild of the
parent transaction.

Subtransactions can be embedded in other subtransac-
tions to any level of nesting. Theancestorsof a transaction
are the parent of the subtransaction and the parents of its

1 For a more complete treatment, see [6].

ancestors. Thedescendantsof a transaction are the children
of the transaction and the children of its descendants. Sub-
transactions are strictly nested. A transaction cannot commit
unless all of its children have committed. When a transaction
is rolled back, all of its children are rolled back.

A top-leveltransaction is a transaction without a parent.
A flat transaction can be thought of as a childless top-level
transaction. A top-level transaction and all of its descendants
make up atransaction family.

Subtransactions are atomic. However, when a subtrans-
action commits, its changes remain pending until com-
mitment of all its ancestors. Thus subtransactions are not
durable – only top-level transactions are durable.

Isolation applies to subtransactions. When a transaction
has multiple children, a child appears to execute serially to
other siblings, even if they execute concurrently.

A subtransaction can fail without causing the entire trans-
action family to fail. When a subtransaction fails, its parent
can perform alternative processing, so the top-level transac-
tion can ultimately commit.

Nested transactions have limited support in the industry
today. Transarc’s ENCINA offers an implementation of a
nested transaction manager and a file system (Structured File
System - SFS) which supports the nested model. Most of the
object database systems have their own form of nested trans-
actions but, to date, they do not operate with an independent
transaction manager. The major database systems (Oracle,
Sybase, DB2, Informix) can treat each data manipulation
language (DML) statement as a subtransaction, but they do
not currently support the generality of the nested model even
when used with ENCINA as the transaction manager.

Nested transactions align nicely with the partitioning of
application function provided by encapsulation within the
object model. Each object has its own data which can only
be changed by using the object’s methods. If the data are to
be subject to the transaction semantic, state changes will be
deferred until the application commits, an operation which
can also affect other objects. By using nested transactions,
the object designer can provide transactional behavior for
his object without worrying about other objects used by the
application.

2.2 The OMG’s OTS

A specification [3] for using transactions with distributed ob-
ject technology was adopted by the OMG in December 1994.
The specification, which was produced by collaboration be-
tween Groupe Bull, IBM, ICL, Iona Technologies, Novell,
SunSoft, Tandem Computers, Tivoli Systems, and Transarc
Corporation, defines an object service for creating and ma-
nipulating transactional objects.

2.2.1 Overview of OTS

OTS defines the interfaces for creating and manipulating
transactions in an object environment. The OTS architecture
is depicted in Fig. 4 and described briefly below.2

2 For a complete description of OTS, see [19].
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Fig. 4. OTS overview

A transactional clientmakes requests (1) of the OTS to
define the boundaries of a transaction. It then invokestrans-
actional operations(2) on transactional objects. A transac-
tional object is an object whose behavior is influenced by
participating in a transaction (e.g. an object that acts as a
proxy for database activity).

During the life of a transaction, requests can be made
(3) on recoverable objects. Recoverable objects are transac-
tional objects which have recoverable state, i.e., state which
changes atomically at transaction boundaries (e.g., an object
which represents a customer account). Transactional objects
are used to implement two types of application servers –
transactional and recoverable.

– A transactional serveris a collection of objects whose
behavior is affected by the transaction, but has no recov-
erable state of its own.
Transactional servers implement recoverable changes us-
ing other objects. A transactional server does not partici-
pate in the completion of the transaction, but it can force
the transaction to be rolled back. Transactional servers
may also start subtransactions.

– A recoverable serveris a collection of objects, at least
one of which has recoverable state.
Recoverable servers implement transaction isolation by
serializing access to recoverable state. A recoverable
server participates in transaction completion by regis-
tering (4) aResourceobject with OTS.

The SubtranAwareResourceobject implements participation
(5) in the completion of a subtransaction. It is responsible
for implementing actions which depend on subtransaction
completion (e.g., assigning locks to the parent transaction).

The Resourceobject implementstransaction completion
by participating (6) in the two-phase commit protocol. It is

responsible for durably recording changes to the state of its
recoverable object and being able to recover those changes
in the event of failure.

For each active transaction, OTS maintains atransac-
tion contextwhich it associates with transactional operations.
The transaction context can be thought of as the control
block which holds information about the transaction asso-
ciated with a particular thread. It includes an identifier for
the transaction, the state of the transaction (e.g. in flight, in
doubt, etc.) and a list of resources which will participate in
the commitment process. In OTS, the transaction context is
represented by theControl object which also contains refer-
ences to theCoordinatorobject (which controls registration
and orchestrates the two-phase commit process) and theTer-
minator object which directs transaction completion.

Once a transaction is started, the transaction context be-
comes animplicit parameterof transactional operations and
is transferred between the client and the transactional object
by the ORB. OTS also permits the transaction context to be
an explicit parameterof an operation.

An important characteristic of OTS is the ability for a
single transaction to be shared between object invocations
of OTS and procedural invocations, such as those defined
by the X/Open DTP model [26]. This capability can be ex-
ploited to incrementally introduce objects into today’s trans-
action processing environments.

2.3 Microsoft’s transactions for OLE

Microsoft’s OLE/TP [13] is another example of an object in-
terface for transactions. Based on Microsoft’s OLE (Object
Linking and Embedding) architecture, it provides a series of
C++ language interfaces to Microsoft’sDistributed Trans-
action Coordinator (DTC). DTC is being introduced with
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SQL Server 6.5, but is intended to be incorporated in the
Windows/NT and Windows/95 operating systems.

Based on a different object model (Microsoft’s Com-
mon Object Model - COM), OLE/TP serves the same pur-
pose in the Microsoft object architecture that OTS does with
CORBA, viz. it provides a set of object interfaces for a trans-
action manager. The transaction manager (DTC) makes it
possible for a variety of resource managers (i.e., those that
support Microsoft’s DTC interfaces for resource managers)
to participate in a common transaction.

When distribution is provided in OLE (network OLE),
OLE/TP will support a common transaction with different
components on all Windows platforms. Inter-operability with
CORBA could come at the network level when the OMG
adopts a specification for COM/CORBA inter-operability.3

2.4 Transactional objects are important

At first glance, both OTS and OLE/TP appear to be ob-
ject wrappers around the current procedural standards from
X/Open. While true that OTS is based on the X/Open model
[26], there are several important differences.

– Simplifications have been made to exploit the object en-
vironment,
The X/Open standards carry a lot of “baggage” from ex-
isting implementations which do not fit naturally into
the object environment. Since OTS has no legacy to
carry forward, these were simply eliminated. OLE/TP
appears to have taken a similar approach. Presumed noth-
ing, chained transactions, and static registration have no
counterparts in either OTS or OLE/TP.4

– Enhancements have been made specifically for the object
environment,
The object model introduces a powerful set of capabili-
ties beyond procedural programming for building appli-
cations. To properly leverage these in a TP environment,
OTS added nested transactions, explicit context manage-
ment, and a recovery protocol driven by the resource
managers5 rather than the transaction manager. OLE/TP
added explicit propagation and adopted a similar recov-
ery philosophy.

– Inter-operability with procedural code was paramount for
the OTS design,
OTS is designed to permit a single transaction to include
both recoverable objects and procedural resources (e.g.,
relational database tables) in the same transaction. To
accomplish this, the transaction control structures used
by existing transaction managers and resource managers
must be mapped to their OTS equivalents and the iden-
tifier which uniquely distinguishes a specific transaction
must be shared (or mapped) between the object domain

3 OMG issued a Request for Proposal (RFP) for inter-operability between
COM and COBRA in early 1995 and is expected to adopt technology in
1996.

4 For more information on these concepts, see [6].
5 Because the transaction manager is assumed not to have a log in the

X/Open model, it must query each resource manager at restart to determine
which transactions are in flight. In the OMG model, both the transaction
manager and the resource managers are assumed to be logging the state
data need for transaction recovery.

and the procedural domain. The OTS architecture accom-
plishes this by allowing a common transaction manager
component to support both objects and procedural re-
source managers. This enables existing procedural code
to be “wrappered” and usedas is in building new ap-
plications.

2.5 The value of nested transactions for objects

Once a flat transaction is started, all recoverable state up-
dated by that transaction will be committed when the trans-
action commits. When objects are used to implement the
transaction, the commit decision needs to be made exter-
nally to recoverable objects involved in the transaction, since
commitment of the transaction affects the state of all ob-
jects, even if atomicity and durability are implemented by
the database manager and not the objects themselves.

Listing 1 shows a simple implementation of aSav-
ings object with recoverable state.Savingsimplements two
methods,query and debit and hasaccountnum as an at-
tribute. The recoverable state ofSavingsis maintained by
the Databaseobject which acts as a proxy for a database
manager which handles transaction recovery.

Listing 1. An object with recoverable state

typedef Amount float;

Amount query (){
return ( database.read ( this-> accountnum ) );
}

void debit ( Amount toBeDebited ){
Amount balance;
balance = database.read ( this-> accountnum );
balance -= amount;
database.write( this-> accountnum , balance );
return;
}

Since the database requires a transaction to be active, the
user ofSavingsmust start a transaction before invoking its
methods. When objects have their own recoverable state (i.e.,
state which is not persistently managed by the database),
they must register to participate in transaction completion.
This requires the object’s implementer to specify how his
object will be used and constrains the re-usability properties
of objects.

– If invoked within a transaction,commit will affect its
state and the state of all objects previously visited during
the transaction.
This requires the object implementer to depend on the
commit decision being made external to his implementa-
tion, even if the object has recoverable state. If the user
of the object fails to do so, the object’s function is (at
best) not performed or (worse) performed improperly.

– If invoked outside a transaction and the object has re-
coverable state, it must start a new transaction to cover
its state changes.
This requires the object implementer to include complex
logic to cover its invocation outside of a transaction, and
that assumes there is an easy way to find out whether a
transaction is active or not.
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Nested transactions provide a simpler alternative for imple-
menting these kinds of objects, which increases their poten-
tial for re-use. The object implementer can bracket all its
computations within a subtransaction. In OTS, thebeginop-
eration of theCurrent interface starts a nested subtransaction
if a transaction currently exists, or a new top-level transac-
tion if one does not. This allows the object implementer to
delimit changes to its recoverable state and commit those
changes, contingent upon completion of its ancestor trans-
actions, if they exist, or immediately if they do not.

This is reflected in Listing 2, an alternative implemen-
tation of theSavingsobject in Listing 1. This alternative
design effects only the debit method, so this code fragment
does not show the query method which would not change.

Listing 2. An object with recoverable state using nested transactions

void debit ( Amount anAmount ){
AccountNum theAccount = this-> accountnum;
Database database;
Current theCurrentTransaction;

theCurrentTransaction.begin();
Amount balance = database.read( theAccount );
balance -= anAmount;
database.write( theAccount, balance );
theCurrentTransaction.commit();

return;
}

Since the Listing 2 implementation ofSavingsaffects its
state and only its state, it provides a more rigorous imple-
mentation of encapsulation. This property of the OTS en-
ables fine-grain objects to be created for each unique set
of recoverable state and assembled in a variety of different
ways to build business applications. Objects designed this
way can be more efficiently re-used in constructing transac-
tional applications.

2.6 Summary

Transactional object technology provides the infrastructure
to develop transactional applications using objects. Both
OTS and OLE/TP enable new transactional applications
across a broad spectrum of computing platforms. The OTS
design additionally facilitates evolutionary deployment in to-
day’s TP systems.

– OTS has wide support within the industry and can be ex-
pected to be available in products from multiple vendors6

in the transaction processing marketplace on a wide va-
riety of platforms.

– Looking at their success in deploying OLE to date, it can
be expected that Microsoft will be equally aggressive in
rolling out OLE/TP and products that depend on their
transaction manager (DTC) on Windows platforms.

The definition of transactional object technology is a major
step towards the pervasive deployment of TP applications
built using objects. As customers and software vendors alike

6 In fact, early products have begun to appear with implementations from
Bull, IBM, Iona, and ICL available in some form as of early 1996.

begin to adopt this technology, the traditional TP vendors
need to be sure that their platforms can adopt to take maxi-
mum advantage of it. Failing to do so will severely restrict
their future growth and may make them irrelevant in the
object TP marketplace of the future.

3 Transactional workflow and objects

In commercial TP systems, a successful new technology re-
quires both incremental adoption and the ability to integrate
well with existing applications. The mission critical nature
of these systems cannot accept more disruptive alternatives
– no matter how compelling the new technology may be.
Object technology has those attributes: it encourages incre-
mental adoption through encapsulation and integrates well
with legacy through a technique known as“wrappering”.

Today’s re-engineering activities are focused on the def-
inition of business processes. As these processes are identi-
fied and refined, two important characteristics emerge.

– Business processes are composed of multiple activities,
tend to be long running, and involve people as well as
computers. This leads to a requirement for new tech-
nology to define and automate the processes including
the ability to track and restart individual activities in the
event of failure.

– Many activities which comprised these business pro-
cesses have already been automated. This requires a tech-
nology for encapsulating existing logic, so it can be made
part of the new business process.

The most promising answer to the first is workflow, while
objects are ideally suited to addressing the second.

3.1 What’s wrong with transactions?

The traditional transaction models have several shortcom-
ings which must be addressed to adequately support business
processes as long-running transactions.

– Recovery protocols deal with therecovery of dataand
not the programs which manipulate the data. When a
business process consisting of many activities fails be-
fore completion,process recoveryis required to be able
to re-start at a prior point of consistency.

– Both the flat and nested models assume transaction du-
ration is short. This permits isolation to be achieved
by locking. Locking prevents multiple transactions from
changing the same data simultaneously by forcing con-
tending transactions to serialize before accessing that
data. Since update locks are held until transactions ter-
minate, this strategy is most effective when transaction
duration is short.

3.2 Advanced transaction models

But what if transaction duration is not short? Consider the
example of a manufacturing production line. A product
passes through many stages of assembly lasting for days
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and perhaps weeks at a time before emerging as a finished
product. Enabling these long-running transactions requires
a different type of transaction. In the literature, these trans-
actions are described asadvanced transaction models[15].
These transaction models are formed by relaxing one or more
of the traditional transaction properties.

3.2.1 Sagas

One of the first of these models to be described in the lit-
erature was thesaga [5]. A saga is a sequence of ACID
transactions,{T1, T2, . . . Tn}. For each transaction in
the sequence, the application writer defines a compensating
transactionCi which logically undoes the updates associated
with Ti. A saga is rolled back by executing the compensat-
ing transaction of a committed transaction. When a failure
occurs during the execution of a saga, the saga can continue
after the failing transaction is recovered by re-executing the
failing transaction and all subsequent transactions in the se-
quence.

Sagas relax the isolation property of ACID transactions,
so locking will not prevent data from being seen by concur-
rently executing sagas. Locking occurs only for the individ-
ual transactions associated with each saga. Hence, data from
any committed transaction can be read and updated by any
other transactions. This means that the compensating trans-
actions need to undo results logically, not physically, e.g., a
credit of $100 to a bank account can be logically undone by
posting a debit of $100, regardless of whether intervening
credits or debits have been posted, although the posting of
such debits could make the account balance negative, when
it otherwise might not have done so.

But this can be handled. In fact, many banking systems
work this way today, but the logic that tracks the need for
compensation as well as the compensation itself is the re-
sponsibility of the application developer. Modelling these
applications as sagas would not alter this design approach,
since the mechanism for tracking and recovering process ex-
ecution was never fully specified. Workflow systems address
this issue by tracking the execution of a series of activities
outside of the application logic and thereby relieve this bur-
den from the application developer.

3.2.2 ConTracts

A ConTract[25] is a two-level transaction structure in which
the top-level transaction is a persistent computation that ini-
tiates and coordinates flat transactions [6]. The control flow
description (script), which specifies the sequence in which
the transactions are to be executed, is a Pascal-like language
which allows loops, conditional branching, and parallel ac-
tions. Though similar to the saga, it goes one step further by
specifying failure processing and recovery.

The ConTract manager performs execution control at
runtime using an event-oriented flow management technique
based on a predicate transition net to specify activation and
termination conditions for each step [6]. An important char-
acteristic of the ConTract is that control flow and step coding
are separated. This concept is embodied in today’s workflow

manager products and is key to the re-use of existing trans-
actions in new business processes.

Although some of the concepts of sagas and ConTracts
have been implemented in commercial products (e.g., most
of the object database managers [17] have a scheme for long-
running transactions based on check-out/check-in protocols
and versioning), neither sagas nor ConTracts are available
today in commercial products. Business processes are often
long-running activities, so it is clear these concepts can be
applied to business process re-engineering.Workflow com-
puting [7] is emerging as the likely framework to incorpo-
rate these concepts. If so, workflow computing will be a key
component of future transaction processing systems [12].

3.2.3 Implementing advanced transactions models
with objects

Neither OTS nor OLE/TP include support for advanced
transaction models in their current forms, but either might
be used as an underpinning for building such facilities in the
future. The key features such advanced transaction models
should offer are

– an alternative approach to isolation
Both OTS and OLE/TP rely on their resource managers
to provide isolation.Object Concurrency Service(OCS)
is the OMG object service which provides the required
function. OCS supports classical two-phase locking pro-
tocol [6]. OLE/TP does not specify how locking is ac-
complished. Novel types of synchronization are required
for long-running transactions (e.g. explicit handling of
conflicts when they occur).

– a mechanism for process recovery as well as data recov-
ery
A process manager that provides such facilities can be
implemented using the features of a transaction manager
to durably protect the process definition and current state,
providing that definition can be captured externally to the
application.

3.2.4 Workflow computing

Workflow computing [7] is an emerging technology for im-
plementing long-running business processes. Although it has
its origins in office automation and deals with people as well
as information systems, it can be used as a discipline for
connecting multiple applications, including existing short-
duration transactions, according to a pre-defined flow of con-
trol.

A workflow can be thought of as along-running trans-
action, but, more accurately it is a series of (independent)
traditional transactions whose execution proceeds in some
predictable sequence with a well-formulated set of inter-
dependencies between them. Complex applications involve
many smaller application systems which are closely related
to each other. Managing the flow of work [11] through these
interrelated activities can improve organizational productiv-
ity, reduce costs, and guarantee accountability. It also allows
existing systems to be integrated, ensuring that the business
processes they represent are, in fact, connected to each other.
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Fig. 5. Booking a business trip

3.2.5 The problem

The short-duration assumption inherent in the traditional
transaction models does not fit well with a large class of
applications. Consider the simple example in Fig. 5 of book-
ing a business trip (step S1). An airline reservation (S3), a
hotel (S4 or S6), and a rental car (S5 or S7) are all required
(S9), and need to be lined up with each other or the trip
will not be taken (S8). Since the inventory for each of these
items is maintained by its respective owner, a single flat or
nested transaction cannot reasonably cover all three sets of
changes. The application (in most cases a person in the role
of a travel agent), must implement the correct sequence of
traditional transactions to ensure a reasonable outcome, viz.

– a seat is reserved on a flight to your intended destination,
– your car is available at your destination airport, and
– your hotel room is reserved for the evening of your ar-

rival at your intended destination.

Failures require that theprocess be recovered, not just the
data. A plane reservation without the waiting rental car or
the evening hotel room is not good enough.

Workflow computing addresses this class of problem by
providing:

– a mechanism for specifying the relationship between the
steps, which is external to the implementation of the
steps themselves, and

– a process managerwhich durably records the execution
of the various steps and continues the sequence in the
event of failure.

3.2.6 Business processes are disjoint

The example in Fig. 5 demonstrates an important character-
istic of business processes.The steps are disjoint, not only
in time, but also in their ability to share data. The reason
this example cannot be implemented by a flat or nested trans-
action in the real world is not technical. One can imagine
a number of different design approaches that will guarantee
the plane, car, and hotel are synchronized using traditional
transaction technology. But they all have the property that

Fig. 6. Transactional messaging

inventory data owned by multiple enterprises (the airline,
the rental car agency, and the hotel chain) will be locked
by an external user (the travel agent), preventing that data
from being used by anyone else, including its owner! It’s not
surprising that every business finds this unacceptable, even
before someone explains the details of transaction recovery
for failures in the in-doubt state.7

Even within a single company, decentralizing decision-
making requires individual departments to have control over
their operational data while implementing well-defined pro-
cedures for sharing that information with others. This sat-
isfies the corporation’s need for timely information, while
ensuring that each unit can successfully execute its business
processes efficiently.

3.2.7 Connecting activities by messaging

The technological consequence of these business require-
ments is anincreased importance for messaging technol-
ogy as the principal mode of communication between busi-
ness entities.Transactional messagingallows transactions to
be localized to failure domains with independent recovery
scopes. In other words, a single failure never requires co-
ordinated recovery between independent business entities.
Transactional messaging provides “exactly once” message
delivery by including the message in the commit scope of
the local transaction. This is typically accomplished by using
a recoverable message queue as shown in Fig. 6.

However, this independent failure property comes at the
expense of traditional transactional integrity for the com-
plete process, requiring a higher level of transaction control
external to the applications themselves. The higher level of
control is implemented in an externalprocess definition.

7 The two-phase commit protocol requires that a resource manager wait
for the decision from its coordinator once it has been prepared. Loss of con-
nectivity can make the elapsed time for discovering the transaction outcome
quite long, but data integrity cannot be guaranteed if the resource manager
decides to unilaterally commit or roll back (take a heuristic decision). See
[6] for more details.
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Fig. 7. Buying playoff tickets

3.3 Object wrappering

Each step in the business process in Fig. 5 can be imple-
mented by a traditional short transaction. In fact, many al-
ready are. The ability to incorporate existing transactions
“as is” is powerful leverage when building more complex
business applications. A simple example of re-use by object
wrappering is detailed in the following sections.

3.3.1 Using wrappers to build a business process

Your favorite sports team clinches a playoff position and an-
nounces that playoff tickets will go on sale tomorrow morn-
ing. You absolutely want to go, if you can obtain tickets,
but you have insufficient funds in your checking account. In
order to be able to buy the tickets, you will need to transfer
money from your savings account. This requires you to:

1. call the ticket agency and reserve your tickets (if avail-
able),

2. transfer the money to your checking account, and
3. write the check for the tickets.

This process (which can be modeled as either a saga or a
ConTract) consist of the above three steps and they must be
completed before the game is played or the tickets have no
value. This introduces the notion oftimeliness of execution
which is inherent for traditional (short-duration) transactions,
but which needs to be dealt with explicitly when defining
workflows.

You have implemented a short-duration transaction to
transfer the money (S3), so you need to implement the other
two steps (S1 and S4) and define the sequence to a process
manager, so that all three will be executed. If it happens
that you cannot get the desired tickets or game day arrives
before the process completes, there is no reason for the sav-
ings funds to be in your checking account, so they will be
returned to savings. Such an action is implemented by a dif-
ferent transaction (S2) and is termed a compensation. The
sequence diagram which represents this process is shown in
Fig. 7.

To utilize the transfer account function, we need to pro-
vide a wrapper for it. The wrapper encapsulates thefromSav-
ingsToCheckingactivity and defines atransfermethod which
takes the transfer amount,transfer, as an input parameter.
This is depicted in Listing 3.

Listing 3. Transfer funds to checking account

Boolean fromSavingsToChecking ( Amount transfer ){
Current theCurrentTransaction;
Savings theSavingsAccount;
Checking theCheckingAccount;

theCurrentTransaction.begin();
Amount balance = theSavingsAccount.query();

if ( balance> transfer )
{ theSavingsAccount.debit( transfer );
theCheckingAccount.credit( transfer );
theCurrentTransaction.commit();
return True;}

else
theCurrentTransaction.rollback();
return False;}
}

3.3.2 Defining new transactions

Our example requires three addition transactions to imple-
ment the business process of buying our playoff tickets:

– S1 checks the availability of tickets and reserves them.
This needs aquery function against the ticket inventory
and areservefunction to hold them.

– S2 undoes the transfer if tickets are not available. This
is almost the same as the existing transfer function (S3),
which moves funds from savings to checking, but instead
transfers the funds from checking to savings.

– S4 orders the tickets previously reserved. This needs a
buy function that operates on the tickets previously held
by reserve.

In the interest of simplicity, only the client code of each
transaction is shown. Because we need to include all of these
transactions within our process definition, we give each of
the transactions a wrapper, similar to the one for thefrom-
SavingsToCheckingtransaction in Listing 3.

Ticket availability: the transaction to determine ticket avail-
ability is shown in Listing 4.

A queryof the Ticketsobject determines if the required
number of tickets are available. If so, areservefor the req-
uisite number of tickets is made and a reservation ID,recid,
is returned. Thebuyer transaction will use this tolocate the
ticket reservation beforebuy is executed against the ticket
inventory. If the necessary number of tickets are not avail-
able, the transaction is rolled back.

Reversing the transfer: the reversing transaction is a mir-
ror image of the original transfer transaction (Listing 3). A
debit operation is added to theCheckingobject and acredit
operation is added to theSavingsobject.8 This enables the
client application to move funds from the checking account
to the savings account.

Buying the Tickets: the buying transaction is shown in List-
ing 5

8 One observes, of course, thatSavingsandCheckingobjects are merely
specializations of theBankAccountobjects, so the debit and query methods
could be inherited rather than rewritten.
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Listing 4. Ticket availability transaction

RecId available ( int required ){
Current theCurrentTransaction;
Tickets theTickets;
RecId result;

theCurrentTransaction.begin();
if ( theTickets.query()> required )
{ result = theTickets.reserve( required );
theCurrentTransaction.commit();
return result;}

else
{ theCurrentTransaction.rollback();
return RecId::NullRecId;}
}

Listing 5. Buy the tickets

Boolean buyer ( RecId theRecId ){
Current theCurrentTransaction;
Tickets theTickets;

theCurrentTransaction.begin();

if ( theTickets.locate(theRecId) )
{ theTickets.buy( theRecId );
theCurrentTransaction.commit();
return True;}

else
{ theCurrentTransaction.rollback();
return False;}
}

The buyer transaction uses therecid returned by the avail-
ability transaction to verify the reservations and subsequently
debits the ticket inventory to finalize the order.

3.3.3 Defining the process

Since each of the steps in our process was defined as in-
dividual transactions, the recoverable data associated with
each of them will always be made consistent in the case of
(individual) failures. In other words, if we succeed in mak-
ing the reservation, the tickets object will have a record of
our reservation. However, unless we also executed the buy,
it will have no knowledge of the tickets being bought. Un-
less something remembers that the business process needs all
three steps to be successful, our process will never complete.

The system component that implements this memory is
a workflow manager. A workflow manager provides a set of
tools which enable a set of activities (the steps), the rela-
tionships between them, and compensations in the event of
errors to be defined external to the applications which imple-
ment the business logic. Hence thefromSavingsToChecking
transaction need not concern itself with the need for com-
pensation if the tickets cannot be obtained. In fact, it need
have no knowledge at all of why the funds are to be trans-
ferred, allowing it to participate in other business processes
as well.

An example of a workflow manager is IBM’s FlowMark
[8]. Flowmark consists of an interactive tool for defining
the activities in a business process and their relationships
as well as a workflow engine which executes the activities
and tracks the progress of the process. This enables process
recovery to be performed if any of the steps fail to complete

properly. To date, the dependencies between these activities,
which are, in fact, transactions, have not been embedded in
the workflow engine. This requires the human operator to
initiate compensation when it is required. Future workflow
systems are likely to be enhanced to support this notion of
transactional workflows.

The FlowMark model for the workflow consists of the
activities Order Tickets, Transfer Money, Cancel Transfer,
and Write Check. The activityOrder Ticketsreceives as in-
put the number of tickets to be ordered (NumTickets) and
produces the Booleanorderedas output, while the activities
Transfer Moneyand Cancel Transferreceive the amount to
be transferred or canceled (Amount) as input.

Order Ticketsand Transfer Moneycan be run in any
order (specifically,Transfer Moneycould run beforeOrder
Ticketsproduces a positive result), which makes it necessary
to compensate in case the order cannot be satisfied.

The compensation activityCancel Transferis run if and
only if the conditionordered=NO is fulfilled when Order
Ticketsterminated (assume an appropriate exit condition of
Order Ticketslike ordered=YESor ordered=NO) and the
Transfer Moneyactivity9 has run. For this purpose, the start
condition of the activity is the conjunct of the transition
condition of its incoming control connectors.10

In case the tickets can be ordered (i.e., the transition con-
dition ordered=YESbecomes true), theWrite Checkactivity
could be started, but theTransfer Moneyactivity must have
terminated beforeWrite Checkbecomes startable.

3.4 Summary

The ability to take existing transaction implementations,
whether implemented using object techniques or not, and
create object wrappers for them, allows these transactions
to be used as activities in larger business processes. Tra-
ditional transactiondata recoveryensures that recoverable
data is always made consistent after failure of any step.

A workflow manager allows these processes to be de-
scribed externally and contains the functions necessary to
perform process recoveryin the event of failure. Typically,
these processes will be defined by people from business ad-
ministration, without regard to how (or if) they are repre-
sented in an information system. The proper recovery aspects
will be added by people with different skills. The resulting
process contains the proper combination of data and process
recovery to make it possible to transform complex business
processes into information systems representations.

Workflow computing, with transactional messaging and
the use of transactional object technology enables the con-
struction of these commercial TP applications. Together,
they permit the enterprise to rapidly develop information
systems based on the enterprise business model, which are
adaptive to changes in the business environment.

9 No explicit specification of a transition condition results in a constant
“TRUE” predicate.

10 Start conditions are not explicitly shown in Fig. 8.
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Fig. 8. Buying playoff tickets as a FlowMark workflow

4 TP monitors and ORBs

TP monitors11 provide an environment for executing many
of the commercial applications which utilize transaction
technology. A TP monitor can be characterized as a light-
weight scheduler, one that is optimized for the short-running
applications favored by the flat and nested transaction mod-
els. TP monitors perform a“traffic cop” function [1] which
allows a large number of clients to efficiently access a much
smaller number of application servers [6].

4.1 Evolution of TP monitors

TP monitors were first deployed on centralized mainframes
as a way of supporting large numbers of terminals. IBM’s
Airline Control Program (ACP), introduced in 1964, was the
first TP monitor. ACP supported online airline reservations
and became the benchmark for high-volume transaction pro-
cessing for several decades. Today, as the Transaction Pro-
cessing Facility (TPF), it still supports many of the world’s
airlines.

4.1.1 The age of centralized computing

In the centralized systems of the 1970s, processor cycles and
storage were critical resources. Efficiently managing user ac-
cess to these resources was the problem to be solved and the
TP monitor solved it by allocating these critical resources
dynamically in response to each terminal input. Each termi-
nal user appeared to have immediate access to any program
to which it was authorized. Scheduling users to processes
(a processcentricsystem) enabled critical systems resources
to be efficiently shared by a large number of terminal users.
Data was owned by the TP monitor (it OPENed the files)
and was shared among the terminal users by locking.

11 Most TP monitors are packaged in transaction processing systems.
Such systems will contain the TP monitor, a transaction manager and sys-
tems management facilities. Often a user interface package will also be
present, especially when non-programmable terminals are supported. Re-
source managers such as queuing systems or file systems may also be
present. IBM’s CICS, for example, contains all of the above components
as well as a unifying API which mediates access to each of them.

Fig. 9. A centralized system

Many commercial applications were implemented on
these TP monitors. Products like IBM’s CICS and IMS,
DEC’s ACMS and Intact, and Tandem’s Pathway were
largely responsible for the rapid growth of mainframes and
later mini-computers during the 1970s and 1980s. In fact,
IBM’s CICS and IMS became so pervasive in the MVS en-
vironment that today almost every MVS system has at least
one, and many have both.

Application development was relatively simple. The TP
monitor allowed each application to be written for a single
user, ideal for languages like COBOL which do not natively
support multi-threading or non-blocking I/O. All application
code executed in a single location. The TP monitor provided
a simple view of the complicated part of the system, viz.
terminal communications, and handled the difficult task of
making sure all the terminals were serviced. The user could
concentrate on the business problem to be solved.

4.1.2 The dawn of distributed computing

With the advent of the personal computer, each terminal user
had his own processor cycles, memory, and storage as well
as the requisite programs. Cycle sharing was not a prob-
lem. Sharing disks (or more specifically data) and printers
attached tolocal area networkswas the new challenge. The
emphasis shifted to scheduling program access to data (a
datacentricview). The data providers (both the file systems
and the database vendors) became dominant, since they pro-
vided the scheduling functions users needed.

Application development was again simple. An appli-
cation still supported a single user, although high-function
graphical interfaces demanded multi-threading and non-
blocking I/O, which is more difficult in COBOL. The ap-
plication still executed in a single location. The database
products provided a simple view of the real complexity –
access to shared data – via simple programming interfaces.
The user could concentrate on the business problem to be
solved. The application had shifted from the machine room
to the desktop!
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Fig. 10. A client/server system

4.1.3 Distributed function, a better (but harder) solution

By the end of the 1980s, the emphasis had shifted again.
The departmental server could execute application function
as well as the desktop, and it was more efficient to have
it do so. The departmental systems also needed access to
other systems both within and outside the enterprise. Effi-
ciency was gained by packaging multiple requests for data
and sending only a single request, rather than one per data
access, in other words, executing application logic in multi-
ple places ordistributed function.

Distributed function is an appealing systems architecture.
It maximizes the value of each communication message by
executing application logic closest to the data it operates on.

TP monitor approach to distributed function. Two differ-
ent distributed function architectures began to emerge. From
the processcentric world of the TP monitors, new program-
ming interfaces forinterprocess communicationwere deliv-
ered.

– IBM’s Advanced Program-to-Program Communications
(APPC) was one of the first.
The APPC model is built on the familiarconversation
paradigm (like a telephone call). A connection is estab-
lished, the parties take turns speaking, and the connection
is terminated. APPC provides a powerful set of appli-
cation functions [9] to enable multiple applications to
communicate and optionally share a transaction across
multiple sites connected by SNA communications. The
same concepts were subsequently adopted and embel-
lished as part of the ISO OSI-TP standard [10].

– Remote Procedure Call (RPC) became very popular.
RPC extended the familiarlanguage callparadigm to
allow subroutine execution in a different machine than
the calling program. Initially popular in the UNIX world,
RPC became the cornerstone of the Open Software Foun-
dation’s (OSF) Distributed Computing Environment [20]
(DCE) and has been subsequently endorsed by major IT
vendors, not only for their UNIX platforms, but for their
PC and mainframe systems as well.

– Messaging enjoyed a rebirth12 in popularity.
Messaging is a style of program-to-program communica-
tion which does not depend on the real-time availability
of a communication path. Application programs are rep-
resented byqueueswhich are implemented on durable
media. The sending application places a message on a
queue and (later) reads its reply from a different queue.
The receiving application reads its input queue (the one
written by the sending application), processes the mes-
sage, and generates a reply. Messaging is like electronic
mail, which delivers information relatively quickly when
communications facilities are available, and ultimately
when they are not. Messaging providesguaranteed deliv-
ery among independent transactions rather than requiring
a single transaction to be shared between communicating
programs.

Much can be and has been written about the merits of each
of these approaches [21], but, to a greater or lesser degree,
they all have the characteristic that application development
is difficult.

– Conversation and to a lesser degree RPC require function
placement decisions to be made early and, once made,
those decisions are not easily changed.13

– With conversation, the communications programming
which ties the pieces together is complex and requires
expensive skills.

– To date, only RPC has provided data conversion mech-
anisms to insulate applications from the different repre-
sentations of various types of data (characters, integers,
floating point, etc.).

– Application development tools support RPC but are gen-
erally lacking for conversation and messaging.

The database approach to distributed function.From the
data centric world of the database vendors came a novel
approach – put the programs in the database!Stored proce-
duresare extensions to the SQL language that allow varying
degrees of procedural logic to be executed as part of an SQL
call. A functional extension of databasetriggers, which are
used for expressing integrity constraints and business rules
(e.g., “customers that owe us money cannot be deleted from
the customer database”), stored procedures can be used to
execute business logic within the database server. Some will
argue [1] they should be used for developing all application
function. Their objective is the same as the TP monitor solu-
tions – to minimize the number of communication messages
and make multiple data accesses as a result of a single re-
quest.

Stored procedures have a lot in common with RPCs.
Data access is a subroutine call and stored procedures are
built on that paradigm to do more database work in a single
statement, while maintaining the simplicity of SQL. Stored
procedures have some disadvantages though.

12 It’s worth noting that messaging systems have existed for some time,
although most implementations were unique to a single vendor and a single
platform. IBM’s IMS, for example, has had a messaging architecture for
communications since its introduction in 1968. Tandem has had messaging
hardware in support of Pathway since its introduction in the mid-1970s.

13 Administrative facilities may be available to alter where a specific
piece of logic is to be executed, but they cannot compensate for improper
function decomposition bound in at design time.
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– Stored procedure languages are proprietary to a specific
database vendor. Stored procedures were developed by
each of the database vendors to specifically exploit their
products. Once a decision to use one vendor’s offering
is made, the ability to change to a different vendor’s
database product is difficult or impossible. Stored proce-
dures will be part of the SQL3 standard, providing for
more portability between database manager implementa-
tions.

– SQL as a programming language is limited. Unlike
COBOL or C, SQL is not a complete programming
language14, so programmers are limited in what they
can do. Arithmetic operations are lacking, and, although
many vendors offered the ability to code in some pro-
gramming language (typically C or BASIC), none offer
the choice of application development languages sup-
ported by the TP monitors.

– Coordinated access to recoverable resources other than
the vendors database is not possible. Database products
have not elected to provide the functions of an exter-
nal transaction manager for resources other than their
own databases. As a result, a coordinated two-phase
commit involving more than the data in a single ven-
dor’s database cannot be accomplished, even on a single
machine.15

Even with all of the above, stored procedures suffer from
many of the same problems as the inter-process communi-
cations interfaces of the TP monitors.

– Function placement decisions are still made early and
are not easily changed.

– The programming which ties the pieces together may
be complex and requires extensive knowledge of the
database vendor’s stored procedure implementation.

However, application development tools are provided by the
database vendor, so application development is not quite as
difficult.

4.2 The object request broker

ORBs provide another mechanism for clients to communi-
cate with servers. An ORB hides details of communications
from its users. In the OMG’s OMA, the ORB16 provides
both a static and dynamic form of invoking operations on
objects.

– The Dynamic Invocation Interface (DII) supports appli-
cation requests constructed at runtime and then passes
them to the ORB. This enables the business application
to defer to runtime the identification of the objects it will
interact with.

14 Although SQL3 will offer many functions which currently require a
programming language.

15 Modern operating systems such as Digital’s VMS, IBM’s OS/400 and
MVS, and Microsoft’s Windows/NT are offering external transaction man-
agers as part of the operating system, making it likely that future stored
procedures implementations will be able to coordinate multiple resources.

16 For more information, see [18].

Fig. 11. Common object request broker architecture (CORBA)

– Interface Definition Language (IDL), a syntax similar to
the C programming language, describes the interfaces
provided by an object implementation – the operation’s
signature– external to its source language implemen-
tation. IDL stubs are built by the IDL compiler at de-
velopment time and bound into the client’s executable
code.

– On the server side, IDL skeletons provide the linkages
between the ORB and a particular object implementation.
They are also built by the IDL compiler at development
time and bound into the object’s executable code.

– The object adaptor is responsible for implementing a par-
ticular object activation policy.

– On the client side, object invocation is similar to an
RPC.17

– The client makes a local call to a stub (or proxy) which
represents the target object.

– The target object is located using a naming service and
a path to the object selected.

– The method parameter list is marshalled into a linear
string defined by the method’s signature and sent to the
target system.

– The client thread is blocked until the response is re-
turned.

– When the response is returned, the data is demarshalled
into a parameter list defined by the method’s signature.

– The client’s call is then re-dispatched.

It is on the server side that the characteristics of a TP monitor
begin to emerge, particularly in the CORBA function of the
object adaptor.

4.2.1 Object adaptors

Object adapters provide for the activation of objects in differ-
ent execution environments. CORBA defines different types

17 CORBA today is defined in terms of operations and their results which
can be either return values or exeption status. In language terms, this is a
procedure call.
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of object adapters [18] to “provide flexibility in how an ob-
ject is activated.” An object adapter, “is the primary inter-
face that an implementation uses to access ORB function”.
CORBA defines the Basic Object Adaptor (BOA) interface,
“that is intended to support a wide variety of common object
implementations”. CORBA further defines18 that, ”more (but
not many) object adaptors will be needed to support differ-
ent kinds of object granularities, policies and implementation
styles”.

An object adapter provides flexibility in how an object
is activated, e.g.,

– the creation of a new process,
– the creation of a new thread within an existing process,
– the re-use of an existing process or thread.
– or even a switching function that allows a large number

of object clients to be supported by a smaller number of
object servers (sound familiar?).

Each of these forms of activation have differing perfor-
mance, availability, and manageability characteristics.

4.2.2 Object invocation

In many respects object invocation is like the inter-process
communication functions of the TP monitors.

– Methods are invoked as the only way of accessing data.
Data access occurs as a by-product of process execution.
In contrast, the user of a database system identifies the
data and then the operation which acts on it.

– Multiple clients may access a single object. This requires
a mechanism for efficiently mediating access, just like
the user to process scheduling functions of a TP monitor.

4.2.3 Object activation

In order to activate an object, an environment to contain the
object must exist. It might exist because it has been started
in advance (like a server program), or it can be made to exist
at the time the activation is requested. Both possibilities are
allowed for.

If we separate the functions ofprocess creation(or
scheduling) from the functions ofobject activation, we begin
to see how a marriage between the two technologies might
come about. Object activation is a unique function of the
ORB environment, while scheduling is more generally appli-
cable. TP monitors provide scheduling function today with a
myriad of performance, availability, and manageability char-
acteristics. TP monitor technology can be used tomorrow to
make these characteristics available to ORB environments
as well.

4.2.4 Comparing object servers to TP monitors

Today’s generation of ORBs rely on a server model similar
to today’s non-TP monitor environments.

18 Cf. Chapter 9 of [18].

– A finite number of server processes are started by some
external mechanism (e.g., an operator command).

– A “listener” thread within the ORB monitors the com-
munication transport for incoming requests and routes
them to the correct server process.

– Each server process must be able to handle multiple users
so it will be forced to engage in some form of multi-
threading within its implementation.

This approach has several disadvantages.

– Application programming is more complex.
Each object implementation must cater to its simultane-
ous use by multiple users. This requires multi-threading,
concurrency control (to access shared resources), and ap-
plication level security. In other words the application
starts to include many of the functions of today’s TP
monitors.19

– Scalability is limited.
As new applications are added, new server processes are
required. New clients can also require additional servers
just to handle the increased workload. Since the client
to server bindings are static, one quickly runs out of the
ability to add additional servers, either through dimin-
ished processing power, or memory, or both.

4.3 TP monitors

A TP monitor provides many of the functions envisioned
for the object adapter in CORBA. The scheduling function
provided by TP monitors include:

– assignment of client requests to a particular application
server. This can include process creation as well as re-
use of existing processes

– initialization of the program to handle the client request.
This can include program loading and dispatching

These scheduling functions allow TP monitors to improve
system performance not only in large systems with tens of
thousands of clients but in smaller systems as well. A va-
riety of scheduling algorithms have been implemented by
commercial TP monitors. Each algorithm delivers different
value and supports different customer requirements. Some
examples:

– using separate processes for application servers allows
the hardware to provide isolation of individual applica-
tions and thereby deliver greater reliability and availabil-
ity

– using different instances for each user allows the appli-
cation to be implemented for a single user and can avoid
multi-threading

– selecting processes from a pre-allocated pool rather than
creating them at the time of the client request improves
performance

19 SAP R/3 is an example of how these TP monitor functions have mi-
grated into the application program even without the use of an ORB.
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Fig. 12. Integrating TP monitors and ORBs

4.4 Combining ORBs with TP monitors

One way to combine the functions of ORBs with TP mon-
itors is to separate the scheduling functions of the object
adaptor from the activation functions and encapsulate the TP
monitor scheduling technology in the object adaptor. This is
depicted in Fig. 12.

There are potentially a very large number of schedul-
ing algorithms. Separating these algorithms from the type
of work being scheduled allows them to be incorporated as
required to meet the needs of different application environ-
ments. When applied to the object environment, it yields the
following advantages:

– efficient scheduling of the environment in which objects
are to be activated. This is essential if objects are to be
used to build traditional OLTP applications

– the ability to define and use objects independent of the
TP monitor selected. An essential element for a compo-
nent software market in the OLTP environment

– the ability to enhance the basic object environment or
the TP monitor without impacting the functions of the
other

– the ability to integrate two compatible technologies in a
way that best addresses the needs of the commercial TP
environment

4.5 Summary

TP monitors and ORBs are indeed compatible. In fact, the
two technologies complement each other quite nicely. And,
because of the tool sets associated with creating and deploy-
ing objects, application development is easier than any of
the current TP monitor inter-process communications tech-
niques.

Just like the classical mainframe environment where the
TP monitor provided the ability to efficiently build and exe-
cute commercial applications, the marriage of ORB and TP
monitor technology –the object TP monitor– can create a
new distributed computing infrastructure, exploiting the tra-
ditional strength of the TP monitor, while providing a robust
application development environment based on re-usable ob-
jects. The marriage of the two can produce an integrated so-
lution that optimally addresses the needs of the commercial
TP environment.

5 Conclusions

The marriage of transaction and object technologies will
have a profound impact on commercial TP. Synergy be-
tween the business model and its object representation in a
supporting IT solution holds great potential since it

– can be more closely tuned to the needs of the enterprise
– is not constrained by the architecture of the computer

system chosen for implementation
– is easily adaptable to changes in the business environ-

ment

Applying object technology to the construction of commer-
cial TP applications will enable the enterprise to realize the
benefits of distributed computing as well as construct these
applications more rapidly.

The ability to model complex business processes as
workflow and to integrate legacy applications into new busi-
ness applications permits incremental adoption of the tech-
nology and delivers maximum leverage of the existing IT
investments. This technology base will enable the next gen-
eration of transactional applications to permit businesses to
be more responsive to changing market requirements.

The object TP monitor will provide a robust environ-
ment for deploying these applications which capitalizes on
the strengths of today’s TP monitors while preserving the
benefits inherent in object technology.
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