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ABSTRACT

SQL is one of the most popular tools for data analysis, and it is now

used by an increasing number of users without having expertise in

databases. Several studies have proposed programming-by-example

approaches to help such non-experts to write correct SQL queries.

While existing methods support a variety of SQL features such as

aggregation and nested query, they suffer a significant increase in

computational cost as the scale of example tables increases. In this

paper, we propose an efficient algorithm utilizing properties known

in relational algebra to synthesize SQL queries from input and out-

put tables. Our key insight is that a projection operator in a program

sketch can be lifted above other operators by applying transforma-

tion rules in relational algebra, while preserving the semantics of

the program. This enables a quick inference of appropriate columns

in the projection operator, which is an essential component in syn-

thesis but causes combinatorial explosions in prior work. We also

introduce a novel form of constraints and its top-down propagation

mechanism for efficient sketch completion. We implemented this

algorithm in our tool PATSQL and evaluated it on 226 queries from

prior benchmarks and Kaggle’s tutorials. As a result, PATSQL solved

68% of the benchmarks and found 89% of the solutions within a

second. Our tool is available at https://naist-se.github.io/patsql/.
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1 INTRODUCTION

SQL is a query language that manages data in relational databases,

and it is commonly used in a wide range of software systems rang-

ing from web applications to banking systems. With the growing

popularity of data analysis in recent years, an increasing number

of users without having expertise in databases are using SQL [22].

However, it is not easy for such non-experts to write SQL queries

since they need to express a variety of analytical needs.

Programming-by-example (PBE) is a program synthesis tech-

nique that automatically synthesizes programs from input and

output (I/O) examples. PBE is known to be a practical approach to

help non-experts to implement programs [15, 16]. In the context

of SQL, queries are automatically synthesized from I/O tables that

the user provides as an example. In recent years, several studies

have proposed techniques to automatically synthesize SQL queries

[7, 31, 37, 43] or table manipulation programs [5, 12] from I/O tables.

SCYTHE [37] synthesizes SQL queries that support highly expressive

features such as projection, join, grouping, aggregation and union.

SCYTHE even supports the synthesis of nested queries, which have

other queries inside. These features enable users to obtain practical

queries that gain insights from accumulated data.

However, these methods commonly have serious performance

issues depending on the scale of I/O tables. The reason is that these

algorithms need to enumerate a large number of candidates for

each part of a program. For example, SCYTHE suffers an exponential

increase in computational cost as the number of columns increases

since it needs to enumerate all the permutations of them. However,

the schemas of tables in real-world databases are not small, and thus

the user fails to obtain queries in most of the practical scenarios.

In this paper, we propose a sketch-based algorithm that synthe-

sizes SQL queries from I/O tables. The illustrative example is shown

in Figure 1. Our algorithm is efficient in terms of the execution time

and the scale of supported tables. While it requires fewer hints (i.e.

constants used in a query) than in prior work [37], it maintains the

high expressiveness of synthesized queries including aggregations,

nested queries and window functions. To the best of our knowledge,

this is the first SQL synthesizer that supports window functions

such as cumulative sum and rank of each row, which have gained

more popularity in database communities over the past years. Note

that our algorithm does not depend on the column names because
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tableIn
id price date type c1 c2 c3 c4 c5 c6

001 110 20190601 T A1 B2 C2 X Y Z
002 590 20190602 T A2 B2 C4 X Y Z
001 130 20190603 T A3 B4 C4 X Y Z
001 120 20190604 F A3 B3 C5 X Y Z
003 250 20190606 T A2 B5 C5 X Y Z
001 130 20190606 F A3 B4 C5 X Y Z
001 120 20190607 T A2 B3 C4 X Y Z
001 110 20190608 T A3 B3 C3 X Y Z
003 240 20190609 T A1 B5 C3 X Y Z
002 600 20190609 T A2 B4 C3 X Y Z
002 580 20190610 T A1 B3 C2 X Y Z
003 230 20190610 T A3 B4 C2 X Y Z
002 580 20190611 F A2 B4 C1 X Y Z

id price last_date c1 c2 c3
001 110 20190608 A3 B3 C3
002 580 20190610 A1 B3 C2
003 230 20190610 A3 B4 C2

tableOut

SELECT
T1.id, T0.price, T0.date,
T0.c1, T0.c2, T0.c3

FROM
tableIn AS T0 

JOIN
(

SELECT id,
MAX(date) AS max_date

FROM tableIn
WHERE type = 'T' 

GROUP BY id
) AS T1 

ON T1.id = T0.id 
AND T1.max_date = T0.date 

ORDER BY
T1.id ASC

SQL Query

Synthesized Program in DSL

conversion

input

output

constants : { ‘T’ }

Order (id’, ASC)

Project [id’, price, date, c1, c2, c3]

Group

type = 'T'

Table 

id’, Max(date)

Select

Join id′=id ∧
Max(date) = date

tableInhint

Table tableIn

Figure 1: The overview of our approach. It synthesizes a program in our DSL, and converts it into an SQL query.

they do not necessarily indicate the correspondence between input

and output columns.

To achieve the efficiency, we integrate properties known in rela-

tional algebra into sketch-based program synthesis. Our key insight

is that the projection operator (i.e. Select keyword in SQL) in a

program sketch can be lifted above other operators by applying

transformation rules in relational algebra without changing the

semantics of the program. By leveraging this insight, we can avoid

a combinatorial explosion that existing methods suffer during the

completion of the projected columns.

We implemented this algorithm in our tool PATSQL. To evaluate

it, we used 193 SQL queries from Stack Overflow and a textbook

on databases, as in prior work. We also collected 33 queries from

Kaggle’s tutorials, which deal with real table schemas used for data

analysis. The result shows PATSQL significantly outperforms a state-

of-the-art method SCYTHE in terms of the execution time and the

scalability of I/O tables it can handle. In particular, PATSQL solved

68% of the benchmarks while SCYTHE solved 57% of them. Moreover,

PATSQL found 136 solutions (89% of the solved benchmarks) within

a second while SCYTHE found only 28 solutions.

The main contributions of this paper are as follows.

• We propose a novel technique that synthesizes SQL queries

from I/O tables. It has strengths in both the execution time

and the scale of I/O tables it can handle. It also supports

the high expressiveness of synthesized queries including

grouping, aggregation, nested query and window functions

only with hints about used constants.

• We describe the synthesis algorithm that focuses on the

efficient completion of the projected columns by leveraging

properties known in relational algebra.

• We propose a user interface that is inspired by the concept

of live programming. The user can get real-time feedback

on the synthesized queries each time s/he updates tables.

• We implement the algorithm in our tool PATSQL and evaluate

it on various benchmarks including queries that we collected

from Kaggle’s tutorials. The results show that PATSQL signif-

icantly outperforms a state-of-the-art algorithm SCYTHE in

terms of the execution time and the scalability of I/O tables.

2 OVERVIEW

In this section, we provide an overview of our approach with an

illustrative example and define the problem we solve in this paper.

2.1 Illustrative Example

We show an example to illustrate the usefulness of our PBE method.

Suppose that a non-expert user wants to extract data from a rela-

tional database. A table named tableIn keeps track of the price

history of items, and the schema consists of item ID, price, updated
date, type, and other six columns c1, . . . ,c6. Now the user wants

to know the latest price and the updated date along with the values
in c1, c2 and c3 for each item whose type is “T”, but has difficulty

writing such a query since the user is not familiar with the syntax

and semantics of SQL.

Instead of writing the query from scratch, the user can use our

tool PATSQL. First, the user gives an example of the I/O tables that

should be satisfied by the query. The user also needs to provide hints

for synthesis, i.e., the constants used in predicates in the query. The

I/O tables and hint are shown on the left of Figure 1. Here tableIn
and tableOut are the input and output tables, respectively. The

constant value “T” is given as a hint. Then, PATSQL synthesizes

a program in our DSL (see Section 3 for the details) that satisfies

the I/O tables and makes use of the hints provided. In this case,

PATSQL synthesizes the program shown in the center of Figure 1.

This program first filters out the records that do not belong to the

type “T” from the input table, and it calculates the maximum date

for each item. Then, it joins the aggregation result and the input

table with two key pairs, and it extracts the desired columns and

sorts records. Finally, PATSQL converts the synthesized program in

DSL into a SQL query and returns it as a result. The synthesized

SQL query is shown on the right of Figure 1. The user can extract

the desired records by executing it on the original table. Since the

query has a nested structure having aggregation with grouping, it is

not easy for the user to write it without the aid of PATSQL. Note that

the conversion from our DSL to SQL is straightforward because our

DSL is based on relational algebra, which is a theoretical foundation

for SQL. Hence, we omit its details in this paper and focus on the

synthesis algorithm in our DSL.
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⟨table⟩ ::= Table(tname)
| Order( ⟨table⟩, [ ⟨key⟩1, . . . , ⟨key⟩𝑛 ])
| Distinct( ⟨table⟩)
| Project( ⟨table⟩, [ ⟨col⟩1, . . . , ⟨col⟩𝑛 ])
| Select( ⟨table⟩, ⟨pred⟩)
| Group( ⟨table⟩, [cname1, . . . , cname𝑚 ], [ ⟨gc⟩1, . . . , ⟨gc⟩𝑛 ])
| Window( ⟨table⟩, [ ⟨win⟩1, . . . , ⟨win⟩𝑛 ])
| Join( ⟨table⟩, ⟨table⟩, ⟨pairs⟩)
| LeftJoin( ⟨table⟩, ⟨table⟩, ⟨pair⟩)

⟨key⟩ ::= ( ⟨col⟩, Asc) | ( ⟨col⟩, Desc)
⟨col⟩ ::= cname | ⟨gc⟩
⟨gc⟩ ::= ⟨agg⟩ ( ⟨col⟩)
⟨win⟩ ::= ( ⟨func⟩, 𝑐𝑜𝑙, [cname1, . . . , cname𝑚 ], ⟨key⟩)
⟨pairs⟩ ::= ⟨pair⟩ ∧ · · · ∧ ⟨pair⟩
⟨pair⟩ ::= ⟨col⟩ = ⟨col⟩
⟨pred⟩ ::= ⟨clause⟩ ∨ · · · ∨ ⟨clause⟩
⟨clause⟩ ::= ⟨prim⟩ ∧ · · · ∧ ⟨prim⟩
⟨prim⟩ ::= ⟨col⟩ ⟨binop⟩ const | IsNull(cname) | IsNotNull(cname)
⟨agg⟩ ::= Max | Min | Count | Sum | Avg | CountDistinct

| ConcatComma | ConcatSpace | ConcatSlash
⟨func⟩ ::= Max | Min | Count | Sum | Rank
⟨binop⟩ ::= = | < | <= | > | >= | <>

Figure 2: The grammar of our DSL. tname denotes the name

of a input table. cname denotes a column name. const de-

notes a constant value. 𝑛 is the size of a vector, and𝑚 is the

size of grouping keys, which is limited to two or less.

In general, the schemas of example tables given to a PBE tool

should be the same as the schemas of the original tables stored

in a database. This is because queries synthesized from simplified

tables can cause SQL errors when it is executed in the database. For

example, suppose the user deletes the columns c1, c2 and c3 from

the output example in Figure 1 because the user mistakenly thinks

these columns do not affect the structure of a synthesized query.

Then, a PBE tool may well return the following query, which is

much simpler than the desired query in Figure 1.

SELECT id, min(price), max(date)
FROM tableIn WHERE type = 'T' GROUP BY id

After obtaining this query, the user adds the columns c1, c2 and c3,

the values of which the user wants to see, and then the user creates

the following query.

SELECT id, min(price), max(date), c1, c2, c3
FROM tableIn WHERE type = 'T' GROUP BY id

However, an SQL error occurs when the query is executed in the

database because the columns c1, c2 and c3 are not included in the

grouping key. To avoid such undesired situations, we assume that

example tables given to our tool preserve the original schemas.

2.2 Problem Definition

The input of our algorithm is a tuple (E, C), where E = (𝑇 in,𝑇out)
is an example of input tables 𝑇 in and an output table 𝑇out, and

C = {𝑣1, . . . , 𝑣𝑘 } is a set of typed constants. The schema of each

column has a name and a type. The types consist of Str, Int,
Dbl and Date. In this paper, we propose an algorithm that takes

(E, C) as input, and returns a program p in our DSL that satisfies

p(𝑇 in) = 𝑇out, where the constants used in p are included in C.
Here the equality operator (=) compares two tables by treating

records as a list if 𝑇out has at least one sorted column, and treating

them as a multiset otherwise. That is, we synthesize programs with

sort operators whenever possible. Of course, this policy possibly

synthesizes extra sort operators, but it is important to support the

sort operator since ORDER BY clause is often used in real-world SQL

queries [43].

The limitation of asking the user to provide the constants is the

same as that of SCYTHE [37]. The constants are used not only for

improving the synthesis performance but for directly reflecting

the user’s intention. We believe this limitation is not an obstacle

in practice because it is known that users asking SQL questions

on Stack Overflow are usually ready to provide such constants

even when they do not know how to write correct queries [37].

In addition to constants, SCYTHE requires hints about aggregation

functions while PATSQL does not. One of the PATSQL’s advantages

is that it works with a more limited kind of user hints than in prior

work [31, 37].

3 DOMAIN-SPECIFIC LANGUAGE

In this section, we describe our domain-specific language (DSL)

that determines the search space of synthesis problems. The DSL is

a kind of extended relational algebra with additional operators such

as window functions. Before describing each operator in our DSL,

we emphasize that DSLs for program synthesis need to be carefully

designed with the trade-off between expressiveness and efficiency

of synthesis [14, 40]. Following this policy, our DSL is designed

to support as many SQL features as possible while allowing the

synthesis algorithm to leverage properties of relational algebra.

Figure 2 shows the grammar, and the start symbol is ⟨table⟩. We

refer to the elements other than Table in the right-hand side of the

rule ⟨table⟩ as operators. Each operator is a function that takes one

or more tables as input and returns a table.

The semantics of the operators is as follows. Here we use a vector

such as 𝑐 to represent multiple elements. Project(𝑇, c⃗) extracts
columns c⃗ from table 𝑇 . Select(𝑇, pred) selects rows in 𝑇 that

satisfy a predicate pred. This predicate is in a conjunctive normal

form, namely an AND of ORs. Group(𝑇, c⃗, gc⃗) groups rows in 𝑇 by

keys 𝑐 and returns a new table, whose columns consist of the keys

𝑐 and aggregation results gc⃗. Window(𝑇, w⃗) appends the resulting
columns of window functions w⃗ to 𝑇 . Each column𝑤 consists of a

window function, a target column, partitioning keys and a sort key.

Join(𝑇1,𝑇2, pairs) executes inner join on 𝑇1 and 𝑇2 with key pairs.
Likewise LeftJoin(𝑇1,𝑇2, 𝑝𝑎𝑖𝑟 ) executes left join with a key pair.
Distinct(𝑇 ) removes duplicated rows in 𝑇 . Order(𝑇, key⃗ ) sorts
rows in 𝑇 according to key columns and directions key⃗ .

Our DSL supports a variety of SQL features used in practice.

It supports SELECT, WHERE, GROUP BY, JOIN, LEFT JOIN, DISTINCT,
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⟨s⟩ ::= Table(□) | Order( ⟨s⟩,□) | Distinct( ⟨s⟩)
| Project( ⟨s⟩,□) | Select( ⟨s⟩,□) | Group( ⟨s⟩,□,□)
| Window( ⟨s⟩,□) | Join( ⟨s⟩, ⟨s⟩,□) | LeftJoin( ⟨s⟩, ⟨s⟩,□)

Figure 3: The grammar of the sketches in our DSL. The start

symbol is ⟨𝑠⟩.The symbol ‘□’ denotes an uninstantiated part.

ORDER BY and HAVING. It also supports operators that can be ex-

pressed by other operators such as EXISTS (expressed by JOIN),
NOT EXISTS (expressed by LEFT JOIN and IS NULL [9]), and RIGHT
JOIN (expressed by LEFT JOIN). BETWEEN and IN in predicates can

also be rewritten using OR. In summary, our DSL supports 17 out of

20 keywords that are most popular among SQL users according to

the questionnaire survey in 2013 [43]. Besides, it supports window

functions and nested queries since DSL operators can have other

operators as their children. On the other hand, we do not support

UNION operator. We discuss this limitation in Section 5.3.

4 PRELIMINARIES

In this section, we introduce key concepts that are used in our

synthesis algorithm.

4.1 Sketch and its Completion

We refer to a program with uninstantiated parts as sketch, and an

uninstantiated part is denoted as the symbol ‘□’. Specifically, the
sketches in our algorithm are the languages that are produced by

the grammar of Figure 3. In the syntax tree of a sketch, a leaf node

corresponds to a Table while a non-leaf node corresponds to an

operator. We call sketch s′ is a child of sketch s when the node for s′

is a child of the node for s in the corresponding syntax tree. Also,

sketch completion is an action that fills ‘□’s with concrete structures.

Our synthesis algorithm generates sketches and tries to complete

each of them. Creating a sketch determines the operators used in

the resulting program and enables us to validate its structure. Here

we define the size of a sketch as follows. The size of the operators

other than Window is one. The size of Window is two because the

functionality is more complicated than the other operators, namely

partitioning cells, applying window functions, and appending the

results to the original table. We then define Size(𝑠) function as the

sum of each operator’s size in a sketch 𝑠 .

For instance, the illustrative example in Figure 1 employs the

sketch 𝑠 = Order(Project(Join(Group(Select(Table(□), □), □),
Table(□),□), □), □), and Size(𝑠) returns five. The results of sketch
completion of 𝑠 include the program in the center of Figure 1.

4.2 Table Inclusion Relation 𝜑

In our synthesis algorithm, the knowledge of the output table is

propagated in the form of our original constraint. The constraint

denoted as 𝜑 (𝑇,𝑇 ′) is an inclusion relation between two tables

𝑇 and 𝑇 ′, and it returns true (⊤) or false (⊥). Figure 4 shows the
definition. The relation 𝜑 is in one of the three states:⇔, ⟾⇒ and

⊤. The relation⇔𝑅 (𝑇,𝑇 ′) means that the columns in 𝑇 and 𝑇 ′

correspond to each other in their order. ⟾⇒𝑅 (𝑇,𝑇 ′)means that there

exist at least one column in𝑇 ′ that correspond to each column in𝑇 .

𝜑 (𝑇,𝑇 ′) ::= ⇔𝑅 (𝑇,𝑇 ′) | ⟾⇒𝑅 (𝑇,𝑇 ′) | ⊤
𝑅 ::= =

bag
| ⊆

bag
| =set | ⊆set

⇔𝑅 (𝑇,𝑇 ′) ↔ |𝑇 | = |𝑇 ′ | ∧ ∀𝑖 ∈ [1, |𝑇 |] . 𝑅(𝑇 [𝑖],𝑇 ′[𝑖])
⟾⇒𝑅 (𝑇,𝑇 ′) ↔ ∀𝑖 ∈ [1, |𝑇 |] . ∃𝑖 ′ ∈ [1, |𝑇 ′ |] . 𝑅(𝑇 [𝑖],𝑇 ′[𝑖 ′])

Figure 4: The definition of our table relation𝜑 .T andT’ refer
to tables. |𝑇 | is the number of columns in 𝑇 , and 𝑇 [𝑖] is the
i-th column in 𝑇 .

a1 a2 a3
1 A X
2 B Y
3 C Z

b1 b2 b3
1 A X
2 B Y
3 C Z

c1 c2 c3
1 A X
2 B Y
3 C Z

d1 d2 d3 d4 d5
P X A A 1
P Y A B 2
Q Z B B 1
R Z B A 1
P Z A C 3

૚ࢀ

૛ࢀ

૝ࢀ

⟺ୀࢍࢇ࢈ ,૚ࢀ ૛ࢀ = 

⊥

૜ࢀ

 ⇒⊆ೞ೐೟
| ,૜ࢀ ૝ࢀ = 

⊥

Figure 5: Examples of our table relation 𝜑 . The edges be-

tween columns represent the column correspondence that

is needed to hold a relation 𝜑 .

Specifically, we calculated the column mapping by enumerating the

column pairs of the two tables. The parameter 𝑅 in⇔𝑅 and ⟾⇒𝑅 is

a binary relation between columns, and holds a type of comparison:

equality (=) or inclusion (⊆), and a treatment of cells: multiset (bag)

or set (set).

We show examples of these relations in Figure 5. By using the

tables 𝑇1 and 𝑇2, the predicate⇔=bag (𝑇1,𝑇2) = ⊤ holds since the

column relations =
bag
(a1, b1), =

bag
(a2, b2) and =

bag
(a3, b3) are

true, and the columns correspond to each other in their order. On the

other hand, the relation ⟾⇒⊆set (𝑇3,𝑇4) = ⊤ holds since the column

relations ⊆set (c1, d5), ⊆set (c2, d4) and ⊆set (c3, d2) are true, and
there exists a column in 𝑇4 that corresponds to each column in 𝑇3.

The constraint 𝜑 can be represented as a tuple (𝑀,𝑅) except for
the case of ⊤, where𝑀 ∈ {⇔, ⟾⇒} and 𝑅 ∈ {=

bag
, ⊆

bag
,=set, ⊆set}.

In the rest of this paper, we denote 𝜑 (𝑇,𝑇 ′) as 𝜑 = (𝑀,𝑅) for short
when the tables𝑇 and𝑇 ′ are obvious from the context. For example,

we use notations such as 𝜑 = (⇔,=
bag
) or 𝜑 = ( ⟾⇒, ⊆set).

5 SYNTHESIS ALGORITHM

In this section, we describe the details of our synthesis algorithm.

Figure 6 shows the top-level algorithm. This algorithm takes as

input an I/O example E = (𝑇 in,𝑇out) and constants C, and returns

a synthesized program. The algorithm steps are executed as follows.

We first initialize a set of sketches S with a singleton having the

sketch Table(□) or Order(Table(□),□), depending on whether

𝑇out is sorted or not (lines 1-4), and iterate the following operations.

In each iteration, we retrieve a sketch s with the minimum size of

the sketches in S (lines 6-7). For each sketch s, we assign a table

name to each ‘□’ in Table(□) by calling the functionAssignTables
(line 8). Then, we complete all of the remaining ‘□’s in the sketch by

calling CompleteSketch (line 9). When the completion succeeds

1940



Synthesize(E, C)
Input E = (𝑇 in,𝑇out) : input and output tables

C: constants used in predicates

Output a synthesized program

1: if IsSorted(𝑇out) then
2: S← {Table(□)}
3: else

4: S← {Order(Table(□),□)}
5: while true do

6: choose s ∈ S s.t. ∀𝑡 ∈ S. Size(s) ≤ Size(𝑡 )

7: S← S \ {s}
8: for s′ ∈ AssignTables(s,𝑇 in) do
9: for p ∈ CompleteSketch(s′,𝑇out, C) do
10: if p(𝑇 in) = 𝑇out then

11: return p
12: S← S ∪ ExpandSketch(s)
13: return ⊥

Figure 6: The top-level synthesis algorithm

and a program p is found, we check whether the output table is

equal to the evaluation result of p (line 10). If the check succeeds, we
return the program p as a result (line 11). Otherwise, we generate
additional sketches from the sketch s by calling ExpandSketch

(line 12). The operations on lines 5-12 are iterated until a solution

is found. Note that this algorithm never stops when there are no

solutions in the search space. Therefore, a timeout should be set

when it is provided to users in practice.

We show an example of how the top-level algorithm works by

using the illustrative example in Figure 1. We start with a single-

ton with the sketch 𝑠0 = Order(Table(□),□) since the output

table tableOut is sorted by the id column. First, we try to com-

plete the ‘□’s in the sketch 𝑠0, but cannot find a program consis-

tent with the I/O tables. Then, we expand the sketch 𝑠0 by call-

ing ExpandSketch function and obtain new sketches including

𝑠1 =Order(Select(Table(□), □)), □). We choose the sketch 𝑠1 as

the next candidate, but we fail to complete the sketch 𝑠1 and then

expand 𝑠1 to obtain new sketches. After repeating the operations,

we find the sketch 𝑠 in Section 4.1 and successfully complete it. As

a result, we can obtain the solution program consistent with the

I/O tables, i.e. the program in the center of Figure 1.

Our algorithm returns a program that has the minimum size of

the possible solutions since it tries to complete sketches in ascend-

ing order of the sketch size. This design is based on Occam’s razor,

i.e., the hypothesis that the simplest solution is most likely to be

correct. This strategy is also helpful for users to understand syn-

thesized queries. In contract, there is prior work that finds multiple

candidates and returns top-k solutions based on criteria other than

the size of programs [15, 37]. To make our PBE tool interactive,

we return a simple program that satisfies the given specification

as quick as possible, rather than returning more sophisticated pro-

grams by taking more synthesis time. In addition, the tolerable

waiting time for computer response is known to be about two sec-

onds [29, 33]. Thus, the synthesis time is preferable to be less than

two seconds.

Table 1: The restriction of parent-child relations between op-

erators in a sketch. Rows and columns represent parents and

children, respectively. The combinations ✓ are allowed.
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Order 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Distinct 𝑋1 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Project 𝑋1 𝑋2 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓
Select 𝑋1 𝑋2 𝑋3 𝑋3 ✓ ✓ ✓ ✓ ✓
Group 𝑋1 𝑋2 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓
Window 𝑋1 𝑋2 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓
Join 𝑋1 𝑋2 𝑋3 𝑋3 ✓ ✓ ✓ ✓ ✓
LeftJoin 𝑋1 𝑋2 𝑋3 ✓ ✓ ✓ ✓ ✓ ✓

5.1 Sketch Generation

We describe the details of ExpandSketch(𝑠). This function takes

a sketch s and returns sketches that are created by appending an

operator to s. Here we refer to the elements other than Table in the

right-hand side of ⟨𝑠⟩ in Figure 3 as sketch constructors. This algo-
rithm inserts each sketch constructor above each position of Table
in the sketch s. First, we find a Table(□) in s and replace it with a

sketch constructor. At this point, the entire sketch contains one or

more ⟨𝑠⟩ symbols. Then, we replace all of the ⟨𝑠⟩s with Table(□)s.
For example, when the input sketch is 𝑠 = Project(Table(□),□),
the result of ExpandSketch(𝑠) includes the following sketches.
• Project(Select(Table(□),□),□)
• Project(Group(Table(□),□,□),□)
• Project(Join(Table(□), Table(□),□),□)

Here we restrict the combinations of the operators that can

appear in a sketch. Table 1 shows the parent-child relations that

are allowed in a syntax tree. The combinations marked as ‘✓’ are
allowed whereas ‘𝑋 ’ are not.

We exclude the combinations marked as 𝑋1 in Table 1 because

the operators except Order do not preserve the order of records,

and therefore the order determined by Order is meaningful only

when it is at the top of a sketch. We also exclude 𝑋2 because it is

considered to be rare in real queries. In fact, there exist 1,446 SQL

queries having DISTINCT in Spider benchmark [42], which consists

of practical SQL queries from various domains, and none of them

violate the combination 𝑋2. Additionally, we exclude 𝑋3 because

sketches including the combinations are not in normal form. That

is, when a program p is obtained from a sketch that is not in normal

form, we can always obtain a program equivalent to p from a sketch

in normal from. These properties are based on transformation rules

in relational algebra. For example, the following rules are known

[8, 13].

• Project(Project(𝑇, 𝑐1), 𝑐2) → Project(𝑇, 𝑐2)
• Select(Select(𝑇, 𝑝1), 𝑝2) → Select(𝑇, 𝑝1 ∧ 𝑝2)

These rules mean that a program that repeats the same operator can

always be expressed as a program without repetition, and hence it

is sufficient to generate only sketches without repetition in such

cases. Besides, the following rules are known.

• Select(Project(𝑇, 𝑐), 𝑝) → Project(Select(𝑇, 𝑝), 𝑐)
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Propagate(𝜑, Order) = 𝜑

Propagate(𝜑, Distinct) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑀,=set) if 𝜑 = (𝑀,=

bag
)

(𝑀, ⊆set) if 𝜑 = (𝑀, ⊆
bag
)

𝜑 otherwise

Propagate(𝜑, Project) =
{︄
( ⟾⇒, 𝑅) if 𝜑 = (⇔, 𝑅)
𝜑 otherwise

Propagate(𝜑, Select) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑀, ⊆

bag
) if 𝜑 = (𝑀, =

bag
)

(𝑀, ⊆set) if 𝜑 = (𝑀, =set)
𝜑 otherwise

Propagate( , Group) = ⊤ Propagate( , Window) = ⊤
Propagate( , Join) = ⊤ Propagate( , LeftJoin) = ⊤

Figure 7: Definition of the propagation function

• Join(Project(𝑇1, 𝑐),𝑇2, 𝑝) → Project(Join(𝑇1,𝑇2, 𝑝), 𝑐 ′)
These are rules for moving Project above Select and Join. The
same rule is also applicable for Group, Window and LeftJoin. As a
consequence, the combinations in Table 1 allow only sketches with

at most one Project and with Project above the operators other

than Order and Distinct. Also, the sketch constructors Order,
Distinct and Project can appear at the top of the sketch in this

order. Importantly, this restriction leads to the efficient completion

of the sketch Project(s′,□). Note that the restrictions 𝑋1 and 𝑋3

do not decrease the expressiveness of synthesized queries.

Finding an appropriate program structure from the given I/O

specification is essentially difficult in most domains [16], and our

domain of SQL is not an exception. Concretely, the worst-case

complexity of the sketch generation algorithm is exponential to

the size of the sketch. The reason is that, when creating sketches

with the size of 𝑛, we need to insert each sketch constructor into

the sketches with the size of 𝑛 − 2 (for Window constructor) or 𝑛 − 1
(for the other constructors). The mitigation of the computational

cost will help us to find complex program structures.

5.2 Sketch Completion

First, we describe the function AssignTables(s,𝑇 in) used in the

top-level algorithm in Figure 6. This function takes as input a sketch

s and the input tables𝑇 in, and returns sketcheswith the tables’ name

filled. Specifically, it assigns a table name in𝑇 in to each Table(□) in
the sketch s. Here all of the input tables must be used to complete the

sketch. This limitation is based on the assumption that the user does

not give input tables that are not used in a resulting query, and it is

effective for excluding sketches that do notmeet the user’s intention.

For example, when a sketch 𝑠 = LeftJoin(Table(□), Table(□),□)
and 𝑇 in = {𝑇1,𝑇2}, the result of AssignTables(s,𝑇 in) includes the
following sketches.

• LeftJoin(Table(𝑇1), Table(𝑇2),□)
• LeftJoin(Table(𝑇2), Table(𝑇1),□)

Note that the sketch LeftJoin(Table(𝑇1), Table(𝑇1),□) is not in-
cluded since this does not use the input table 𝑇2.

Next, we explain the function CompleteSketch(s,𝑇out, C). This
function takes as input a sketch s, the output table 𝑇out and con-

stants C, and returns a set of programs. It fills ‘□’s in the sketch

s by using constants in C, and thus constructs programs whose

evaluation result can be 𝑇out. Figure 8 shows the algorithms for

sketch completion. The function CompleteSketch(𝑠,𝑇out, C) is the
entry point, and it invokes auxiliary functions named Complete for

recursively completing a sketch by propagating a constraint 𝜑 . The

completion algorithms are similar to those used in MORPHEUS [12]

with two main differences. First, we prune the search space based

on table inclusion relation 𝜑 while MORPHEUS relies on the meta-

data of tables and employs an SMT solver. Second, the completion

algorithm of projection sketches is novel and efficient.

Before describing the details of each function in Figure 8, we

start with the notations that are commonly used in these functions.

We use ⟦p⟧ to refer to the table that can be gained by evaluating

a program p. The function Cols(𝑇 ) returns the columns in table

𝑇 . Propagate(𝜑, op) takes a constraint 𝜑 and an operator type

op, and returns a constraint 𝜑 ′. Figure 7 shows the definition of

Propagate. It calculates a precondition 𝜑 ′ from the postcondition

𝜑 of the sketch completion. Accurately, suppose we have a sketch s
and its child s′, and the programs p and p′ are obtained by complet-

ing s and s′, respectively. When the sketch s has the operator op,
Propagate(𝜑, op) returns a constraint𝜑 ′ such that𝜑 ′(𝑇out, ⟦p′⟧) =
⊤, which is a necessary condition for 𝜑 (𝑇out, ⟦p⟧) = ⊤ to hold. For

example, suppose a sketch s = Select(s′,□) is to be completed, and

the postcondition is 𝜑 = ( ⟾⇒,=set). This means that ⟦p⟧ needs to
have a column equivalent to each column in𝑇out as set (=set). Then,

Propagate(𝜑, Select) returns 𝜑 ′ = ( ⟾⇒, ⊆set) as a precondition

for the completion of s. The reason is that Select operator does not
yield any new values, and therefore ⟦p′⟧ needs to have a column

that is superset (⊆set) of each column in 𝑇out.

We explain each part of the algorithm in Figure 8. For the com-

pletion of Table(name), there are no ‘□’s to be filled, and only

pruning is performed using the propagated constraint 𝜑 . Here

the evaluation result ⟦p⟧ is the same as one of the input tables.

Therefore, the pruning essentially compares an input table 𝑇in
and the output table 𝑇out. This is the first pruning that we per-

form before filling ‘□’s in a sketch, and here we validate whether

the entire sketch can satisfy the I/O tables. For example, if 𝑇out
has a cell with a value 𝑣 that does not exist in 𝑇in, we can dis-

card the sketch Project(Select(Table(𝑇1),□),□) before filling

the remaining ‘□’s. The reason is that the propagated constraint

𝜑 = ( ⟾⇒, ⊆
bag
) can detect the fact that no matter how the remaining

‘□’s are filled, the value 𝑣 will not be yielded by Select or Project.
This pruning is similar to the validation of a sketch in MORPHEUS

[12]. While it uses an SMT solver to validate a sketch, our algo-

rithm uses a propagated constraint 𝜑 , which considers an inclusion

relation between the output and intermediate tables.

For the completion of Order(𝑠 ′,□), we first complete the child 𝑠 ′

and then fill the target sketchwith sort keys. The function SortKeys

infers sort keys from the columns in 𝑇out. Accurately, we find a col-

umn 𝑐1 sorted in ascending or descending order from the columns

in 𝑇out. If the values in 𝑐1 are duplicated, we group the records by

the key of 𝑐1. Then, we again find sort keys for each group. If 𝑐2 is a

valid key for all the groups, we obtain a composite key [𝑐1, 𝑐2]. By
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CompleteSketch(s,𝑇out, C)
Input s: a sketch,𝑇out, C: constants
Output a set of programs

1: 𝜑0 ← (⇔,=
bag
)

2: return Complete(s,𝑇out, C, 𝜑0)

Complete(Table(name),𝑇out, C, 𝜑)
1: p← Table(name)
2: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

3: return {p}
4: else

5: return ∅
Complete(Order(s′,□),𝑇out, C, 𝜑)
1: // always 𝜑 = (⇔,=

bag
)

2: P← ∅
3: for p′ ∈ Complete(s′,𝑇out, C, 𝜑) do
4: keys← SortKeys(𝑇out, ⟦𝑝′⟧)
5: p← Order(p′, keys)
6: // always 𝜑 (𝑇out, ⟦p⟧) = ⊤
7: P← P ∪ {p}
8: return P

Complete(Distinct(s′),𝑇out, C, 𝜑)
1: P← ∅
2: 𝜑′ ← Propagate(𝜑, Distinct)
3: for p′ ∈ Complete(s′,𝑇out, C, 𝜑′) do
4: p← Distinct(p′)
5: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

6: P← P ∪ {p}
7: return P

Complete(Project(s′,□),𝑇out, C, 𝜑)
1: // always 𝜑 = (⇔, 𝑅)
2: P← ∅
3: 𝜑′ ← ( ⟾⇒, 𝑅) // = Propagate(𝜑, Project)
4: for p′ ∈ Complete(s′,𝑇out, C, 𝜑′) do
5: for 𝑖 ∈ 1 . . . |𝑇out | do
6: 𝑅𝑖 ← {𝑖′ | 𝑅 (⟦p′⟧[𝑖′],𝑇out [𝑖 ]) }
7: for cols ∈ 𝑅1 × · · · × 𝑅 |𝑇out | do
8: p← Project(p′, cols)
9: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

10: P← P ∪ {p}
11: return P
Complete(Select(s′,□),𝑇out, C, 𝜑)
1: P← ∅
2: 𝜑′ ← Propagate(𝜑, Select)
3: for p′ ∈ Complete(s′,𝑇out, C, 𝜑′) do
4: for cond ∈ Conds(⟦p′⟧, C) do
5: p← Select(p′, cond)
6: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

7: P← P ∪ {p}
8: return P

Complete(Window(s′,□),𝑇out, C, 𝜑)
1: P← ∅
2: for p′ ∈ Complete(s′,𝑇out, C,⊤) do
3: wins←Wins(⟦p′⟧)
4: p← Window(p′,wins)
5: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

6: P← P ∪ {p}
7: return P

Complete(Group(s′,□,□),𝑇out, C, 𝜑)
1: P← ∅
2: for p′ ∈ Complete(s′,𝑇out, C,⊤) do
3: aggs← Aggs(⟦p′⟧)
4: for cols s.t. cols ⊆ Cols(⟦p′⟧) ∧ |cols | ≤ 2 do

5: p← Group(p′, cols, aggs)
6: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

7: P← P ∪ {p}
8: return P

Complete(Join(s′
1
, s′
2
,□),𝑇out, C, 𝜑)

1: P← ∅
2: P′

1
← Complete(s′

1
,𝑇out, C,⊤)

3: P′
2
← Complete(s′

2
,𝑇out, C,⊤)

4: for (p′
1
, p′

2
) ∈ P′

1
× P′

2
do

5: for pairs ∈ Pairs(⟦p′
1
⟧, ⟦p′

2
⟧) do

6: p← Join(p′
1
, p′

2
, pairs)

7: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

8: P← P ∪ {p}
9: return P

Complete(LeftJoin(s′
1
, s′
2
,□),𝑇out, C, 𝜑)

1: P← ∅
2: P′

1
← Complete(s′

1
,𝑇out, C,⊤)

3: P′
2
← Complete(s′

2
,𝑇out, C,⊤)

4: for (p′
1
, p′

2
) ∈ P′

1
× P′

2
do

5: for pair ∈ Pair(⟦p′
1
⟧, ⟦p′

2
⟧) do

6: 𝑝 ← LeftJoin(p′
1
, p′

2
, pair)

7: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

8: P← P ∪ {p}
9: return P

Figure 8: Algorithms for sketch completion

finding sort keys in the same manner, we obtain a composite key

[𝑐1, 𝑐2, . . . , 𝑐𝑛]. Finally, we convert it to the corresponding columns

in ⟦𝑝 ′⟧. Note that pruning with the constraint 𝜑 is not needed here

because the child’s constraint 𝜑 (𝑇out, ⟦𝑝 ′⟧) = ⊤ holds and hence

the predicate 𝜑 (𝑇out, ⟦𝑝⟧) = ⊤ is always true.

For the completion of Distinct(𝑠 ′), we complete the child sketch

and discard invalid programs since there are no ‘□’s to be filled,.

For the completion of Project(𝑠 ′,□), we fill the sketch with

projected columns. This is one of the most distinctive parts of our

algorithm. Importantly, owing to the restriction of sketch struc-

tures in Table 1, the constraint 𝜑 always has the form of 𝜑 = (⇔, 𝑅)
when this function is invoked. First, we obtain the program p′ by
completing the child of the sketch. Then, for each 𝑖-th column in

𝑇out, we calculate the set 𝑅𝑖 of indices 𝑖
′
such that the 𝑖 ′-th col-

umn in ⟦𝑝 ′⟧ corresponds to the 𝑖-th column in 𝑇out by relation 𝑅.

Note that every 𝑅𝑖 cannot be empty because the child’s constraint

𝜑 ′ = ( ⟾⇒, 𝑅) ∧ 𝜑 ′(𝑇out, ⟦𝑝 ′⟧) = ⊤ holds. Finally, we enumerate

the elements in the cartesian product of 𝑅1, . . . , 𝑅 |𝑇out | as the can-
didates for projected columns. The bottlenecks of this part are (1)

the calculation of each 𝑅𝑖 and (2) the calculation of the cartesian

product of 𝑅1, . . . , 𝑅 |𝑇out | . The computational complexity of (1) is

𝑂 (∥𝑇out∥∥⟦𝑝 ′⟧∥), where ∥𝑇 ∥ is the number of the cells in table 𝑇 .

The worst-case complexity of (2) is exponential, but the computa-

tion does not cause a combinatorial explosion in most cases because

the size of each 𝑅𝑖 is generally small.

In contrast, prior work [12, 37] does not expect that the columns

in ⟦𝑝 ′⟧ correspond to those in 𝑇out in their order (i.e., ‘⇔’ in our

work) when Project sketch is being completed. Therefore, it needs

to enumerate all the permutations of the columns in ⟦𝑝 ′⟧ as in
Figure 9. The computational cost grows exponentially as the number

of the columns in ⟦𝑝 ′⟧ increases, which leads to a scalability issue

in the overall algorithm.

For the completion of Select(𝑠 ′,□), we fill the sketch with

predicates. The function Conds(𝑇, C) returns the predicates using
columns in table𝑇 and constants in C. These predicates conform to

the rule ⟨pred⟩ in the grammar of Figure 2, and they have consistent

types between columns and constants. To enumerate the predicates

efficiently, the information about remaining rows is encoded into a

bit array, which is introduced in SCYTHE [37]. That is, we calculate

a bit array 𝑏 for each predicate, where 𝑏 [𝑖] = 1 if the 𝑖-th row

in 𝑇 remains, and 𝑏 [𝑖] = 0 otherwise. Specifically, we enumerate

predicate candidates in the order of ⟨prim⟩, ⟨clause⟩ and ⟨pred⟩. A
predicate for ⟨clause⟩ is a disjunction of ⟨prim⟩s, and a ⟨pred⟩ is
a conjunction of ⟨clause⟩s. When calculating the remaining rows

as a result of these predicates, we perform the operations ∨ and

∧ over bit arrays instead of executing compound predicates over

an instantiated table. Since we try to find a single program that

satisfies the I/O tables, we discard predicates that have the same

bit array as previously enumerated ones.

For the completion of Window(𝑠 ′,□), we fill the sketch with the

columns of window functions. The functionWin(𝑇 ) enumerates
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Complete(Project(s′,□),𝑇out, C, 𝜑)
1: P← ∅
2: for p′ ∈ Complete(s′,𝑇out, C, 𝜑) do
3: for cols ⊆ Cols(⟦𝑝 ′⟧) do
4: for cols′ ∈ Permute(𝑐𝑜𝑙𝑠) do
5: p← Project(p′, cols′)
6: if 𝜑 (𝑇out, ⟦p⟧) = ⊤ then

7: P← P ∪ {p}
8: return P

Figure 9: The completion of Project sketch in prior work

the columns in the form of ⟨𝑤𝑖𝑛⟩ in the grammar of Figure 2, i.e., a

window function, a target column, partitioning keys and a sort key.

The number of these combinations may be large in some cases, and

the table obtained by ⟦𝑝⟧ possibly has a large number of columns.

However, this does not significantly affect the overall performance

since our algorithm is resistant to the increase in column size. This

strategy enables our algorithm to do without user hints as to which

functions should be used. Of course, due to this strategy, synthe-

sized programs may contain useless columns that do not affect the

behavior. Hence, we eliminate such columns after we have found a

correct program.

For the completion of Group(𝑠 ′,□,□), we fill the sketch with

grouping keys and aggregation columns. Similar to the completion

of Window sketch, the function Aggs(⟦𝑝 ′⟧) enumerates the com-

binations of the columns in ⟦𝑝 ′⟧ and the aggregation functions.

We then enumerate grouping keys, the size of which is less than or

equal to two. We discuss this limitation in Section 5.3.

For the completion of Join(𝑠 ′
1
, 𝑠 ′
2
,□) and LeftJoin(𝑠 ′

1
, 𝑠 ′
2
,□), we

fill the sketch with key pair(s). These sketches have two children

𝑠 ′
1
and 𝑠 ′

2
, and we begin with completing them to obtain the sets 𝑃 ′

1

and 𝑃 ′
2
of programs. Then, we fill join predicates for each pair of

the programs 𝑝 ′
1
∈ 𝑃 ′

1
and 𝑝 ′

2
∈ 𝑃 ′

2
. The function Pairs(𝑇1,𝑇2) uses

columns in𝑇1 and𝑇2 to create the predicates in the form of ⟨𝑝𝑎𝑖𝑟𝑠⟩
in Figure 2. In particular, it first enumerates the predicates for

⟨𝑝𝑎𝑖𝑟 ⟩, and then combines them using∧ to generate the conjunctive
predicates for ⟨𝑝𝑎𝑖𝑟𝑠⟩. Similarly, Pair(𝑇1,𝑇2) returns a set of single
pairs in𝑇1 and𝑇2 for the completion of LeftJoin sketches. In these

processes, we use bit arrays to efficiently enumerate the predicates

as in the completion of Select sketches. In addition to calculating

remaining rows efficiently, we reduce the cost for instantiating the

cross product of two tables, as in SCYTHE.

5.3 Adaptability to Grammar Extensions

Our algorithm can easily support additional syntax features for

predicates and functions because it does not depend on the con-

crete semantics of them. For example, we can easily support the

aggregation function STDEV, which calculates the statistical stan-

dard deviation for each group, by adding it to the list of aggregation

functions. Also, supporting LIKE in predicates is straightforward if

the user provides pattern strings used in LIKE predicates as part of

constants C.
In contrast, it is difficult for our algorithm to naively support

the UNION clause, which is an operator to combine the records in

two tables. Because the positions of Union and Project cannot

be safely interchanged in sketch structures, we can no longer fix

the position of Project above other operators as the combinations

in Table 1. Hence, filling Project(𝑠 ′,□) with projected columns

leads to a significant increase in computational cost as in prior work.

However, in general, the UNION clause is used just for combining the

results from multiple subqueries. We believe that the user does not

have difficulty combining such queries by using the UNION keyword
as long as our method synthesizes each query. It is also difficult to

naively support queries with a large number of grouping keys. The

reason is that a slight change in key selection can have a significant

effect on yielded values, and we cannot find desired grouping keys

without executing queries. Thus, allowing an arbitrary number

of grouping keys results in a combinatorial explosion during the

completion of Group and Window sketches. This is the reason for

which we limit the size of grouping keys to two or less in Figure 2.

6 IMPLEMENTATION

We implemented this algorithm in Java as a tool PATSQL and opti-

mized it in several points to reduce the search space on sketch struc-

tures. First, we do not enumerate the sketches that are “symmetric”

with the previously explored ones. Accurately, we do not distin-

guish the sketches in the form of Join(𝑠1, 𝑠2,□) and Join(𝑠2, 𝑠1,□)
since the programs derived from them are semantically equivalent.

Second, we do not enumerate the sketches that do not contain

Select operator when the constants C are not empty.

We provide a user interface that is inspired by the concept of live
programming. Live programming is an interactive programming

environment, where the user can get real-time feedback on the

behavior of a program each time s/he updates the code [23]. Simi-

larly, we implemented an interactive user interface for PBE, where

the user can get real-time feedback on the synthesized program

each time s/he updates the I/O example. This interface enables the

user to start with a simple example and progressively create more

complex examples, as long as the synthesis time is reasonably short.

7 EVALUATION

To evaluate PATSQL, we perform experiments to answer the follow-

ing research questions.

RQ1: Is PATSQL more effective for synthesizing complex SQL

queries than prior methods?

RQ2: Do our algorithm improvements perform better than the

naive algorithm?

RQ3: What kind of queries does PATSQL fail to synthesize?

RQ4: Can PATSQL handle large I/O tables better than prior meth-

ods?

To answer the questions, we synthesize a wide variety of SQL

queries by using PATSQL and other methods. The experiments are

conducted on a machine with 2.20 GHz Intel Xeon CPU and 8 GB

of physical memory running the Windows 10 OS.

7.1 Benchmarks

To investigate the effectiveness of PATSQL on practical SQL queries,

we collected 226 queries in total from the following benchmarks.

ase13: These 28 queries were extracted from a textbook for data-

base systems. The I/O tables were introduced for the evaluation of

SQLSynthesizer [43] and also used for SCYTHE study [37]. These
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Table 2: The number of benchmarks solved by different algorithms. The “No.” column represents the number of queries. The

“#Col” and “#Cell” columns represent the average number of columns and cells, respectively.

Benchmark No. #Col #Cell PATSQL PATSQL5 SCYTHE BaseLine

ase13 28 3.2 50.5 25 (89%) 21 (75%) 15 (54%) 17 (60%)

so-top 57 3.0 17.2 42 (74%) 42 (74%) 40 (70%) 30 (53%)

so-dev 57 4.9 26.1 47 (82%) 46 (81%) 46 (81%) 38 (67%)

so-rec 51 5.5 33.7 20 (39%) 17 (33%) 27 (53%) 13 (25%)

kaggle 33 12.1 164.5 19 (58%) 18 (55%) 0 ( 0%) 1 ( 3%)

total 226 - - 153 (68%) 144 (63%) 128 (57%) 99 (44%)

queries range from basic ones that non-experts may have difficulty

writing, to complex ones that combine standard SQL features.

so-top, so-dev, so-rec: The three benchmarks have 57, 57 and

51 queries, respectively. They were extracted from Stack Overflow.

The I/O tables were introduced in the evaluation of SCYTHE. The

posts in these benchmarks are questions about SQL programming.

The benchmark so-top consists of posts with more than 30 votes,

and it represents common and practical issues that developers are

faced with. The benchmarks so-dev and so-rec are questions that
were posted during the development of SCYTHE. These posts have

considerably fewer votes than so-top, and the intention of the

posts tends to be ambiguous. Also, some posts were modified after

SCYTHE study. Since SCYTHE study does not publish queries marked

as solutions, we determined the solutions based on the latest posts

and published them in our Github repository. Note that the median

first response time for the posts took 12 minutes, and the median

acceptance time took 81 minutes.

kaggle: These 33 queries were extracted from SQL tutorials in Kag-

gle, which is an online community for data science. In particular,

we collected queries from tutorials and exercises in “Intro to SQL”
1

and “Advanced SQL”
2
. These include various queries that are com-

mon in the context of data analysis. Importantly, the queries handle

real tables that are published as datasets in Kaggle. This benchmark

is mainly used for evaluating the effectiveness of the various PBE

methods on I/O tables having full-scale schemas.

7.2 Compared Systems

We compare PATSQL with the following methods.

SCYTHE is a state-of-the-art tool that synthesizes complex SQL

queries form I/O tables [37]. In particular, it supports the synthesis

of nested query along with grouping and aggregation by enumer-

ating abstract queries in a bottom-up manner. There are several

differences in specifications between PATSQL and SCYTHE. For in-

stance, while PATSQL finds a single solution as a result, SCYTHE

finds five solutions that have high scores based on a ranking heuris-

tic. Also, SCYTHE requires hints about which aggregation functions

should be used in the resulting query, in addition to constants.

PATSQL5 is a top-5 implementation of PATSQL that returns five

solutions based on a ranking heuristic. This algorithm is used for

a fair comparison with SCYTHE since it also returns five solutions

as a result. The ranking heuristic is similar to SCYTHE. Namely, it

considers the simplicity of synthesized queries and the coverage of

given constants, and it finds five best solutions among programs

1
https://www.kaggle.com/learn/intro-to-sql

2
https://www.kaggle.com/learn/advanced-sql

of the same size. This algorithm is also used for investigating the

effectiveness of PATSQL’s strategy that finds a single solution.

BaseLine is a baseline algorithm that has the same search space as

PATSQL. Specifically, BaseLine synthesizes SQL queries in our DSL

in Figure 2, and the overall algorithm is almost the same as PATSQL.

The difference is, while completing the sketch Project(𝑠 ′,□), it
uses a brute-force search algorithm (Figure 9), which is highly inef-

ficient way for finding the projected columns, as opposed to our

algorithm (Figure 8). Also, BaseLine requires hints about which

aggregation and window functions should be used. Without the

hints, the computationan becomes intractable since the completion

of Project sketches needs to calculate the permutations of a large

number of columns, which we have appended in the completion of

Group and Window sketches.

7.3 Evaluation Process

We performed the synthesis of the benchmark queries by using

PATSQL, SCYTHE, PATSQL5 and BaseLine. For the benchmarks other

than kaggle, we reused the I/O tables that were created in SCYTHE

study [37] for a fair comparison between these methods. It is im-

portant to use similar tables for each method since the performance

can depend on the size of tables. The columns related to the query

are extracted in advance, and hence the schemas of the I/O tables

are not necessarily the same as original ones. For the kaggle bench-
mark, we created I/O tables for each query. Specifically, the tables

were created by a third person, who is familiar with SQL but was

not involved in the development of our synthesis algorithm. Here

the schemas of I/O tables are the same as those of the original

tables in datasets. Thus, the tables in the kaggle benchmark have

an average of 12.1 columns, which is larger than the average of 4.3

columns in the other four benchmarks. In general, using original

schemas in I/O examples is preferable for users since there is no

need to decide which columns to be used while creating tables. We

provided each algorithm with hints about the constants used in

predicates, and we also provided SCYTHE and BaseLine with hints

about aggregation and window functions. SCYTHE required a total

of 110 hints about aggregate functions, some of which are used in

the same query.

The correctness of the synthesized queries was verified by at

least two people familiar with SQL. When the synthesized query

did not have the same semantics as the solution, we updated the

I/O tables to make the intention clearer mainly by adding rows. We

continued to update the tables and hints until a solution was found

or a timeout occurred. When a solution was found, we reported

the synthesis time of the last execution. Since the synthesis time
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Figure 10: The synthesis time for benchmarks.

increases monotonically during the iterations, the time required for

the last execution is a good indicator for the total time for multiple

iterations. For the evaluation of SCYTHE and PATSQL5, we checked if

a desired query was included in the five queries returned as a result.

We did not check the correctness of the SCYTHE’s results for the

benchmarks ase13 and so-top because the correctness had been

carefully verified in SCYTHE study. Since we focus on an interactive

usage of a PBE tool as mentioned in Section 6, we did not count the

number of the updates performed during the synthesis process. For

the same reason, we performed each synthesis with a time limit of

100 seconds, which is shorter than that in SCYTHE study.

7.4 Comparison to Prior Work

We first compare the number of benchmarks solved PATSQL and

SCYTHE. For the benchmarks other than kaggle, PATSQL solved

134 benchmarks while SCYTHE solved 128 (see Table 2). In particu-

lar, PATSQL succeeded in synthesizing 20 queries from I/O tables

with a larger number of cells that SCYTHE failed to solve due to

scalability issues. Additionally, PATSQL succeeded in synthesizing

a query with the window function RANK(), which SCYTHE does not

support. In contrast, PATSQL failed to synthesize 15 queries that

SCYTHE succeeded in. Six cases were due to non equi-join, which

uses inequality operators such as ‘<’ in a JOIN condition, and four

cases were due to the UNION clause. The other causes include unsup-
ported predicates and the order in which sketches were generated.

For the kaggle benchmark, PATSQL solved 19 benchmarks while

SCYTHE did not solve any of them. Since the benchmark handles I/O

tables having full-scale schema, SCYTHE caused combinatorial explo-

sions in the enumeration of abstract queries. In contrast, PATSQL

succeeded in synthesizing such queries due to improvements in

our algorithm to support I/O tables having larger schemas. In sum-

mary, the expressiveness of PATSQL is comparable to that of SCYTHE,

and PATSQL can synthesize queries from I/O tables having larger

schemas that SCYTHE fails to deal with. Because of its highly scalable

nature, PATSQL was able to synthesize more queries within a time

limit. In addition, we count the number of the rows in I/O tables

for PATSQL and SCYTHE to find a solution. We found that the rows

required for PATSQL is on average 0.56 more than those required

for SCYTHE. This means PATSQL does not impose a large overhead

Table 3: The causes of PATSQL’s failure. The ‘f-elem’ row

means unsupported syntax features, and ‘f-struct’ means

complex structures of desired queries that can be repre-

sented in DSL but cannot be found within a time limit.

ase13 so-top so-dev so-rec kaggle total

f-elem 2 14 5 29 10 60

f-struct 1 1 5 2 4 13

total 3 15 10 31 14 73

on the user. When we compare PATSQL5 to SCYTHE, both of which

return top five solutions from the same size programs, PATSQL5 still

outperforms SCYTHE in the number of solved benchmarks (Table 2).

Next, we compare PATSQL to SCYTHE in terms of the execution

time. PATSQL synthesized 102 of solved benchmarks within 0.1

seconds and 136 within a second, while SCYTHE synthesized 28

within a second and 100 within ten seconds (Figure 10). The faster

execution time of PATSQL is useful for interactive scenarios where

the user modifies the I/O example step by step. Also, 96% of the

response time taken by PATSQL was shorter than two seconds, i.e.

the tolerance waiting time for web response (Section 5), and then

much shorter than 12 minutes, i.e. the median time for the first

response in Stack Overflow (Section 7.1). Thus, the contributions

of PATSQL are shown to be valuable for the practical application of

PBE methods. When we compare PATSQL5 to SCYTHE in terms of

the execution time, PATSQL5 still outperforms SCYTHE (Figure 10).

This shows that PATSQL’s efficiency is significant, even taking into

account the difference in the number of solutions returned.

We compare the performance of PATSQL and PATSQL5. The

solved benchmarks by PATSQL5 was slightly fewer than that of

PATSQL (Table 2). The execution time of PATSQL5 was about 10

times slower than PATSQL (Figure 10). This result is as expected

since PATSQL5 has a larger search space than PATSQL to find mul-

tiple candidate programs. We found that 90% of the I/O examples

required for PATSQL5 were the same as those required for PATSQL.

In other words, an interface that returns a single solution does

not impose significant additional overhead on the user. Thus, we

can say that the search priorities based on program simplicity in

PATSQL is effective as well as the ranking function in PATSQL5. In

general, a top-k algorithm only works well when it can find the

desired solution as one of the candidates and rank it within top k

among the candidates. Since there can be an exponential number

of candidates in the search space, top-k algorithms tend to require

additional examples to resolve ambiguities, as in the algorithm that

finds a single solution. Hence, the search strategy that finds a single

solution as quickly as possible would be suitable in many practical

applications.

For RQ1, the experimental result suggests that PATSQL outper-

forms a state-of-the-art algorithm SCYTHE in terms of the execution

time and the scalability of I/O tables while maintaining the expres-

siveness of synthesized queries. We also show the effectiveness of

PATSQL’s strategy that finds a single solution.

7.5 Comparison to Baseline

To illustrate the effectiveness of our improvements in the algo-

rithm, we compare the number of benchmarks solved by PATSQL
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Figure 11: The synthesis time in a controlled scalability experiment. "h"s in legends represent the number of input rows. For

instance, "(h=10)" means that the number of input rows is 10.

and BaseLine. As a result, BaseLine solved 99 out of the 226 bench-

marks while PATSQL solved 153 out of them (Table 2). Recall that

the difference between PATSQL and BaseLine is in the completion

of Project sketches. Therefore, the failed benchmarks by Base-

Line were caused by inefficient performance in the completion of

Project sketches. That is, the completion algorithm seen in prior

work significantly decreases the performance in cases with large

tables, and our improvements can work efficiently in such cases.

This difference leads to a 24% (= (153 − 99) /226) improvement in

the number of solved benchmarks. Next, we compare the execution

time. As a result, BaseLine solved 67 benchmarks within a second

while PATSQL solved 136 within a second (Figure 10). The result

shows that our improvements significantly reduce the execution

time. Note that other improvements such as pruning by the table

constraint 𝜑 and the restriction on sketch structures in Table 1 are

not crucial for the performance improvement, but they are required

to realize the efficient completion of Project sketches.
For RQ2, the experimental result shows that our improvements

in the algorithm improve the overall performance significantly.

We also show that the efficient completion of Project sketches is

crucial for the overall performance.

7.6 Failed Cases

To answer RQ3, we analyzed the 73 cases that PATSQL failed to

solve. We classified the failure causes into two categories: f-elem
and f-struct, and we found that 60 cases are in f-elem and 13 cases

in f-struct (Table 3). The ‘f-elem’ row represents the number of

queries that PATSQL failed to synthesize as the syntax features are

not supported as of now. These include pivot operations (7 cases),

UNION (6 cases), timestamp operations (5 cases), non equi-join (4

cases), LIKE (3 cases), CASE (3 case) and other 15 SQL features. In

contrast, the ’f-struct’ row represents the number of failed cases

due to the complex structures of desired queries. In particular, two

cases in kaggle benchmark require sketches whose sizes are five,

while the other cases require more than five. PATSQL cannot find

relatively small sketches for kaggle benchmark because it needs

to process larger I/O tables during the synthesis. Although the

computational cost of PATSQL does not increase significantly with

respect to the scale of I/O tables, it certainly does increase in a

polynomial order. Therefore, PATSQL could not search a sufficient

number of sketches before a timeout occurred.

7.7 Controlled Scalability Experiment

To answer RQ4, we performed a controlled experiment that exam-

ines the difference between PATSQL and SCYTHE in synthesis time

when the size of I/O tables increases. We used the following SQL

queries as synthesis solutions in this experiment.

(q1) SELECT * FROM table;
(q2) SELECT * FROM table WHERE c1 = 'T';
(q3) SELECT COUNT(*) FROM table;

The queries q1, q2 and q3 represent the simplest queries for pro-

jection, selection and aggregation, respectively. We then crafted

different I/O tables consisting of unique values to synthesize each

of the queries. We employed different settings for the size of I/O

tables. Specifically, the number of rows can be 10, 100 or 1,000 while

the number of columns can be 1 to 300. For each pair of row and

column sizes, we measured synthesis time taken to find the solution

by PATSQL and SCYTHE. The timeout is set to be 100 seconds as in

the other experiments.

Figure 11 shows the result. For the projection query q1, the time

taken by PATSQL grows gradually as the column size increases. This

is the case even when the number of rows is larger, such as 1,000

rows. In contrast, SCYTHE has difficulty finding a solution when

the column size is 10 or more even though the number of rows is

10. SCYTHE was unable to find any solution for the case of 100 and

1,000 rows. For the other two queries q2 and q3, PATSQL was able

to handle a large number of rows and columns that SCYTHE was

not able to handle. We also found that the time taken by PATSQL

gradually increased with the column size while that of SCYTHE in-

creased significantly. In summary, this experiment shows PATSQL’s

strength in the scalability of I/O tables.

8 RELATEDWORK

Programming by Example (PBE) is a technique that synthesizes

programs from given I/O examples, and has been studied inten-

sively in recent years [15, 16, 28]. PBE has been applied to help

non-experts in a wide range of domains such as string manipulation

[10, 14], data migration [39, 40], data extraction [24] and MapRe-

duce program [34]. Several studies have proposed techniques that

synthesize expressive SQL queries from I/O tables [7, 31, 37, 43].

SQLSynthesizer [43] employs a kind of the decision tree algorithm

to construct appropriate predicates in the WHERE clause. SqlSol [7]
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uses an off-the-shelf SMT solver to build the entire query by en-

coding SQL components and tables into logic constraints. SQL-

Synthesizer and SqlSol differ from our technique in that they do

not support nested subqueries. SCYTHE [37] enumerates abstract

queries in a bottom-up manner and instantiates each of them by

encoding tables in bit-vectors. SQUARES [31] is an SQL synthe-

sizer developed on top of a state-of-the-art synthesis framework

Trinity [27]. SCYTHE and SQUARES have similar performance on

small examples. SQUARES performs better on tables having a large

number of rows than SCYTHE, but it requires more types of hints

including aggregation functions and attribute names. We cannot

expect from a non-expert user to provide millions of rows in order

to know how to write a correct query. Our tool PATSQL signifi-

cantly outperforms SCYTHE, as evidenced in Section 7, by utilizing

properties in relational algebra. Our algorithm is also closely re-

lated to techniques that deal with table structures as I/O examples

such as data frame manipulation [5, 12], tensor manipulation [32]

and data visualization [38]. These algorithms focus on methods

that leverage the properties of table structures to enable efficient

synthesis. Examples of them include pruning by table inclusion

relations [37, 38], pruning by constraints on table metadata such

as the number of columns and rows [12] and machine learning by

transforming a table into a graph structure [5]. Also, many of them

adopt the concept of sketch, which determines and validates the

program structure before enumerating concrete programs, as our

algorithm does. Thanks to these improvements, a rich set of syn-

tax features and complex program structures have been supported.

However, these existing techniques suffer exponential increases

in computational cost as the number of columns increases. This

challenge makes it difficult to apply the PBE methods in practical

scenarios. Note that, to avoid such combinatorial explosions, some

algorithms [5, 31, 43] are based on the assumption that the corre-

sponding column names are always the same, which we believe is

not practical especially when the user is not an expert. To address

these issues, PATSQL deals with I/O tables having full-scale schemas

with no constraints on the column names.

Query by Example (QBE) is a technique for formulating database

queries from several examples of records (and counterexamples in

some cases) that the user wants to retrieve from tables [11]. QBE

has been actively studied, and a variety of techniques have been

proposed [11, 20, 26, 36]. In a typical setting for QBE, the target

table is an existing one in a database, and therefore executing a

query may take long time when the table has a large number of

records. Thus, these algorithms need to deal with the scalability as

the number of rows in the table increases, which our algorithm does

not need to focus on. Also, some techniques assume that helpful

information such as used constants or used tables is not available.

Despite these strict limitations, SQUID [11] restores queries with

aggregation and grouping by pre-computeing statistics of semantic

properties to construct an abduction-ready database. Although a

rich set of syntax features has been supported, there are no QBE

methods that support more advanced features such as nested query

or window functions as far as we know.

Synthesis Algorithms. A wide variety of improvements in pro-

gram synthesis algorithm have been proposed. Our algorithm is

categorized as an enumerative synthesis algorithm, which is one

of the most successful strategies [16]. Smith et al. [35] proposed

a program synthesis technique that only enumerates programs in

normal form to reduce the search space. The normal forms are com-

puted from a set of rewrite rules on program structures. Although

this concept is similar to our restriction on sketch structures in

Table 1, we focus on restricting program structures for enabling

efficient sketch completion, rather than reducing the search space

on program structures. We also highlight recent advances in synthe-

sis techniques that employ machine learning or stochastic models

[2, 4, 21, 25, 28, 30]. For example, SKETCHADAPT [30] prioritizes

sketches that may lead to a desired query based on a recurrent

neural network model, which has learned patterns from codebases.

Introducing such sketch priorities into our algorithm would be

straightforward since our sketch completion depends only on the

target sketch.

Natural Language Interface (NLI) is another approach than PBE

for helping non-experts to write queries [1]. In particular, a variety

of techniques for translating specifications in natural language into

SQL queries have been studied [6, 17, 19, 41]. For example, Syn-

taxSQLNet [41] is a text-to-SQL generator that employs an SQL

specific syntax tree-based decoder. It supports a rich set of SQL

features such as aggregation, union and nested query. However,

specifications in natural language tend to be ambiguous compared

to I/O examples. To address this issue, Duoqest [3] aims to com-

bine PBE and NLI approaches to meet user’s practical demands.

We believe each advance in PBE and NLI technologies will also

contribute to advances in such dual-specification approaches.

9 CONCLUSION

Wehave presented an SQL synthesizer called PATSQL, which synthe-

sizes expressive SQL queries from input and output tables. PATSQL

is the first SQL synthesizer that integrates properties known in

relational algebra into sketch-based program synthesis. PATSQL

employs a novel form of constraints and its top-down propagation

mechanism for efficient sketch completion. We have shown that

PATSQL outperforms a state-of-the-art algorithm SCYTHE in both the

execution time and the scalability of input and output tables even

though PATSQL does not employ hints about aggregation functions

required by SCYTHE.

An immediate future direction is to develop synthesis algorithms

that support additional syntax elements and are able to find more

complex program structures such as advanced SQL queries seen

in Kaggle’s tutorial. Another direction is to work with I/O exam-

ples that may contain incorrect values. In recent years, the pro-

gram synthesis from such noisy data has been studied in several

domains [10, 18]. It will also be interesting to consider the perfor-

mance of synthesized queries although the performance can depend

on the database indexes tuned for target tables. More broadly, we

believe that it is important to find out the requirements for the

practical use of PBE tools through user studies and continue to

improve the algorithms and user interfaces.
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