
DSB: A Decision Support Benchmark for Workload-Driven and
Traditional Database Systems

Bailu Ding
Microsoft Research

badin@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Johannes Gehrke
Microsoft Research

johannes@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

ABSTRACT
We describe a new benchmark, DSB, for evaluating both workload-
driven and traditional database systems on modern decision sup-
port workloads. DSB is adapted from the widely-used industrial-
standard TPC-DS benchmark. It enhances the TPC-DS benchmark
with complex data distribution and challenging yet semantically
meaningful query templates. DSB also introduces configurable and
dynamic workloads to assess the adaptability of database systems.
Since workload-driven and traditional database systems have dif-
ferent performance dimensions, including the additional resources
required for tuning and maintaining the systems, we provide guide-
lines on evaluation methodology and metrics to report. We show a
case study on how to evaluate both workload-driven and traditional
database systems with the DSB benchmark. The code for the DSB
benchmark is open sourced and is available at https://aka.ms/dsb.

PVLDB Reference Format:
Bailu Ding, Surajit Chaudhuri, Johannes Gehrke, and Vivek Narasayya.
DSB: A Decision Support Benchmark for Workload-Driven and Traditional
Database Systems PVLDB, 14(13): 3376 - 3388, 2021.
doi:10.14778/3484224.3484234

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://aka.ms/dsb.

1 INTRODUCTION
The TPC-DS benchmark [24] is a decision support benchmark that
models the database and the workload for the data warehouse
of a retail product supplier. It includes realistic database schema,
real-world data distribution, and semantically meaningful queries.
The benchmark has been widely used as an industrial-standard
benchmark for evaluating commercial database systems.

While the TPC-DS benchmark has many merits noted above,
after more than a decade since its publication, we observe that
some new trends have emerged in decision support workloads that
challenge the design of the TPC-DS benchmark:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.
doi:10.14778/3484224.3484234

• More complex data distribution: The data distribution inmod-
ern decision support databases consists of a variety of skews and
correlations, including skews on individual columns, correlations
between columns in the same table, and correlations of columns
across multiple tables [4, 22, 24]. While the TPC-DS benchmark
models skews in certain individual columns, it mostly assumes
independence between columns and across tables.
• More varieties in queries: The queries in modern decision
support workloads have a variety of join patterns, including non-
equi joins and cyclic join graphs. In particular, queries sometimes
join tables on columns that are neither primary keys nor foreign
keys, e.g., many-to-many joins. However, the joins in the TPC-DS
benchmark are mostly between a primary key and a foreign key
or between a primary key and another primary key.
• More fine-grained data slicing: Exploratory queries often slice
data at a fine granularity with multiple predicate filters on ta-
ble columns. However, since the dominating tasks for decision
support queries were reporting queries at the time when the TPC-
DS benchmark was designed, many query templates in TPC-DS
aggregate data at a much coarser granularity.
In addition to the changes in decision support workloads, there

have also been recent initiatives to make database systems more
workload-driven, especially with machine learning (ML) techniques.
There have been several research efforts that attempt to re-architect
database system components to take advantage of the workload and
its execution feedback. These efforts exploit ML to address a wide
range of challenging problems in index tuning, query processing,
and query optimization [8, 12, 13, 19]. This leads to new require-
ments on the benchmark that aims to evaluate such workload-
driven database systems:
• More distinct query instances: As a result of fine-grained data
slicing, queries are issued with various parameter bindings. Thus,
a benchmark should be capable of populating a sufficient number
of distinct query instances. While the TPC-DS benchmark has
parameterized query templates, the number of distinct query
instances that can possibly be generated can be as small as 5
(Section 4.1).
• Dynamic workloads: Workloads are rarely static in practice.
The parameter distributions, and hence the selectivity of pa-
rameterized predicate filters can vary over time. Moreover, the
distribution of query templates can also change in real workloads.
To evaluate the performance and adaptability of workload-driven
database systems, a benchmark should be capable of populating
dynamic workloads. Unfortunately, existing benchmarks such

3376

https://doi.org/10.14778/3484224.3484234
https://aka.ms/dsb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3484224.3484234

as the TPC-DS benchmark only generate static workloads with
limited variations.
• More dimensions of performance metrics: Compared with
the traditional database architectures, workload-driven database
systems are often designed using a different paradigm. There
can be a warm-up phase where the database system observes the
workload, collects the execution statistics, and tunes its perfor-
mance based on the workload. In addition, workload-driven data-
base systems can utilize a feedback loop to continuously monitor
the workload and adapt to changes if needed. This raises addi-
tional considerations for the evaluation metrics in the benchmark.
For example, the query optimizers leveraging ML techniques of-
ten need to collect execution data and train the ML models that
these optimizers depend on before executing any query. Further-
more, during query optimization and query execution, the ML-
enhanced optimizers may spend additional resources to perform
model inference (e.g., for cardinality estimation), data collection,
and model retraining. Since the TPC-DS benchmark is designed
for traditional database architectures, it does not provide enough
guidance on how to comprehensively compare the performance
trade-offs for workload-driven and traditional database systems.

We propose a new benchmark, DSB, for evaluating both
workload-driven and traditional database systems on modern de-
cision support workloads. DSB is adapted from the widely-used
industrial-standard TPC-DS benchmark1. Our adaptation preserves
the realistic database schema from TPC-DS, and it enriches the
TPC-DS benchmark in a number of ways:

• More complex data distribution: We introduce more skews
and correlations to individual columns and multiple columns
within a table and across tables (Section 3).
• Newquery templateswithmore join patterns:We introduce
new and semantically meaningful query templates to enrich the
join patterns in the benchmark, i.e., non primary-key-foreign-key
joins and non-equi joins (Section 4.3).
• More distinct query instances with fine-grained data slic-
ing:We introduce additional predicate filters in the query tem-
plates for fine-grained data slicing. This also increases the total
number of distinct query instances (Section 4.1).
• Configurable and dynamic query workloads: We introduce
configurable parameterization in generating queries, which en-
ables creating workloads of different parameter distributions and
workloads that change over time (Section 4.2). The DSB bench-
mark can be especially useful for evaluating a large body of
prior work on workload-driven database systems, including [18–
20, 25], which needs sufficient query instances for tuning the
system and / or dynamic workloads to assess their capability of
adapting to changes.
• Guidelines on evaluatingworkload-driven and traditional
database systems: Because a workload-driven database system
observes the workload, passively or actively collects the execu-
tion feedback, and tunes itself based on the workload, it can re-
quire additional inputs and resources, such as sample workloads,

1Disclaimer: The DSB benchmark is derived from TPC-DS and as such is not compa-
rable to published TPC-DS results, as the DSB benchmark does not comply with the
TPC-DS benchmark.

computation, and storage. Since the workload-driven and tradi-
tional database systems have different performance dimensions,
it has been challenging to compare their performance due to the
diverse evaluation setups andmetrics reporting [13, 15, 19, 20, 25].
DSB provides detailed methodology on how to evaluate these
database systems (Section 5). We also give guidance on the in-
formation to disclose and metrics to report.

We analyze and compare the characteristics of the DSB bench-
mark and the TPC-DS benchmark (Section 6). We show that, with
1000 query instances generated per query template, the DSB bench-
mark only has 8% of duplicate query instances; in contrast, the
TPC-DS benchmark has 63% of duplicate query instances. Com-
pared with the TPC-DS benchmark, the DSB benchmark leads to
more complexity in query optimization on both Microsoft SQL
Server 2019 and Postgres 13. Finally, we show a case study of how
to evaluate both workload-driven and traditional database systems
using the DSB benchmark (Section 7). We conclude in Section 8.
Although we have started with the TPC-DS benchmark due to its
popularity and extensive adoption, our adaptation and the evalua-
tion methodology can be extended to enhance other benchmarks.
The code for the DSB benchmark is open sourced and is available
at [1].

2 RELATEDWORK
In this section, we describe related work on decision support bench-
marks and data distribution generation.

Benchmarks:The TPC-DS benchmark [24] is proposed to evalu-
ate the performance of decision support database systems. It models
the data warehouse of a retail product supplier. Its schema consists
of multiple snowflake schemas with shared dimension tables. The
TPC-DS benchmark incorporates real-world data distribution into
the generation of the database. The database itself can scale from
1GB to 100TB. The TPC-DS benchmark defines 99 parameterized
query templates to model the decision support tasks in retail. The
benchmark has been widely used as an industrial-standard bench-
mark for commercial database systems.

The Join Order Benchmark (JOB) [16] is proposed to evaluate the
cardinality estimation and join ordering in query optimization. The
benchmark uses the Internet Movie Data Base (IMDB) dataset [2].
It consists of 113 single-block, select-project-join query instances.
The queries are synthetic. The presence of skews and correlations
in the data as well as the large number of joins and selections in the
queries make JOB challenging for query optimizers with respect to
cardinality estimation and join ordering.

The TPC-H benchmark [23] is a decision support benchmark that
precedes TPC-DS. JCC-H [7] introduces join-crossing-correlations
and skews into TPC-H. The CH Benchmark [9] combines TPC-H
and TPC-C to evaluate database systems on hybrid transaction and
analytical (HTAP) workloads.

Compared with prior benchmarks, the DSB benchmark is de-
signed for evaluating bothworkload-driven and traditional database
systems on modern decision support workloads. It can populate a
large number of distinct query instances, dynamic workloads, and
databases with complex skews and correlations. The DSB bench-
mark can also be extended to use alternative query parameter gen-
eration techniques such as [14].

3377

Data distribution generation: Random data distribution is
commonly used to populate synthetic datasets, where the value of
a column is uniformly drawn from a given domain. Additional data
distributions, such as Zipfian and exponential data distribution,
are also widely used for introducing skews into the data [3, 4].
Prior work has also generated Zipfian distribution over multiple
dimensions with bucketization [5]. TPC-DS introduces realistic data
distribution by hard coding a weighted distribution of values in a
domain. JCC-H introduces join correlation by controlling the join
fanouts [7]. The DSB benchmark leverages techniques from prior
work and introduces skews and correlations for single columns and
multi-dimensional data within a table and across tables.

3 DATA GENERATION
The TPC-DS benchmark incorporates real-world data distribu-
tion in generating the database. However, most of the data in the
columns are still populated from uniform distribution. In addition,
the data in the columns have little correlation. In practice, the data
distribution can be more skewed and correlated. Thus, the DSB
benchmark enhances the data generation of the TPC-DS bench-
mark with additional skews and correlations.

3.1 Skewed data distribution
Exponential distribution is a skewed distribution that is frequently
observed in practice [22]. We introduce three types of skewed
distributions to data in a single column for both categorical and nu-
merical values based on exponential distribution. Since generating
values from an exponential distribution takes O(1) time and space
complexity, it adds negligible overhead to populating the database.

Exponential distribution for categorical data: For categori-
cal data with relatively small domains, e.g., i_category in item table,
we draw the frequency of each category with an exponential distri-
bution. Specifically, the cumulative distribution function (CDF) of
an exponential distribution is

f (x) = 1 − e−λx (1)

Given the probability p, we have

x = − ln(1 − p)/λ (2)

We apply a randompermutation to the categorical values to avoid
creating a smooth distribution over a fixed order of the values.

Bucketized exponential distribution for categorical data:
If the number of categories is too large, e.g., dates, drawing the
values from an exponential distribution with a random permutation
can be noisy. Since such categories often have a natural order, e.g.,
dates, we bucketize the categories into ranges. We draw a value
from a skewed distribution in three steps. First, we select a bucket
using an exponential distribution. Then we map the selected bucket
into a corresponding range of categorical values. Again, we apply
a random permutation to the buckets to avoid creating a smooth
distribution for consecutive ranges. Finally, within a bucket, we
choose a value in the corresponding range from either uniform
distribution or another exponential distribution.

Bucketized exponential distribution for numerical data:
For numerical data, e.g., wholesale prices, we generate a skewed
distribution following a similar process to that of generating buck-
etized exponential distribution for categorical data.

GenPositiveCorrelation(n, a,m, r , d , p):
Input: Domain size n of column A, ID a of a value in the

domain of column A, domain sizem of column B,
radius r ∈ [0, 1], distribution d , permutation p of
the values in the domain of column B

Output: A value v in the domain of column B
1 ratio ← a/n

2 bMin ←max(1,m ∗ ratio)
3 bMax ←max(1,m ∗ (ratio + radius))
4 b ← GenRandom(dist,bMin,bMax) mod m

5 v ← MapPermutation(b,p)

6 return v
Algorithm 1: Generate a value for column B where column B
is positively correlated with column A. Function GenRandom
returns a value in a given range with a specified distribution.
Function MapPermutation takes an ID and a permutation of
the values in a domain and returns the value corresponding to
the given ID

GenJointDistributionMultiTables(D1.A, D2.B, F ,map1,
map2,m, r , d , pa , pb):

Input: Correlated columns D1.A,D2.B, a mapmap1
from D1.A to primary keys of D1, a mapmap2
from D2.B to primary keys of D2, distribution d ,
permutation pa and pb of the values in the
domain D1.A and D2.B

Output: a pair of primary keys (k1,k2)
1 (a,b) = GenJointDistribution(D1.A,D2.B,d)

2 va = MapPermutation(a,pa)

3 A ←map1(va)

4 vb = MapPermutation(b,pb)

5 B ←map2(vb)

6 k1 = SelectRandom(A)

7 k2 = SelectRandom(B)

8 return (k1,k2)
Algorithm 2: Introduce correlations between two columns
in two dimension tables that are joined together with a fact
table.GenJointDistribution draws a pair of values from a given
distribution d . Function MapPermutation takes an ID and a
permutation of the values in a domain and returns the value of
the corresponding ID. Function SelectRandom returns a random
value from a given set of values.

3.2 Skewed data correlation
To model the rich and complex data correlations, we introduce data
correlations for columns both in a single table and columns of the
result of joining multiple tables.

We add the following correlations for columns in a single table:
• Exponential 2D distribution with bucketization: This mod-
els a skewed distribution on combinations of values from two
columns in the same table. For a pair of columns A and B, we
take the cross product of the domains of the two columns and
flatten them into one dimension. Then we populate a skewed
distribution over the combination of these two column values

3378

the same way as described in Section 3.1. Since the cross product
of the values in two domains often results in a large number of
value combinations, we use bucketization as described earlier.
• Positive correlationwith a driving column: This models pos-
itive correlations between values of two or more columns in the
same table. For column A and column B, if the value b in the
domain of column B is positively correlated with the value a in
the domain of columnA, we call columnA the driving column. At
a high level, we map each value a in the domain of columnA to a
set of values B(a) in the domain of column B. For each value a in
A, we select a value b ∈ B(a) using either an exponential or uni-
form distribution. Algorithm 1 shows the details of the process.
This can be extended to numerical values with bucketization.

Combining the two techniques above, we can create complex
data correlations between multiple columns in the same table. For
example, if an exponential 2D distribution is introduced to column
A and B and a positive correlation is introduced to column C with
driving column A, then the introduced data correlation impacts
all three column A,B and C . The data correlation can implicitly
propagate to the join result of multiple tables through join columns.

Data correlation for joins In addition to correlations among
columns within the same table, realistic data can also have correla-
tions between columns from multiple tables. For example, since the
average weather in California is warmer than that in Alaska, the
people in California are more likely to buy shorts and dresses than
people in Alaska. Since customer addresses, item categories, and the
sales data are stored in three tables, this data correlation between
customer addresses and item categories can only be observed after
the three tables are joined together.

We introduce data correlation between two columns from two
dimension tables which are joined together with a fact table. At a
high level, we first populate the data in the two dimension tables,
and based on the values of the columns and the data correlation,
we then decide the value of the corresponding foreign keys on the
fact table.

Algorithm 2 shows the process of how to introduce a distribution
d between two columns D1.A and D2.B to the join result of table
D1, D2, and F , where D1 and D2 joins with F with primary-key-
foreign-key (PKFK) joins. Given the tableD1, we record themapping
map1 : a → K1(a), where K1(a) is the set of primary keys in
D1 with D1.A = a (line 2-3). Similarly, we record the mapping
map2 : b → K2(b), where K2(b) is the set of primary keys in
D2 with D2.B = b (line 4-5). When generating the corresponding
foreign keys for a tuple in the table F , we first populate a pair of
values (a,b) from the given distribution d (line 1), and then we
select the values of foreign keys in F from K1(a) and K2(b) with
uniform distribution (line 6-7).

This algorithm can be further extended to populate correlations
for columns of join results between a fact table and chains of dimen-
sion tables with PKFK joins, i.e., snowflake queries, by propagating
themapping between the correlated columns and the corresponding
primary keys.

Note that introducing data correlation into the join result does
not affect the data distribution of individual dimension tables. Thus,
with additional data correlation among columns within each indi-
vidual table, the introduced correlation in the join result can span

beyond the targeted columns in the join result. For example, if a
correlation is introduced to column D1.A1 and D2.B in the join re-
sult, and another correlation is introduced between column D1.A1
and D1.A2, there will be implicit correlation between D1.A2 and
D2.B in the join result as well.

3.3 Physical design configuration
In practice, we often change the physical design configuration
of a database to improve query performance, including creating
indexes and views. We tune a sample 100GB DSB database instance
with a sample workload using the Database Tuning Advisor from
Microsoft SQL Server 2019 [6]. The resulting 56 secondary B+ tree
indexes can be used as a sample physical design configuration for
the benchmark. The specification of the indexes is included in the
released code [1].

4 QUERY GENERATION
In this section, we describe how the DSB benchmark augments
the TPC-DS query templates and populates dynamic workloads.
We also discuss how to reduce generating query instances that are
literally different but semantically equivalent.

4.1 Fine-grained data slicing
While the query templates in TPC-DS are parameterized, they may
only aggregate the data at a coarse grained with a small number
of predicate filters. As a result, the parameter space of the query
templates can be very limited. For example, query template 17 only
has one parameterYEAR, which ranges from 1998 to 2002, resulting
in a total number of 5 distinct query instances.

We augment the query templates from TPC-DS with additional
predicate filters for fine-grained data slicing. This increases the
parameter space of query templates and enables generating a much
larger number of distinct query instances. For example, query tem-
plate 99 has the sequence ID of the month as its parameter with 48
distinct values in total. We augment this query with additional pa-
rameterized predicate filters on call_center, ship_mode, warehouse,
and catalog_sales table to increase the space of parameterization,
enabling generating more than 10, 000 distinct query instances from
this augmented query template.

For queries where the domain of the parameters is a subset of the
values in the domain, we enlarge the set of the parameter values.
For example, query template 3 aggregates the sales data over a
MONTH , where the MONTH is either November or December.
We enlarge the range of theMONTH parameter to be from January
to December.

Note that with our augmentation, the semantics of the query
templates only change slightly, i.e., inquiring over a smaller or a
different slice of the data.

We exclude some query templates from the TPC-DS benchmark
in DSB because they have a small number of joins or their parame-
ter space cannot be easily augmented without adding more joins
and / or significantly altering the semantics of the queries. We
also exclude query templates that are very similar to other query
templates, e.g. query 94 and 95.

3379

4.2 Varied and dynamic query workloads
Evaluating the adaptability of workload-driven database systems
requires a benchmark to generate a variety of workloads as well as
dynamic workloads. The TPC-DS query generation follows a given
distribution when populating query parameters. This distribution
can be either weighted or uniform, and the options of variations are
limited. We enhance the query workload generation by populating
categorical parameter values in the query templates from multiple
Gaussian distributions. The categorical parameter values are first
drawn from a random permutation, and then the weights of the
parameter values are drawn from a Gaussian distribution, where
the mean and the variance of the distribution are configurable.

To further support generating dynamic query workloads, DSB
can take a sequence of workload distribution configurations to
generate a query workload that changes over time. Each workload
distribution configuration includes a set of query templates, the
number of query instances per query template, the parameters of
the Gaussian distribution (i.e,. the mean and the variance), and the
random number generator seed which determines the permutation
of the parameter values in each domain.

The DSB benchmark can generate various types of dynamic
workloads with different workload distribution configurations. For
example, DSB can create a dynamic workload where certain pa-
rameter values of the queries become more popular over time by
increasing the variance of the Gaussian distribution. DSB can also
create a workload where the ’hot’, i.e., frequent, parameter values
shift over time by changing the mean of the distribution and / or
the permutation of the parameter values in each domain. DSB can
further create workloads with different degrees of similarities by
controlling the differences in the mean and the variance of the
Gaussian distributions. The similarity of the parameter value dis-
tributions in two workloads can be quantified by measuring the
distance (e.g., Kullback–Leibler divergence) of the probability dis-
tribution of the parameter values in each domain from the two
workloads. Finally, we can control the rate of the workload shift by
setting the number of query instances for each workload configu-
ration in the sequence.

4.3 Additional join patterns
Since the tables in the TPC-DS database schema are connected by
PKFK constraints, the joins in the query templates in TPC-DS are
mostly limited to PKFK joins between fact and dimension tables or
primary-key-primary-key joins between fact tables. We add three
new query templates that inquire customer purchase patterns with
additional join patterns, including many-to-many joins, non-equi
joins, and cyclic joins:

Query 100: Find items that are frequently sold together. This
query includes many-to-many self-joins and non-equi self-joins.

Query 101: Find cases where an item is purchased and returned
from the web, and then the same item is purchased again from the
store. This query includes non-PKFK many-to-many joins between
fact tables and non-equi joins between dimension tables.

Query 102: Find cases where an item is first purchased from
the store and then purchased again from the web, where the initial
purchase could have beenmade from the web based on its inventory.

This query includes non-PKFK many-to-many joins between fact
tables and non-equi joins between fact and dimension tables.

4.4 Reduce duplication in query generation
The TPC-DS benchmark can generate query instances that are lit-
erally different but semantically equivalent. For example, query
template 13 generates a list of states to filter the customer address
table. Since the states are used in an ’IN’ predicate filter, the per-
mutation of the states in the list does not change the semantics of
the query instance. Such equivalent query instances lead to over-
counting whenmeasuring the number of distinct query instances by
query text. We enhance the syntax of the query templates and query
instance generation such that the parameterization is generated
with a canonical order to reduce duplication when possible.

4.5 DSB derived SPJ queries
Aside from the main benchmark, we also include a set of single-
block SPJ queries derived from the query templates in DSB. These
query templates are included only to provide a ramp for evaluating
techniques that target at optimizing SPJ queries, e.g., techniques
on join ordering. The evaluation of the derived single-block SPJ
queries is optional for the evaluation of the full DSB benchmark,
and the performance on these queries is not required to be reported.

5 METHODOLOGY AND METRICS
In this section, we describe how to evaluate a database system with
DSB. In particular, we separate the evaluation into the preparation
and test stage, and we design our evaluation methodology and
metrics to expose the performance trade-offs of workload-driven
and traditional database systems.We also give a conceptual example
of how to evaluate a traditional and two workload-driven database
systems with ML-enhanced query optimizers. Table 1 summarizes
the information to disclose and the metrics to report.

5.1 Runtime environment
The evaluation should be performed on the same hardware using
the same database instance and workload for the database systems
of interest. The hardware and software specification should be
disclosed. For reproducibility, we recommend to perform the evalu-
ation on hardware that is publicly accessible, e.g., a VM instance in
the cloud.

The client can issue queries to the database concurrently. Concur-
rent query execution will increase resource consumption at runtime
and impact the query performance. The degree of concurrency used
for the evaluation should be disclosed.

5.2 Data and query generation
Weprovide a software tool to populate the database at different scale
factors from 1GB to 100TB. The evaluation should be performed and
reported on a database instance of at least 100GB. The databases of
1GB and 10GB should only be used for testing purpose.

We provide a toolkit to populate a workload with a given distri-
bution (Section 4.2). A performance test should be evaluated for at
least 10 query instances per query template. For workload-driven
database systems, if needed, the toolkit can be used to populate a
separate workload for preparing the database system, i.e., a training

3380

Table 1: Information to disclose and metrics to report in the evaluation

Category Item Description

Runtime Hardware Specification of the hardware. Recommend using hardware that is publicly accessible,
e.g., a VM instance in the cloud.

environment Software The database runtime.
Concurrency level The number of concurrent client connections that issue the queries.

Data and query
Database scale Scale of the benchmark database. Recommend at least 100GB.

generation Query templates Query templates used for training and test workloads. Recommend to perform the
evaluation on the full set of query templates.

Training query workload Query instances used for training if applicable, including the number of query in-
stances and the distribution of parameterization.

Test query workload
Query instances used for test, including the number of query instances and the
distribution of parameterization. Recommend testing with at least 10 query instances
per query template.

Duplicate ratio of the workload The ratio of duplicate query instances in the combined set of training and test work-
load. Recommend having a duplicate ratio of less than 0.1, i.e., 10%.

Preparation Time The time spent on preparation.
stage Resource The resources spent on preparation.

Test stage

Average query elapsed time

The average elapsed time per query instance for the test query workload, including
any overhead incurred to optimize and execute the query and adapt the system, such
as query optimization time, model inference time, data collection, and model update.
Can be normalized.

Average query CPU time

The average CPU time per query instance for the test query workload, including any
overhead incurred to optimize and execute the query and adapt the system, such as
query optimization time, model inference time, data collection, and model update.
Can be normalized.

Percentile query elapsed time
(recommended) The distribution of query elapsed time for the test query workload. Can be normalized.

Percentile query CPU time (rec-
ommended) The distribution of query CPU time for the test query workload. Can be normalized.

Snapshots of query perfor-
mance (optional)

If the performance of the database system takes time to converge during the test
stage, e.g., reinforcement learning based query optimizers, the performance can be
reported periodically, e.g., per batch of test query instances. Can be normalized.

Other overhead Any additional overhead that is not captured by query elapsed time and CPU time,
such as GPUs and FPGAs.

workload. The training workload can be generated from a similar
or different distribution compared with that of the test workload.

Since the parameter space of a query template is finite, there can
be duplicate query instances generated in a workload. We call the
ratio of duplicate query instances in a workload as the duplicate
ratio. We recommend to generate a query workload with less than
0.1 duplicate ratio for all query instances used in the evaluation, i.e.,
the combined set of training and test workload. This ensures that
the evaluation is performed on a test workload where the query
instances are mostly distinct and unseen.

5.3 Preparation stage
The database system can spend additional resources on preparing
itself before running any test queries. In the preparation stage, the
system has access to the full database instance and the training
workload. For example, a traditional database system can create
histograms; and a workload-driven database system can collect exe-
cution statistics and learn models from the data and / or the training
workload. The database system may decide to make changes to the

physical design, e.g., creating indexes or materialized views. Such
changes should be reported.

The time and resource spent on the preparation stage should be
disclosed for comparison. The resource consumption can include
CPU, memory, GPU, and others.

5.4 Test stage
The test stage is where the actual evaluation happens. In this stage,
we run the queries in the test workload in isolation, either indi-
vidually or concurrently. We measure the query performance by
their elapsed time and CPU time over all the query instances in
the test workload. Since some query instances are more expensive
than others, which can overshadow the performance of less expen-
sive query instances in the aggregated statistics, we recommend
reporting percentile statistics of query performance, such as the
distribution of query elapsed time and CPU time. The elapsed time
and CPU time can be normalized.

The query elapsed time and CPU time should include any over-
head incurred by processing the query. For example, for traditional

3381

database systems, the elapsed time and CPU time should include
query optimization time; for ML-enhanced database systems, the
elapsed time and CPU time should include the overhead of model
inference if applicable. If a workload-driven database system needs
to collect additional execution statistics and adapt to the workload,
e.g., database systems with reinforcement learning or interleaved
query optimization, the elapsed time and CPU time should include
any other overhead from additional execution or adaptation. If the
overhead cannot be included in the elapsed time or CPU time, e.g.,
GPUs or FPGAs, the source of such overhead should be disclosed,
and the overhead should be measured and reported.

For database systems that can leverage execution feedback to im-
prove their performance and converge over time, the evaluation can
optionally report the aggregated query performance periodically,
e.g., per batch of test query instances.

5.5 Example
We walk through an example of how to evaluate a traditional data-
base system (DbT), aML-enhanced database systemwith supervised
learning based cardinality estimator (DbML), and a ML-enhanced
database system with reinforcement learning (DbRL) to predict the
query plan. We will describe a concrete case study of the evaluation
in Section 7.

Runtime environment: The evaluation is performed on Azure
D48ds v4 virtual machine instance, with 48 vCPUs, 192GiB RAM,
and 1TB local SSD.

Data and query generation:We populate a 100GB DSB data-
base with the physical design configuration as described in Sec-
tion 3.3. We generate 100 query instances per query template as
the training workload and 100 query instances per query template
as the test workload for all the query templates using the default
parameter distribution. The duplicate ratio is 0.05 in the combined
set of training and test workload.

Preparation stage: The DbT creates additional single column
statistics on the database based on the query templates. The time
spent on creating the statistics and their storage consumption are
reported. The DbML uses GPUs to train models based on the data-
base and the training workload. The resources consumed, the time
spent on collecting data labels and model training, and the size the
resulting model are reported. The DbRL does not need to do any
tuning upfront, so its resource consumption is zero.

Test stage: For each query, the DbT optimizes and executes
the query. The elapsed time of a query using the DbT includes the
query optimization and execution time. During query optimization,
the DbML needs to predict the cardinality of each subplan expres-
sion while searching the plan space. Thus, the elapsed time of a
query using the DbML includes query optimization with model
inference and query execution. Finally, for DbRL, in addition to
generating a query plan and executing the plan, it needs to collect
query execution statistics and update its model. The elapsed time
of a query using the DbRL includes the time on query optimization
with model inference, query execution, data collection, and model
update. Similarly, the CPU time of a query for each database system
also includes all the computation incurred for processing a query.
Since the DbRL takes time to converge to a good policy and reward
function, we report both the aggregated query performance for the

test workload, i.e., 3700 query instances, and the aggregated query
performance every 20% of the test workload, i.e., a batch of 740
query instances.

6 EVALUATION OF DSB
In this section, we first quantify several important overall character-
istics of the DSB benchmark and highlight the differences compared
with the TPC-DS benchmark. Next, we compare the two bench-
marks by their ability to generate distinct query instances. We then
analyze the complexity of query optimization for the two bench-
marks on both Microsoft SQL Server 2019 and Postgres 13 database
systems. We further quantify the cardinality misestimates in the
DSB and the TPC-DS benchmark w.r.t. independence assumption.
We finally provide a detailed analysis of the room for improvement
in plan quality for DSB on Microsoft SQL Server 2019.

We populate both DSB and TPC-DS database with the scale factor
100GB. We implement the physical design configuration on both
databases as described in Section 3.3. The evaluation is performed
on the same hardware as described in Section 5.5.

6.1 Overall statistics
We first compare the overall characteristics of the DSB and the TPC-
DS benchmark (Table 2). We include the statistics of the derived SPJ
queries from DSB for readers who are interested (see Section 4.5).
Here, we highlight two differences:
• Number of queries: As shown in Table 2, the DSB benchmark
consists of 37 query templates, including single-block queries
with aggregates and group-bys (Agg) and multi-block queries
(MultiBlock). We also derive 15 single-block SPJ queries from the
DSB query templates (D-SPJ). In contrast, the TPC-DS benchmark
has 99 query templates, where 59% of the query templates are
multi-block queries and 2% are single-block SPJ queries. The DSB
benchmark consists of a variety of query types, which is suitable
for evaluating general database system performance as well as
specific techniques for SPJ queries, e.g., join ordering.
• Number of joins: As shown in Table 2, the average number
of joins in the DSB benchmark is higher than that of the TPC-
DS benchmark, i.e., 10.8 vs. 8.1. We will further show that the
query templates in the DSB benchmark are significantly more
challenging for query optimization compared with these in the
TPC-DS benchmark (Section 6.3).

6.2 Duplicate ratio
We measure the capability of generating distinct query instances
by measuring the duplicate ratio of the query workloads. Since
deciding the equivalence of SQL queries is NP-hard, we consider a
query instance distinct if there is no other query instance that has
the same query text in the workload after applying our technique to
reduce generating duplicate query instances (Section 4.4). Figure 1
shows the duplicate ratio of DSB and TPC-DS benchmark varying
the number of query instances populated per query template, both
with the default parameter distribution. With 20 query instances
per query template, the DSB benchmark has 0.3% duplicate query
instances, while the TPC-DS benchmark already has 14% duplicate
query instances. The duplicate ratio increases with the number of
query instances generated per query template. With 1000 query

3382

Table 2: Summary statistics of DSB and TPC-DS benchmark

Statistics DSB TPC-DS
All SPJ Agg MultiBlock New D-SPJ All SPJ Agg MultiBlock

Query template # 37 0 15 22 3 15 99 2 39 58
Average join # 10.8 0 6.5 13.7 9.0 6.4 8.1 4.5 5.3 10.5
Data distribution Skewed and correlated Mostly uniform and independent
Query workload generation Default or configurable Gaussian distribution Limited variations

Figure 1: Duplicate ratio varying the number of query in-
stances with the default parameter distribution

20 50 100 250 500 1000
Number of Query Instances Per Query Template

0.0

0.2

0.4

0.6

0.8

Du
pl

ica
te

 R
at

io

0.
00

0.
14

0.
01

0.
28

0.
02

0.
37

0.
04

0.
50

0.
06

0.
57

0.
08

0.
63DSB

TPC-DS

instances per query template or 37,000 query instances in total,
which can be demanded as a training query workload for some
workload-driven database systems, the DSB benchmark still main-
tains a low percentage of duplicate query instances, i.e., 8%. In
contrast, the duplicate ratio of the TPC-DS benchmark shoots up
to 63%, making it difficult to construct either distinct test query
instances or disjoint training and test query workload. Our query
template enhancement, as described in Section 4, effectively reduces
the duplicate ratio by 8 × −47×, which provides sufficient training
and test query workload for workload-driven database systems.

6.3 Complexity of query optimization
We analyze the complexity of query optimization for the DSB and
TPC-DS benchmark by optimizing the queries in a database system.

With the same database system, a query can result in more time
of query optimization if the query is more complex, i.e., a larger
search space or no obvious good plan based on heuristics. Thus, a
benchmark can be more challenging for the database system if the
query optimization time is higher.

We populate a query workload for each benchmark from the
default parameter distribution with 20 query instances per query
template. Table 3 shows the average query optimization time for the
DSB and the TPC-DS benchmark normalized by the same constant.
On Microsoft SQL Server 2019, the optimizer spends 2.7× time in
query optimization with the DSB queries compared with that of the
TPC-DS queries. In particular, the three newly added query tem-
plates in the DSB benchmark require the highest query optimization
time. The overall result is similar on Postgres 13, where the nor-
malized average query optimization time on the DSB benchmark is
2.9× of that on the TPC-DS benchmark. We observe that the Multi-
Block queries take less time to optimize than other query types on

Postgres 13 due to the greedy-based join ordering heuristics that
often kick in for MultiBlock queries.

The query optimizer will produce different query plans for query
instances of the same query template if different parameterization
leads to different selectivities and thus different optimal plans. The
larger the number of distinct optimal plans, the more diverse the
selectivity is for different parameterization, at least from the opti-
mizer’s estimates.

Table 4 shows the average number of distinct query plans per
query template for the DSB and the TPC-DS benchmark. On Mi-
crosoft SQL Server 2019, among the 20 query instances, query
templates in the TPC-DS benchmark only have 1.5 distinct query
plans in average, while query templates in the DSB benchmark have
an average number of 7.9 distinct query plans, which is 5.3× of that
for the TPC-DS benchmark. We observe similar results in Postgres
13: 4.9 distinct plans per query template on the DSB benchmark vs.
2.5 distinct plans per query template on the TPC-DS benchmark.

We further break down the impact of our enhancement on the
complexity of query optimization:

• DSB queries with TPC-DS data (TPC-DS Data): This is the
benchmark with the database populated from the TPC-DS bench-
mark and the query workload from the DSB benchmark. Com-
pared with DSB, this variation lacks the additional skews and
correlations introduced to the database.
• TPC-DS queries with DSB data (DSBData): This is the bench-
mark with the database populated from DSB and the query work-
load from the TPC-DS benchmark. Compared with DSB, this
variation lacks the enhancement of the query templates. Note
that the three newly added query templates are not included in
this variation.

Impact of data enhancement: Table 3 shows that DSB spends
21% more time on average in query optimization compared with
TPC-DS Data on Microsoft SQL Server 2019. Similarly, Table 4
shows that DSB produces 6.1× number of distinct plans per query
template compared with TPC-DS Data on Microsoft SQL Server
2019. Thus, adding more data skews and correlations significantly
increases the complexity of query optimization. The trend is similar
on Postgres 13.

Impact of query template enhancement: Table 3 shows that
DSB spends 46% more time on average in query optimization com-
pared with DSB Data on Microsoft SQL Server 2019. Similarly,
Table 4 shows that DSB produces 3.0× number of distinct plans
per query template compared with DSB Data for Microsoft SQL
Server 2019. Thus, enhancing the query templates also dramatically
increases the complexity of the benchmark. The trend is similar on
Postgres 13.

3383

Table 3: Average normalized compile time per query instance with 20 query instances per query template

Database and workloads Microsoft SQL Server 2019 Postgres 13
All SPJ Agg MultiBlock New D-SPJ All SPJ Agg MultiBlock New D-SPJ

DSB 0.51 N/A 0.49 0.53 1.00 0.42 0.23 N/A 0.34 0.15 1.00 0.28
TPC-DS 0.19 0.06 0.12 0.26 N/A N/A 0.08 0.10 0.09 0.07 N/A N/A
DSB queries w/ TPC-DS data 0.42 N/A 0.28 0.51 0.65 0.23 0.21 N/A 0.31 0.14 0.90 0.25
TPC-DS queries w/ DSB data 0.35 0.25 0.40 0.38 N/A N/A 0.09 0.10 0.10 0.08 N/A N/A

Table 4: Average number of distinct query plans per query template with 20 query instances per query template

Database and workloads Microsoft SQL Server 2019 Postgres 13
All SPJ Agg MultiBlock New D-SPJ All SPJ Agg MultiBlock New D-SPJ

DSB 7.9 N/A 5.9 9.3 5.0 5.5 4.9 N/A 4.7 5.1 5.7 5.4
TPC-DS 1.5 1.0 1.2 1.7 N/A N/A 2.5 1.5 1.3 3.5 N/A N/A
DSB queries w/ TPC-DS data 1.3 N/A 1.2 1.3 1.0 1.1 3.6 N/A 3.5 3.7 6.5 4.1
TPC-DS queries w/ DSB data 2.6 1.9 2.3 3.0 N/A N/A 2.9 2.0 1.4 3.9 N/A N/A

Table 5: Percentile of q-errors in cardinality estimation w.r.t.
independence assumption

% GB1 GB2 GB3 GB4
TPC-
DS DSB TPC-

DS DSB TPC-
DS DSB TPC-

DS DSB

25 1 1.3 1.0 1.3 1.0 1.7 1.0 2.3
50 1.1 1.6 1.0 3.5 1.0 2.5 1.0 4.5
75 1.1 2.1 1.0 4.8 1.1 3.7 1.1 10.9
90 1.2 2.7 1.1 4.8 1.1 8.2 1.1 31.9
95 1.6 3.2 1.1 4.9 1.1 13.1 1.1 73.9
Max 198.2 211.7 1.3 4.9 1.4 818.6 3.9 2213.7

6.4 Cardinality misestimates
The accuracy of cardinality estimation in a database system is
crucial for the plan quality. Intuitively, if the data distribution leads
to more cardinality misestimates, it is more difficult for a database
system to produce a good plan.We evaluate and compare the degree
of cardinality misestimates in DSB and TPC-DS by calculating the
q-errors [21] w.r.t. independence assumption. We calculate the joint
probability of all the value combinations from multiple columns
of a single table or of the join result of multiple tables. Then we
estimate the cardinality with the product of marginal probabilities
of the values in the corresponding tables assuming independence.
We compute the q-errors between the actual cardinality and the
estimates under independence assumption.

We evaluate the q-errors of cardinality estimates for subexpres-
sions from the query templates of DSB. Table 5 shows the per-
centiles of the q-errors for a variety of subexpressions from the
DSB query templates:

• GB1: item grouped by i_category and i_manager_id.
• GB2: The join result of customer, customer_address, and cus-
tomer_demographics grouped by cd_marital_status and ca_state.
• GB3: The join result of store_sales, item, customer, and cus-
tomer_address grouped by i_class_id and ca_state.

• GB4: The join result of catalog_sales, item, customer, cus-
tomer_address, and customer_demographics grouped by
i_category, cd_education_status, and ca_state.

Table 5 shows that the cardinality estimation has significantly
more q-errors in DSB compared with that in TPC-DS. For median
q-errors, DSB results in up to 4.5× q-errors as that from TPC-DS.
For 90% q-errors, DSB results in up to 29.0× q-errors as that from
TPC-DS. We also observe that the degree of q-errors is amplified
after joining multiple tables.

Note that cardinality misestimates do not necessarily translate
to suboptimality in plan quality, since the plan quality also depends
on the complexity of the query template and the query execution
engine of the database system (e.g., the plan quality may not be sen-
sitive to certain misestimates due to techniques in query execution
or “two wrongs make a right” [8, 10, 11, 17]).

6.5 Room for improvement in plan quality
We evaluate the room for improvement in plan quality on DSB
by comparing the query performance of the original query plan
(Original) and the best plan we manage to produce by injecting true
cardinality during query optimization (Optimal), both on Microsoft
SQL Server 2019. This indicates a lower bound of the room for
improvement in plan quality on a commercial database.

We populate a workload with 20 query instances per query
template using the default parameter distribution. Figure 2 shows
the normalized elapsed time of Optimal compared with that of
Original. On average, the best plans have 31% less elapsed time
compared with the plans from the original Microsoft SQL Server
2019, indicating sufficient room for improvement in plan quality
even with a mature commercial database. We also include the room
for improvement (i.e., 41%) of the derived SPJ queries for the readers
who are interested.

The improvement in plan quality also covers a wide range of
query instances and query templates. Figure 3 breaks down the
distribution of the elapsed time speedup ratio using Optimal com-
pared with Original. For 25% of the queries, Optimal speeds up the
elapsed time by at least 1.2×. For 10% of the queries, the speedup is

3384

Figure 2: Normalized elapsed time us-
ing best plans

All Agg MultiBlock D-SPJ
Query Template

0.0

0.2

0.4

0.6

0.8

 N
or

m
al

ize
d

El
ap

se
d

Ti
m

e

0.69
0.63

0.73

0.59

Figure 3: Elapsed time speedup ratio us-
ing best plans

 50 75 90 95 100
Percentile of Query Instances

101

103

105

El
ap

se
d

Ti
m

e
Sp

ee
du

p
Ra

tio

1.
0 1.
2 4.

9 1.
9e

+1

2.
0e

+3

1.
0 1.
2 1.
6 2.
7

6.
5e

+2

1.
0 1.
2 2.
2 5.

5

2.
0e

+3

Agg
MultiBlock

All

Figure 4: Ratio of improved queries in
elapsed time using best plans

 50 75 90 95 100
Percentile of Query Templates

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f Q

ue
ry

 In
st

an
ce

s

0.
2

0.
4 0.
5 0.
5 0.
6

0.
1 0.

2

0.
6

0.
6 0.

8

0.
1

0.
4 0.

6 0.
6 0.

8

Agg
MultiBlock

All

at least 2.2×, with a maximal speedup of more than three orders of
magnitude. Figure 4 shows the distribution of the number of query
instances per query template that get improved by at least 20% in
elapsed time. For 50% of the query templates, at least 10% of the
query instances have significant improvement in elapsed time. For
10% of the query templates, at least 60% of the query instances have
significant improvement in elapsed time.

Our evaluation shows that there is significant room for improve-
ment in plan quality on DSB both in aggregation and for a wide
range of query instances and query templates.

7 EVALUATION CASE STUDY
In this section, we present a case study of how to evaluate workload-
driven and traditional database systems using the DSB benchmark.
Our goal is to demonstrate the methodology of evaluating database
systems using DSB, as described in Section 5. The evaluation is
performed on Microsoft SQL Server 2019, where we implement
a variant of the cardinality estimator using ML. This case study
does not necessarily reflect the best implementation of the specific
ML-enhanced cardinality estimator we use, nor the performance of
the state-of-the-art ML-enhanced database systems.

7.1 Setup
We populate a DSB database with the scale factor 100GB. We im-
plement the secondary B+ tree indexes as described in Section 3.3.
In Microsoft SQL Server 2019, statistics are auto-created, including
single column histograms and multi-column density vectors. We
populate a trainingworkloadWtrain of 200 query instances per tem-
plate, as well as a test workloadWtest with 20 query instances per
query template, both using the default parameter distribution. In ad-
dition, we populate an alternative training workloadW ′train of 200
query instances per query template using a Gaussian distribution of
(0, 2.0) for parameterization as described in Section 4.2. The dupli-
cate ratio of our workloads is 0 forWtest , 0.03 forWtest ∪Wtrain ,
and 0.05 forWtest ∪W

′
train .

The evaluation is performed on the hardware shown in Table 6.
The queries are executed individually in isolation, i.e. at concur-
rency level of 1. Table 6 summarizes the setup.

We evaluate five variants of Microsoft SQL Server 2019. Our
evaluation includes two variants of the traditional database systems:

• Original: The unmodified version of Microsoft SQL Server 2019,
which uses Volcano / Cascades style query optimization.

• NoPartAgg: The original Microsoft SQL Server 2019 with trans-
formation rules for partial aggregates push down disabled to
simulate a database system without advanced query rewriting
for aggregates. Compared with Original, NoPartAgg has a smaller
plan search space for some aggregation queries.
We also evaluate three variants of workload-driven database

systems by integrating a supervised ML-based cardinality estimator
into Microsoft SQL Server 2019 [13]. Given a set of query templates,
the ML-based cardinality estimator extracts expressions from the
templates and builds models to predict the cardinality for these
expressions. The technique uses a lightweight approach to estimate
cardinality of SPJ expressions with range or point look-up predicate
filters by leveraging supervised ML. And it trains a separate model
for each SPJ expression. The technique incrementally generates
training data for the ML models based on a given training workload
(i.e., query templates or query instances), where the training data is
labeled approximately and efficiently with sampling. We adapt [13]
for the evaluation of the full DSB benchmark, where we use the
technique for cardinality estimation of SPJ expressions and fall back
to Original for unsupported expressions.2

We create three variants of the ML-enhanced database system
based on the data used for training the models:
• MLData: The ML-enhanced cardinality estimator automatically
generates appropriate training query instances based on the data
in the database.
• MLSame: TheML-enhanced cardinality estimator uses the train-
ing query workloadWtrain populated with the DSB benchmark
to generate training data, where the parameter distribution of
Wtrain is the same as that ofWtest . In this case, the parameteri-
zation uses the default parameter distribution.
• MLDiff: The ML-enhanced cardinality estimator uses the alter-
native training query workloadW ′train populated with the DSB
benchmark to generate training data, where the parameter dis-
tribution ofW ′train is different from that ofWtest , i.e., Gaussian
distribution (0, 2) vs. the default parameter distribution.

7.2 Preparation stage
In the preparation stage, since Original and NoPartAgg do not cre-
ate any additional statistics, their resource consumption is 0. The
2Our implementation of the technique has limitations in parsing complex predicate
filters and optimizing time and space consumption of the technique. The case study
focuses on demonstrating the evaluation process. The performance of theML-enhanced
optimizers in the study does not necessarily represent that of the technique’s best
implementation nor the state-of-the-art ML-enhanced query optimizers.

3385

Table 6: Summary of information and metrics in the evaluation case study

Category Item Optimizer
Original NoPartAgg MLData MLDiff MLSame Optimal

Runtime Hardware Azure D48ds v4 virtual machine instance, with 48 vCPUs, 192GiB RAM,
and 1TB local SSD

environment Software Microsoft SQL Server 2019
Concurrency level 1

Data and query

Database scale 100GB with 56 secondary B+ tree indexes
Query templates All

generation Training query workload N/A N/A N/A

200 query
instances
with
default
distribu-
tion

200 query
instances
with
Gaussian
distribu-
tion

N/A

Test query workload 20 query instances with default distribution
Duplicate ratio of the workload 0 0 0 0.03 0.05 0

Preparation Time 0 0 55 hours
w/ CPUs

36 hours
w/ CPUs

36 hours
w/ CPUs N/A

stage Resource 0 0 Model:
1.4GB

Model:
1.4GB

Model:
1.4GB N/A

Test stage

Average query elapsed time (nor-
malized) 1 1.06 0.98 1.04 0.93 0.69

Average query CPU time (normal-
ized) 1 1.07 1.03 1.15 0.96 0.72

Other overhead None

ML-enhanced database systems create samples from the database
based on the expressions extracted from the query templates by
the ML-based cardinality estimator. They then run training queries
against the samples to collect execution statistics, with which the
ML models are trained. These training queries are either automat-
ically generated by the ML-enhanced database systems based on
the expressions extracted from the query templates and the data in
the database, i.e,. MLData, or they are provided as training query
instances by the DSB benchmark, i.e., MLSame and MLDiff.

The overhead of the ML-enhanced databases comes from three
sources: creating the samples, executing queries to collect statistics
for labeling the data, and training the ML models. We set a time
limit for creating samples and training the models to avoid exces-
sive resource consumption. Most models are successfully trained to
converge under this time limit. We observe that most of the time is
spent on executing queries to collect training data. The space con-
sumption of the ML models trained is 1.4GB. However, we observe
that the technique can generate very large intermediate results
while creating samples from join results, i.e., >650GB, because of
the many-to-many joins among fact tables in the new query tem-
plates (Section 4.3). Since such sample creation will time out, the
corresponding expressions are considered unsupported, and the
ML-enhanced cardinality estimator will fall back to Original for
cardinality estimation for these expressions. The ML models are
trained with CPUs.

Table 6 summarizes the resources consumed by the five database
systems in the preparation stage.

7.3 Test stage
In the test stage, we run query instances fromWtest on the five
variants of Microsoft SQL Server 2019 and measure their perfor-
mance. Table 6 summarizes the performance metrics as specified
in Section 5. The query execution statistics, i.e., elapsed time and
CPU time, includes the query optimization time, query execution
time, and model inference time if applicable. The model inference is
performed on CPUs. Since the three ML-enhanced variants do not
perform additional model adaption during the test stage, we only
report the aggregated query performance. The Optimal represents
the performance of the best plans as described in Section 6.5, and it
is used for reference purpose only.

Figure 5 shows the normalized elapsed time of the test work-
load breaking down by query types. Overall, the best ML-enhanced
database system, i.e., MLSame, is 7% faster in query elapsed time
than Original. Among the three ML-enhanced database systems,
MLDiff, which is trained with a query workload populated from a
different parameter distribution than that of the test query work-
load, shows 4% slower query elapsed time and performs the worst.
The variant of the traditional database systems, NoPartAgg, which
uses a simpler plan search space without partial aggregates push
down, shows 6% slower query elapsed time and performs the worst
among all the database systems in the evaluation.

We break down the queries by their degree of improvement
and regression for the best performed ML-enhanced variant, i.e.,
MLSame. Figure 6 and Figure 7 show the speedup and slowdown
ratios in query elapsed time with MLSame. For 10% of the query
instances, MLSame leads to significant reduction in query elapsed

3386

Figure 5: Normalized average elapsed
time for all queries by query types

OriginalNoPartAgg MLData MLDiff MLSame Optimal
Optimizer

0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d
El

ap
se

d
Ti

m
e

1.00 1.06 0.98 1.04
0.93

0.69

 Agg MultiBlock

Figure 6: Elapsed time speedup ratio
with MLSame

 50 75 90 95 100
Percentile of Query Instances

0

10

20

30

El
ap

se
d

Ti
m

e
Sp

ee
du

p
Ra

tio

1.
0

1.
0

1.
2 2.
2

7.
7

1.
0

1.
0

1.
1

1.
2

28
.5

1.
0

1.
0

1.
1 1.
4

28
.5Agg

MultiBlock
All

Figure 7: Elapsed time slowdown ratio
with MLSame

 50 75 90 95 100
Percentile of Query Instances

0

10

20

30

El
ap

se
d

Ti
m

e
Sl

ow
do

wn
 R

at
io

1.
0

1.
1 1.
8

1.
9

29
.7

1.
0

1.
0

1.
1

1.
3 6.

5

1.
0

1.
1

1.
3 1.
9

29
.7Agg

MultiBlock
All

Figure 8: Normalized average elapsed time for top 20 most expensive query templates

Q101 Q59 Q10 Q38 Q75 Q72 Q23 Q87
Q100 Q69 Q32 Q58 Q50 Q99 Q94 Q92 Q25 Q01

Q102 Q85

Query Template

10−2

10−1

100

No
rm

al
ize

d
El

ap
se

d
Ti

m
e

1.
0 1.
1

1.
0

6.
4e

-1
6.

9e
-1

7.
0e

-1
7.

0e
-1

6.
9e

-1
5.

6e
-1

6.
1e

-1
2.

1e
-1

2.
0e

-1
2.

2e
-1

2.
3e

-1
2.

2e
-1

1.
6e

-1
1.

4e
-1

1.
5e

-1
1.

5e
-1

8.
8e

-2
1.

0e
-1

1.
1e

-1
1.

0e
-1

3.
2e

-2
5.

8e
-2

5.
9e

-2
1.

1e
-1

5.
7e

-2
5.

5e
-2

5.
6e

-2
5.

5e
-2

5.
4e

-2
3.

6e
-2

3.
8e

-2
3.

9e
-2

2.
0e

-2
3.

5e
-2

3.
6e

-2
4.

2e
-2

1.
8e

-2
3.

0e
-2

3.
2e

-2
3.

1e
-2

2.
7e

-2
2.

1e
-2

2.
2e

-2
2.

3e
-2

2.
1e

-2
2.

1e
-2

2.
1e

-2
4.

2e
-2

2.
1e

-2
1.

7e
-2

2.
0e

-2
1.

7e
-2

1.
6e

-2
1.

6e
-2

1.
6e

-2
1.

6e
-2

1.
6e

-2
1.

6e
-2

1.
6e

-2
1.

6e
-2

1.
2e

-2
1.

1e
-2

1.
7e

-2
2.

0e
-2

1.
0e

-2
9.

4e
-3

9.
5e

-3
9.

5e
-3

9.
4e

-3
8.

9e
-3

9.
2e

-3
6.

9e
-3

5.
8e

-3
7.

8e
-3

7.
8e

-3
1.

1e
-2

7.
7e

-3

 Original NoPartAgg MLSame Optimal

Figure 9: Distribution of normalized elapsed time over test
query instances

 25 50 90 95 100
Percentile of Query Instances

10−3

10−1

101

No
rm

al
ize

d
El

ap
se

d
Ti

m
e

6.
6e

-4

2.
4e

-3 2.
3e

-2 1.
5e

-1 1.
0

6.
3e

-4

2.
4e

-3 2.
4e

-2 1.
5e

-1 1.
1

6.
9e

-4 2.
7e

-3 3.
3e

-2 1.
4e

-1 1.
0

4.
6e

-4 1.
9e

-3 1.
7e

-2 1.
1e

-1 9.
9e

-1Original
NoPartAgg

MLSame
Optimal

time. In particular, for 5% of the query instances, theMLSame speeds
up the query elapsed time by more than 1.4×, with the maximal
speedup ratio of 28.5. However, for 5% of the query instances, the
MLSame slows down the query elapsed time by more than 1.9×,
with the maximal slowdown ratio of 29.7.

Figure 8 shows the normalized average query elapsed time aggre-
gated per query template for the top 20 most expensive query tem-
plates on the original Microsoft SQL Server 2019. We also observe
both improvement and regression with MLSame for the expensive
queries. Figure 9 shows the percentiles of the query elapsed time
for all test query instances. We observe that the query performance
of Optimal improves over Original across all the percentiles.

The trends for CPU time are similar to those of the elapsed time,
and the results are omitted due to space limit.

8 CONCLUSION
We propose a new benchmark, DSB, to evaluate both workload-
driven and traditional database systems onmodern decision support
workloads. The DSB benchmark can generate thousands of distinct

query instances and dynamic workloads. To compare the perfor-
mance of workload-driven and traditional database systems, we
provide guidelines on evaluation methodology and metrics. We
show that, compared with the TPC-DS benchmark, the DSB bench-
mark results in higher cardinality misestimates due to the skews
and correlations in the data distribution. The queries in the DSB
benchmark also lead to more query optimization complexity com-
pared with these from the TPC-DS benchmark on both Microsoft
SQL Server 2019 and Postgres 13. In our case study, we demon-
strate how to evaluate workload-driven and traditional database
systems using the DSB benchmark. Our case study shows that,
there is significant room for improvement in plan quality with
DSB on a mature commercial database. The query performance
can be impacted by the accuracy of cardinality estimates, complex
query rewriting rules, and adapting the database systems under
workload shifts. In addition, our emphasis on end-to-end query
performance aims to encourage innovations on workload-driven
database systems with low maintenance and adaptation overhead.
Finally, we expect that reporting the distribution of query perfor-
mance comparison can draw attention to both query performance
improvements and regressions.

REFERENCES
[1] [n.d.]. The DSB benchmark. https://aka.ms/dsb, last accessed on 2021-09-10.
[2] [n.d.]. IMDB dataset. https://www.imdb.com/interfaces/, last accessed on 2021-

09-10.
[3] [n.d.]. A parallel zipf-skewed data generator for TPC-H benchmark.

https://github.com/SrikanthKandula/tpch_dbgen_zipf_skew, last accessed on
2021-09-10.

[4] [n.d.]. TPC-H data generation with skew. https://www.microsoft.com/en-
us/download/details.aspx?id=52430, last accessed on 2021-09-10.

[5] Ashraf Aboulnaga and Surajit Chaudhuri. 1999. Self-Tuning Histograms: Building
Histograms without Looking at Data. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’99). Association for
Computing Machinery, New York, NY, USA, 181–192. https://doi.org/10.1145/
304182.304198

3387

https://doi.org/10.1145/304182.304198
https://doi.org/10.1145/304182.304198

[6] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. 2005. Database Tuning Advisor for Microsoft
SQL Server 2005: Demo. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’05). Association for Computing Ma-
chinery, New York, NY, USA, 930–932. https://doi.org/10.1145/1066157.1066292

[7] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2017. JCC-H: Adding
join crossing correlations with skew to TPC-H. In Technology Conference on
Performance Evaluation and Benchmarking. Springer, 103–119.

[8] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski,
and Campbell Fraser. 2015. Smooth Scan: Statistics-oblivious access paths. In
2015 IEEE 31st International Conference on Data Engineering. 315–326. https:
//doi.org/10.1109/ICDE.2015.7113294

[9] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. 2011. The Mixed
Workload CH-BenCHmark. In Proceedings of the Fourth International Workshop
on Testing Database Systems (DBTest ’11). Association for Computing Machinery,
New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/1988842.1988850

[10] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive query
processing. Now Publishers Inc.

[11] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. 2020. Bitvector-Aware
Query Optimization for Decision Support Queries. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 2011–2026. https:
//doi.org/10.1145/3318464.3389769

[12] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 1241–1258. https://doi.org/10.1145/
3299869.3324957

[13] Anshuman Dutt, Chi Wang, Vivek Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions Using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 12 (July 2020), 2215–2228. https://doi.org/10.
14778/3407790.3407820

[14] Andrey Gubichev and Peter Boncz. 2014. Parameter Curation for Benchmark
Queries. In 6th TPC Technology Conference on Performance Evaluation and Bench-
marking. Springer/Verlag, 113–129.

[15] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. CIDR (2019).

[16] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[17] Guy Lohman. 2014. Is query optimization a “solved” problem. In Proc. Workshop
on Database Query Optimization, Vol. 13. 10.

[18] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learning
for ML-Enhanced Database Systems. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 175–191. https:
//doi.org/10.1145/3318464.3389768

[19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Prac-
tical. In Proceedings of the 2021 International Conference on Management of
Data. Association for Computing Machinery, New York, NY, USA, 1275–1288.
https://doi.org/10.1145/3448016.3452838

[20] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(July 2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[21] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (Aug. 2009), 982–993. https://doi.org/10.14778/1687627.1687738

[22] Mark EJ Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Con-
temporary physics 46, 5 (2005), 323–351.

[23] Meikel Poess and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Rec. 29, 4 (Dec. 2000), 64–71. https://doi.org/10.
1145/369275.369291

[24] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. 2002. TPC-DS, Taking
Decision Support Benchmarking to the next Level. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data (SIGMOD ’02).
Association for Computing Machinery, New York, NY, USA, 582–587. https:
//doi.org/10.1145/564691.564759

[25] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (Sept. 2020), 61–73. https://doi.org/10.14778/3421424.3421432

3388

https://doi.org/10.1145/1066157.1066292
https://doi.org/10.1109/ICDE.2015.7113294
https://doi.org/10.1109/ICDE.2015.7113294
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.14778/3407790.3407820
https://doi.org/10.14778/3407790.3407820
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3318464.3389768
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/369275.369291
https://doi.org/10.1145/564691.564759
https://doi.org/10.1145/564691.564759
https://doi.org/10.14778/3421424.3421432

