
Cardinality Estimation: An Experimental Survey

Hazar Harmouch
Hasso Plattner Institute, University of Potsdam

14482 Potsdam, Germany

hazar.harmouch@hpi.de

Felix Naumann
Hasso Plattner Institute, University of Potsdam

14482 Potsdam, Germany

felix.naumann@hpi.de

ABSTRACT
Data preparation and data profiling comprise many both ba-
sic and complex tasks to analyze a dataset at hand and ex-
tract metadata, such as data distributions, key candidates,
and functional dependencies. Among the most important
types of metadata is the number of distinct values in a col-
umn, also known as the zeroth-frequency moment. Cardi-
nality estimation itself has been an active research topic in
the past decades due to its many applications. The aim of
this paper is to review the literature of cardinality estima-
tion and to present a detailed experimental study of twelve
algorithms, scaling far beyond the original experiments.

First, we outline and classify approaches to solve the prob-
lem of cardinality estimation – we describe their main idea,
error-guarantees, advantages, and disadvantages. Our ex-
perimental survey then compares the performance all twelve
cardinality estimation algorithms. We evaluate the algo-
rithms’ accuracy, runtime, and memory consumption using
synthetic and real-world datasets. Our results show that
different algorithms excel in different in categories, and we
highlight their trade-offs.
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1. DATA PROFILING AND CARDINALITY
The research area of data profiling includes a large set of

methods and processes to examine a given dataset and deter-
mine metadata about it [1]. Typically, the results comprise
various statistics about the columns and the relationships
among them, in particular dependencies. Among the ba-
sic statistics about a column are data type, the number of
unique values, maximum and minimum values, the number
of null values, and the value distribution. Dependencies in-
volve for instance functional dependencies, inclusion depen-
dencies, and their approximate versions. Data profiling has
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a wide range of conventional use cases, namely data explo-
ration, cleansing, and integration. The produced metadata
is also useful for database management and schema reverse
engineering. Data profiling has also more recent use cases,
such as big data analytics. The generated metadata de-
scribes the big data structure, how to import it, what it
is about, and how much of it there is. Thus, data profil-
ing can be considered as an important preparatory task for
many big data analysis and mining scenarios to assess which
data might be useful and to reveal a new dataset’s charac-
teristics. In this paper, we focus on one facet of big data
profiling: finding the number of distinct values in a column
of a large dataset.

Finding this “cardinality” is an active research area, be-
cause of its ever growing number of applications in a wide
range of computer science domains. Besides its importance
as a fundamental task in database query processing and op-
timization [33], counting distinct values is considered as one
of the main studied problems in network security monitor-
ing [12], data streams [2], search engines and online data
mining [24, 27]. Moreover, the number of distinct values is
used in connectivity analysis of internet topology to find the
distance between a pair of nodes in the Internet graph [17].

Without doubt, given a memory size linear to the cardi-
nality of the dataset makes finding the cardinality an easy
task. Nevertheless, such memory need is too much for some
applications. Therefore, many algorithms to approximate
the cardinality of a dataset have been developed in a manner
reducing resource/memory consumption. The other cost-
dimension to consider is that of I/O. However, it can be
shown that approaches that save cost by sampling cannot
guarantee any reasonable degree of accuracy. Thus, research
has focussed on reducing memory consumption and assumes
to read all data only once. This paper presents many well-
known algorithms with which the cardinality can be esti-
mated in big datasets using small additional storage and a
small number of operations per element. Our results serve as
a guide to choose a suitable algorithm for a given use-case.

Outline. The rest of this paper is organized as follows: We
first formally define the problem of finding the cardinality
of a dataset, present general approaches used in literature
to solve this problem, and discuss several classifications of
concrete algorithms to estimate the cardinality of a dataset
in Section 2. In Section 3, we present, discuss, and com-
pare twelve well-known algorithms. Section 4 presents our
comprehensive set of comparative experiments using both
synthetic and real-world data, and reports the results of the
empirical evaluation. Finally, we conclude in Section 5.
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2. PRELIMINARIES
In this section, we formally define and describe the prob-

lem of finding a dataset cardinality. We also discuss several
previously studied general approaches to solve this problem
and the limitation of each one. Finally, we present several
classifications of the known algorithms to find an approxi-
mation of the number of distinct values.

2.1 Problem statement
The problem of finding the number of distinct values of

a multiset is polyonymous: In statistics, it is known as the
problem of estimating the number of species in a popula-
tion. It is also know as the cardinality of a column or the
“COUNT DISTINCT” in database literature. Furthermore,
the number of distinct values in a multiset is referred to as
the zeroth-frequency moment by Alon, Marias, and Szegedy,
who introduced the frequency moments of a multiset [3]:

Definition 1. Consider a multi-set E = (e1, e2, . . . , en) of
n items where each ei is a member of a universe of N possible
values and multiple items may have the same value. Let
mi = |{j : ej = i}| denote the number of occurrences of
i ∈ N in the multi-set E. The frequency moments Fk for
each k ≥ 0 are

Fk =

n∑
i=1

mk
i

The number of distinct values in E, called the zeroth-frequency
moment F0 of the multi-set E, is the number of elements
from universe N appearing at least once in E. For most ap-
plications NULL values are discarded. The algorithms for
finding F0 are the main topic of this survey.

The cardinality F0 has a wide variety of applications.
Each application has its special requirements for designing
an algorithm determining F0. Some of these applications
require a very accurate estimation of F0. However, others
accept a less accurate estimation. To give an illustration,
the number of distinct visitors of a website influences the
price of showing advertisements. So allowing only a small
error in measuring F0 is important. In comparison, a good
estimation of the number of distinct connections is enough
to detect a potential denial of service attack. To address
these differing needs, some applications focus on high ac-
curacy but have a high memory consumption and runtime.
Others do the opposite and accept lower accuracy and can
better limit memory and runtime. As a result, the key re-
quirements for F0 estimation algorithms for a specific ap-
plication can be specified by trading off among accuracy,
memory consumption, and runtime.

To quantify the accuracy of such algorithms, we check
how close the estimation is to the true cardinality. There are
many error metrics to evaluate the accuracy of an estimation
algorithm; the most popular ones are standard and relative
error:

Definition 2. The standard error of an estimation F̂0 is
the standard deviation of F0 divided by F0:

Estandard(F̂0) = σF̂0
(F0)/F0 (1)

Definition 3. The relative error of an estimation F̂0 is:

Erelative(F̂0) = |F̂0 − F0|/F0 (2)

To address the strength of the algorithm guarantee, a new
estimation error metric emerged:

Definition 4. The (ε, δ) approximation scheme of an es-

timation F̂0 means that the estimator guarantees a relative
error of ε with probability ≥ 1− δ where ε, δ < 1.

Besides the accuracy, we also need to quantify the memory
consumption of the cardinality estimation algorithm. The
data structure maintained by the estimation algorithm in
main memory is called synopsis. An estimation algorithm
should find an estimate F̂0 of the dataset cardinality close to
the true F0 as a function of the synopsis size. The synopsis
size is essentially proportional to the number of elements in
the multiset to exactly determine F0 by sorting. However,
multisets today tend to be too big to fit in main memory
of one machine or in the allotted memory for the profiling
process. Consequently, the synopsis of the estimation algo-
rithm can be seen from two different perspectives. First,
the synopsis is only a temporary data structure used to esti-
mate F0 in static scenarios, i.e., the whole dataset is stored
on disk. Second, the synopsis is a replacement or a compact
representation of the real data in scenarios where we cannot
store the dataset, such as in streaming applications.

To sum up, the goal of this experimental survey is to
present and analyze the efficiency of a wide range of known
algorithms for estimating F0, the number of distinct ele-
ments/cardinality of a multiset. We also take into account
the application requirements determined by the three fac-
tors: accuracy, memory consumption, and runtime.

2.2 General approaches
Here we present several broad approaches that are used

to estimate the number of distinct values in a multi-set.

Bitmap. The trivial method to determine F0 exactly is by
using a bitmap of size N , the size of the universe, as the
synopsis. The bitmap is initialized to 0s. Then, we scan the
dataset item-wise and set the bit i to 1 whenever an item
with the i-th value of the universe is observed. After a single
scan of the dataset, F0 is the number of 1s in the bitmap.
The synopsis size is a function of the universe size N , which
is potentially much larger than the size of the dataset itself.
Thus, in general, this approach is infeasible, but bitmaps in
general do play a role in other approaches.

Sorting. The traditional method of determining F0 was
through sorting to eliminate duplicates [32]. However, sort-
ing is an expensive operation that requires a synopsis size
at least as large as the dataset itself. So, sorting is an im-
practical approach especially for the current big datasets.

Hashing. A straightforward approach to obtain an exact F0

and scale-down the synopsis size is hashing. Hashing elimi-
nates duplicates without sorting and requires only one pass
over the dataset to build a hash table. However, a simple
application of hashing can be worse than sorting in terms of
memory consumption. To accurately capture datasets with
high column cardinalities, the hash table would need to be
too large to fit in normal main memory.

While the methods above are exact, they are also expen-
sive in both size and runtime. If we relax the need for an
exact solution, other approaches are available.
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Bitmap of hash values (Bloom filter). Instead of stor-
ing the hash table, Bloom filters combine the bitmap ap-
proach with hashing to keep track of the hashed values of
the dataset items [25]. However, the main problem of this
approach is that it requires a prior knowledge of the maxi-
mum expected cardinality to choose a good bitmap size.

Sampling. Another common general approach is sampling
to reduce the synopsis size. Various studies used this ap-
proach for cardinality estimation [13,18,22]. Obviously, F0 is
difficult to estimate from a sample of the dataset. Charikar
et al. presented powerful negative results for estimating F0

from a sample of a large table [8]: for every estimator based
on a small sample, there is a dataset where the ratio be-
tween the cardinality estimate and the exact cardinality is
arbitrarily large. I.e., if the estimator does not examine a
large fraction of the input data, there is no guarantee of low
error across all input distributions. These results match the
results obtained in [22, 23]. There, Haas et al. highlighted
that to bound the estimation error within a small constant,
almost all the dataset needs to be sampled. Therefore, we
can admit that any approach based on sampling is unable
to provide a good guaranteed error and we need to read the
entire dataset to determine an accurate estimation, , as we
show in the experimental section..

Observations in hash values. Another approach relies
on making observations on the hashed values of the input
multiset elements to reduce the size of synopses, such as
the length of a particular prefix in the binary representa-
tion of the hashed values. The observations are linked only
to cardinality and are independent of both replication and
order of the items in the dataset. These observations are
then used to infer an estimation F̂0 of the dataset cardinal-
ity. Most of the algorithms presented in this survey follow
this approach to estimate F0. More details are given in the
following section.

2.3 Classification
The backbone of most modern cardinality estimation al-

gorithms is the work of Flajolet and Martin in the mid-
1980’s [15]. For that reason, Gibbons in his survey for the
literature on distinct-values estimation has a separate family
of algorithms named Flajolet and Martin‘s Algorithms [19].
Under this family, he classified FM & PCSA [15], AMS [3],
and LogLog & SuperLogLog [11]. To understand the simi-
larity among the larger set of algorithms presented in this
survey, we present two more fine-grained previous classifi-
cations of cardinality estimation algorithms. In addition,
we provide a new classification that distinguishes the core
method of the algorithms. Table 1 gives a summary of these
algorithms and their class according to each classification.
We discuss them in detail in the following section.

The first classification is by Flajolet et al. [14]. The au-
thors classified algorithms in two categories corresponding
to the type of observations bit-pattern observables and order
statistic observables. In the first category, the hash values
are seen as bit-strings. The algorithms are based on the
occurrence of particular bit patterns at the binary string
representation of the dataset values. On the other hand,
the order statistic observable algorithms consider the hash
values as real numbers. The estimation is based on the order
statistics rather than on bit patterns in binary representa-
tions. The order statistic of rank k is the k-th-smallest value

in the dataset, which is not sensitive to the distribution of
repeated values. So, the minimum of the hashed values is
a good observable. The hash function distributes the hash
values uniformly in the interval [0-1]. The minimum of n
uniform random variables taking their values in [0-1] is an
estimate of 1/(n+ 1). So we are able to retrieve an approxi-
mation of n from this value. All the algorithms in our survey
belong to the first category except BJKST, MinCount, and
AKMV, which are associated with the second category. LC
and Bloom filter do not use any observable. The second clas-

Figure 1: Classification of F0 estimation algorithms [27].

sification is a high-level classification given by Metwally et
al. [27] (Figure 1). The authors distributed the algorithms
into two broad categories: Sampling algorithms and sketch-
based algorithms. The first category contains the algorithms
that take advantage of not scanning the entire dataset, but
estimate the cardinality by sampling (discussed in the pre-
vious section). Algorithms of the second category scan the
entire dataset once, hash the items, and create a sketch. The
sketch, also called synopsis, is queried later on to estimate
the cardinality.

Metwally et al. further classified the sketch-based algo-
rithms according to their hashing probabilities into logarith-
mic hashing and uniform hashing algorithms. The former
keeps track of the most uncommon element observed so far,
using a bitmap and a hash function. The hash function
maps each element to a bit in the bitmap with a hashing
probability that decreases exponentially as the bit signifi-
cance increases. FM, PCSA, AMS, LogLog, SuperLogLog,
HyperLogLog, and HyperLogLog++ are in this category of
the sketch-based algorithms. The insight of the latter class,
uniform hashing, is to employ a uniform hash function to
hash the entire dataset into an interval or a set of buck-
ets. Thus, this class comprises two classes: Interval-based
algorithms and Bucket-based algorithms. F0 is estimated
in the interval-based algorithms based on how packed the
interval is. But F0 is estimated based on the probability
that a bucket is (non)empty by the bucket-based algorithms.
BJKST, LC, and Bloom filter are examples of the bucket-
based category. AKMV and MinCount are members of the
interval-based class.

The first classification by Flajolet et al. [14] depends on
the observable which an estimation algorithm uses. The
second classification by Metwally et al. [27] is based on the
intuition of the algorithm and how it maps the hash values
to a bit in the bitmap. We added a third classification based
on the core method an algorithm uses to estimate F0, as ex-
plained in the next section.
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Table 1: Classifications of algorithms studied in this survey

Algorithm Ref. Year Observables [14] Intuition [27] Core method (Sec. 3)

FM [15] 1985 Bit-pattern Logarithmic hashing Count trailing 1s
PCSA [15] 1985 Bit-pattern Logarithmic hashing Count trailing 1s
AMS [3] 1996 Bit-pattern Logarithmic hashing Count leading 0s
BJKST [4] 2002 Order statistics Bucket-based Count leading 0s
LogLog [11] 2003 Bit-pattern Logarithmic hashing Count leading 0s
SuperLogLog [11] 2003 Bit-pattern Logarithmic hashing Count leading 0s
HyperLogLog [14] 2008 Bit-pattern (order statistics) Logarithmic hashing Count leading 0s
HyperLogLog++ [24] 2013 Bit-pattern Logarithmic hashing Count leading 0s
MinCount [21] 2005 Order statistics Interval-based k-th minimum value
AKMV [7] 2007 Order statistics Interval-based k-th minimum value
LC [32] 1990 No observable Bucket-based Linear synopses
BF [28] 2010 No observable Bucket-based Linear synopses

3. REVIEW OF TWELVE CARDINALITY
ESTIMATION ALGORITHMS

After introducing the motivation, the problem, and gen-
eral approaches to solve it, we provide an overview of con-
crete cardinality estimation algorithms and how they trade
the accuracy for runtime and memory consumption. Table 2
summarizes this section.

3.1 Trailing 1s algorithms
This algorithm family uses the number of trailing 1s in

the bit pattern observable’s bitmap as the core method to
estimate F0.

3.1.1 Flajolet and Martin (FM)
Flajolet and Martin designed the first algorithm to esti-

mate F0 in a single pass using less than one hundred bi-
nary words additional storage and only a few operations
per elements (what would nowadays be called a data stream
scenario) [15]. This algorithm, also known as probabilistic
counting, uses the observations approach. Flajolet and Mar-
tin observed that if a hash function h maps the elements into
uniformly distributed integers (binary strings y of length L)
over the range [0 . . . 2L−1], the pattern 0k1 . . . appears with
probability 1

2(k+1) .

They formalized this observable as a function ρ(y) that
represents the position of the least significant 1-bit in y, i.e.,
k if y > 0 and L otherwise. Then, they recorded these
observable values using a bitmap B initialized to all 0. All
items with same value set at random the same bit ρ(y) in
B to 1. After the algorithm scans the entire dataset, B is
independent of any duplication and B[i] = 1 if there are at

least 2(i+1) distinct values. If B[i + 1] is still 0, F0 is likely

greater than 2(i+1) but less than 2(i+2).
Therefore, Flajolet and Martin used R, the position of

least significant bit that was not flipped to 1 in the bitmap B
as an indicator of log2(ϕ ∗F0) with standard deviation close
to 1.12. In other words, R is the number of trailing 1s in B.
So the estimation F̂0 of the cardinality F0 is given by F̂0 =
2R/ϕ where ϕ = 0.77351 is a statistical correction factor. To
reduce the variance of R, the FM algorithm is improved to
take the average of m runs of the previous procedure using
a set of m hash functions to compute m bitmaps, i.e., F̂0 is

F̂FM0 = 2R/ϕ with R =
1

m
∗

m∑
i=1

Ri (3)

Hence, the standard error of the estimator is reduced by
a factor of O(

√
m) to become O(1/

√
m), yet CPU usage

per element processing is multiplied by m. FM’s accuracy
is directly proportional to the synopsis size namely to the
design parameter m. The size L of the bitmap is also an
important design parameter and depends on the maximum
cardinality Nmax to which we safely want to count up to,
and selected to be larger than log2(Nmax/m) + 4. However,
error analysis of the FM algorithm is based on the assump-
tion that explicit family of hash functions with some ideal
random properties is used.

3.1.2 Probabilistic counting with stochastic averag-
ing (PCSA)

In the same article, Flajolet and Martin pointed out that
the use of what is called stochastic averaging can achieve
the same effect as when using direct averaging in the FM
algorithm. The result was a new variant of the FM algo-
rithm called probabilistic counting with stochastic averaging
(PCSA) [15]. PCSA uses the same observable of FM but
reduces the processing time per element to O(1) as well as
reducing the synopsis size.

The intuition behind PCSA is to distribute the dataset
items into buckets hoping that F0/m items fall into each
bucket. Then, R as described in FM of each bucket should
be close to F0/m and the average of those values can be used
in the right hand side of the Equation (3) as R to derive a
reasonable approximation of F0/m.

This intuition is implemented using m bitmaps, one per
bucket, and a single hash function h that is used to dis-
tribute the dataset elements into one of the bitmaps. When
PCSA observes a new item x, the log2(m) least significant
bits of the binary representation of h(x) are used to deter-
mine the bitmap to be updated and the remaining bits are
used to find the observable ρ (same in FM), and then set
the corresponding bit to 1 within the previously determined
bitmap. So the estimation F̂0 of the cardinality F0 is given
by:

F̂PCSA0 = m ∗ 2R/ϕ (4)

where ϕ,L, the size of each bitmap, and R are identical to
those in FM algorithm. But since each bitmap has seen only
1/m of the total distinct values, we multiply by m. PCSA
has several advantages over FM: it reduces the cost of FM
by using a single hash function and increases the estimation
accuracy to an expected standard error of 0.78/

√
m.
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3.2 Leading 0s algorithms
This algorithm family uses the number of leading 0s in

the bit pattern observable’s bitmap as the core method to
estimate F0. But, the algorithms of this family do not main-
tain an actual bitmap. Instead they keep only the maximum
observable value which equals to the number of leading 0s
in the observable’s bitmap.

3.2.1 Alon, Martias and Szegedy (AMS)
Alon et al. provided the first theoretic definition and dis-

cussion of the frequent-moments statistics for approximate
counting [3]. In their work, they revise the FM algorithm as
a randomized algorithm for estimating F0 and adapt it into
the AMS algorithm. First, they argue that FM was designed
assuming an explicit family of ideal random hash functions
that could be unrealistic. In consequence, they proposed to
use linear hash functions instead. Second, AMS keeps us-
ing the same observable ρ(y). But it uses R, the position
of most significant bit flipped to 1 in the bitmap B, as an
indicator of log2(F0). In other words, R is the number of
leading 0s in B. The number of distinct values is likely to be
2r, if ρ(y) = r. Thus, after scanning the entire dataset, one
of the observable values hits ρ(y) ≥ log2F0. The maximum
value of ρ(y), namely R, is a good estimation of log2(F0).
AMS estimates F0 by:

F̂AMS
0 = 2R (5)

Finally, AMS does not use a bitmap to record the observ-
able values. Instead, it keeps track of only the maximum
observable value R. The authors proved that AMS guaran-
tees a ratio error of at most c with a probability of at least
1− 2

c
for any c > 2. Using m hash functions can further im-

prove the accuracy with the trade-off of increasing the space
and time linearly.

FM is still more accurate than AMS [19]. The least sig-
nificant 0-bit in B (R in FM and PCSA) is more accurate
than the most-significant 1-bit (R in AMS) to estimate F0.
The reason is that the bit that represents R in AMS can be
set by a single outlier hash value. As a result, AMS overesti-
mates F0 as 2R, especially when the bits preceding the most
significant bit are zeros. AMS and FM share the drawback
of performing m hashes for every element.

3.2.2 Bar-yossef, Jayram, Kumar, Sivakumar and Tre-
visan (BJKST)

Three theoretical algorithms for approximating F0 are
presented in [4]. We focus on the third algorithm, because
it is the most used and, in a sense, the best one. It is known
as the BJKST algorithm, an acronym of the authors last
names. This algorithm is an improvement of the work in [5]
based on AMS, unified with the Coordinated Sampling al-
gorithm presented by Gibbons and Tirthapura [20].

In essence, BJKST is based on AMS. It uses the same
function ρ(y), but does not simply keep track of the max-
imum value of ρ(y). Instead, it resembles the Coordinated
Sampling algorithm and uses a pairwise independent univer-
sal hash function h and a buffer B to estimate F0. The hash
function h guarantees that the probability of ρ(h(x)) ≥ r is
precisely 1/2r for any r ≥ 0 as stated in [3]. Thus, items
{x0, x2, . . . , xn} of the dataset can be assigned to a level
according to their ρ(h(xi)) values as following: half of the
items have a level equal to 1, a quarter of them have a level
equal to 2, and 1/2r have a level equal to r.

The buffer B initially stores all the elements scanned so
far and their level is at least Z = 0. Whenever the buffer
size is larger than a predefined threshold θ, the level Z is
increased by one and all the elements in B with a level of
less than Z are removed, and so on. Unlike the Coordinated
Sampling algorithm, BJKST stores pairs (g(xi), ρ(h(xi)))
instead of keeping the actual value of the element xi in order
to further improve the efficiency of the buffer. g is another
uniform pairwise independent hash function. These pairs
are stored in array of binary search trees where the j-th
entry contains all the pairs in level j.

After one pass over the dataset, BJKST finds the min-
imum level Z for which the buffer size does not exceed a
specific threshold θ. Also, it expects F0/2

r elements to be

in the level Z, i.e., |B| = F0/2
Z ≤ θ. Therefore, F̂0 is

F̂BJKST
0 = |B| ∗ 2Z (6)

BJKST can provide an (ε, δ) approximation scheme of F0,
when the output is the median of running O(log(1/δ)) par-
allel copies of the algorithm. Then, θ = 576/ε2 for any ε > 0
and 0 < δ ≤ 1

3
.

Both BJKST and Coordinated Sampling have the advan-
tages of keeping samples of the data that can be used later.
But BJKST improves the efficiency of the buffer, both in
space and processing time, as explained above.

3.2.3 LogLog
Durand and Flajolet introduced another AMS-based esti-

mator for F0, which uses only log2 log2(Nmax) of memory to
estimate cardinalities in range of millions with a relatively
high accuracy [11]. This LogLog algorithm uses PCSA’s in-
tuition to overcome the overestimation problem in AMS. It
improves space usage over PCSA by trading off the accuracy.

The algorithm uses m buckets B1, . . . , Bm to distribute
the dataset items over them. Then, LogLog uses the AMS
approach and maintains Ri for each bucket Bi. Each bucket
is responsible for about F0/m of the distinct elements. Thus,
the arithmetic mean R of R1, . . . , Rm is a good approxima-
tion of log2(F0/m). The LogLog estimator returns F̂0 with
a standard error ≈ 1.3/

√
m, as the following:

F̂LogLog
0 = αm ∗m ∗ 2R with R =

1

m
∗

m∑
i=1

Ri (7)

In a practical implementation, the correction factor αm =
0.39701 as soon as m ≥ 64.

Whenever a new element xj is scanned, the algorithm
uses the first k = log2(m) bits of the binary representation
of h(xj) to map the element xj to a bucket Bi. Then, it
updates Ri after comparing its value with ρ(h(xj)), after
ignoring the first k bits. Like AMS, LogLog maintains only
the value of the maximum Ri, and not a bit vector.

3.2.4 SuperLogLog
SuperLogLog is an optimization of LogLog algorithm [11];

Durand and Flajolet suggest two improvements. The first
one decreases the variance of the F̂0 around the mean, while
the second improves the space cost by bounding the size
of each Ri. To implement the improvements, SuperLogLog
uses two rules: the truncation rule and the restriction rule.

The truncation rule refers to discarding the largest 30%
of the estimates when averaging Ri to produce the final
estimate. In other words, SuperLogLog retains only the
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m0 = b0.7 ∗ mc smallest values to compute the truncated
sum

∑∗Ri. Thus, SuperLogLog estimates F0 by:

F̂ SuperLogLog
0 = α̃m ∗m0 ∗ 2R with R =

1

m0
∗
∑∗

Ri (8)

The modified statistical correction factor α̃m = 1.09295
minimizes the bias [27]. Empirically, this truncation in-
creases the accuracy and bounds the standard error of order
1.05/

√
m.

The restriction rule says that each Ri can be represented
using only dlog2dlog2 ∗ (Nmax

m
) + 3ee bits.

3.2.5 HyperLogLog
Flajolet et al. introduced HyperLogLog as a near-optimal

successor to LogLog [14]. HyperLogLog uses the same ob-
servable, ρ(y), as LogLog and also maintains the maximums
Ri. But, it reduces the estimation’s variance using har-
monic means to estimate F0 from the maximums Ri. Based
on the same intuition behind LogLog, the harmonic mean R
of 2R1 , . . . , 2Rm is close to F0/m. Therefore, HyperLogLog
returns an estimation of F0 as a normalized bias corrected
harmonic mean:

F̂HyperLogLog
0 = αm ∗m ∗R (9)

with

R =
m

1

2R1
+ . . .+ 1

2Rm

and αm is a bias correction factor where α16 = 0.673, α32 =
0.697, α64 = 0.709, and αm = 0.7213/(1 + 1.079/m) for
m ≥ 128.

The algorithm archives a standard error in the order of
1.04/

√
m. The authors’ practical results analysis shows that

the estimation of F0 maintains the theoretical standard error
in the range ] 5

2
∗m, 232

30
] for any m ∈ {24, . . . , 216}.

Two corrections are introduced to deal with the F̂HyperLogLog0

values that fall outside the specified range, either in the

small range (i.e., ≤ 5
2
∗m) or in the large range (i.e., > 232

30
).

The problem in small range is the presence of nonlinear dis-
tortions. The source of the bias is the high number V of
Ri = 0 in the harmonic mean when n is small compared
to m. The small range correction uses LC to estimate F0

from the maximums Ri when V > 0 as:

F̂HyperLogLog∗
0 = m ∗ log(m/V ) (10)

In the large range the cardinality is reaching 232, which
causes an increase in the hash collisions due to 32-bit hash
function used by HyperLogLog. So, the algorithm applies a
correction to the estimation and returns:

F̂HyperLogLog∗
0 = −232log(1− F̂HyperLogLog0 /232) (11)

Hence, HyperLogLog is a bit-pattern observable algorithm.
Yet, it can also be viewed as order statistics observable al-
gorithm, because 1/2Ri is an estimation of min(Bi) up to
a factor at most 2. The authors argue that HyperLogLog is
near optimal, because its estimation standard error is near
1/
√
m, the lower bound for accuracy achievable by order

statistics algorithms.

3.2.6 HyperLogLog++
HyperLogLog++ is a revision of the HyperLogLog algo-

rithm [24]. The authors suggest a series of changes to im-
prove the original algorithm’s estimation accuracy and re-
duce the space cost. The development of this algorithm was

driven by the need to accurately estimate cardinalities well
beyond 109, as well as small cardinalities and to efficiently
adapt memory usage to the cardinality. The authors present
three improvements, which can be applied together or inde-
pendently to fit the need of the application.

First, HyperLogLog++ uses a 64-bit hash function as a
replacement to the high range correction in the original al-
gorithm with low additional cost in memory. This increases
the size of each Ri by only one bit, but it enables to estimate
cardinalities approaching 264 before the hash collisions start
to increase.

Second, the authors experimentally found a bias correc-
tion method that works effectively up to n = 5 ∗m. They
estimate the bias of F0 from F̂0 using k-nearest neighbours
interpolation with the empirically determined values. They
further combine this bias correction of the estimation with
LC. LC is used to correct estimations that are lower than
θ, an empirically determined threshold.

Third, HyperLogLog++ develops a sparse representation
to avoid the cases where n � m and most of the Ri’s are
never used. This representation is identical to the one used
in BJKST, where the algorithm stores pairs (idx, ρ(y)). But,
HyperLogLog++ switches back to the original dense rep-
resentation whenever maintaining this list consumes more
memory than the original memory consumption. As a result,
the memory consumption is reduced for small cardinalities
with small runtime overhead to maintain the new represen-
tation. For more details on the concrete implementation of
the sparse representation, refer to [24].

3.3 K-th minimum value algorithms
This algorithm family uses order statistics as their observ-

able, specifically k-th minimum value.

3.3.1 MinCount
The MinCount algorithm was introduced by Giroire in [21]

as a generalization of the first algorithm presented in [4],
which is where also BJKST is introduced. Like the origi-
nal algorithm, MinCount is an interval-based algorithm that
uses the k-th minimum value order statistics observable (KMV)
to estimate the density of the interval, which is in turn used
to estimate F0. In other words, MinCount considers the
hashed values as a set of independent uniformly distributed
real numbers in the interval [0, 1] with repetitions, i.e., an

ideal multi-set É.
The algorithm’s main idea is that the first minimum of

É is an indication of 1
F0+1

. However, the inverse of this
minimum has an infinite expectation. MinCount avoids this
by using two new aspects: It combines M (k)(k ≥ 2) the k-th

minimum of É and a sub-linear function of 1/M (k), such as
its logarithm or square root, as a replacement of the first
minimum and its direct inverse alone.

Furthermore, MinCount reduces the standard error using
the stochastic averaging like in PCSA. So, the hashed val-
ues interval is divided into m buckets. A hash value h(x)
is mapped to the bucket i if i−1

m
≤ h(x) < i

m
. For each

bucket, the values M
(k)
i are maintained for i = 1, . . . ,m.

MinCount’s best estimate of F0 is using k = 3 and the log-
arithm function as follows:

F̂MinCount
0 = m ∗

(
Γ(k − 1

m
)

Γ(k)

)−m

∗ eR (12)
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with R = − 1

m
∗

m∑
i=1

lnM
(k)
i

where Γ is the Euler Gamma function. The standard error
of this estimation up to 1/

√
M using M = k ∗ m units of

storage.

3.3.2 AKMV
Beyer et al. also revised the first algorithm proposed in [4]

to introduce their unbiased version of F0 estimator based on
KMV order statistics [6, 7]. The authors provided several
estimators of F0 in two scenarios: (1) when the dataset con-
sists of only one partition, which is what we study in this
survey, and (2) when the dataset is split into partitions and
the estimation is obtained in parallel with the presence of
multi-set operations.

The original algorithm uses the k-th smallest hash value to
estimate K

F0
. Beyer et al. showed that the original estimator

overestimates F0 and it is biased upwards towards F0 [6].
To lower this bias, the AKMV estimator is given by:

F̂AKMV
0 = (k − 1)/M (k) (13)

where F0 > k, otherwise the algorithm finds the exact F0.
If F0 is expected to be large, the suitable synopsis size k can
be determined based on the error bounds. AKMV’s relative
error is bounded to

√
2

π(k−2)
.

For the second scenario, i.e., to support the multi-set op-
erations among the synopses of the partitions, the authors
introduce the AKMV synopsis and a corresponding F0 es-
timator, to estimate F0 of each partition as well as of the
whole dataset. In addition to the k minimum hash values,
AKMV maintains k counters. Each counter contains the
multiplicity of the corresponding element in the k minimum
hash values set. The F̂AKMV

0 estimator was generalized to
estimate F0 for compound partition created from disjoint
partitions by multi-set operations.

3.4 Linear synopses based estimators
The core method for estimating F0 for this algorithm fam-

ily is how packed or empty its linear synopsis is.

3.4.1 Linear Counting (LC)
Whang et al. present a probabilistic algorithm for esti-

mating the number of distinct values in a dataset called
Linear Counting (LC) [32]. This algorithm is a straight-
forward application of the bitmap of hash values approach.
LC maintains a bitmap B of size b, in which all entries are
initialised to 0.

LC is neither a logarithmic hashing algorithm nor a loga-
rithmic counting algorithm. In contrast, it is a linear count-
ing algorithm that applies a uniform hash function h to
each item from the dataset x. Then, h(x) maps the item
uniformly to a bucket in the bitmap and sets it to 1, i.e.,
B[h(x)] = 1 and the bucket is hit.

After hashing the entire dataset, if there were no collisions
the number of 1-bits in B would be F0. But F0 can be esti-
mated based on the probability that a bucket is empty. Vn
denotes the fraction of empty buckets in the bitmap and is a
good estimation of this probability. The expected probabil-
ity of a bucket being empty is given by e−n/b. As a result,
F0 is estimated using maximum likelihood estimator:

F̂LC0 = −b ∗ ln(Vn) (14)

The size b of the bitmap is defined in terms of a constant
called load factor t as b = F0/t. Whang et al.’s analysis re-

veals that using t ≤ 12 provides F̂0 with 1% standard error.
This fact reduces the synopsis by a factor of t. That leads
to the main limitation of LC: it needs some prior knowledge
of F0 to determine the size of B. Practically, the upper
bound of cardinality nmax is used when creating B instead
of F0. Thus, a linear space of order O(nmax) is the main
drawback of LC, when we have limited memory or datasets
of high cardinalities. Nevertheless, LC is a simple algorithm
that can provide a highly accurate estimation F̂0, if one
chooses the right load factor. The standard error of F̂LC

0 is√
(et − t− 1)/(t ∗ nmax).

3.4.2 Bloom filter (BF)
The main source of the algorithm LC’s estimation error

are hash collisions in the bitmap. Bloom filters can reduce
collisions using m independent hash functions. Unlike LC,
each element is mapped to a fixed number of bits ≤ m,
i.e., B[hi(x)] = 1. The standard Bloom filter is designed
to maintain the membership information rather than a sta-
tistical information about the underlying dataset. But one
can count the distinct elements in a multiset by combining a
Bloom filter with a counter, which is incremented whenever
an element is not in the filter. The value of the counter can
never be larger than the exact cardinality due to the Bloom
filter’s nature, but hash collisions can cause it to underesti-
mate F0.

Bloom filters have been used effectively for cardinality es-
timation. Like LC, Swamidass and Baldi introduced an es-
timator of the population of Bloom filter using X as the
number of bits set to 1 in the filter [31]. Intuitively, after
inserting all the elements of the dataset into a Bloom filter,
the number of elements in a Bloom filter is in fact F0 of the
represented dataset. Given a Bloom filter of the size b with
m hash functions, F0 can be estimated by:

F̂BF1
0 = − b

m
∗ ln(1−X/b) (15)

Papapetrou et al. proposed a probabilistic approach to
estimate F0 of a dataset from its standard Bloom filter rep-
resentation [28]. This approach estimates the number of
elements in a Bloom filter based on its density and requires
only X and the configuration of the Bloom filter (b and m).
They estimate F0 by the maximum likelihood value for the
number of hashed elements:

F̂BF2
0 =

ln(1−X/b)
m ∗ ln(1− 1/b)

(16)

Their evaluation results prove that the Bloom filter con-
figuration affects the estimation accuracy – larger Bloom fil-
ter provides higher estimation accuracy. Bloom filters with
fewer hash functions exhibit a more accurate cardinality es-
timation. Bloom filter shares with LC the same limitation
of the need of a prior knowledge of the maximum cardinality
in order to choose the suitable size of the filter.

Count-Min, not to be confused with MinCount, is a Bloom
filter-like sub-linear synopsis, which estimates the dataset
item’s frequencies [10]. Count-Min is not originally designed
to track the number of distinct values, but to solve problems
such as determining quantiles and heavy hitters. However,
Cormode pointed out that Count-Min sketches could be up-
dated using FM-like synopses to achieve this goal [9].
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Table 2: Error-guarantees of the twelve algorithms

Algorithm Error Notes

FM Std. err. = (1/
√
m) m: Number of hash functions

PCSA Std. err. = 0.78/
√
m m: Number of bitmaps

AMS Ratio err. < c with probability > 1− 2
c

c > 2

BJKST (ε, δ) Approximation Scheme Relative err. ε > 0 and 0 < δ ≤ 1
3

LogLog Std. err. = 1.3/
√
m m: Number of maximums Ri

SuperLogLog Std. err. = 1.05/
√
m m: Number of maximums Ri

HyperLogLog Std. err. = 1.04/
√
m m: Number of maximums Ri

HyperLogLog++ Smaller by factor 4 compared to HyperLogLog for car-
dinalities up to 12,000 [24].

Precision = 14
Sparse representation precision = 25

MinCount Std. err. = 1/
√
k ∗m k: order of the used minimum

m: Number of buckets

AKMV Relative err. ≈
√

2
π(k−2)

k: order of the used minimum

LC Std. err. =
√

(et − t− 1)/(t ∗ nmax) = 0.01
for t ≥ 12

t: load factor
nmax: Upper bound on n

BF Relative err. ≤ 0.04 [28] BF density = 0.9

To summarize, we presented an overview of the state-of-
the-art cardinality estimation algorithms. In the following
section, we compare the described algorithms and bench-
mark their accuracy, runtime, and memory consumption.
Table 2 summarizes the error guarantees of the algorithms
presented in this section.

4. COMPARATIVE EXPERIMENTS
Most of the algorithms presented in this survey are accom-

panied with a theoretical analysis of how well they estimate
F0 in terms of error and space bounds. Nevertheless, these
analyses suffer from some shortcomings. The O() notation
in space bounds hides the actual space used for maintaining
hash functions and data structures. Furthermore, there is
no unified error metric or hashing assumption among the
algorithms. To decide on a suitable algorithm for a given
use case one needs more information.

In this section we experimentally compare all twelve F0 es-
timation algorithms to analyze and better understand their
behavior using a unified error metric, available memory, and
hash function. First, we describe the experimental setup
and the implementation details. Then,we briefly evaluate
a sampling-based algorithm. Then, we compare the algo-
rithms’ accuracies among each other and per algorithm fam-
ily. Next, we study the correlation between runtime, ex-
act F0, and dataset size. Finally, we measure memory con-
sumption of these algorithms and report minimum memory
needed to run each algorithm.

4.1 Experimental setup

Hardware. We performed all experiments on a Dell Pow-
erEdge R620 server running CentOS 6.4. It has two Intel
Xeon E5-2650 (2.00 GHz, Octa-Core) processors, 128 GB
DDR3-1600 RAM and a 4 TB RAID-5 storage. We imple-
mented all algorithms as single-threaded Java applications
using OpenJDK 64-Bit Server VM 1.8.0 111-b15.

Implementations. To guarantee a unified test environ-
ment when comparing the twelve F0 estimation algorithms,
we implemented them for the Metanome data profiling frame-
work [29]. Metanome is a standard framework decoupled
from the algorithms. It provides basic functionalities, such

as input parsing and performance measurement1. In addi-
tion to various of discovery algorithms for complex meta-
data, such as keys or functional dependencies, Metanome
supports basic statistics algorithms, including F0 estima-
tion. To further unify our comparison we need to avoid the
significant impact of the used hash function on the runtime
and the estimation accuracy. Thus, we implemented all algo-
rithms using the same hash function, namely MurmurHash2.
We chose MurmurHash based on the results in [30], where
the authors showed that PCSA, LC, and LogLog yield the
fastest and most accurate F0 estimation when using Mur-
murHash compared to Jenkins, Modulo congruential hash,
SHA-1, and FNV.

The next implementation decision was whether to use a
64-bit or 32-bit version of MurmurHash. Nowadays, in the
era of “Big Data”, it is important to estimate cardinalities
of over 108. The algorithms based on an observable of the
hash values are limited by the number of bits used to rep-
resent these hash values. For linear synopses, using 64-bit
hash functions reduces collisions in the case of large data-
sets. As a result, we implement all algorithms using the
64-bit MurmurHash version. We made an exception of 32-
bits for AKMV and MinCount, because they both use the
k-minimums of the hashed values and using 64 bits adds an
overhead without improving the algorithms’ counting abil-
ity. We counted the exact value of F0 using the “JavaHash-
Set”. Unless stated otherwise, all algorithms were config-
ured to produce theoretical (standard/relative) errors of 1%
according to Table 2. LC and Bloom filter use the num-
ber of tuples in the dataset as nmax. Bloom filter is im-
plemented as a standard Bloom filter with four bits per ele-
ment and three hash functions to minimize the false positive
rate and preserve the membership test ability of the filter.
For a detailed experimental evaluation of the influence of
Bloom filter length, number of hash functions, and number
of blocks, on estimation accuracy, refer to [28]. Our re-
implementations, all datasets, and results are available on
our repeatability page3.

1www.metanome.de
2https://sites.google.com/site/murmurhash/
3https://hpi.de/naumann/projects/repeatability/
data-profiling.html
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Datasets. To benchmark the estimation accuracy and run-
time of the considered F0 estimation algorithms, we have run
them over real-world datasets as well as synthetic datasets.
The 90 synthetic datasets were generated by the Mersenne
Twister random number generator [26]. For each specific
cardinality, we generated ten independent datasets using
different seeds for each of them and report their average
runtime and estimation error. The exact cardinalities were
made to be the powers of 10, starting with 10 up to 109. We
always refer by dataset cardinality to the number of distinct
values in the dataset, while the dataset size is the overall
number of elements. Table 3 shows our real-world datasets,
selected based on tuple count, i.e., how large the dataset size
is, and the variety of columns cardinalities as illustrated in
Figure 2. NCVoter is a collection of North Carolinas voter
registration data4. We used the first 25 columns to per-
form experiments. The Openadresses dataset is a public
database connecting the geographical coordinates with their
postal addresses5. To avoid the possibly miss-leading results
caused by NULL semantics, all NULL values are discarded
by cardinality estimation algorithms and while determining
datasets size and exact cardinality (Figure 2).

Table 3: Real-world dataset characteristics

Dataset # Attributes # Tuples

NCVoter 25 (of 71) 7,560,886
Openadresses-Europe 11 93,849,474

Figure 2: Exact cardinality range of the real-world datasets
columns and corresponding column size.

Evaluation metrics. We allocate the same memory capac-
ity to all algorithms and evaluate their performance regard-
ing runtime and estimation accuracy. We use relative error
as the measure of estimation accuracy as described in Sec-
tion 2. The total time taken by an algorithm to process all
the data elements and estimate F0 is considered as its run-
time. Runtime and relative error of the real-world datasets
are averaged over ten runs using the same dataset. Run-
times and relative errors are averaged among ten synthetic
datasets for each specific cardinality.
4https://www.ncsbe.gov/data-statistics
5https://openaddresses.io/

4.2 Sampling-based experiments
Sampling has inherent difficulty to accurately estimate

the number of distinct values (Section 2.2). However, for
the sake of completeness, we briefly evaluated Guaranteed-
Error Estimator(GEE) [8] as an example of sampling-based
cardinality estimator. GEE estimates the number of dis-
tinct value based on values frequency within values that have
been sampled uniformly and randomly from a column or a
dataset. We used Reservoir sampling without replacement.
Table 4 shows the effect of different sampling rates on the
average GEE estimation error. In order to produce a car-
dinality estimation with 1% relative error, GEE needs to
sample more than 90% of the dataset. We also observed
that when GEE is applied to datasets with duplicated val-
ues, the estimation error is less. GEE runtime noticeably
increases with the size of the dataset, but only slightly with
the sampling rate. The main drawback of GEE is its mem-
ory consumption. A GEE synopsis consists of both sampled
values and their frequencies. GEE needs a minimum heap
size of at least 13 GByte and 35 GByte to guarantee an esti-
mation error below 1% on NCVoter and Openadress-Europe,
respectively.

Table 4: GEE average estimation relative error vs. sampling
rate

Dataset
Sampling rate

20% 40% 60% 80% 100%

Synthetic 0.54 0.43 0.4 0.2 0
NCVoter 0.26 0.19 0.17 0.07 0.00002

Openadresses 0.28 0.2 0.19 0.09 0.00001

4.3 Accuracy experiments
This section compares the accuracy of the twelve algo-

rithms and how they scale with the exact cardinalities of
the datasets. We limited the Java Virtual Machine (JVM)
to 100 GB and ran each algorithm on each dataset with run-
time limit of two hours. Figure 3 illustrates the change of
the algorithms’ relative error for each exact F0 of the input
dataset for synthetic and real datasets. The runtimes of this
experiment set are depicted in Figure 4, and are discussed
in the next section.

4.3.1 Accuracy comparison among all algorithms
For datasets with low number of distinct values (up to

1,000), all the logarithmic hashing algorithms that use stochas-
tic averaging as a method for accuracy boosting, namely
PCSA, LogLog, and SuperLogLog, extremely overesti-
mate F0. This effect is a consequence of stochastic average
magnification of estimation by m. From Table 2 we can tell
that as m increases, the upper bound of the standard error
of the over-all algorithm decreases. The accuracy of PCSA,
LogLog, and SuperLogLog increases up to this bound for
larger cardinalities. Still, the bias of PCSA is slightly less
than that of the others due to the use of trailing 1s of the
hash value binary strings as observable. Figure 3a clearly
shows this observation.

Overall, we see that all algorithms perform similarly well
for larger cardinalities. However, taking a closer look, Fig-
ure 3b makes it clear that AMS and MinCount perform
worse than the rest, even for large cardinalities. We are
aware that AMS has a high variance and is presented as
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(a) Synthetic datasets (b) Zoom of (a) up to 15 average relative
error

(c) Zoom of (b) up to 0.1 average relative
error

(d) Trailing 1s family over synthetic data-
sets

(e) Leading 0s family over synthetic datasets (f) K-th minimum value family over syn-
thetic datasets

(g) Linear synopses family over synthetic
datasets

(h) NCvoter (i) Openaddresses-Europe

Figure 3: Average relative error of the twelve F0 estimation algorithms and their families over 90 synthetic datasets and
real-world datasets

a theoretical algorithm. Our measurements show this vari-
ance in practice and show how the LogLog algorithm solved
this problem, at least for large cardinalities, using stochastic
averaging.

As is clear from Figure 3c, BJKST outperformed all the
other algorithms. The error guarantee of BJKST was even
better than the theoretical lower bounds (i.e., relative error
was always far less than 1%). The second best algorithm
after BJKST was Bloom filter with error measures close
to or equal to zero for most of the cardinality range. No-
ticeably, the relative error of Bloom filter is inversely pro-
portional to the exact cardinality of the dataset. In other
words, when the ratio of Bloom filter size over the dataset
cardinality is relatively low, the estimation accuracy is im-
proved until the point when the Bloom filter is full and the
error rises again. Obviously, this accuracy comes at a cost:

we analyze runtime in Section 4.4 and memory consumption
in Section 4.5.

In the third place was HyperLogLog++. It maintained
a good estimation accuracy with relative error below 0.008,
regardless how many distinct values the dataset has. The
bias correction implemented in HyperLogLog++ caused a
tangible enhancement in estimating the cardinalities of data-
sets with small F0. FM is a strong competitor of Hyper-
LogLog++, but it exceeded the two hour runtime limit for
datasets with F0 > 106.

According to experiments in [27], LC was the most ac-
curate F0 algorithm, beating LogLog, SuperLogLog, FM,
PCSA, MinCount, and BJKST. The authors studied the
accuracy change with only much smaller datasets and with
differing space usage, which is a different setting than in
our experiments, which uses different cardinalities. In fact,
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in our setting, LC also beat LogLog, SuperLogLog, PCSA,
and MinCount.

HyperLogLog provided a very good, and in particular
stable estimation. Its use of LC to estimate small cardi-
nalities explains the similarity of the behavior of Hyper-
LogLog and LC for F0 < 106. AKMV’s accuracy went
down steadily with the increase of the dataset cardinality.
In [7], the authors experimentally showed that AKMV is sig-
nificantly more accurate than SuperLogLog. Their measure-
ments went up to cardinalities of 107. In our experiments
we observe that AKMV loses this advantage for cardinali-
ties over 105 (but it remains to be more efficient than Su-
perLogLog). In contrast, PCSA, LogLog, and SuperLogLog
performed better for high cardinalities than for lower ones.

We also tested the accuracy of the twelve F0 estimation al-
gorithms on real-world datasets, as shown in Figures 3h and
3i. A very poor performance can be observed for PCSA,
LogLog, and SuperLogLog for columns with small cardinal-
ities on both datasets. More than half of the columns of the
NCVoter dataset, as well as only two of the Openaddresses-
Europe dataset have cardinalities below 1,000 (Figure 2).
So, overall we can draw the same conclusion as with our
experiments on synthetic datasets.

For the remaining columns of NCVoter, MinCount had
the highest average error around 0.5. All the other algo-
rithms provided a very good accuracy with average relative
error less than 0.02. The same observation is also valid on
Openaddresses-Europe.

4.3.2 Accuracy comparison per algorithm family
Because accuracy covered a very wide range of values, it

was not easy to compare all the algorithms together. To
extend our discussion to another perspective, this section
validates what we know about each family, discusses the ad-
vantages and disadvantages of its algorithms, and identifies
the most accurate candidate for each algorithm family. Fig-
ures 3d, 3e, 3f, and 3g show our findings.

As shown in Fig. 3d, in the trailing 1s family, FM is more
resilient to dataset cardinality than PCSA, but it is imprac-
tical respecting runtime as we show in the next section.

A remarkable variance concerning their accuracy change
among the leading 0s family algorithms is illustrated in
Figure 3e. The main disadvantage of this algorithm fam-
ily is that its algorithms are sensitive to hash value outliers
(LogLog substantiates this observation). Each algorithm en-
hances its accuracy by using a dedicated boosting method
to combine results from m instances of the algorithm or/and
correcting specific bias ranges experimentally. LogLog and
SuperLogLog use the stochastic averaging method. Hyper-
LogLog and HyperLogLog++ use harmonic means. Super-
LogLog and HyperLogLog++ add also a specific bias cor-
rection tuned by experimental observations, which explains
why they outperformed LogLog, and HyperLogLog, respec-
tively. Furthermore, we can conclude that using the har-
monic means method has an appreciable effect in reducing
the impact of hash-value outliers and in boosting the overall
estimation accuracy without adding a time overhead (Sec-
tion 4.4). Interestingly, BJKST is the best member of this
family, although it uses only a single instance of the algo-
rithm to overcome the problem of outliers with added cost
for maintaining samples of the original dataset.

AKMV from the K-th minimum value family is an-
other example of an algorithm using only one instance de-

feating other algorithms that combine results of a multiple
instances. MinCount is designed to use the stochastic aver-
aging method to step-up its accuracy. Still, the fairly sim-
ple algorithm AKMV is more accurate than MinCount, as
shown in Figure 3f.

As anticipated in the Linear synopses family, Bloom
filter beats LC due to their adoption of multiple hash func-
tions resulting in a lower hash collision rate (Figure 3g). An
expected consequence is that LC is faster than Bloom filter
as we show in the next section. Nevertheless, the previous
knowledge of maximum F0 in order to fairly tune these al-
gorithms is the drawback of this family.

4.4 Runtime behavior experiments
To compare the runtimes of the twelve algorithms, we

recorded the runtime of the accuracy experiments in the
previous section. We used a runtime limit of two hours. This
period was not enough to count exactly the distinct values of
the generated datasets with cardinalities above 109, nor for
the FM algorithm to finish: despite its high accuracy, FM
exceeded the time limit for datasets with F0 over 106, both
in synthetic and real-world datasets. Figure 4 represents in
log scale the runtimes for real-world and synthetic datasets.

General speaking, for the synthetic datasets the runtimes
of all algorithms scale quadratically with synthetic data-
set size (equals its cardinality here), FM being the slowest.
This observation is valid for the real-world datasets. All
twelve algorithms apply hashing on every single element of
the dataset, and hashing constitutes the majority of each
algorithm runtime. Accordingly, the runtime mainly de-
pends on the size of the dataset, not its cardinality. As
the synthetic datasets’ sizes are identical to their F0, the
correlation between dataset size and runtime is obvious. In
contrast, real-world dataset columns consist of duplicated
items and have different size within the same dataset due to
removal of null values. For example, more than half of the
elements in the tenth column of openaddresses-Europe are
nulls. Despite the high F0 value, this column has fewer ele-
ments than columns with a lower cardinality, explaining the
dip at around 107. Figure 4b shows a similar behavior for
the NCVoter dataset. Comparing it with NCVoter columns
size in Figure 2, we notice the influance of column size of
runtime of all algorithms.

In addition to dataset size, two factors have a significant
impact on runtime: the number of used hash functions and
the maintained data structures (synopsis type). The dis-
advantage of using m hash functions is noticeable in FM’s
runtime behavior. It is slower by a factor of two than all
other algorithms, regardless of input dataset cardinality, but
still follows the same influence of dataset size. The second
slowest algorithm is BJKST due to the overhead of keeping
samples of the dataset and using a second hash function in
order to comprise its synopsis. Our measurements revealed
that FM and BJKST were slower than counting the exact
F0 using a hash table, when the JVM heap size was limited
to 100 GB (i.e., large memory budget).

LC hashes each element from the dataset once, so it is
obviously faster than Bloom filter which uses several hash
functions. Both LC and Bloom filter need large synopses,
proportional to dataset size. Except FM, PCSA is the only
logarithmic hashing algorithm that keeps track of all the
observable values (i.e., ρ(y)), making it slightly slower.

In summary, all the rest of the algorithms ran in roughly
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(a) Synthetic datasets (b) NCvoter (c) Openaddresses-Europe

Figure 4: Runtime behavior of the twelve cardinality estimation algorithms on synthetic and real-world datasets

the same time without a critical difference. HyperLogLog++,
HyperLogLog, AKMV, and LC are the best algorithms in
terms of accuracy and runtime using a large memory budget.

4.5 Memory consumption experiments
In the previous experiments, we discussed the accuracy

and runtime behavior using a large memory budget (JVM
was limited to 100 GB). It is a key requirement for car-
dinality estimation to efficiently use all available memory.
In some cases, a dataset is so massive that count-distinct
queries could not be run within available memory. For ex-
ample, out-of-memory was the error of a non-negligible part
of count-distinct queries in the PowerDrill system [24]. In
other cases, such as stream processing, the available memory
is typically orders of magnitude smaller than the input [16].
Therefore, we evaluated the memory efficiency of the twelve
algorithms. We determined the heap size that was used by
each algorithm to estimate F0 of each dataset as precise and
fast as with large memory. We kept a runtime limit of two
hours and all algorithms configured to guarantee 1% esti-
mation error. We report the minimum heap size of ten runs
for each data point.

Figure 5: Memory consumption of the twelve cardinality
estimation algorithms on real-world datasets.

Among all algorithms, only the hash table required a lin-
ear (and thus unacceptable) memory consumption. All oth-
ers have a similar sub-linear behavior. Among those, BJKST
has the highest constant factor. We ran the same experi-

ments over real-world datasets and also observed an increase
in the constant factor in correlation with dataset size.

5. CONCLUSION & OUTLOOK
Efficiently estimating the number of distinct values in a

column, a dataset, or a stream is a widely studied problem.
We reviewed and discussed twelve of the most important al-
gorithms addressing this task. We have confirmed that some
preliminary solutions, such as sampling and hash tables, are
valid only when one can scale up the available computa-
tional resources. Both sampling and hash tables have the
disadvantages of linear memory consumption and quadratic
runtime with dataset size.

Our work has led us to conclude that none of the twelve
estimation algorithms is clearly the best for all datasets and
all scenarios. For a given accuracy, dataset size is obvi-
ously the main factor, affecting all the algorithms’s runtime
and memory consumption. We have categorized the algo-
rithms into four families: Count trailing 1s, Count leading
0s, k-th minimum value, and Linear synopses. We showed
that: FM, BJKST, AKMV, and Bloom filter are the best
among their families, respectively. However, FM needs an
extremely high runtime. BJKST and Bloom filter, on the
other hand, have a high memory consumption. But AKMV
survived for very large cardinalities with low memory con-
sumption and runtime. For datasets with expected small
cardinalities, PCSA, LogLog, SuperLogLog are not recom-
mended due to their overestimation problem. Finally, Hy-
perLogLog, AKMV, and LC are efficient over all cardinality
ranges by all means.

This study has investigated only single-threaded imple-
mentations of the algorithms. However, several algorithms
have characteristics that make them ready for paralleliza-
tion and distributed environments. We can divide them
into three categories: (1) Algorithms whose partial results
can be easily merged, such as PCSA, AMS, and all their
modifications. If the same hash function was used by all
threads/nodes, bit-wise OR-operation among their bitmaps
can lead to the same final bitmap of a single thread. (2) Al-
gorithms running several copies of the same algorithm or
use several hash functions to improve their accuracy, such as
FM, MinCount, and Bloom filters. These can be distributed
in a straightforward manner. (3) Algorithms allowing set
operations like intersections or unions, such as AKMV. In
conclusion, there is ample room for future work to evaluate
parallel implementations of these algorithms.
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