
PATSQL: Efficient Synthesis of SQLQueries from Example
Tables withQuick Inference of Projected Columns

Keita Takenouchi

NTT DATA

Tokyo, Japan

Keita.Takenouchi@nttdata.com

Takashi Ishio

Nara Institute of Science and Technology

Nara, Japan

ishio@is.naist.jp

Joji Okada

NTT DATA

Tokyo, Japan

Joji.Okada@nttdata.com

Yuji Sakata

NTT DATA

Tokyo, Japan

Yuji.Sakata@nttdata.com

ABSTRACT

SQL is one of the most popular tools for data analysis, and it is now

used by an increasing number of users without having expertise in

databases. Several studies have proposed programming-by-example

approaches to help such non-experts to write correct SQL queries.

While existing methods support a variety of SQL features such as

aggregation and nested query, they suffer a significant increase in

computational cost as the scale of example tables increases. In this

paper, we propose an efficient algorithm utilizing properties known

in relational algebra to synthesize SQL queries from input and out-

put tables. Our key insight is that a projection operator in a program

sketch can be lifted above other operators by applying transforma-

tion rules in relational algebra, while preserving the semantics of

the program. This enables a quick inference of appropriate columns

in the projection operator, which is an essential component in syn-

thesis but causes combinatorial explosions in prior work. We also

introduce a novel form of constraints and its top-down propagation

mechanism for efficient sketch completion. We implemented this

algorithm in our tool PATSQL and evaluated it on 226 queries from

prior benchmarks and Kaggle’s tutorials. As a result, PATSQL solved

68% of the benchmarks and found 89% of the solutions within a

second. Our tool is available at https://naist-se.github.io/patsql/.

PVLDB Reference Format:

Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. PATSQL:

Efficient Synthesis of SQL Queries from Example Tables with Quick

Inference of Projected Columns. PVLDB, 14(11): 1937 - 1949, 2021.

doi:10.14778/3476249.3476253

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/NAIST-SE/PATSQL.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476253

1 INTRODUCTION

SQL is a query language that manages data in relational databases,

and it is commonly used in a wide range of software systems rang-

ing from web applications to banking systems. With the growing

popularity of data analysis in recent years, an increasing number

of users without having expertise in databases are using SQL [22].

However, it is not easy for such non-experts to write SQL queries

since they need to express a variety of analytical needs.

Programming-by-example (PBE) is a program synthesis tech-

nique that automatically synthesizes programs from input and

output (I/O) examples. PBE is known to be a practical approach to

help non-experts to implement programs [15, 16]. In the context

of SQL, queries are automatically synthesized from I/O tables that

the user provides as an example. In recent years, several studies

have proposed techniques to automatically synthesize SQL queries

[7, 31, 37, 43] or table manipulation programs [5, 12] from I/O tables.

SCYTHE [37] synthesizes SQL queries that support highly expressive

features such as projection, join, grouping, aggregation and union.

SCYTHE even supports the synthesis of nested queries, which have

other queries inside. These features enable users to obtain practical

queries that gain insights from accumulated data.

However, these methods commonly have serious performance

issues depending on the scale of I/O tables. The reason is that these

algorithms need to enumerate a large number of candidates for

each part of a program. For example, SCYTHE suffers an exponential

increase in computational cost as the number of columns increases

since it needs to enumerate all the permutations of them. However,

the schemas of tables in real-world databases are not small, and thus

the user fails to obtain queries in most of the practical scenarios.

In this paper, we propose a sketch-based algorithm that synthe-

sizes SQL queries from I/O tables. The illustrative example is shown

in Figure 1. Our algorithm is efficient in terms of the execution time

and the scale of supported tables. While it requires fewer hints (i.e.

constants used in a query) than in prior work [37], it maintains the

high expressiveness of synthesized queries including aggregations,

nested queries and window functions. To the best of our knowledge,

this is the first SQL synthesizer that supports window functions

such as cumulative sum and rank of each row, which have gained

more popularity in database communities over the past years. Note

that our algorithm does not depend on the column names because

1937

https://naist-se.github.io/patsql/
https://doi.org/10.14778/3476249.3476253
https://github.com/NAIST-SE/PATSQL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476253

tableIn
id price date type c1 c2 c3 c4 c5 c6

001 110 20190601 T A1 B2 C2 X Y Z
002 590 20190602 T A2 B2 C4 X Y Z
001 130 20190603 T A3 B4 C4 X Y Z
001 120 20190604 F A3 B3 C5 X Y Z
003 250 20190606 T A2 B5 C5 X Y Z
001 130 20190606 F A3 B4 C5 X Y Z
001 120 20190607 T A2 B3 C4 X Y Z
001 110 20190608 T A3 B3 C3 X Y Z
003 240 20190609 T A1 B5 C3 X Y Z
002 600 20190609 T A2 B4 C3 X Y Z
002 580 20190610 T A1 B3 C2 X Y Z
003 230 20190610 T A3 B4 C2 X Y Z
002 580 20190611 F A2 B4 C1 X Y Z

id price last_date c1 c2 c3
001 110 20190608 A3 B3 C3
002 580 20190610 A1 B3 C2
003 230 20190610 A3 B4 C2

tableOut

SELECT
T1.id, T0.price, T0.date,
T0.c1, T0.c2, T0.c3

FROM
tableIn AS T0

JOIN
(

SELECT id,
MAX(date) AS max_date

FROM tableIn
WHERE type = 'T'

GROUP BY id
) AS T1

ON T1.id = T0.id
AND T1.max_date = T0.date

ORDER BY
T1.id ASC

SQL Query

Synthesized Program in DSL

conversion

input

output

constants : { ‘T’ }

Order (id’, ASC)

Project [id’, price, date, c1, c2, c3]

Group

type = 'T'

Table

id’, Max(date)

Select

Join id′=id ∧
Max(date) = date

tableInhint

Table tableIn

Figure 1: The overview of our approach. It synthesizes a program in our DSL, and converts it into an SQL query.

they do not necessarily indicate the correspondence between input

and output columns.

To achieve the efficiency, we integrate properties known in rela-

tional algebra into sketch-based program synthesis. Our key insight

is that the projection operator (i.e. Select keyword in SQL) in a

program sketch can be lifted above other operators by applying

transformation rules in relational algebra without changing the

semantics of the program. By leveraging this insight, we can avoid

a combinatorial explosion that existing methods suffer during the

completion of the projected columns.

We implemented this algorithm in our tool PATSQL. To evaluate

it, we used 193 SQL queries from Stack Overflow and a textbook

on databases, as in prior work. We also collected 33 queries from

Kaggle’s tutorials, which deal with real table schemas used for data

analysis. The result shows PATSQL significantly outperforms a state-

of-the-art method SCYTHE in terms of the execution time and the

scalability of I/O tables it can handle. In particular, PATSQL solved

68% of the benchmarks while SCYTHE solved 57% of them. Moreover,

PATSQL found 136 solutions (89% of the solved benchmarks) within

a second while SCYTHE found only 28 solutions.

The main contributions of this paper are as follows.

• We propose a novel technique that synthesizes SQL queries

from I/O tables. It has strengths in both the execution time

and the scale of I/O tables it can handle. It also supports

the high expressiveness of synthesized queries including

grouping, aggregation, nested query and window functions

only with hints about used constants.

• We describe the synthesis algorithm that focuses on the

efficient completion of the projected columns by leveraging

properties known in relational algebra.

• We propose a user interface that is inspired by the concept

of live programming. The user can get real-time feedback

on the synthesized queries each time s/he updates tables.

• We implement the algorithm in our tool PATSQL and evaluate

it on various benchmarks including queries that we collected

from Kaggle’s tutorials. The results show that PATSQL signif-

icantly outperforms a state-of-the-art algorithm SCYTHE in

terms of the execution time and the scalability of I/O tables.

2 OVERVIEW

In this section, we provide an overview of our approach with an

illustrative example and define the problem we solve in this paper.

2.1 Illustrative Example

We show an example to illustrate the usefulness of our PBE method.

Suppose that a non-expert user wants to extract data from a rela-

tional database. A table named tableIn keeps track of the price

history of items, and the schema consists of item ID, price, updated
date, type, and other six columns c1, . . . ,c6. Now the user wants

to know the latest price and the updated date along with the values
in c1, c2 and c3 for each item whose type is “T”, but has difficulty

writing such a query since the user is not familiar with the syntax

and semantics of SQL.

Instead of writing the query from scratch, the user can use our

tool PATSQL. First, the user gives an example of the I/O tables that

should be satisfied by the query. The user also needs to provide hints

for synthesis, i.e., the constants used in predicates in the query. The

I/O tables and hint are shown on the left of Figure 1. Here tableIn
and tableOut are the input and output tables, respectively. The

constant value “T” is given as a hint. Then, PATSQL synthesizes

a program in our DSL (see Section 3 for the details) that satisfies

the I/O tables and makes use of the hints provided. In this case,

PATSQL synthesizes the program shown in the center of Figure 1.

This program first filters out the records that do not belong to the

type “T” from the input table, and it calculates the maximum date

for each item. Then, it joins the aggregation result and the input

table with two key pairs, and it extracts the desired columns and

sorts records. Finally, PATSQL converts the synthesized program in

DSL into a SQL query and returns it as a result. The synthesized

SQL query is shown on the right of Figure 1. The user can extract

the desired records by executing it on the original table. Since the

query has a nested structure having aggregation with grouping, it is

not easy for the user to write it without the aid of PATSQL. Note that

the conversion from our DSL to SQL is straightforward because our

DSL is based on relational algebra, which is a theoretical foundation

for SQL. Hence, we omit its details in this paper and focus on the

synthesis algorithm in our DSL.

1938

⟨table⟩ ::= Table(tname)
| Order(⟨table⟩, [⟨key⟩1, . . . , ⟨key⟩𝑛])
| Distinct(⟨table⟩)
| Project(⟨table⟩, [⟨col⟩1, . . . , ⟨col⟩𝑛])
| Select(⟨table⟩, ⟨pred⟩)
| Group(⟨table⟩, [cname1, . . . , cname𝑚], [⟨gc⟩1, . . . , ⟨gc⟩𝑛])
| Window(⟨table⟩, [⟨win⟩1, . . . , ⟨win⟩𝑛])
| Join(⟨table⟩, ⟨table⟩, ⟨pairs⟩)
| LeftJoin(⟨table⟩, ⟨table⟩, ⟨pair⟩)

⟨key⟩ ::= (⟨col⟩, Asc) | (⟨col⟩, Desc)
⟨col⟩ ::= cname | ⟨gc⟩
⟨gc⟩ ::= ⟨agg⟩ (⟨col⟩)
⟨win⟩ ::= (⟨func⟩, 𝑐𝑜𝑙, [cname1, . . . , cname𝑚], ⟨key⟩)
⟨pairs⟩ ::= ⟨pair⟩ ∧ · · · ∧ ⟨pair⟩
⟨pair⟩ ::= ⟨col⟩ = ⟨col⟩
⟨pred⟩ ::= ⟨clause⟩ ∨ · · · ∨ ⟨clause⟩
⟨clause⟩ ::= ⟨prim⟩ ∧ · · · ∧ ⟨prim⟩
⟨prim⟩ ::= ⟨col⟩ ⟨binop⟩ const | IsNull(cname) | IsNotNull(cname)
⟨agg⟩ ::= Max | Min | Count | Sum | Avg | CountDistinct

| ConcatComma | ConcatSpace | ConcatSlash
⟨func⟩ ::= Max | Min | Count | Sum | Rank
⟨binop⟩ ::= = | < | <= | > | >= | <>

Figure 2: The grammar of our DSL. tname denotes the name

of a input table. cname denotes a column name. const de-

notes a constant value. 𝑛 is the size of a vector, and𝑚 is the

size of grouping keys, which is limited to two or less.

In general, the schemas of example tables given to a PBE tool

should be the same as the schemas of the original tables stored

in a database. This is because queries synthesized from simplified

tables can cause SQL errors when it is executed in the database. For

example, suppose the user deletes the columns c1, c2 and c3 from

the output example in Figure 1 because the user mistakenly thinks

these columns do not affect the structure of a synthesized query.

Then, a PBE tool may well return the following query, which is

much simpler than the desired query in Figure 1.

SELECT id, min(price), max(date)
FROM tableIn WHERE type = 'T' GROUP BY id

After obtaining this query, the user adds the columns c1, c2 and c3,

the values of which the user wants to see, and then the user creates

the following query.

SELECT id, min(price), max(date), c1, c2, c3
FROM tableIn WHERE type = 'T' GROUP BY id

However, an SQL error occurs when the query is executed in the

database because the columns c1, c2 and c3 are not included in the

grouping key. To avoid such undesired situations, we assume that

example tables given to our tool preserve the original schemas.

2.2 Problem Definition

The input of our algorithm is a tuple (E, C), where E = (𝑇 in,𝑇out)
is an example of input tables 𝑇 in and an output table 𝑇out, and

C = {𝑣1, . . . , 𝑣𝑘 } is a set of typed constants. The schema of each

column has a name and a type. The types consist of Str, Int,
Dbl and Date. In this paper, we propose an algorithm that takes

(E, C) as input, and returns a program p in our DSL that satisfies

p(𝑇 in) = 𝑇out, where the constants used in p are included in C.
Here the equality operator (=) compares two tables by treating

records as a list if 𝑇out has at least one sorted column, and treating

them as a multiset otherwise. That is, we synthesize programs with

sort operators whenever possible. Of course, this policy possibly

synthesizes extra sort operators, but it is important to support the

sort operator since ORDER BY clause is often used in real-world SQL

queries [43].

The limitation of asking the user to provide the constants is the

same as that of SCYTHE [37]. The constants are used not only for

improving the synthesis performance but for directly reflecting

the user’s intention. We believe this limitation is not an obstacle

in practice because it is known that users asking SQL questions

on Stack Overflow are usually ready to provide such constants

even when they do not know how to write correct queries [37].

In addition to constants, SCYTHE requires hints about aggregation

functions while PATSQL does not. One of the PATSQL’s advantages

is that it works with a more limited kind of user hints than in prior

work [31, 37].

3 DOMAIN-SPECIFIC LANGUAGE

In this section, we describe our domain-specific language (DSL)

that determines the search space of synthesis problems. The DSL is

a kind of extended relational algebra with additional operators such

as window functions. Before describing each operator in our DSL,

we emphasize that DSLs for program synthesis need to be carefully

designed with the trade-off between expressiveness and efficiency

of synthesis [14, 40]. Following this policy, our DSL is designed

to support as many SQL features as possible while allowing the

synthesis algorithm to leverage properties of relational algebra.

Figure 2 shows the grammar, and the start symbol is ⟨table⟩. We

refer to the elements other than Table in the right-hand side of the

rule ⟨table⟩ as operators. Each operator is a function that takes one

or more tables as input and returns a table.

The semantics of the operators is as follows. Here we use a vector

such as 𝑐 to represent multiple elements. Project(𝑇, c⃗) extracts
columns c⃗ from table 𝑇 . Select(𝑇, pred) selects rows in 𝑇 that

satisfy a predicate pred. This predicate is in a conjunctive normal

form, namely an AND of ORs. Group(𝑇, c⃗, gc⃗) groups rows in 𝑇 by

keys 𝑐 and returns a new table, whose columns consist of the keys

𝑐 and aggregation results gc⃗. Window(𝑇, w⃗) appends the resulting
columns of window functions w⃗ to 𝑇 . Each column𝑤 consists of a

window function, a target column, partitioning keys and a sort key.

Join(𝑇1,𝑇2, pairs) executes inner join on 𝑇1 and 𝑇2 with key pairs.
Likewise LeftJoin(𝑇1,𝑇2, 𝑝𝑎𝑖𝑟) executes left join with a key pair.
Distinct(𝑇) removes duplicated rows in 𝑇 . Order(𝑇, key⃗) sorts
rows in 𝑇 according to key columns and directions key⃗ .

Our DSL supports a variety of SQL features used in practice.

It supports SELECT, WHERE, GROUP BY, JOIN, LEFT JOIN, DISTINCT,

1939

⟨s⟩ ::= Table(□) | Order(⟨s⟩,□) | Distinct(⟨s⟩)
| Project(⟨s⟩,□) | Select(⟨s⟩,□) | Group(⟨s⟩,□,□)
| Window(⟨s⟩,□) | Join(⟨s⟩, ⟨s⟩,□) | LeftJoin(⟨s⟩, ⟨s⟩,□)

Figure 3: The grammar of the sketches in our DSL. The start

symbol is ⟨𝑠⟩.The symbol ‘□’ denotes an uninstantiated part.

ORDER BY and HAVING. It also supports operators that can be ex-

pressed by other operators such as EXISTS (expressed by JOIN),
NOT EXISTS (expressed by LEFT JOIN and IS NULL [9]), and RIGHT
JOIN (expressed by LEFT JOIN). BETWEEN and IN in predicates can

also be rewritten using OR. In summary, our DSL supports 17 out of

20 keywords that are most popular among SQL users according to

the questionnaire survey in 2013 [43]. Besides, it supports window

functions and nested queries since DSL operators can have other

operators as their children. On the other hand, we do not support

UNION operator. We discuss this limitation in Section 5.3.

4 PRELIMINARIES

In this section, we introduce key concepts that are used in our

synthesis algorithm.

4.1 Sketch and its Completion

We refer to a program with uninstantiated parts as sketch, and an

uninstantiated part is denoted as the symbol ‘□’. Specifically, the
sketches in our algorithm are the languages that are produced by

the grammar of Figure 3. In the syntax tree of a sketch, a leaf node

corresponds to a Table while a non-leaf node corresponds to an

operator. We call sketch s′ is a child of sketch s when the node for s′

is a child of the node for s in the corresponding syntax tree. Also,

sketch completion is an action that fills ‘□’s with concrete structures.

Our synthesis algorithm generates sketches and tries to complete

each of them. Creating a sketch determines the operators used in

the resulting program and enables us to validate its structure. Here

we define the size of a sketch as follows. The size of the operators

other than Window is one. The size of Window is two because the

functionality is more complicated than the other operators, namely

partitioning cells, applying window functions, and appending the

results to the original table. We then define Size(𝑠) function as the

sum of each operator’s size in a sketch 𝑠 .

For instance, the illustrative example in Figure 1 employs the

sketch 𝑠 = Order(Project(Join(Group(Select(Table(□), □), □),
Table(□),□), □), □), and Size(𝑠) returns five. The results of sketch
completion of 𝑠 include the program in the center of Figure 1.

4.2 Table Inclusion Relation 𝜑

In our synthesis algorithm, the knowledge of the output table is

propagated in the form of our original constraint. The constraint

denoted as 𝜑 (𝑇,𝑇 ′) is an inclusion relation between two tables

𝑇 and 𝑇 ′, and it returns true (⊤) or false (⊥). Figure 4 shows the
definition. The relation 𝜑 is in one of the three states:⇔, ⟾⇒ and

⊤. The relation⇔𝑅 (𝑇,𝑇 ′) means that the columns in 𝑇 and 𝑇 ′

correspond to each other in their order. ⟾⇒𝑅 (𝑇,𝑇 ′)means that there

exist at least one column in𝑇 ′ that correspond to each column in𝑇 .

𝜑 (𝑇,𝑇 ′) ::= ⇔𝑅 (𝑇,𝑇 ′) | ⟾⇒𝑅 (𝑇,𝑇 ′) | ⊤
𝑅 ::= =

bag
| ⊆

bag
| =set | ⊆set

⇔𝑅 (𝑇,𝑇 ′) ↔ |𝑇 | = |𝑇 ′ | ∧ ∀𝑖 ∈ [1, |𝑇 |] . 𝑅(𝑇 [𝑖],𝑇 ′[𝑖])
⟾⇒𝑅 (𝑇,𝑇 ′) ↔ ∀𝑖 ∈ [1, |𝑇 |] . ∃𝑖 ′ ∈ [1, |𝑇 ′ |] . 𝑅(𝑇 [𝑖],𝑇 ′[𝑖 ′])

Figure 4: The definition of our table relation𝜑 .T andT’ refer
to tables. |𝑇 | is the number of columns in 𝑇 , and 𝑇 [𝑖] is the
i-th column in 𝑇 .

a1 a2 a3
1 A X
2 B Y
3 C Z

b1 b2 b3
1 A X
2 B Y
3 C Z

c1 c2 c3
1 A X
2 B Y
3 C Z

d1 d2 d3 d4 d5
P X A A 1
P Y A B 2
Q Z B B 1
R Z B A 1
P Z A C 3

╣

╣

╣

╫╪▌╣ȟ╣

Ṷ

╣

 ᵼṖ�n ╣ȟ╣

Ṷ

Figure 5: Examples of our table relation 𝜑 . The edges be-

tween columns represent the column correspondence that

is needed to hold a relation 𝜑 .

Specifically, we calculated the column mapping by enumerating the

column pairs of the two tables. The parameter 𝑅 in⇔𝑅 and ⟾⇒𝑅 is

a binary relation between columns, and holds a type of comparison:

equality (=) or inclusion (⊆), and a treatment of cells: multiset (bag)

or set (set).

We show examples of these relations in Figure 5. By using the

tables 𝑇1 and 𝑇2, the predicate⇔=bag (𝑇1,𝑇2) = ⊤ holds since the

column relations =
bag
(a1, b1), =

bag
(a2, b2) and =

bag
(a3, b3) are

true, and the columns correspond to each other in their order. On the

other hand, the relation ⟾⇒⊆set (𝑇3,𝑇4) = ⊤ holds since the column

relations ⊆set (c1, d5), ⊆set (c2, d4) and ⊆set (c3, d2) are true, and
there exists a column in 𝑇4 that corresponds to each column in 𝑇3.

The constraint 𝜑 can be represented as a tuple (𝑀,𝑅) except for
the case of ⊤, where𝑀 ∈ {⇔, ⟾⇒} and 𝑅 ∈ {=

bag
, ⊆

bag
,=set, ⊆set}.

In the rest of this paper, we denote 𝜑 (𝑇,𝑇 ′) as 𝜑 = (𝑀,𝑅) for short
when the tables𝑇 and𝑇 ′ are obvious from the context. For example,

we use notations such as 𝜑 = (⇔,=
bag
) or 𝜑 = (⟾⇒, ⊆set).

5 SYNTHESIS ALGORITHM

In this section, we describe the details of our synthesis algorithm.

Figure 6 shows the top-level algorithm. This algorithm takes as

input an I/O example E = (𝑇 in,𝑇out) and constants C, and returns

a synthesized program. The algorithm steps are executed as follows.

We first initialize a set of sketches S with a singleton having the

sketch Table(□) or Order(Table(□),□), depending on whether

𝑇out is sorted or not (lines 1-4), and iterate the following operations.

In each iteration, we retrieve a sketch s with the minimum size of

the sketches in S (lines 6-7). For each sketch s, we assign a table

name to each ‘□’ in Table(□) by calling the function AssignTables
(line 8). Then, we complete all of the remaining ‘□’s in the sketch by

calling CompleteSketch (line 9). When the completion succeeds

1940

