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ABSTRACT
Given a data setD containing millions of data points and a data con-
sumer who is willing to pay for $X to train a machine learning (ML)
model over D, how should we distribute this $X to each data point
to reflect its “value”? In this paper, we define the “relative value of
data” via the Shapley value, as it uniquely possesses properties with
appealing real-world interpretations, such as fairness, rationality
and decentralizability. For general, bounded utility functions, the
Shapley value is known to be challenging to compute: to get Shapley
values for all N data points, it requires O(2N ) model evaluations
for exact computation and O(N logN) for (ε, δ)-approximation.

In this paper, we focus on one popular family of ML models
relying on K-nearest neighbors (KNN). The most surprising result
is that for unweighted KNN classifiers and regressors, the Shapley
value of all N data points can be computed, exactly, in O(N logN)
time – an exponential improvement on computational complex-
ity! Moreover, for (ε, δ)-approximation, we are able to develop an
algorithm based on Locality Sensitive Hashing (LSH) with only
sublinear complexity O(Nh(ε,K) logN) when ε is not too small
and K is not too large. We empirically evaluate our algorithms on
up to 10 million data points and even our exact algorithm is up to
three orders of magnitude faster than the baseline approximation
algorithm. The LSH-based approximation algorithm can accelerate
the value calculation process even further.

We then extend our algorithm to other scenarios such as (1)
weighed KNN classifiers, (2) different data points are clustered
by different data curators, and (3) there are data analysts pro-
viding computation who also requires proper valuation. Some of
these extensions, although also being improved exponentially, are
less practical for exact computation (e.g., O(NK) complexity for
weigthed KNN). We thus propose an Monte Carlo approximation
algorithm, which is O(N(logN)2/(logK)2) times more efficient
than the baseline approximation algorithm.
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Figure 1: Motivating Example of Data Valuation.

1. INTRODUCTION
“Data is the new oil” — large-scale, high-quality datasets are an

enabler for business and scientific discovery and recent years have
witnessed the commoditization of data. In fact, there are not only
marketplaces providing access to data, e.g., IOTA [4], DAWEX [2],
Xignite [5], but also marketplaces charging for running (relational)
queries over the data, e.g., Google BigQuery [3]. Many researchers
start to envision marketplaces for ML models [12].

Data commoditization is highly likely to continue and not surpris-
ingly, it starts to attract interests from the database community. One
series of seminal work is conducted by Koutris et al. [33, 34] who
systematically studied the theory and practice of “query pricing,”
the problem of attaching value to running relational queries over
data. Recently, Chen et al. [11, 12] discussed “model pricing”, the
problem of valuing ML models. This paper is inspired by the prior
work on query and model pricing, but focuses on a different scenario.
In many real-world applications, the datasets that support queries
and ML are often contributed by multiple individuals. One example
is that complex ML tasks such as chatbot training often relies on
massive crowdsourcing efforts. A critical challenge for building
a data marketplace is thus to allocate the revenue generated from
queries and ML models fairly between different data contributors.
In this paper, we ask: How can we attach value to every single data
point in relative terms, with respect to a specific ML model trained
over the whole dataset?

Apart from being inspired by recent research, this paper is also
motivated by our current effort in building a data market based
on privacy-preserving machine learning [14, 28] and an ongoing
clinical trial at the Stanford Hospital, as illustrated in Figure 1.
In this clinical trial, each patient uploads their encrypted medical
record (one “data point”) onto a blockchain-backed data store. A
“data consumer”, or “buyer”, chooses a subset of patients (selected
according to some non-sensitive information that is not encrypted)
and trains a ML model. The buyer pays a certain amount of money
that will be distributed back to each patient. In this paper, we focus
on the data valuation problem that is abstracted from this real use
case and propose novel, practical algorithms for this problem.

1610



Figure 2: Time complexity for computing the SV forKNN mod-
els. N is the total number of training data points. M is the num-
ber of data contributors. h(ε,K) < 1 if K∗ = max{1/ε,K} <
C for some dataset-dependent constant C.
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Specifically, we focus on the Shapley value (SV), arguably one
of the most popular way of revenue sharing. It has been applied
to various applications, such as power grids [9], supply chains [8],
cloud computing [49], among others. The reason for its wide adop-
tion is that the SV defines a unique profit allocation scheme that
satisfies a set of appealing properties, such as fairness, rationality,
and decentralizability. Specifically, let D = {z1, ..., zN} be N data
points and ν(·) be the “utility” of the ML model trained over a
subset of the data points; the SV of a given data point zi is

si =
1

N

∑
S⊆D\zi

1(
N−1
|S|

)[ν(S ∪ {zi})− ν(S)
]

(1)

Intuitively, the SV measures the marginal improvement of utility
attributed to the data point zi, averaged over all possible subsets
of data points. Calculating exact SVs requires exponentially many
utility evaluations. This poses a radical challenge to using the SV
for data valuation–how can we compute the SV efficiently and scale
to millions or even billions of data points? This scale is rare to the
previous applications of the SV but is not uncommon for real-world
data valuation tasks.

To tackle this challenge, we focus on a specific family of ML mod-
els which restrict the class of utility functions ν(·) that we consider.
Specifically, we study K-nearest neighbors (KNN) classifiers [19],
a simple yet popular supervised learning method used in image
recognition [25], recommendation systems [6], healthcare [38], etc.
Given a test set, we focus on a natural utility function, called the
KNN utility, which, intuitively, measures the boost of the likelihood
that KNN assigns the correct label to each test data point. When
K = 1, this utility is the same as the test accuracy. Although some
of our techniques also apply to a broader class of utility functions
(See Section 4), the KNN utility is our main focus.
The contribution of this work is a collection of novel algorithms
for efficient data valuation within the above scope. Figure 2 sum-
marizes our technical results. Specifically, we made four technical
contributions:
Contribution 1: Data Valuation for KNN Classifiers.
The main challenge of adopting the SV for data valuation is its com-
putational complexity — for general, bounded utility functions, cal-
culating the SV requiresO(2N ) utility evaluations forN data points.
Even getting an (ε, δ)-approximation (error bounded by ε with prob-
ability at least 1− δ) for all data points requires O(N logN) utility
evaluations using state-of-the-art methods (See Section 2.2). For
the KNN utility, each utility evaluation requires to sort the training
data, which has asymptotic complexity O(N logN).
C1.1 Exact Computation We first propose a novel algorithm specif-
ically designed for KNN classifiers. We observe that the KNN
utility satisfies what we call the piecewise utility difference property:
the difference in the marginal contribution of two data points zi and
zj over has a “piecewise form” (See Section 3.1):

U(S ∪ {zi})− U(S ∪ {zj}) =
T∑
t=1

C
(t)
i,j 1[S ∈ St], ∀S ∈ D\{zi, zj}

Figure 3: Classification of data valuation problems.

where St ⊆ 2D\{zi,zj} and C(t)
i,j ∈ R. This combinatorial struc-

ture allows us to design a very efficient algorithm that only has
O(N logN) complexity for exact computation of SVs on allN data
points. This is an exponential improvement over theO(2NN logN)
baseline!
C1.2 Sublinear Approximation The exact computation requires
to sort the entire training set for each test point, thus becoming
time-consuming for large and high-dimensional datasets. Moreover,
in some applications such as document retrieval, test points could
arrive sequentially and the values of each training point needs to
get updated and accumulated on the fly, which makes it impossible
to complete sorting offline. Thus, we investigate whether higher
efficiency can be achieved by finding approximate SVs instead. We
study the problem of getting (ε, δ)-approximation of the SVs for
the KNN utility. This happens to be reducible to the problem of an-
swering approximate max{K, 1/ε}-nearest neighbor queries with
probability 1− δ. We designed a novel algorithm by taking advan-
tage of LSH, which only requires O(Nh(ε,K) logN) computation
where h(ε,K) is dataset-dependent and typically less than 1 when
ε is not too small and K is not too large.
Limitation of LSH The h(ε,K) term monotonically increases with
max{ 1

ε
,K}. In experiments, we found that the LSH can handle

mild error requirements (e.g., ε = 0.1) but appears to be less ef-
ficient than the exact calculation algorithm for stringent error re-
quirements. Moreover, we can extend the exact algorithm to cope
with KNN regressors and other scenarios detailed in Contribution
2; however, the application of the LSH-based approximation is still
confined to the classification case.

To our best knowledge, the above results are one of the very first
studies of efficient SV evaluation designed specifically for utilities
arising from ML applications.
Contribution 2: Extensions. Our second contribution is to
extend our results to different settings beyond a standard KNN
classifier and the KNN utility (Section 4). Specifically, we studied:
C2.1 Unweighted KNN regressors.
C2.2 Weighted KNN classifiers and regressors.
C2.3 One “data curator” contributes multiple data points and has
the freedom to delete all data points at the same time.
C2.4 One “data analyst” provides ML analytics and the system at-
taches value to both the analyst and data curators.

The connection between different settings are illustrated in Fig-
ure 3, where each vertical layer represents a different slicing to the
data valuation problem. In some of these scenarios, we success-
fully designed algorithms that are as efficient as the one for KNN
classifiers. In some other cases, including weigthed KNN and the
multiple-data-per-curator setup, the exact computation algorithm is
less practical although being improved exponentially.
Contribution 3: Improved Monte Carlo Approximation
for KNN. To further improve the efficiency in the less efficient
cases, we strengthen the sample complexity bound of the state-of-
the-art approximation algorithm, achieving anO(N log2 N/ log2 K)
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complexity improvement over the state-of-the-art. Our algorithm
requires in totalO(N/ε2 log2 K) computation and is often practical
for reasonable ε.
Contribution 4: Implementation and Evaluation. We
implement our algorithms and evaluate them on datasets up to ten
million data points. We observe that our exact SV calculation algo-
rithm can provide up to three orders of magnitude speed-up over
the state-of-the-art Monte Carlo approximation approach. With the
LSH-based approximation method, we can accelerate the SV cal-
culation even further by allowing approximation errors. The actual
performance improvement of the LSH-based method over the exact
algorithm depends the dataset as well as the error requirements. For
instance, on a 10M subset of the Yahoo Flickr Creative Commons
100M dataset, we observe that the LSH-based method can bring
another 4.6× speed-up.

Moreover, to our best knowledge, this work is also one of the first
papers to evaluate data valuation at scale. We make our datasets
publicly available and document our evaluation methodology in
details, with the hope to facilitate future research on data valuation.
Relationship with Our Previous Work. Unlike this work
which focuses on KNN, our previous work [29] considered some
generic properties of ML models, such as boundedness of the utility
functions, stability of the learning algorithms, etc, and studied their
implications for computing the SV. Also, the algorithms presented
in our previous work only produce approximation to the SV. When
the desired approximation error is small, these algorithms may still
incur considerable computational costs, thus not able to scale up to
large datasets. In contrast, this paper presents a scalable algorithm
that can calculate the exact SV for KNN.

The rest of this paper is organized as follows. We provide back-
ground information in Section 2, and present our efficient algorithms
for KNN classifiers in Section 3. We discuss the extensions in Sec-
tion 4 and propose a Monte Carlo approximation algorithm in Sec-
tion 5, which significantly boosts the efficiency for the extensions
that have less practical exact algorithms. We evaluate our approach
in Section 6. We discuss the integration with real-world applications
in Section 7 and present a survey of related work in Section 8. Due
to the space limit, we leave the appendix to the arXiv version of the
paper.

2. PRELIMINARIES
We present the setup of the data marketplace and introduce the

framework for data valuation based on the SV. We then discuss a
baseline algorithm to compute the SV.

2.1 Data Valuation based on the SV
We consider two types of agents that interact in a data market-

place: the sellers (or data curators) and the buyer. Sellers provide
training data instances, each of which is a pair of a feature vector
and the corresponding label. The buyer is interested in analyzing
the training dataset aggregated from various sellers and producing
an ML model, which can predict the labels for unseen features. The
buyer pays a certain amount of money which depends on the utility
of the ML model. Our goal is to distribute the payment fairly be-
tween the sellers. A natural way to tackle the question of revenue
allocation is to view ML as a cooperative game and model each
seller as a player. This game-theoretic viewpoint allows us to for-
mally characterize the “power” of each seller and in turn determine
their deserved share of the revenue. For ease of exposition, we
assume that each seller contributes one data instance in the training
set; later in Section 4, we will discuss the extension to the case
where a seller contributes multiple data instances.

Cooperative game theory studies the behaviors of coalitions
formed by game players. Formally, a cooperative game is defined by
a pair (I, ν), where I = {1, . . . , N} denotes the set of all players
and ν : 2N → R is the utility function, which maps each possible
coalition to a real number that describes the utility of a coalition, i.e.,
how much collective payoff a set of players can gain by forming the
coalition. One of the fundamental questions in cooperative game
theory is to characterize how important each player is to the overall
cooperation. The SV [46] is a classic method to distribute the total
gains generated by the coalition of all players. The SV of player
i with respect to the utility function ν is defined as the average
marginal contribution of i to coalition S over all S ⊆ I \ {i}:

s(ν, i) =
1

N

∑
S⊆I\{i}

1(
N−1
|S|

)[ν(S ∪ {i})− ν(S)
]

(2)

We suppress the dependency on ν when the utility is self-evident
and use si to represent the value allocated to player i.

The formula in (2) can also be stated in the equivalent form:

si =
1

N !

∑
π∈Π(I)

[
ν(Pπi ∪ {i})− ν(Pπi )

]
(3)

where π ∈ Π(I) is a permutation of players and Pπi is the set of
players which precede player i in π. Intuitively, imagine all players
join a coalition in a random order, and that every player i who
has joined receives the marginal contribution that his participation
would bring to those already in the coalition. To calculate si, we
average these contributions over all the possible orders.

Transforming these game theory concepts to data valuation, one
can think of the players as training data instances and the utility
function ν(S) as a performance measure of the model trained on the
set of training data S. The SV of each training point thus measures
its importance to learning a performant ML model. The following
desirable properties that the SV uniquely possesses motivate us to
adopt it for data valuation.
1. Group Rationality: The value of the entire training dataset is

completely distributed among all sellers, i.e., ν(I) =
∑
i∈I si.

2. Fairness: (1) Two sellers who are identical with respect to what
they contribute to a dataset’s utility should have the same value.
That is, if seller i and j are equivalent in the sense that ν(S ∪
{i}) = ν(S ∪ {j}), ∀S ⊆ I \ {i, j}, then si = sj . (2) Sellers
with zero marginal contributions to all subsets of the dataset
receive zero payoff, i.e., si = 0 if ν(S ∪ {i}) = 0 for all
S ⊆ I \ {i}.

3. Additivity: The values under multiple utilities sum up to the
value under a utility that is the sum of all these utilities: s(ν1, i)+
s(ν2, i) = s(ν1 + ν2, i) for i ∈ I .
The group rationality property states that any rational group of

sellers would expect to distribute the full yield of their coalition.
The fairness property requires that the names of the sellers play
no role in determining the value, which should be sensitive only
to how the utility function responds to the presence of a seller.
The additivity property facilitates efficient value calculation when
the ML model is used for multiple applications, each of which
is associated with a specific utility function. With additivity, one
can decompose a given utility function into an arbitrary sum of
utility functions and compute value shares separately, resulting in
transparency and decentralizability. The fact that the SV is the only
value division scheme that meets these desirable criteria, combined
with its flexibility to support different utility functions, leads us to
employ the SV to attribute the total gains generated from a dataset
to each seller.
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In addition to its theoretical soundness, our previous work [29]
empirically demonstrated that the SV also coincides with people’s
intuition of data value. For instance, noisy images tend to have lower
SVs than the high-fidelity ones; the training data whose distribution
is closer to the test data distribution tends to have higher SVs. These
empirical results further back up the use of the SV for data valuation.
For more details, we refer the readers to [29].

2.2 A Baseline Algorithm
One challenge of applying SV is its computational complex-

ity. Evaluating the exact SV using Eq. (2) involves computing the
marginal utility of every user to every coalition, which is O(2N ).
Such exponential computation is clearly impractical for valuating
a large number of training points. Even worse, in many ML tasks,
evaluating the utility function per se (e.g., testing accuracy) is com-
putationally expensive as it requires training a ML model. For large
datasets, the only feasible approach currently in the literature is
Monte Carlo (MC) sampling [40]. In this paper, we will use it as a
baseline for evaluation.

The central idea behind the baseline algorithm is to regard the SV
definition in (3) as the expectation of a training instance’s marginal
contribution over a random permutation and then use the sample
mean to approximate it. More specifically, let π be a random permu-
tation of I and each permutation has a probability of 1/N !. Consider
the random variable φi = ν(Pπi ∪ {i}) − ν(Pπi ). By (3), the SV
si is equal to E[φi]. Thus, ŝi = 1

T

∑T
t=1 ν(Pπti ∪ {i})− ν(Pπti )

is a consistent estimator of si, where πt be tth sample permutation
uniformly drawn from all possible permutations Π(I).

We say that ŝ ∈ RN is an (ε, δ)-approximation to the true SV
s = [s1, · · · , sN ]T ∈ RN if P [maxi |ŝi − si| ≤ ε] ≥ 1 − δ.
Let r be the range of utility differences φi. By applying the Ho-
effding’s inequality, [41] shows that for general, bounded utility
functions, the number of permutations T needed to achieve an
(ε, δ)-approximation is r2

2ε2
log 2N

δ
. For each permutation, the base-

line algorithm evaluates the utility function for N times in order to
compute the SV for N training instances; therefore, the total utility
evaluations involved in the baseline approach is O(N logN). In
general, evaluating ν(S) in the ML context requires to re-train the
model on the subset S of the training data. Therefore, despite its
improvements over the exact SV calculation, the baseline algorithm
is not efficient for large datasets.

Take the KNN classifier as an example and assume that ν(·) rep-
resents the testing accuracy of the classifier. Then, evaluating ν(S)
needs to sort the training data in S according to their distances to the
test point, which has O(|S| log |S|) complexity. Since on average
|S| = N/2, the asymptotic complexity of calculating the SV for a
KNN classifier via the baseline algorithm is O(N2 log2 N), which
is prohibitive for large-scale datasets. In the sequel, we will show
that it is indeed possible to develop much more efficient algorithms
to compute the SV by leveraging the locality of KNN models.

3. VALUING DATA FOR KNN CLASSIFIERS
In this section, we present an algorithm that can calculate the

exact SV for KNN classifiers in quasi-linear time. Further, we
exhibit an approximate algorithm based on LSH that could achieve
sublinear complexity.

3.1 Exact SV Calculation
KNN algorithms are popular supervised learning methods, widely

adopted in a multitude of applications such as computer vision, in-
formation retrieval, etc. Suppose the dataset D consisting of pairs
(x1, y1), (x2, y2), . . ., (xN , yN ) taking values in X × Y , where X
is the feature space and Y is the label space. Depending on whether

the nearest neighbor algorithm is used for classification or regres-
sion, Y is either discrete or continuous. The training phase of KNN
consists only of storing the features and labels in D. The testing
phase is aimed at finding the label for a given query (or test) feature.
This is done by searching for the K training features most similar
to the query feature and assigning a label to the query according to
the labels of its K nearest neighbors. Given a single testing point
xtest with the label ytest, the simplest, unweighted version of a KNN
classifier first finds the top-K training points (xα1 , · · · , xαK ) that
are most similar to xtest and outputs the probability of xtest taking
the label ytest as P [xtest → ytest] = 1

K

∑K
k=1 1[yαk = ytest], where

αk is the index of the kth nearest neighbor.
One natural way to define the utility of a KNN classifier is by the

likelihood of the right label:

ν(S) =
1

K

min{K,|S|}∑
k=1

1[yαk(S) = ytest] (4)

where αk(S) represents the index of the training feature that is kth
closest to xtest among the training examples in S. Specifically, αk(I)
is abbreviated to αk.

Using this utility function, we can derive an efficient, but exact
way of computing the SV.

THEOREM 1. Consider the utility function in (4). Then, the SV
of each training point can be calculated recursively as follows:

sαN =
1[yαN = ytest]

N
(5)

sαi = sαi+1+
1[yαi = ytest]− 1[yαi+1 = ytest]

K

min{K, i}
i

(6)

Note that the above result for a single test point can be readily
extended to the multiple-test-point case, in which the utility function
is defined by

ν(S) =
1

Ntest

Ntest∑
j=1

1

K

min{K,|S|}∑
k=1

1[y
α
(j)
k

(S)
= ytest,j ] (7)

where α(j)
k (S) is the index of the kth nearest neighbor in S to

xtest,j . By the additivity property, the SV for multiple test points
is the average of the SV for every single test point. The pseudo-
code for calculating the SV for an unweighted KNN classifier is
summarized in the appendix. The computational complexity is
only O(N logNNtest) for N training data points and Ntest test data
points—this is simply to sort Ntest arrays of N numbers!

The proof of Theorem 1 relies on the following lemma, which
states that the difference in the utility gain induced by either point i
or point j translates linearly to the difference in the respective SVs.

LEMMA 1. For any i, j ∈ I , the difference in SVs between i
and j is

si − sj =
1

N − 1

∑
S⊆I\{i,j}

ν(S ∪ {i})− ν(S ∪ {j})(
N−2
|S|

) (8)

PROOF OF THEOREM 1. W.l.o.g., we assume that x1, . . . , xn
are sorted according to their similarity to xtest, that is, xi = xαi .
For any given subset S ⊆ I \ {i, i+ 1} of size k, we split the
subset into two disjoint sets S1 and S2 such that S = S1 ∪ S2 and
|S1|+ |S2| = |S| = k. Given two neighboring points with indices
i, i+ 1 ∈ I , we constrain S1 and S2 to S1 ⊆ {1, ..., i− 1} and
S2 ⊆ {i+ 2, ..., N}.

Let si be the SV of data point xi. By Lemma 1, we can draw
conclusions about the SV difference si − si+1 by inspecting the
utility difference ν(S ∪ {i}) − ν(S ∪ {i + 1}) for any S ⊆ I \
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{i, i+ 1}. We analyze ν(S ∪{i})−ν(S ∪{i+ 1}) by considering
the following cases.

(1) |S1| ≥ K. In this case, we know that i, i + 1 > K and
therefore ν(S ∪ {i}) = ν(S ∪ {i + 1}) = ν(S), hence ν(S ∪
{i})− ν(S ∪ {i+ 1}) = 0.

(2) |S1| < K. In this case, we know that i ≤ K and therefore
ν(S ∪ {i})− ν(S) might be nonzero. Note that including a point
i into S can only expel the Kth nearest neighbor from the original
set of K nearest neighbors. Thus, ν(S ∪{i})− ν(S) = 1

K
(1[yi =

ytest] − 1[yK = ytest]). The same hold for the inclusion of point
i+1: ν(S∪{i+1})−ν(S) = 1

K
(1[yi+1 = ytest]−1[yK = ytest]).

Combining the two equations, we have

ν(S ∪ {i})− ν(S ∪ {i+ 1}) =
1[yi = ytest]− 1[yi+1 = ytest]

K

Combining the two cases discussed above and applying Lemma 1,
we have

si − si+1

=
1

N − 1

N−2∑
k=0

1(
N−2
k

) ∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:

|S1|+|S2|=k,|S1|<K

1[yi = ytest]− 1[yi+1 = ytest]

K

=
1[yi = ytest]− 1[yi+1 = ytest]

K

× 1

N − 1

N−2∑
k=0

1(
N−2
k

) min(K−1,k)∑
m=0

(
i− 1

m

)(
N − i− 1

k −m

)
(9)

The sum of binomial coefficients in (9) can be simplified as follows:

N−2∑
k=0

1(
N−2
k

) min{K−1,k}∑
m=0

(
i− 1

m

)(
N − i− 1

k −m

)
(10)

=

min{K−1,i−1}∑
m=0

N−i−1∑
k′=0

(
i−1
m

)(
N−i−1
k′

)(
N−2
m+k′

) (11)

=
min{K, i}(N − 1)

i
(12)

where the first equality is due to the exchange of the inner and outer
summation and the second one is by taking v = N − i − 1 and

u = i− 1 in the binomial identity
∑v
j=0

(ui)(
v
j)

(u+vi+j )
= u+v+1

v+1
.

Therefore, we have the following recursion

si − si+1 =
1[yi = ytest]− 1[yi+1 = ytest]

K

min{K, i}
i

(13)

Now, we analyze the formula for sN , the starting point of the
recursion. Since xN is farthest to xtest among all training points,
xN results in non-zero marginal utility only when it is added to the
subsets of size smaller than K. Hence, sN can be written as

sN =
1

N

K−1∑
k=0

1(
N−1
k

) ∑
|S|=k,S⊆I\{N}

ν(S ∪N)− ν(S) (14)

=
1

N

K−1∑
k=0

1(
N−1
k

) ∑
|S|=k,S⊆I\{N}

1[yN = ytest]

K
(15)

=
1[yN = ytest]

N
(16)

3.2 LSH-based Approximation
The exact calculation of the KNN SV for a query instance re-

quires to sort the entire training dataset, and has computation com-
plexity O(Ntest(Nd + N log(N))), where d is the feature dimen-
sion. Thus, the exact method becomes expensive for large and
high-dimensional datasets. We now present a sublinear algorithm to
approximate the KNN SV for classification tasks.

The key to boosting efficiency is to realize that only O(1/ε)
nearest neighbors are needed to estimate the KNN SV with up to ε
error. Therefore, we can avert the need of sorting the entire database
for every new query point.

THEOREM 2. Consider the utility function defined in (4). Con-
sider {ŝi}Ni=1 defined recursively by

ŝαi = 0 if i ≥ K∗ (17)

ŝαi = ŝαi+1 +
1[yαi = ytest]− 1[yαi+1 = ytest]

K

min{K, i}
i

if i ≤ K∗ − 1 (18)

where K∗ = max{K, d1/εe} for some ε > 0. Then, [ŝα1 ,. . .,
ŝαN ] is an (ε, 0)-approximation to the true SV [sα1 ,. . ., sαN ] and
ŝi − ŝi+1 = si − si+1 for i ≤ K∗ − 1.

Theorem 2 indicates that we only need to find max{K, d1/εe}(,
K∗) nearest neighbors to obtain an (ε, 0)-approximation. Moreover,
since ŝi − ŝi+1 = si − si+1 for i ≤ K∗ − 1, the approximation
retains the original value rank for K∗ nearest neighbors.

The question on how to efficiently retrieve nearest neighbors
to a query in large-scale databases has been studied extensively
in the past decade. Various techniques, such as the kd-tree [43],
LSH [15], have been proposed to find approximate nearest neighbors.
Although all of these techniques can potentially help improve the
efficiency of the data valuation algorithms for KNN, we focus
on LSH in this paper, as it was experimentally shown to achieve
large speedup over several tree-based data structures [15, 22, 23].
In LSH, every training instance x is converted into codes in each
hash table by using a series of hash functions hj(x), j = 1, . . . ,m.
Each hash function is designed to preserve the relative distance
between different training instances; similar instances have the
same hashed value with high probability. Various hash functions
have been proposed to approximate KNN under different distance
metrics [10,15]. We will focus on the distance measured in l2 norm;
in that case, a commonly used hash function is h(x) =

⌊
wT x+b

r

⌋
,

wherew is a vector with entries sampled from a p-stable distribution,
and b is uniformly chosen from the range [0, r]. It is shown in [15]:

P [h(xi) = h(xtest)] = fh(‖xi − xtest‖2) (19)

where the function fh(c) =
∫ r

0
1
c
f2( z

c
)(1− z

r
)dz is a monotonically

decreasing with c. Here, f2 is the probability density function of the
absolute value of a 2-stable random variable.

We now present a theorem which relates the success rate of finding
approximate nearest neighbors to the intrinsic property of the dataset
and the parameters of LSH.

THEOREM 3. LSH with O(d log(N)Ng(CK) log K
δ

) time com-
plexity,O(Nd+Ng(CK)+1 log K

δ
) space complexity, andO(Ng(CK)

log K
δ

) hash tables can find the exact K nearest neighbors with
probability 1 − δ, where g(CK) = log fh(1/CK)/ log fh(1) is
a monotonically decreasing function. CK = Dmean/DK , where
Dmean is the expected distance of a random training instance to a
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query xtest and DK is the expected distance between xtest to its Kth
nearest neighbor denoted by xαi(xtest), i.e.,

Dmean = Ex,xtest [D(x, xtest)] (20)
DK = Extest [D(xαi(xtest), xtest] (21)

The above theorem essentially extends the 1NN hardness analysis
in Theorem 3.1 of [26] to KNN. CK measures the ratio between
the distance from a query instance to a random training instance and
that to its Kth nearest neighbor. We will hereinafter refer to CK
as Kth relative contrast. Intuitively, CK signifies the difficulty of
finding the Kth nearest neighbor. A smaller CK implies that some
random training instances are likely to have the same hashed value
as theKth nearest neighbor, thus entailing a high computational cost
to differentiate the true nearest neighbors from the false positives.
Theorem 3 shows that among the datasets of the same size, the
one with higher relative contrast will need lower time and space
complexity and fewer hash tables to approximate the K nearest
neighbors. Combining Theorem 2 and Theorem 3, we obtain the
following theorem that explicates the tradeoff between KNN SV
approximation errors and computational complexity.

THEOREM 4. Consider the utility function defined in (7). Let
x̂
α
(j)
k

denote the kth closest training point to xtest,j output by LSH

withO(Ntestd log(N)Ng(CK∗)logNtestK
∗

δ
) time complexity,O(Nd+

Ng(CK∗)+1logNtestK
∗

δ
) space complexity, andO(Ng(CK∗)logNtestK

∗

δ
)

hash tables, where K∗ = max(K, d1/εe). Suppose that {ŝi}Ni=1 is
computed via ŝi = 1

Ntest

∑Ntest
j=1 ŝi,j and ŝi,j (j = 1, . . . , Ntest) are

defined recursively by

ŝ
α
(j)
i ,j

= 0 if i ≥ K∗ (22)

ŝ
α
(j)
i ,j

= ŝ
α
(j)
i+1,j

if i ≤ K∗ − 1

+
1[ŷ

α
(j)
i

= ytest,j ]− 1[ŷ
α
(j)
i+1

= ytest,j ]

K

min{K, i}
i

(23)

where ŷ
α
(j)
i

and ytest,j are the labels associated with x̂
α
(j)
i

and

xtest,j, respectively. Let the true SV of x̂αk be denoted by sαi .
Then, [ŝα1 , . . . , ŝαN ] is an (ε, δ)-approximation to the true SV
[sα1 , . . . , sαN ].

The gist of the LSH-based approximation is to focus only on the SV
of the retrieved nearest neighbors and neglect the values of the rest
of the training points since their values are small enough. For a error
requirement ε not too small such that CK∗ > 1, the LSH-based
approximation has sublinear time complexity, thus enjoying higher
efficiency than the exact algorithm.

4. EXTENSIONS
We extend the exact algorithm for unweighted KNN to other

settings. Specifically, as illustrated by Figure 3, we categorize a data
valuation problem according to whether data contributors are valued
in tandem with a data analyst; whether each data contributor pro-
vides a single data instance or multiple ones; whether the underlying
ML model is a weighted KNN or unweighted; and whether the
model solves a regression or a classification task. We will discuss
the valuation algorithm for each of the above settings.

Unweighted KNN Regression. For regression tasks, we de-
fine the utility function by the negative mean square error of an

unweighted KNN regressor:

U(S) = −
(

1

K

min{K,|S|}∑
k=1

yαk(S) − ytest

)2

(24)

Using similar proof techniques to Theorem 1, we provide a sim-
ple iterative procedure to compute the SV for unweighted KNN
regression in the appendix.

Weighted KNN. A weightedKNN estimate produced by a train-
ing set S can be expressed as ŷ(S) =

∑min{K,|S|}
k=1 wαk(S)yαk ,

where wαk(S) is the weight associated with the kth nearest neighbor
in S. The weight assigned to a neighbor in the weighted KNN
estimate often varies with the neighbor-to-test distance so that the
evidence from more nearby neighbors is weighted more heavily [19].
Correspondingly, we define the utility function associated with
weighted KNN classification and regression tasks as

U(S) =

min{K,|S|}∑
k=1

wαk(S)1[yαk(S) = ytest] (25)

and

U(S) = −
(min{K,|S|}∑

k=1

wαk(S)yαk(S) − ytest

)2

. (26)

Figure 4: Illustration of the
idea to compute the SV for
weighted KNN.

For weighted KNN classifi-
cation and regression, the SV
can no longer be computed ex-
actly in O(N logN) time. In
the appendix, we present a the-
orem showing that it is how-
ever possible to compute the
exact SV for weighted KNN
in O(NK) time. The right fig-
ure illustrates the origin of the
polynomial complexity result.
When applying (2) to KNN,
we only need to focus on the
subsets whose utility might be affected by the addition of ith training
instance. Since there are onlyNK possible distinctive combinations
for K nearest neighbors, the number of distinct utility values for all
S ⊆ I is upper bounded by NK .

Multiple Data Per Contributor. We now study the case where
each seller provides more than one data instance. The goal is to
fairly value individual sellers in lieu of individual training points.
In the appendix, we show that for both unweighted/weighted classi-
fiers/regressors, the complexity for computing the SV of each seller
is O(MK), where M is the number of sellers. Particularly, when
K = 1, even though each seller can provision multiple instances,
the utility function only depends on the training point that is near-
est to the query point. Thus, for 1NN, the problem of computing
the multi-data-per-seller KNN SV reduces to the single-data-per-
seller case; thus, the corresponding computational complexity is
O(M logM).

Valuing Computation. Oftentimes, the buyer may outsource
data analytics to a third party, which we call the analyst through-
out the rest of the paper. The analyst analyzes the training dataset
aggregated from different sellers and returns an ML model to the
buyer. In this process, the analyst contributes various computation
efforts, which may include intellectual property pertaining to data
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anlytics, usage of computing infrastructure, among others. Here, we
want to address the problem of appraising both sellers (data con-
tributors) and analysts (computation contributors) within a unified
game-theoretic framework.

Firstly, we extend the game-theoretic framework for data valu-
ation to model the interplay between data and computation. The
resultant game is termed a composite game. By contrast, the game
discussed previously which involves only the sellers is termed a
data-only game. In the composite game, there are M + 1 players,
consisting of M sellers denoted by Is and one analyst denoted by
C. We can express the utility function νc associated with the game
in terms of the utility function ν in the data-only game as follows.
Since in the case of outsourced analytics, both contributions from
data sellers and data analysts are necessary for building models, the
value of a set S ⊆ Is ∪ {C} in the composite game is zero if S
only contains the sellers or the analyst; otherwise, it is equal to ν
evaluated on all the sellers in S. Formally, we define the utility
function νc by

νc(S) =

{
0, if S = {C} or S ⊆ Is
ν(S \ {C}), otherwise (27)

The goal in the composite game is to allocate νc({Is, C}) to the
individual sellers and the analyst. s(νc, i) and s(νc, C) represent
the value received by seller i and the analyst, respectively. We
suppress the dependency of s on the utility function whenever it is
self-evident, denoting the value allocated to seller i and the analyst
by si and sc, respectively.

In the appendix, we show that one can compute the SV for both
the sellers and the analyst with the same computational complexity
as the one needed for the data-only game.

Comments on the Proof Techniques. We have shown that
we can circumvent the exponential complexity for computing the
SV for a standard unweighted KNN classifier and its extensions. A
natural question is whether it is possible to abstract the commonality
of these cases and provide a general property of the utility function
that one can exploit to derive efficient algorithms.

Suppose that some group of S’s induce the same ν(S ∪ {i})−
ν(S ∪ {j}) and there only exists T number of such groups. More
formally, consider that ν(S ∪{i})− ν(S ∪{j}) can be represented
by a “piecewise” form:

ν(S ∪ {i})− ν(S ∪ {j}) =

T∑
t=1

C
(t)
ij 1[S ∈ St] (28)

where St ⊆ 2I\{i,j} and C(t)
i,j ∈ R is a constant associated with tth

“group.” An application of Lemma 1 to the utility functions with the
piecewise utility difference form indicates that the SV difference
between i and j is

si − sj =
1

N − 1

∑
S⊆I\{i,j}

T∑
t=1

C
(t)
ij(

N−2
|S|

)1[S ∈ St] (29)

=
1

N − 1

T∑
t=1

C
(t)
ij

[N−2∑
k=0

|{S : S ∈ St, |S| = k}|(
N−2
k

) ]
(30)

With the piecewise property (28), the SV calculation is reduced to
a counting problem. As long as the quantity in the bracket of (30)
can be efficiently evaluated, the SV difference between any pair of
training points can be computed in O(TN).

Indeed, one can verify that the utility function for unweighted
KNN classification, regression and weighted KNN have the afore-
mentioned “piecewise” utility difference property with T = 1, N −

1,
∑K
k=0

(
N−2
k

)
, respectively. More details can be found in the

appendix.

5. IMPROVED MC APPROXIMATION
As discussed previously, the SV for unweighted KNN classifi-

cation and regression can be computed exactly with O(N logN)
complexity. However, for the variants including the weighted KNN
and multiple-data-per-seller KNN, the complexity to compute the
exact SV is O(NK) and O(MK), respectively, which are clearly
not scalable. We propose a more efficient way to evaluate the SV
up to provable approximation errors, which modifies the existing
MC algorithm presented in Section 2.2. By exploiting the locality
property of the KNN-type algorithms, we propose a tighter upper
bound on the number of permutations for a given approximation
error and exhibit a novel implementation of the algorithm using
efficient data structures.

The existing sample complexity bound is based on Hoeffding’s
inequality, which bounds the number of permutations needed in
terms of the range of utility difference φi. This bound is not always
optimal as it depends on the extremal values that a random variable
can take and thus accounts for the worst case. For KNN, the utility
does not change after adding training instance i for many subsets;
therefore, the variance of φi is much smaller than its range. This
inspires us to use Bennett’s inequality, which bounds the sample
complexity in terms of the variance of a random variable and often
results in a much tighter bound than Hoeffding’s inequality.

THEOREM 5. Given the range [−r, r] of the utility difference φi,
an error bound ε, and a confidence 1− δ, the sample size required
such that

P [‖ŝ− s‖∞ ≥ ε] ≤ δ

is T ≥ T ∗. T ∗ is the solution of

N∑
i=1

exp(−T ∗(1− q2
i )h(

ε

(1− q2
i )r

)) = δ/2. (31)

where h(u) = (1 + u) log(1 + u)− u and

qi =

{
0, i = 1, . . . ,K
i−K
i
, i = K + 1, . . . , N

(32)

Given ε, δ, and r, the required permutation size T ∗ derived from
Bennett’s bound can be computed numerically. For general utility
functions the range r of the utility difference is twice the range of
the utility function, while for the special case of the unweighted
KNN classifier, r = 1

K
.

Although determining exact T ∗ requires numerical calculation,
we can nevertheless gain insights into the relationship between N ,
ε, δ and T ∗ through some approximation. We leave the detailed
derivation to the appendix, but it is often reasonable to use the
following T̃ as an approximation of T ∗:

T̃ ≥ r2

ε2
log

2K

δ
(33)

The sample complexity bound derived above does not change with
N . On the one hand, a larger training data size implies more un-
known SVs to be estimated, thus requiring more random permuta-
tions. On the other hand, the variance of the SV across all training
data decreases with the training data size, because an increasing
proportion of training points makes insignificant contributions to the
query result and results in small SVs. These two opposite driving
forces make the required permutation size about the same across all
training data sizes.
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Algorithm 1: Improved MC Approach
input :Training set -D = {(xi, yi)}Ni=1, utility function ν(·), the number

of measurements -M , the number of permutations - T
output :The SV of each training point - ŝ ∈ RN

1 for t← 1 to T do
2 πt ← GenerateUniformRandomPermutation(D);
3 Initialize a length-K max-heapH to maintain theKNN;
4 for i← 1 toN do
5 Insert πt,i toH;
6 ifH changes then
7 φtπt,i

← ν(πt,1:i)− ν(πt,1:i−1);

8 else
9 φtπt,i

← φtπt,i−1
;

10 end
11 end
12 end
13 ŝi =

1
T

∑T
t=1 φ

t
i for i = 1, . . . , N ;

The algorithm for the improved MC approximation is provided
in Algorithm 1. We use a max-heap to organize the KNN. Since
inserting any training data to the heap costs O(logK), incremen-
tally updating the KNN in a permutation costs O(N logK). Using
the bound on the number of permutations in (33), we can show
that the total time complexity for our improved MC algorithm is
O(N

ε2
logK log K

δ
).

6. EXPERIMENTS
We evaluate the proposed approaches to computing the SV of

training data for various nearest neighbor algorithms.

6.1 Experimental Setup
Datasets. We used the following popular benchmark datasets of

different sizes: (1) dog-fish [31] contains the features of dog and
cat images extracted from ImageNet, with 900 training examples
and 300 test examples for each class. The features have 2048 dimen-
sions, generated by the state-of-the-art Inception v3 network [48]
with all but the top layer. (2) MNIST [35] is a handwritten digit
dataset with 60000 training images and 10000 test images. We
extracted 1024-dimensional features via a convolutional network.
(3) The CIFAR-10 dataset consists of 60000 32 × 32 color im-
ages in 10 classes, with 6000 images per class. The deep features
have 2048 dimensions and were extracted via the ResNet-50 [27].
(4) ImageNet [17] is an image dataset with more than 1 million
images organized according to the WordNet hierarchy. We chose
1000 classes which have in total around 1 million images and ex-
tracted 2048-dimensional deep features by the ResNet-50 network.
(5) Yahoo Flickr Creative Commons 100M that consists of 99.2
million photos. We randomly chose a 10-million subset (referred to
as Yahoo10m hereinafter) for our experiment, and used the deep
features extracted by [7].

Parameter selection for LSH. The three main parameters that
affect the performance of the LSH are the number of projections
per hash value (m), the number of hash tables (h), and the width of
the project (r). Decreasing r decreases the probability of collision
for any two points, which is equivalent to increasing m. Since a
smaller m will lead to better efficiency, we would like to set r as
small as possible. However, decreasing r below a certain threshold
increases the quantity g(CK), thereby requiring us to increase h.
Following [15], we performed grid search to find the optimal value
of r which we used in our experiments. Following [22], we set
m = α logN/ log(fh(Dmean)

−1). For a given value of m, it is
easy to find the optimal value of h which will guarantee that the
SV approximation error is no more than a user-specified threshold.

Figure 6: Performance of unweightedKNN classification in the
single-data-per-seller case.

We tried a few values for α and reported the m that leads to lowest
runtime. For all experiments pertaining to the LSH, we divided the
dataset into two disjoint parts: one for selecting the parameters, and
another for testing the performance of LSH for computing the SV.

6.2 Experimental Results

6.2.1 Unweighted KNN Classifier

Figure 5: The SV produced
by the exact algorithm and
the baseline MC approxi-
mation algorithm.

Correctness. We first em-
pirically validate our theortical
result. We randomly selected
1000 training points and 100
test points from MNIST. We
computed the SV of each train-
ing point with respect to the
KNN utility using the exact al-
gorithm and the baseline MC
method. We see that the MC es-
timate of the SV for each train-
ing point converges to the re-
sult of the exact algorithm.

Performance. We validated the hypothesis that our exact algo-
rithm and the LSH-based method outperform the baseline MC
method. We take the approximation error ε = 0.1 and δ = 0.1
for both MC and LSH-based approximations. We bootstrapped the
MNIST dataset to synthesize training datasets of various sizes. The
three SV calculation methods were implemented on a machine with
2.6 GHz Intel Core i7 CPU. The runtime of the three methods for
different datasets is illustrated in Figure 6 (a). The proposed exact
algorithm is faster than the baseline approximation by several or-
ders magnitude and it produces the exact SV. By circumventing the
computational complexity of sorting a large array, the LSH-based
approximation can significantly outperform the exact algorithm, es-
pecially when the training size is large. Figure 6 (b) sheds light on
the increasing performance gap between the LSH-based approxi-
mation and the exact method with respect to the training size. The
relative contrast of these bootstrapped datasets grows with the num-
ber of training points, thus requiring fewer hash tables and less time
to search for approximate nearest neighbors. We also tested the
approximation approach proposed in our prior work [29], which
achieves the-start-of-the-art performance for ML models that can-
not be incrementally maintained. However, for models that have
efficient incremental training algorithms, like KNN, it is less effi-
cient than the baseline approximation, and the experiment for 1000
training points did not finish in 4 hours.

Using a machine with the Intel Xeon E5-2690 CPU and 256
GB RAM, we benchmarked the runtime of the exact and the LSH-
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Figure 7: Average runtime of the exact and the LSH-based ap-
proximation algorithm for computing the unweightedKNN SV
for a single test point. We take ε, δ = 0.1 and K = 1.

Dataset Size Estimated
Contrast

Runtime
(Exact)

Runtime
(LSH)

CIFAR-10 6E+4 1.2802 0.78s 0.23s
ImageNet 1E+6 1.2163 11.34s 2.74s
Yahoo10m 1E+7 1.3456 203.43s 44.13s

Figure 8: Comparison of prediction accuracy of KNN vs. logis-
tic regression on deep features.

Dataset 1NN 2NN 5NN Logistic Regression
CIFAR-10 81% 83% 80% 87%
ImageNet 77% 73% 84% 82%
Yahoo10m 90% 96% 98% 96%

based approximation algorithm on three popular datasets, including
CIFAR-10, ImageNet, and Yahoo10m. For each dataset, we
randomly selected 100 test points, computed the SV of all training
points with respect to each test point, and reported the average
runtime across all test points. The results for K = 1 are reported in
Figure 7. We can see that the LSH-based method can bring a 3×-
5× speed-up compared with the exact algorithm. The performance
of LSH depends heavily on the dataset, especially in terms of its
relative contrast. This effect will be thoroughly studied in the sequel.
We compare the prediction accuracy of KNN (K = 1, 2, 5) with
the commonly used logistic regression and the result is illustrated
in Figure 8. We can see that KNN achieves comparable prediction
power to logistic regression when using features extracted via deep
neural networks. The runtime of the exact and the LSH-based
approximation forK = 2, 5 is similar to theK = 1 case in Figure 7,
so we will leave their corresponding results to the arXiv version.

Effect of relative contrast on the LSH-based method.
Our theoretical result suggests that theK∗th relative contrast (K∗ =
max{K, d1/εe}) determines the complexity of the LSH-based ap-
proximation. We verified the effect of relative contrast by experi-
menting on three datasets, namely, dog-fish, deep and gist.
deep and gist were constructed by extracting the deep features
and gist features [47] from MNIST, respectively. All of these
datasets were normalized such that Dmean = 1. Figure 9 (a) shows
that the relative contrast of each dataset decreases as K∗ increases.
In this experiment, we take ε = 0.01 and K = 2, so the correspond-
ing K∗ = 1/ε = 100. At this value of K∗, the relative contrast is
in the following order: deep (1.57) > gist (1.48) > dog-fish
(1.17). From Figure 9 (b) and (c), we see that the number of hash
tables and the number of returned points required to meet the ε error
tolerance for the three datasets follow the reversed order of their rel-
ative contrast, as predicted by Theorem 4. Therefore, the LSH-based
approximation will be less efficient if the K in the nearest neighbor
algorithm is very large or the desired error ε is small. Figure 9
(d) shows that the LSH-based method can better approximate the
true SV as the recall of the underlying nearest neighbor retrieval
gets higher. For the datasets with high relative contrast, e.g., deep
and gist, a moderate value of recall (∼ 0.7) can already lead to
an approximation error below the desired threshold. On the other
hand, dog-fish, which has low relative contrast, will need fairly
accurate nearest neighbor retrieval (recall ∼ 1) to obtain a tolerable
approximation error. The reason for the different retrieval accuracy
requirements is that for the dataset with higher relative contrast,
even if the retrieval of the nearest neighbors is inaccurate, the rank
of the erroneous elements in the retrieved set may still be close to

Figure 9: Performance of LSH on three datasets: deep, gist,
dog-fish. (a) Relative contrast CK∗ vs. K∗. (b), (c) and (d)
illustrate the trend of the SV approximation error for different
number of hash tables, returned points and recalls.

that of the missed true nearest neighbors. Thus, these erroneous
elements will have only little impacts on SV approximation errors.

Simulation of the theoretical bound of LSH. According
to Theorem 4, the complexity of the LSH-based approximation is
dominated by the exponent g(CK∗), where K∗ = min{K, 1/ε}
and g(·) depends on the width r of the p-stable distribution used for
LSH. We computedCK∗ and g(CK∗) for ε ∈ {0.001, 0.01, 0.1, 1}
and let K = 1 in this simulation. The orange line in Figure 10 (a)
shows that a larger ε induces a larger value of relative contrast
CK∗ , rendering the underlying nearest neighbor retrieval problem
of the LSH-based approximation method easier. In particular, CK∗
is greater than 1 for all epsilons considered except for ε = 0.001.
Recall that g(CK) = log fh(1/CK)/ log fh(1); thus, g(CK∗) will
exhibit different trends for the epsilons with CK∗ > 1 and the ones
with CK∗ < 1, as shown in Figure 10 (b). Moreover, Figure 10 (b)
shows that the value of g(CK∗) is more or less insensitive to r after
a certain point. For ε that is not too small, we can choose r to be the
value at which g(CK∗) is minimized. It does not make sense to use
the LSH-based approximation if the desired error ε is too small to
have the corresponding g(CK∗) less than one, since its complexity
is theoretically higher than the exact algorithm. The blue line in
Figure 10 (a) illustrates the exponent g(CK∗) as a function of ε
when r is chosen to minimize g(CK∗). We observe that g(CK∗) is
always below 1 except when ε = 0.001.

6.2.2 Evaluation of Other Extensions
We introduced the extensions of the exact SV calculation algo-

rithm to the settings beyond unweighted KNN classification. Some
of these settings require polynomial time to compute the exact SV,
which is impractical for large-scale datasets. For those settings,
we need to resort to the MC approximation method. We first com-
pare the sample complexity of different MC methods, including
the baseline and our improved MC method (Section 5). Then, we
demonstrate data values computed in various settings.
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Figure 10: (a) The exponent g(CK∗) in the complexity bound
of the LSH-based method and the relative contrast CK∗ com-
puted for different ε. K is fixed to 1. (b) g(CK∗) vs. the projec-
tion width r of the LSH.

Figure 11: Comparison of the required permutation sizes for
different number of training points derived from the Hoeffd-
ing’s inequality (baseline), Bennett’s inequality and the heuris-
tic method against the ground truth.

Sample complexity for MC methods. The time complexity
of the MC-based SV approximation algorithms is largely dependent
on the number of permutations. Figure 11 compares the permutation
sizes used in the following three methods against the actual permuta-
tion size needed to achieve a given approximation error (marked as
“ground truth” in the figure): (1) “Hoeffding”, which is the baseline
approach and uses the Hoeffding’s inequality to decide the number
of permutations; (2) “Bennett”, which is our proposed approach
and exploits Bennett’s inequality to derive the permutation size; (3)
”Heuristic”, which terminates MC simulations when the change of
the SV estimates in the two consecutive iterations is below a certain
value, which we set to ε/50 in this experiment. We notice that the
ground truth requirement for the permutation size decreases at first
and remains constant when the training data size is large enough.
From Figure 11, the bound based on the Hoeffding’s inequality is
too loose to correctly predict the correct trend of the required per-
mutation size. By contrast, our bound based on Bennett’s inequality
exhibits the correct trend of permutation size with respect to training
data size. In terms of runtime, our improved MC method based
on Bennett’s inequality is more than 2× faster than the baseline
method when the training size is above 1 million. Moreover, using
the aforementioned heuristic, we were able to terminate the MC ap-
proximation algorithm even earlier while satisfying the requirement
of the approximation error.

Performance. We conducted experiments on the dog-fish
dataset to compare the runtime of the exact algorithm and our im-
proved MC method. We took ε = 0.01 and δ = 0.01 in the ap-
proximation algorithm and used the heuristic to decide the stopping
iteration.

Figure 12 compares the runtime of the exact algorithm and our im-
proved MC approximation for weighted KNN classification. In the

Figure 12: Performance of the weighted KNN classification.

Figure 13: Performance of the KNN classification in the multi-
data-per-seller case.

first plot, we fixed K = 3 and varied the number of training points.
In the second plot, we set the training size to be 100 and changed
K. We can see that the runtime of the exact algorithm exhibits
polynomial and exponential growth with respect to the training size
and K, respectively. By contrast, the runtime of the approximation
algorithm increases slightly with the number of training points and
remains unchanged for different values of K.

Figure 13 compares the runtime of the exact algorithm and the
MC approximation for the unweighted KNN classification when
each seller can own multiple data instances. To generate Figure 13
(a), we setK = 2 and varied the number of sellers. We kept the total
number of training instances of all sellers constant and randomly
assigned the same number of training instances to each seller. We
can see that the exact calculation of the SV in the multi-data-per-
seller case has polynomial time complexity, while the runtime of the
approximation algorithm barely changes with the number of sellers.
Since the training data in our approximation algorithm were se-
quentially inserted into a heap, the complexity of the approximation
algorithm is mainly determined by the total number of training data
held by all sellers. Moreover, as we kept the total number of training
points constant, the approximation algorithm appears invariant over
the number of sellers. Figure 13 (b) shows that the runtime of exact
algorithm increases with K, while the approximation algorithm’s
runtime is not sensitive to K. To summarize, the approximation
algorithm is preferable to the exact algorithm when the number of
sellers and K are large.

Unweighted vs. weighted KNN SV. We constructed an
unweighted KNN classifier using the dog-fish. Figure 14 (a)
illustrates the training points with top KNN SVs with respect to a
specific test image. We see that the returned images are semantically
correlated with the test one. We further trained a weighted KNN
on the same training set using the weight function that weighs
each nearest neighbor inversely proportional to the distance to a
given test point; and compared the SV with the ones obtained from
the unweighted KNN classifier. We computed the average SV
across all test images for each training point and demonstrated the
result in Figure 14 (b). Every point in the figure represents the
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Figure 14: Data valuation on DOG-FISH dataset (K = 3). (a)
top valued data points; (b) unweighted vs. weighted KNN SV
on the whole test set; (c) Per-class top-K neighbors labeled in-
consistently with the misclassified test example.

SVs of a training point under the two classifiers. We can see that
the unweighted KNN SV is close to the weighted one. This is
because in the high-dimensional feature space, the distances from
the retrieved nearest neighbors to the query point are large, in which
case the weights tend to be small and uniform.

Another observation from Figure 14 (b) is that the KNN SV
assigns more values to dog images than fish images. Figure 14 (c)
plots the distribution of the number test examples with regard to the
number of their top-K neighbors in the training set are with a label
inconsistent with the true label of the test example. We see that most
of the nearest neighbors with inconsistent labels belong to the fish
class. In other words, the fish training images are more close to the
dog images in the test set than the dog training images to the test fish.
Thus, the fish training images are more susceptible to mislead the
predictions and should have lower values. This intuitively explains
why the KNN SV places a higher importance on the dog images.

Data-only vs. composite game. We leave the experimental
evaluation of the composition game setup to the appendix.

Remarks. We summarize several takeaways from our experimen-
tal evaluation. (1) For unweighted KNN classifiers, the LSH-based
approximation is more preferable than the exact algorithm when a
moderate amount of approximation error can be tolerated and K
is relatively small. Otherwise, it is recommended to use the exact
algorithm as a default approach for data valuation. (2) For weighted
KNN regressors or classifiers, computing the exact SV hasO(NK)
compleixty, thus not scalable for large datasets and large K. Hence,
it is recommended to adopt the Monte Carlo method in Algorithm 1.
Moreover, using the heuristic based on the change of SV estimates
in two consecutive iterations to decide the termination point of the
algorithm is much more efficient than using the theoretical bounds,
such as Hoeffding or Bennett.

7. DISCUSSION
From the KNN SV to Monetary Reward. Thus far, we have

focused on the problem of attributing the KNN utility and its ex-
tensions to each data and computation contributor. In practice, the
buyer pays a certain amount of money depending on the model
utility and it is required to determine the share of each contributor
in terms of monetary rewards. Thus, a remaining question is how
to map the KNN SV, a share of the total model utility, to a share

of the total revenue acquired from the buyer. A simple method for
such mapping is to assume that the revenue is an affine function of
the model utility, i.e., R(S) = aν(S) + b where a and b are some
constants which can be determined via market research. Due to the
additivity property, we have s(R, i) = as(ν, i) + b. Thus, we can
apply the same affine function to the KNN SV to obtain the the
monetary reward for each contributor.

Figure 15: Comparison of
the SV for a logistic regres-
sion and a KNN trained
on the Iris dataset.

Computing the SV for Mod-
els Beyond KNN. The efficient
algorithms presented in this pa-
per are possible only because
of the “locality” property of
KNN. However, given many
previous empirical results show-
ing that a KNN classifier can
often achieve a classification ac-
curacy that is comparable with
classifiers such as SVMs and lo-
gistic regression given sufficient
memory, we could use the KNN
SV as a proxy for other classi-
fiers. We compute the SV for a logistic regression classifier and
a KNN classifier trained on the same dataset namely Iris, and
the result shows that the SVs under these two classifiers are indeed
correlated (see the above figure). The only caveat is that KNN SV
does not distinguish between neighboring data points that have the
same label. If this caveat is acceptable, we believe that the KNN
SV provides an efficient way to approximately assess the relative
contribution of different data points for other classifiers as well.
Moreover, for calculating the SV for general deep neural networks,
we can take the deep features (i.e., the input to the last softmax layer)
and corresponding labels, and train a KNN classifier on the deep
features. We calibrate K such that the resulting KNN mimics the
performance of the original deep net and then employ the techniques
presented in this paper to calculate a surrogate for the SV under the
deep net.

Implications of Task-Specific Data Valuation. Since the SV
depends on the utility function associated with the game, data div-
idends based on the SV are contingent on the definition of model
usefulness in specific ML tasks. The task-specific nature of our data
valuation framework offers clear advantages—it allows to accom-
modate the variability of a data point’s utility from one application
to another and assess its worth accordingly. Moreover, it enables
the data buyer to defend against data poisoning attacks, wherein
the attacker intentionally contributes adversarial training data points
crafted specifically to degrade the performance of the ML model.
In our framework, the “bad” training points will naturally have low
SVs because they contribute little to boosting the performance of
the model.
Having the data values dependent on the ML task, on the other hand,
may raise some concerns about whether the data values may inherit
the flaws of the ML models as to which the values are computed:
if the ML model is biased towards a subpopulation with specific
sensitive attributes (e.g., gender, race), will the data values reflect the
same bias? Indeed, these concerns can be addressed by designing
proper utility functions that devalue the unwanted properties of ML
models. For instance, even if the ML model may be biased towards
specific subpopulation, the buyer and data contributors can agree on
a utility function that gives lower score to unfair models and com-
pute the data values with respect to the concordant utility function.
In this case, the training points will be appraised partially according
to how much they contribute to improving the model fairness and
the resulting data values would not be affected by the bias of the
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underlying model. Moreover, there is a venerable line of works
studying algorithms to help improve fairness [24, 51, 52]. These
algorithms can also be applied to resolve the potential bias in value
assignments. For instance, before providing the data to the data
buyer, data contributors can preprocess the training data so that the
“sanitized” data removes the information correlated with sensitive at-
tributes [52]. However, to ensure that the data values are accurately
computed according to an appropriate utility function that the buyer
and the data contributors agree on or that the models are trained
with proper fairness criteria, it is necessary to develop systems that
can support transparent machine learning processes. Recent work
has been studying training machine learning models on blockchains
for removing the middleman to audit the model performance and
enhancing transparency [1]. We are currently implementing the data
valuation framework on a blockchain-based data market, which can
naturally resolve the problems of transparency and trust. Since the
focus of this work is the algorithmic foundation of data valuation,
we will leave the discussion of the combination of blockchains and
data valuation for future work.
8. RELATED WORK

The problem of data pricing has received a lot of attention recently.
The pricing schemes deployed in the existing data marketplaces are
simplistic, typically setting a fixed price for the whole or parts
of the dataset. Before withdrawn by Microsoft, the Azure Data
Marketplace adopted a subscription model that gave users access to
a certain number of result pages per month [34]. Xignite [5] sells
financial datasets and prices data based on the data type, size, query
frequency, etc.

There is rich literature on query-based pricing [16, 32–34, 37, 39,
50], aimed at design pricing schemes for fine-grained queries over a
dataset. In query-based pricing, a seller can assign prices to a few
views and the price for any queries purchased by a buyer is auto-
matically derived from the explicit prices over the views. Koutris et
al. [34] identified two important properties that the pricing function
must satisfy, namely, arbitrage-freeness and discount-freeness. The
arbitrage-freeness indicates that whenever query Q1 discloses more
information than query Q2, we want to ensure that the price of
Q1 is higher than Q2; otherwise, the data buyer has an arbitrage
opportunity to purchase the desired information at a lower price.
The discount-freeness requires that the prices offer no additional
discounts than the ones specified by the data seller. The authors
further proved the uniqueness of the pricing function with the two
properties, and established a dichotomy on the complexity of the
query pricing problem when all views are selection queries. Li
et al. [37] proposed additional criteria for data pricing, including
non-disclosiveness (preventing the buyers from inferring unpaid
query answers by analyzing the publicly available prices of queries)
and regret-freeness (ensuring that the price of asking a sequence of
queries in multiple interactions is not higher than asking them all-at-
once), and investigated the class of pricing functions that meet these
criteria. Zheng et al. [53] studied how data uncertainty should affect
the price of data, and proposed a data pricing framework for mobile
crowd-sensed data. Recent work on query-based pricing focuses on
enabling efficient pricing over a wider range of queries, overcoming
the issues such as double-charging arising from building practical
data marketplaces [16, 33, 50], and compensating data owners for
their privacy loss [36]. Due to the increasing pervasiveness of ML-
based analytics, there is an emerging interest in studying the cost of
acquiring data for ML. Chen et al. [11,12] proposed a formal frame-
work to price ML model instances, wherein an optimization problem
was formulated to find the arbitrage-free price that maximizes the
revenue of a seller. The model price can be also used for pricing its
training dataset. This paper is complementary to these works in that

we consider the scenario where the training set is contributed by
multiple sellers and focus on the revenue sharing problem thereof.

While the interaction between data analytics and economics has
been extensively studied in the context of both relational database
queries and ML, few works have dived into the vital problem of
allocating revenues among data owners. [32] presented a technique
for fair revenue sharing when multiple sellers are involved in a
relational query. By contrast, our paper focuses on the revenue allo-
cation for nearest neighbor algorithms, which are widely adopted in
the ML community. Moreover, our approach establishes a formal
notion of fairness based on the SV. The use of the SV for pricing
personal data can be traced back to [30], which studied the SV in
the context of marketing survey, collaborative filtering, and recom-
mendation systems. [13] also applied the SV to quantify the value
of personal information when the population of data contributors
can be modeled as a network. [42] showed that for specific network
games, the exact SV can be computed efficiently.

There exist various methods to rank the importance of training
data, which can also potentially be used for data valuation. For
instance, influence functions [31] approximate the change of the
model performance after removing a training point for smooth para-
metric ML models. Ogawa et al. [44] proposed rules to identify and
remove the least influential data when training support vector ma-
chines (SVM) to reduce the computation cost. However, unlike the
SV, these approaches do not satisfy the group rationality, fairness,
and additivity properties simultaneously.

Despite the desirable properties of the SV, computing the SV
is known to be expensive. In its most general form, the SV can
be #P-complete to compute [18]. For bounded utility functions,
Maleki et al. [41] described a sampling-based approach that requires
O(N logN) samples to achieve a desired approximation error. By
taking into account special properties of the utility function, one
can derive more efficient approximation algorithms. For instance,
Fatima et al. [20] proposed a probabilistic approximation algorithm
with O(N) complexity for weighted voting games. Ghorbani et
al. [21] developed two heuristics to accelerate the estimation of
the SV for complex learning algorithms, such as neural networks.
One is to truncate the calculation of the marginal contributions
as the change in performance by adding only one more training
point becomes smaller and smaller. Another is to use one-step
gradient to approximate the marginal contribution. The authors also
demonstrate the use of the approixmate SV for outlier identification
and informed acquisition of new training data. However, their
algorithms do not provide any guarantees on the approximation
error, thus limiting its viability for practical data valuation. Raskar
et al [45] presented a taxonomy of data valuation problems for data
markets and discussed challenges associated with data sharing.
9. CONCLUSION

The SV has been long advocated as a useful economic concept
to measure data value but has not found its way into practice due
to the issue of exponential computational complexity. This paper
presents a step towards practical algorithms for data valuation based
on the SV. We focus on the case where data are used for training a
KNN classifier and develop algorithms that can calculate data val-
ues exactly in quasi-linear time and approximate them in sublinear
time. We extend the algorithms to the case of KNN regression, the
situations where a contributor can own multiple data points, and
the task of valuing data contributions and analytics simultaneously.
For future work, we will integrate our proposed data valuation algo-
rithms into the clinical data market that we are currently building.
We will also explore efficient algorithms to compute the data values
for other popular ML algorithms such as gradient boosting, logistic
regression, and deep neural networks.

1621



10. REFERENCES
[1] A Decentralized Kaggle: Inside Algorithmias Approach to

Blockchain-Based AI Competitions.
https://towardsdatascience.com/a-decentralized-kaggle-
inside-algorithmias-approach-to-blockchain-based-ai-
competitions-8c6aec99e89b.

[2] Dawex. https://www.dawex.com/en/.
[3] Google bigquery. https://cloud.google.com/bigquery/.
[4] Iota. https://data.iota.org/#/.
[5] Xignite. https://apollomapping.com/.
[6] D. Adeniyi, Z. Wei, and Y. Yongquan. Automated web usage

data mining and recommendation system using k-nearest
neighbor (knn) classification method. Applied Computing and
Informatics, 12(1):90–108, 2016.

[7] G. Amato, F. Falchi, C. Gennaro, and F. Rabitti.
Yfcc100m-hnfc6: a large-scale deep features benchmark for
similarity search. In International Conference on Similarity
Search and Applications, pages 196–209. Springer, 2016.

[8] J. J. Bartholdi and E. Kemahlioğlu-Ziya. Using shapley value
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