
A Scalable AutoML Approach Based on Graph Neural Networks

Mossad Helali
Concordia University

Montreal, Canada

mossad.helali@concordia.ca

Essam Mansour
Concordia University

Montreal, Canada

essam.mansour@concordia.ca

Ibrahim Abdelaziz
IBM T.J. Watson Research Center

New York, United States

ibrahim.abdelaziz1@ibm.com

Julian Dolby
IBM T.J. Watson Research Center

New York, United States

dolby@us.ibm.com

Kavitha Srinivas
IBM T.J. Watson Research Center

New York, United States

Kavitha.Srinivas@ibm.com

ABSTRACT

AutoML systems build machine learning models automatically by

performing a search over valid data transformations and learners,

along with hyper-parameter optimization for each learner. Many

AutoML systems use meta-learning to guide search for optimal

pipelines. In this work, we present a novel meta-learning system

called KGpip which (1) builds a database of datasets and correspond-

ing pipelines by mining thousands of scripts with program analysis,

(2) uses dataset embeddings to find similar datasets in the database

based on its content instead of metadata-based features, (3) models

AutoML pipeline creation as a graph generation problem, to suc-

cinctly characterize the diverse pipelines seen for a single dataset.

KGpip’s meta-learning is a sub-component for AutoML systems.We

demonstrate this by integrating KGpip with two AutoML systems.

Our comprehensive evaluation using 121 datasets, including those

used by the state-of-the-art systems, shows that KGpip significantly

outperforms these systems.

PVLDB Reference Format:

Mossad Helali, Essam Mansour, Ibrahim Abdelaziz, Julian Dolby,

and Kavitha Srinivas. A Scalable AutoML Approach Based on Graph Neural

Networks. PVLDB, 15(11): 2428 - 2436, 2022.

doi:10.14778/3551793.3551804

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/CoDS-GCS/kgpip-public.

1 INTRODUCTION

AutoML is the process by which machine learning models are built

automatically for a new dataset. Given a dataset, AutoML systems

perform a search over valid data transformations and learners,

along with hyper-parameter optimization for each learner [18].

Choosing the transformations and learners over which to search

is our focus. A significant number of systems mine from prior

runs of pipelines over a set of datasets to choose transformers and

learners that are effective with different types of datasets (e.g. [10],

[33], [9]). Thus, they build a database by actually running different

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551804

pipelines with a diverse set of datasets to estimate the accuracy of

potential pipelines. Hence, they can be used to effectively reduce

the search space. A new dataset, based on a set of features (meta-

features) is then matched to this database to find the most plausible

candidates for both learner selection and hyper-parameter tuning.

This process of choosing starting points in the search space is called

meta-learning for the cold start problem.

Other meta-learning approaches include mining existing data

science code and their associated datasets to learn from human

expertise. TheAL [2] systemmined existing Kaggle notebooks using

dynamic analysis, i.e., actually running the scripts, and showed that

such a system has promise. However, this meta-learning approach

does not scale because it is onerous to execute a large number of

pipeline scripts on datasets, preprocessing datasets is never trivial,

and older scripts cease to run at all as software evolves. It is not

surprising that AL therefore performed dynamic analysis on just

nine datasets.

Our system, KGpip, provides a scalable meta-learning approach

to leverage human expertise, using static analysis to mine pipelines

from large repositories of scripts. Static analysis has the advantage

of scaling to thousands or millions of scripts [1] easily, but lacks the

performance data gathered by dynamic analysis. The KGpip meta-

learning approach guides the learning process by a scalable dataset

similarity search, based on dataset embeddings, to find the most

similar datasets and the semantics of ML pipelines applied on them.

Many existing systems, such as Auto-Sklearn [9] and AL [2], com-

pute a set of meta-features for each dataset. We developed a deep

neural network model to generate embeddings at the granularity of

a dataset, e.g., a table or CSV file, to capture similarity at the level

of an entire dataset rather than relying on a set of meta-features.

Because we use static analysis to capture the semantics of the

meta-learning process, we have no mechanism to choose the best

pipeline from many seen pipelines, unlike the dynamic execution

case where one can rely on runtime to choose the best performing

pipeline. Observing that pipelines are basically workflow graphs,

we use graph generator neural models to succinctly capture the

statically-observed pipelines for a single dataset. In KGpip, we

formulate learner selection as a graph generation problem to predict

optimized pipelines based on pipelines seen in actual notebooks.

KGpip does learner and transformation selection, and hence is a

component of an AutoML systems. To evaluate this component, we

integrated it into two existing AutoML systems, FLAML [31] and

Auto-Sklearn [9]. We chose FLAML because it does not yet have any

meta-learning component for the cold start problem and instead

2428

https://doi.org/10.14778/3551793.3551804
https://github.com/CoDS-GCS/kgpip-public
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551804
https://www.acm.org/publications/policies/artifact-review-and-badging-current

allows user selection of learners and transformers. The authors of

FLAML explicitly pointed to the fact that FLAML might benefit

from a meta-learning component and pointed to it as a possibility

for future work. For FLAML, if mining historical pipelines provides

an advantage, we should improve its performance. We also picked

Auto-Sklearn as it does have a learner selection component based

on meta-features, as described earlier [8]. For Auto-Sklearn, we

should at least match performance if our static mining of pipelines

can match their extensive database. For context, we also compared

KGpip with the recent VolcanoML [18], which provides an efficient

decomposition and execution strategy for the AutoML search space.

In contrast, KGpip prunes the search space using our meta-learning

model to perform hyperparameter optimization only for the most

promising candidates.

The contributions of this paper are the following:

• Section 3 defines a scalable meta-learning approach based

on representation learning of mined ML pipeline semantics

and datasets for over 100 datasets and 11K Python scripts.

• Sections 4 formulates AutoML pipeline generation as a

graph generation problem. KGpip efficiently predicts op-

timized ML pipelines for unseen datasets using our meta-

learning model. To the best of our knowledge, we are the

first to formulate AutoML pipeline generation this way.

• Section 5 presents a comprehensive evaluation using a large

collection of 121 datasets from major AutoML benchmarks

and Kaggle. Our experimental results show that KGpip out-

performs all existing AutoML systems and achieves state-

of-the-art results on the majority of these datasets. KGpip

significantly improves the performance of both FLAML and

Auto-Sklearn in classification and regression tasks. We also

outperformed AL in 75 out of 77 datasets and VolcanoML

in 75 out of 121 datasets, including 44 datasets used only by

VolcanoML [18]. On average, KGpip achieves scores that

are statistically better than the means of all other systems.

2 RELATED WORK

In this section, we summarize the related work and restrict our re-

view to meta-learning approaches for AutoML, dataset embeddings,

and processing tabular structured data.

Learner and preprocessing selection. Inmost AutoML systems, learner

and pre-processing selection for the cold start problem is driven by

a database of actual executions of pipelines and data; e.g., [2], [9],

[10]. This database often drives both learner selection and hyper

parameter optimization (HPO), so we focus here more on how the

database is collected or applied to either problem, since the actual

application to learner selection or HPO is less relevant. For HPO,

some have cast the application of the database as a multi-task prob-

lem (see [27]), where the hyperparameters for cold start are chosen

based on multiple related datasets. Others, for instance, [9, 26], com-

pute a database of dataset meta-features on a variety of OpenML

[29] datasets, including dataset properties such as the number of

numerical attributes, the number of samples or skewness of the

features in each dataset.

These systems measure similarity between datasets and use

pipelines from the nearest datasets based on the distance between

the datasets’ feature vectors as we do, but the computation of these

vectors is different, as we describe in detail below. Auto-Sklearn 2.0

[8] defines instead a static portfolio of pipelines that work across a

variety of datasets, and use these to cold-start the learner selection

component - i.e., every new dataset uses the same set of pipelines.

Others have created large matrices documenting the performance

of candidate pipelines for different datasets and viewed the selection

of related pipelines as a collaborative filtering problem [10].

Dataset embeddings. The most used mechanism to capture dataset

features rely on the use of meta-features for a dataset such as

[9, 26]. These dataset properties vary from simple, such as number

of classes (see, e.g. [6]), to complex and expensive, such as statisti-

cal features (see, e.g. [30]) or landmark features (see, e.g. [24]). As

pointed out in Auto-Sklearn 2.0 [8], these meta-features are not

defined with respect to certain column types such as categorical

columns, and they are also expensive to compute, within limited

budgets. The dataset embedding we adopt is builds individual col-

umn embeddings, and then pools these for a table level embedding.

Similar to our approach, Drori et al. [5] use pretrained language

models to get dataset embeddings based on available dataset tex-

tual information, e.g. title, description and keywords. Given these

embeddings, their approach tries to find the most similar datasets

and their associated baselines. Unlike [5], our approach relies on

embedding the actual data inside the dataset and not just their

overall textual description, which in many cases is not available.

OBOE [34] uses the performance of a few inexpensive, informative

models to compute features of a model.

Pipeline generation. There is a significant amount of work viewing

the selection of learners as well as hyperparameters as a bayesian

optimization problem like [27, 28]. Other systems have used evolu-

tionary algorithms along with user defined templates or grammars

for this purpose such as TPOT [16] or Recipe [4]. Still, others have

viewed the problem of pipeline generation as a probabilistic matrix

factorization [10], an AI planning problem when combined with

a user specified grammar [15, 32], a bayesian optimization prob-

lem combined with Monte Carlo Tree Search [25], or an iterative

alternating direction method of multipliers optimization (ADMM)

problem [20]. Systems like VolcanoML focus on an efficient decom-

position of the search space [18]. To the best of our knowledge,

KGpip is the first system to cast the actual generation of pipelines

as a neural graph generation problem.

Some recent AutoML systems have moved away from the fairly

linear pipelines generated by most earlier systems to use ensembles

or stacking extensively. H2O for instance uses fast random search

in combination with ensembling for the problem of generating

pipelines [17]. Others rely on "stacking a bespoke set of models in

a predefined order", where stacking and training is handled in a

special manner to achieve strong performance [7]. Similarly, PIPER

[21] uses a greedy best-first search algorithm to traverse the space

of partial pipelines guided over a grammar that defines complex

pipelines such as Directed Acyclic Graphs (DAGs). The pipelines

produced by PIPER aremore complex than the linear structures used

in the current AutoML systems we use to test our ideas for historical

pipeline modeling, and we do not use ensembling techniques yet

in our approach. Neither is precluded, however, because KGpip

meta-learning model can generate any type of structures, including

complex structures that mined pipelines may have.

2429

Figure 1: An overview of KGpip’s meta-learning approach for

mining a database of ML pipelines to train a graph generator

model to predict ML pipeline skeletons in the form of graphs.

3 THE KGPIP SCALABLE META-LEARNING

Our meta-learning approach is based on mining large databases

of ML pipelines associated with the used datasets, as illustrated in

Figure 1. The mining process uses static program analysis instead

of executing the actual pipeline scripts or preparing the actual raw

data. The KGpip meta-learning component enhances the search

strategy of existing AutoML systems, such as AutoSklearn and

FLAML, and allows these systems to handle ad-hoc datasets, i.e.,

unseen ones. To retain a maximal degree of flexibility, KGpip cap-

tures metadata and semantics in a flexible graph format, and relies

on graph generator models as the database of pipelines.

Unlike existing meta-learning approaches, our approach is de-

signed to learn from a large scale database and achieve high de-

gree of coverage and diversity. Several ML portals, such as Kag-

gle or OpenML [29], provide access to thousands of datasets asso-

ciated with hundreds of thousands of public notebooks, i.e., ML

pipelines/code. KGpip mines these large databases of datasets and

pipelines using static analysis and filters them into ML pipelines

customized for the learner selection problem. The KGpip meta-

learning approach leverages [1] for code understanding via static

analysis of scripts/code of ML pipelines. It extracts the semantics

of these scripts as code and form an initial graph for each script.

KGpip cleans the graphs generated by [1] to keep the semantic

required for the ML meta-learning process. Furthermore, our ap-

proach introduces dataset nodes and interlinks the relevant pipeline

semantic to them. So, ourmeta-learning approach producesMetaPip,

a highly interconnected graph of seen datasets and pipelines applied

to them. We also developed a deep embedding model to find the

closest datasets to an unseen one, i.e., to effectively prune MetaPip.

We then train a deep graph generator model [19] using MetaPip.

This model is the core of ourmeta-learning component as illustrated

in Figure 1 and discussed in the next section.

3.1 Graph Representation of Code Semantics

Static and dynamic program analysis techniques could be used to ab-

stract the semantics of programs and extract language-independent

representations of code. A program source code is examined in

the static analysis without running the program. In contrast, dy-

namic analysis examines the source code during runtime to collect

memory traces and more detailed statistics specific to the analysis

technique. Unlike static analysis, dynamic analysis helps in cap-

turing more rich semantics from programs with the high cost of

execution and storing massive memory traces. ML portals, such as

 df = pd.read_csv('example.csv')
 df_train, df_test = train_test_split(df)
 X = df_train['X']
 model = svm.SVC()
 model.fit(X, df_train['Y'])

Figure 2: An example from a data science notebook.
read_csv

train_test_split

df_train[‘X’]

df_train[‘Y’]

SVC

fit

Figure 3: Code graph corresponding to Figure 2 obtained with

GraphGen4Code. The graph shows control flow with gray

edges and data flow with black edges. Numerous other nodes

and edges are not shown for simplicity.

read_csv

train_test_split

SVC

fitexample.csv

Figure 4: Our MetaPip graph of the graph from Figure 3,

where the abstracted ML pipeline is linked to a dataset node

(highlighted in Orange). MetaPip contains at least 96% less

nodes and edges than the original graph while enhancing

the overall quality of the graph generation process, as exper-

imented in Section 5.5.

Kaggle, have hundreds of thousands ofML pipelines with no instruc-

tions for running or managing the environments of these pipelines.

KGpip combines dataset embedding with static code analysis tools,

such as GraphGen4Code [1], to enrich the collected semantics of

ML pipelines while avoiding the need to run them.

GraphGen4Code is optimized to efficiently process millions of

Python programs, performing interprocedural data flow and control

flow analysis to examine for instance, what happens to data that

is read from a Pandas dataframe, how it gets manipulated and

transformed, and what transformers or estimators get called on the

dataframe. GraphGen4Code’s graphs make it explicit what APIs

and functions are invoked on objects without the need to model

the used libraries themselves; hence GraphGen4Code can scale

static analysis to millions of programs. Figures 2 and 3 show a

small code snippet and its corresponding static analysis graph from

GraphGen4Code, respectively. As shown in Figure 3, the graph

captures control flow (gray edges), data flow (black edges), as well

as numerous other nodes and edges that are not shown in the

figure. Examples of these nodes and edges include those capturing

location of calls inside a script file and function call parameters.

For example, GraphGen4Code generates a graph of roughly 1600

nodes and 3700 edges for a Kaggle ML pipeline script of 72 lines of

code. The number of nodes and edges dominate the complexity of

training a graph generator model.

3.2 MetaPip: from Code to Pipeline Semantics

For AutoML systems, a pipeline is a set of data transformations,

learner selection, and hyper-parameter optimization for each model

that is selected. Mined data science notebooks often contain data

analysis, data visualization, and model evaluation. Moreover, each

2430

notebook is associated with one or more datasets. Thus, it is essen-

tial for our meta-learning model to distinguish between different

types of pipelines and realize this association with datasets. Existing

systems for static code analysis extract general semantics of code

and cannot link pipeline scripts to the used datasets. Thus, the gen-

erated graphs by systems, such as GraphGen4Code, are scattered

and unlinked, i.e., a graph per an ML pipeline script. Moreover, each

graph will have nodes and edges that are not relevant for the meta-

learning process. These irrelevant nodes and edges, i.e., triples, will

add noise to the training data. Hence, a meta-learning model will

not be able to learn from the abstracted graph pipelines generated

by such tools, as shown in Table 4. We developed a method to filter

out this kind of triples from GraphGen4Code’s graph and analyze

ML pipelines to prepare a training set interconnecting repositories

of ML pipeline scripts with their associated datasets. Moreover,

our method cleans the noisy nodes and edges and calls to modules

outside the target ML libraries. For example, our method will ex-

tract triples related to libraries, such as Scikit-learn, XGBoost, and

LGBM. These libraries are the most popular among the top-scoring

ML pipelines in ML portals. The code for the cleaning method is

available at the KGpip’s repository.

Our meta-learning component aims to pick learners and trans-

former for unseen datasets. Thus, KGpip links the filtered ML

pipelines with the used datasets. The result of adding these dataset

nodes is a highly interconnected graph for ML pipelines, we refer to

it as MetaPip. Our MetaPip graph captures both the code and data

aspects of ML pipelines. Hence, we can populate the MetaPip graph

with datasets from different sources, such as OpenML and Kaggle,

and pipelines applied on these datasets. Figure 4 shows the MetaPip

graph corresponding to the code snippet in Figure 2. KGpip utilizes

MetaPip to train a model based on a large set of pipelines associated

with similar datasets. For example, a pandas.read_csv node will be

linked to the used table node, i.e., csv file. In some cases, the code,

which reads a csv file, does not explicitly mention the dataset name.

The pipelines are usually associated with datasets, such as Kaggle

pipelines and datasets, as shown in Figure 1.

3.3 Dataset Representation Learning

Our approach efficiently guides the meta-learning process by link-

ing the extracted semantics of pipelines to dataset nodes represent-

ing the used datasets. There is a sheer amount of datasets of variable

sizes and we need to develop a scalable method for finding the most

similar datasets for an unseen one. The pairwise comparison based

of the actual content of datasets, i.e, tuples in CSV files, does not

scale. Thus, we developed a dataset representation learning method

to generate a fixed-size and dense embedding at the granularity of

a dataset, e.g., a table or CSV file. The embedding of a dataset D is

the average of its column embeddings, i.e.:

ℎ𝜃 (D) =
1

|D|

∑︂

𝑐∈D

ℎ𝜃 (𝑐) (1)

where |D| is the number of columns inD. Our work generalizes the

approach outlined in [22] for individual column embeddings, where

column embeddings are obtained by training a neural network on

a binary classification task. The model learns when two columns

represent the same concept, but with different values, as opposed to

Figure 5: An overview of KGpip’s workflows of ML pipeline

generation for a given unseen dataset and certain time budget.

KGpip utilizes systems for hyperparameter optimization,

such as FLAML or Auto-Sklearn, to optimize KGpip’s top-K

predicted pipelines (𝑉𝐺), i.e., pruning the search space.

columns representing different concepts. Embeddings for an unseen

dataset are produced by the last layer of the neural net.

KGpip reads datasets only once and leverages PySparkDataFrame

to achieve high task and data parallelism. We use the embeddings

of datasets to measure their similarity. With these embeddings,

we build an index of vector embeddings for all the datasets in our

training set. We utilize efficient libraries [14] for similarity search

of dense vectors to retrieve the most similar dataset to a new input

dataset based on its embeddings. Thus, our method scales well and

leads to accurate results in capturing similarities between datasets.

4 THE KGPIP PIPELINE AUTOMATION

The KGpip workflow for pipeline automation is based on our meta-

leaning model, as illustrated in Figure 5. KGpip predicts the top-K

pipeline skeletons, i.e., a specific set {𝑃 , 𝐸} of Preprocessor (𝑃) and

Estimators (𝐸), for an unseen dataset (𝐷) based on the most similar

seen dataset (𝑆𝐷), i.e., the nearest neighbour dataset. KGpip starts

by finding 𝑆𝐷 based on the embedding of the unseen dataset. Then,

KGpip generates the top-K validated ML pipeline graphs 𝑉𝐺 and

converts them into ML pipeline skeletons {𝑃, 𝐸}. Then, it performs

hyperparameter optimization using systems, such as FLAML [31]

and Auto-Sklearn [9], to find the optimum hyperparameters for

each pipeline skeleton within a specific time budget.

4.1 Graph Generation for ML Pipelines

KGpip formulates the generation of ML pipelines as a graph gen-

eration problem. The intuition behind this idea is that a neural

graph generator might capture more succinctly multiple pipelines

seen in practice for a given dataset, and might also capture statis-

tical similarities between different pipelines more effectively. To

effectively use such a network, we add a single dataset node as the

starting point for the filtered pipelines we generate from Python

notebooks. The node is assumed to flow into a read_csv call which

is often the starting point for the pipelines. For generating an ML

pipeline, we simply pass in a dataset node for the nearest neighbour

of the unseen dataset, i.e., the most similar dataset based on content

similarity, as shown in Figure 5.

Our meta-learning model generates ML pipeline graphs in a

sequential node-by-node fashion. Algorithm 1 illustrates the imple-

mentation of the graph generation model. For an empty graph 𝐺

and the most similar dataset 𝑆𝐷 , the algorithm starts by adding an

edge between 𝑆𝐷 and pandas.read_csv. Then, the graph neural

network 𝑓𝐴𝑑𝑑𝑁𝑜𝑑𝑒 decides whether to add a new node of a cer-

tain type. The network 𝑓𝐴𝑑𝑑𝐸𝑑𝑔𝑒 decides whether to add an edge

2431

Algorithm 1: Graph Generation Process

Input: Graph𝐺 : (𝐸 = 𝜙 ,𝑉 = 𝜙), Similar Dataset Node: 𝑆𝐷 ,

Neural Networks: 𝑓𝐴𝑑𝑑𝑁𝑜𝑑𝑒 , 𝑓𝐴𝑑𝑑𝐸𝑑𝑔𝑒 , 𝑓𝐶ℎ𝑜𝑜𝑠𝑒𝑁𝑜𝑑𝑒

1 𝑉 ← 𝑉 ∪ {𝑆𝐷, 𝑝𝑎𝑛𝑑𝑎𝑠.𝑟𝑒𝑎𝑑_𝑐𝑠𝑣 }

2 𝐸 ← 𝐸 ∪ {(𝑆𝐷, 𝑝𝑎𝑛𝑑𝑎𝑠.𝑟𝑒𝑎𝑑_𝑐𝑠𝑣) }

3 𝑛𝑜𝑑𝑒𝑇𝑜𝐴𝑑𝑑 = 𝑓𝐴𝑑𝑑𝑁𝑜𝑑𝑒 (𝑉 , 𝐸)

4 while 𝑛𝑜𝑑𝑒𝑇𝑜𝐴𝑑𝑑 ≠ 𝑁𝑢𝑙𝑙 do

5 𝑉 ← 𝑉 ∪ {𝑛𝑜𝑑𝑒𝑇𝑜𝐴𝑑𝑑 }

6 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 = 𝑓𝐴𝑑𝑑𝐸𝑑𝑔𝑒 (𝑉 , 𝐸)

7 while 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 do

8 𝑛𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑛𝑘 = 𝑓𝐶ℎ𝑜𝑜𝑠𝑒𝑁𝑜𝑑𝑒 (𝑉 , 𝐸)

9 𝐸 ← 𝐸 ∪ {(𝑛𝑜𝑑𝑒𝑇𝑜𝐴𝑑𝑑,𝑛𝑜𝑑𝑒𝑇𝑜𝐿𝑖𝑛𝑘) }

10 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 ← 𝑓𝐴𝑑𝑑𝐸𝑑𝑔𝑒 (𝑉 , 𝐸)

11 end

12 𝑛𝑜𝑑𝑒𝑇𝑜𝐴𝑑𝑑 ← 𝑓𝐴𝑑𝑑𝑁𝑜𝑑𝑒 (𝑉 , 𝐸)

13 end

14 𝑉𝐺 = 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒_𝑔𝑟𝑎𝑝ℎ (𝐺)

15 return VG

to the newly added node. Then, the network 𝑓𝐶ℎ𝑜𝑜𝑠𝑒𝑁𝑜𝑑𝑒 decides

the existing node to which the edge is to be added. The While

loop at line 7 is repeated repeated until no more edges to be added.

The While loop at line 4 is repeated until no more nodes to be

added. The three neural networks, namely 𝑓𝐴𝑑𝑑𝑁𝑜𝑑𝑒 , 𝑓𝐴𝑑𝑑𝐸𝑑𝑔𝑒 , and

𝑓𝐶ℎ𝑜𝑜𝑠𝑒𝑁𝑜𝑑𝑒 , utilize node embeddings that are learned throughout

training via graph propagation rounds. These embeddings capture

the structure of ML pipeline graphs.

The generated graph 𝐺 is not guaranteed to be a valid ML

pipeline. Thus, Algorithm 1 at line 14 checks that 𝐺 is a valid ML

pipeline graph. In KGpip, a graph𝐺 is valid if 1) it contains at least

one estimator matching the task, i.e., regression or classification,

and 2) the estimator is supported by the hyperparameter optimizer

(AutoSklearn or FLAML in our case). With these modifications, it

is possible to generate ML pipelines for unseen datasets using the

closest seen dataset node ś more specifically, its content embedding

obtained from the dataset embedding module. We built Algorithm 1

on top of the system proposed in [19]. This system does not support

conditional graph generation at test time by default, i.e., building a

graph on top of a provided dataset node. We extended this system

to generate valid ML pipeline graphs, as illustrated in Algorithm 1.

4.2 Hyperparameter Optimizion

KGpip maps the valid graphs into ML pipeline skeletons, where

each skeleton is a set of pre-processors and an estimator with place

holders for the optimal parameters. In KGpip, the hyperparam-

eter optimizer is responsible for finding the optimal parameters

for the pre-processors and learners on the target dataset. Then,

KGpip replaces the place holders with these parameters. Finally,

KGpip creates a python script using the pre-processors and estima-

tor achieving the highest scores. KGpip is well designed to support

both numerical and non-numerical datasets. Thus, KGpip applies

different pre-processing techniques on the given dataset (𝐷) and

produces a pre-processed dataset (𝐷 ′). Our pre-processing includes

1) detecting task type (i.e. regression or classification) automatically

based on the distribution of the target column 2) automatically infer-

ring accurate data types of columns, 3) vectorizing textual columns

using word embeddings [3], and 4) imputing missing values in the

dataset. In KGpip, the hyperparameter optimizer uses 𝐷 ′.

Similar to hyperparameter optimizers implemented in AutoML

systems, such as FLAML or Auto-Sklearn, KGpip works within a

provided time budget per dataset. We note here that the majority

of the allotted time budget for ML pipeline generation is spent on

the hyperparameter optimization; that is, if the user desires only

to know what learners would work best for their dataset, KGpip

can do that almost instantaneously. Given a time budget (𝑇), KGpip

calculates 𝑡 , the time consumed in generating and validating the

graphs. KGpip then divides the rest of the time budget between the

𝐾 graphs. Hence, the hyperparameter optimizer has a time limit of

((𝑇 − 𝑡)/𝐾) to optimize each graph independently.

The hyperparameter optimizer repeatedly applies the learners

and pre-processors with different configurations while monitoring

the target score metric throughout. KGpip keeps updating its output

with the best pipeline skeleton, i.e., learners and pre-processors, and

its score. For example, if the predicted learner is LogisticRegression,

it searches for the best combination of regularization type (L1 or

L2) and regularization parameter. The difference between hyper-

parameter optimizers is the search strategy followed to arrive at

the best hyperparameters within the allotted time budget. A naive

approach would be to perform an exhaustive grid search over all

combinations, while a more advanced approach would be to start

with promising configurations first. We integrate KGpip with the

hyperparameter optimizers of both FLAML [31] and Auto-Sklearn

[9] to demonstrate the generality of KGpip. The integration of a

hyperparameter optimizer into KGpip needs a JSON document of

the particular preprocessors and estimators supported by the hyper-

parameter optimizer. Thus, the integration is relatively easy. Finally,

our neural graph generation produces a diverse set of pipelines

across runs, allowing for exploration and exploitation.

5 EXPERIMENTS

5.1 Benchmarks

We evaluate KGpip as well as the other baselines on four benchmark

datasets: 1) Open AutoML Benchmark [11], a collection of 39 binary

and multi-class classification datasets (used by FLAML [31]). The

datasets are selected such that they are representative of the real

world from a diversity of problem domains and of enough difficulty

for the learning algorithms. 2) Penn Machine Learning Benchmark

(PMLB) [23]: Since Open AutoML Benchmark is limited to classifi-

cation datasets, the authors of FLAML [31] evaluated their system

on 14 more regression datasets selected from PMLB, such that the

number of samples is more than 10,000. To demonstrate the gener-

ality of our approach, we include those datasets in our evaluation

as well. 3) AL’s datasets: We also evaluate on the datasets used for

AL’s [2] evaluation which include 6 Kaggle datasets (2 regression

and 4 classification) and another 18 classification datasets (9 from

PMLB and 9 from OpenML). Unlike other benchmarks, the Kag-

gle datasets include datasets with textual features. 4) VolcanoML’s

datasets: finally, we evaluate KGpip on 44 more datasets used by

VolcanoML [18]. The authors of VolcanoML evaluate their system

on a total of 66 datasets from OpenML and Kaggle, from which

11 datasets are not specified, 10 datasets overlap with ours, and 1

dataset consists of image samples. Table 1 includes a summary of

2432

Table 1: Breakdown of all 121 datasets used in our evaluation,

indicating those used by FLAML∗, AL†, and VolcanoML§.

Source

Task AutoML PMLB OpenML Kaggle

Binary 22 (18∗+1∗†+3∗§) 5 (4†+1†§) 27 (3†§+3†+21§) 2†

Multi-class 17 (15∗+1∗†+1∗§) 4† 7 (2†§+1† + 4§) 2†

Regression 0 14∗ 19§ 2†

Total 39 23 53 6

all 121 benchmark datasets. The detailed statistics of all datasets

are shown in the appendix of [13]. These statistics include names,

number of rows and columns, number of numerical, categorical,

and textual features, number of classes, sizes, sources, and papers

that evaluated on them.

5.2 Baselines

We empirically validate KGpip against three AutoML systems: (1)

Auto-Sklearn (v0.14.0) [9] which is the overall winner of multiple

challenges in the ChaLearn AutoML competition [12], and one of

the top 4 competitors reported in the Open AutoML Benchmark

[11]. (2) FLAML (v0.6.6) [31]: an AutoML library designed with

both accuracy and computational cost in mind. FLAML outperforms

Auto-Sklearn among other systems on two AutoML benchmarks us-

ing a low computational budget, (3) AL [2]: a meta-learning-based

AutoML approach that utilizes dynamic analysis of Kaggle note-

books, an approach that has similarities to ours, and (4) VolcanoML

(v0.5.0) [18], a recent AutoML approach which proposes efficient

decomposition strategies for the large AutoML search spaces. In all

our experiments, we used the latest code provided by the authors

for existing systems, the same exact hardware, time budget, and

the parameters recommended by the authors of these systems.

5.3 Training Setup

Because our approach to mining historical pipelines from scripts

is relatively cheap, we can apply it more easily on a wider variety

of datasets to form a better base as more and more scripts get

generated by domain experts on Kaggle competitions. In this work,

we performed program analysis on 11.7K scripts associated with

142 datasets, and then selected those with estimators from sklearn,

XGBoost and LightGBM since those were the estimators supported

by the most AutoML systems for classification and regression. This

resulted in the selection of 2,046 notebooks for 104 datasets; a vast

portion of the 11.7K programs were about exploratory data analysis,

or involved libraries that were not supported by Auto-Sklearn [9]

or FLAML (e.g., PyTorch and Keras) [31]. We used Macro F1 for

classification tasks to account for data imbalance, if any, and use

𝑅2 for regression tasks, as in FLAML [31]. We also varied the time

budget given to each system between 1 hour and 30 minutes, to

measure how fast can KGpip find an efficient pipeline compared to

other approaches. The time budget is end-to-end, from loading the

dataset till producing the best AutoML pipeline. In all experiments,

we report averages over 3 runs.

5.4 Comparison with Existing Systems

In this section, we evaluate KGpip against state-of-the-art systems:

FLAML [31] and Auto-Sklearn [9]. Figure 6 shows a radar graph of

Table 2: Average scores (mean and standard deviation) of

KGpip compared to FLAML, Auto-Sklearn, and VolcanoML

for binary classification (F1), multi-class classification (F1)

and regression (𝑅2) tasks on 77 benchmark datasets. T-test

values are for KGpip vs. FLAML and KGpip vs. Auto-Sklearn.

Binary Multi-class Regression T-Test

FLAML 0.74 (0.23) 0.70 (0.29) 0.65 (0.29) 0.0129

KGpipFLAML 0.81 (0.14) 0.76 (0.24) 0.72 (0.24) -

Auto-Sklearn 0.76 (0.20) 0.65 (0.29) 0.71 (0.24) 0.0002

KGpipAutoSklearn 0.83 (0.14) 0.73 (0.28) 0.72 (0.24) -

VolcanoML 0.55 (0.43) 0.51 (0.38) 0.56 (0.32) -

all systems when given a time budget of 1 hour. It shows the perfor-

mance of all systems on the three tasks in all benchmarks, namely,

binary classification, multi-class classification, and regression. For

every dataset, the figure shows the actual performance metric (F1

for classification and 𝑅2 for regression) obtained from every system
1. Therefore, the out most curve from the center of the radar graph

has the best performance. In Figure 6, both variations of KGpip

achieve the best performance across all tasks, outperforming both

FLAML and Auto-Sklearn. We also performed a two-tailed t-Test

between the performance obtained by KGpip compared to the other

systems. The results show that KGpip achieves significantly bet-

ter performance than both FLAML and Auto-Sklearn with a t-Test

value of 0.01 and 0.0002, respectively (both have 𝑝 < 0.05).

Table 2 also shows the average F1 and 𝑅2 values for classifica-

tion and regression tasks, respectively. The results show that both

variations of KGpip achieve better performance compared to both

FLAML and Auto-Sklearn over all tasks and datasets.

Scalability of KGpip’s meta-learning against existing systems: The

AL meta-learning approach [2] mines pipelines using dynamic code

analysis, which has high cost as discussed in Section 3.1. Thus, the

authors of AL provided a pre-trained meta-learning model on 500

pipelines and 9 datasets, which does not scale to cover various

cases. In contrast, we trained our meta-learning model using 2000

pipelines and 142 datasets. None of these datasets were included

in the 77 datasets used in testing. AL failed in 22 and timed out in

38 datasets. This shows that the KGpip meta-learning approach,

which is based on pipelines semantics and dataset representation

learning, is more effective. AL failed on many of the datasets during

the fitting process. As the figure shows, KGpip still outperforms all

other approaches, including AL, significantly. On these datasets, AL

achieved the lowest F1 score on binary and multi-class classification

tasks with values of 0.36 and 0.36, respectively. This compares to

0.74 and 0.75 by FLAML, 0.73 and 0.68 by Auto-Sklearn, 0.79 and

0.79 by KGpipFLAML, and 0.79 and 0.74 by KGpipAuto-Sklearn.

VolcanoML Datasets: VolcanoML used a variety of datasets that

are not included in our 77 datasets of Figure 6. Some of these datasets

are quite large which are meant to test the the system scalability.

Therefore, we also collected all 49 the datasets we could find in

their paper and tested the best version of KGpip (KGpipFLAML)

against VolcanoML on these datasets with a time budget of 1 hour.

The performances of KGpipFLAML and VolcanoML are shown in

Figure 7. For brevity, we omitted from the figure all datasets on

which the performance difference between both systems is ≤ 0.01

1The detailed scores for every system and dataset as well as the corresponding names
of datasets are shown in the appendix of [13]

2433

Figure 6: A radar diagram of the performance of KGpip vs. existing systems on multiple tasks (77 datasets) with a time budget

of 1 hour for all systems. The outer numbers indicate different dataset IDs and the ticks inside the figure denote performance

ranges of respective metrics; e.g., 0.2, 0.4, ..., etc. for F1 in binary classification. For any dataset, the system with the out most

curve has the best performance. As an example, KGpipAutoSklearn and KGpipFLAML achieved 100% and 97% F1 on dataset #23

(multi-class classification) compared to 65% and 26% for AutoSklearn and FLAML, respectively.

91 96 88 94 86 10
2 89 90 99 92 87

Classification Datasets

−0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

F1
-S

co
re

 A
bs

ol
ut

e
D

iff
er

en
ce

10
8

11
5

12
0

10
3

11
7

10
7

12
1

11
8

11
3

11
4

10
9

Regression Datasets

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

R
² A

bs
ol

ut
e

D
iff

er
en

ce

Figure 7: Score difference between KGpipFLAML and Vol-

canoML on the 44 classification and regression datasets from

VolcanoML with a time budget of 1 hour. For brevity, we

removed from this Figure the 22 datasets on which both sys-

tems perform comparably (within a difference of ≤ 0.01).

Table 3: Average scores (mean and standard deviation) of KG-

pipFLAML compared to VolcanoML on the 44 datasets from

VolcanoML. Overall, KGpipFLAML achieves significantly bet-

ter compared to VolcanoML, according to a statistical signifi-

cance test of 𝑝 < 0.05 .

Binary Multi-class Regression T-Test

KGpipFLAML 0.82 (0.14) 0.86 (0.16) 0.83 (0.13) -

VolcanoML 0.69 (0.23) 0.70 (0.31) 0.68 (0.25) 0.0001

and the 5 datasets overlapping with the ones shown in Figure 6. On

those datasets, KGpipFLAML found a valid pipeline for all of them,

sometimes with a decent absolute difference in F1 or 𝑅2 scores of

≥ 0.90. Across all the 44 datasets, KGpipFLAML achieved signifi-

cantly better average of scores compared to VolcanoML (statistical

significance test of 𝑝 < 0.05), see Table 3 for details.

5.5 Ablation Study

5.5.1 The effectiveness ofMetaPip. OurMetaPip approachmanages

to reduce dramatically the number of nodes and edges in the code

Table 4: Different aspects comparing a model trained on a

set of code graphs vs a model trained on a set of MetaPip

graphs. The model based on original code graphs fails in

trivial datasets to generate valid pipelines and limits KGpip’s

scalability to a larger set of ML pipelines scripts and KGpip’s

learning by using a fewer number of epochs.

Dataset/Aspect Code Graph MetaPip Graph

kr-vs-kp 0 (0) 1.00 (0)

nomao 0 (0) 0.96 (0)

cnae-9 0 (0) 0.95 (0.01)

mfeat-factors 0 (0) 0.98 (0)

segment 0 (0) 0.98 (0)

Avg. F1 0 (0) 0.97 (0.02)

No. Nodes 29,139 974

No. Edges 252,486 1,052

Training Time 175 (min) 2 (min)

graph. Using the original graph obtained from static analysis, it

produces the MetaPip graph that focuses on the core aspects needed

to train a graph generation model for ML pipelines, such as data

transformations, learner selection, and hyper-parameter selection.

This experiment investigates the scalability of our graph generation

model based on two different training sets, i.e., the sets of MetaPip

graphs described in section 3.2 vs. the original set of code graphs

from static analysis for the same ML pipeline scripts.

For this experiment, we use a small-scale training set of 82

pipeline graphs pertaining to one classification dataset. The orig-

inal code graphs for these 82 pipelines include 29,139 nodes and

252,486 edges. Our MetaPip graph, however, includes 974 nodes

and 1052 edges. This is a graph reduction rate of at least 96.6%,

Figure 4 shows these detailed statistics. The main investigation

here is whether this huge reduction ratio will help improving the

accuracy and scalability of our graph generation model. We train

2434

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

Pipeline Count

train
LinearRegression

RandomForestClassifier
LogisticRegression

RandomForestRegressor
DecisionTreeClassifier
KNeighborsClassifier

XGBClassifier
GridSearchCV

KMeans
SVC

DecisionTreeRegressor
XGBRegressor

Pipeline
GaussianNB

MultinomialNB
GradientBoostingClassifier

SVR
GradientBoostingRegressor

Ridge
AdaBoostClassifier

MLPClassifier
Lasso

GaussianMixture
RandomizedSearchCV

AffinityPropagation

Le
ar

ne
r /

 Tr
an

sf
or

m
er

Sklearn Call
XGBoost Call

(a)

random_forest

22%
extra_tree

17%

sgd 11%

gradient_boosting
11%

xgboost

10% k_nearest_neighbors
6%

decision_tree
6%

adaboost5%

pca3%
libsvm_svc2%
libsvm_svr2%

Other
5%

(b)

Figure 8: Top learner and transformers selected by KGpip (A) are with a wide range of coverage and diversity (B).

Table 5: Performance ofKGpipFLAML (mean and standard de-

viation) as we vary the number of predicted pipeline graphs

within 30 minutes time limit. We obtained similar results for

KGpipAutoSklearn, and hence omitted its results.

Binary Multi-Class Regression

Top-3 graphs 0.80 (0.14) 0.70 (0.31) 0.71 (0.23)

Top-5 graphs 0.81 (0.14) 0.73 (0.26) 0.70 (0.23)

Top-7 graphs 0.81 (0.14) 0.75 (0.24) 0.71 (0.24)

one model on the original code graph and another on the MetaPip

graphs. Both models are trained for 15 epochs with the same set

of hyperparameters. It is worth noting that due to the huge time

required to process the nodes and edges in the code graph, we had

to reduce the number of epochs from 400 to 15.

We test the performance of KGpip when trained on both graphs

on the most trivial binary and multi-class classification datasets in

the AutoML benchmark. These are the datasets where the F1 score

of all the reported systems in section 5.4 is above 0.9. The result is

a total of 5 datasets (1 binary and 4 multi-class). Both models use

Auto-Sklearn as the hyperparameter optimizer with a time budget

of 15 minutes and 3 graphs. We take the average of three runs.

The results are summarized in Table 4. For these trivial datasets,

the model trained using code graphs did not manage to generate

any valid ML pipeline. This means the model failed to capture the

core aspects of ML pipelines, i.e., valid transformation or learners.

Moreover, our MetaPip approach helps KGpip to reduce the training

time by 99%, as shown in Table 4.

5.5.2 The KGpip meta-learning quality. This experiment tests the

quality of our meta-learning component. We test the performance

as we vary the number of graphs selected from the graph genera-

tion phase before feeding it to the hyper-parameter optimization

module. Table 5 shows the KGpipFLAML performance as we vary

the number of predicted graphs between 3, 5 and 7.

With only 3 graphs, KGpip is still outperforming FLAML (second

best system after KGpipFLAML) , although the effect is weaker (t-

Test value = 0.06). Compared to Auto-sklearn (third best system after

KGpipFLAML), all variations have similar or better performance,

but the difference is insignificant. This experiment shows that even

with three graphs, KGpip outperforms FLAML and KGpipAuto-

Sklearn, i.e., the correct pipelines often appear in the top 3. As

another assessment of the quality of our predictions, we measure

where in our ranked list of predicted pipelines the best pipeline

turned out to be. Ideally, the top pipeline would always be first, and

we use Mean Reciprocal Rank (MRR) to measure how close to that

our predictions are. Across all runs, the MRR is 0.71, indicating that

the top pipeline is typically very near the top.

5.5.3 The KGpip meta-learning diversity. One question we address

is whether KGpip produced different pipelines for the same dataset

across different runs. This gives us a sense of whether KGpip is

deterministic, or whether it produces different pipelines to helpwith

pruning the AutoML search space. We took different runs for the

exact same dataset, and created a list of learners and transformers

produced for each dataset across runs. The list was limited by the

shortest number of learners and transformers produced across runs.

We then computed correlations for datasets across runs 1, 2, and

3. The correlations ranged from 0.60 - 0.64, suggesting that the

runs did not produce the same transformers and learners across

runs. We also examined the types of learners selected by KGpip for

consideration. Figure 8a shows the learners and transformers found

at least 20 times in the training pipelines. One can see from the

figure that KGpip does not blindly output learners and transformers

by counts. Figure 8b shows more diversity in what was selected

overall. So, a variety of methods are covered by KGpip.

6 CONCLUSION

This paper proposed a novel formulation for the AutoML problem

as a graph generation problem, where we can pose learner and

pre-processing selection as a generation of different graphs rep-

resenting ML pipelines. Hence, we developed the KGpip system

based on mining large repositories of scripts, and leveraging recent

techniques for static code analysis. KGpip utilized embeddings gen-

erated based on dataset contents to predict and optimize a set of ML

pipelines based on the most similar seen datasets. KGpip is designed

to work with AutoML systems, such as Auto-Sklearn and FLAML,

to utilize their hyperparameter optimizers. We conducted the most

comprehensive evaluation of 121 datasets, including the datasets

used by FLAML, VolcanoML, and AL. Our comprehensive evalu-

ation shows that KGpip significantly improves the performance

of FLAML and Auto-Sklearn in classification and regression tasks.

Moreover, KGpip outperformed AL, which is based on a more costly

meta-learning process, in 97% of the datasets. This outstanding per-

formance shows that the KGpip meta-learning approach is more

effective and efficient. Finally, KGpip outperforms VolcanoML in

62% of the datasets and ties with it in 22%.

2435

REFERENCES
[1] Ibrahim Abdelaziz, Julian Dolby, James P. McCusker, and Kavitha Srinivas. 2020.

A Toolkit for Generating Code Knowledge Graphs. ArXiv (2020). https://arxiv.
org/abs/2002.09440

[2] José P. Cambronero and Martin C. Rinard. 2019. AL: Autogenerating Supervised
Learning Programs. In Proceedings of the ACM on Programming Languages, Vol. 3.
https://doi.org/10.1145/3360601

[3] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder.
CoRR abs/1803.11175 (2018). http://arxiv.org/abs/1803.11175

[4] Alex G. C. de Sá, Walter José G. S. Pinto, Luiz Otavio V. B. Oliveira, and Gisele L.
Pappa. 2017. RECIPE: A Grammar-Based Framework for Automatically Evolving
Classification Pipelines. In Genetic Programming, James McDermott, Mauro
Castelli, Lukas Sekanina, Evert Haasdijk, and Pablo García-Sánchez (Eds.). 246ś
261. https://doi.org/10.1007/978-3-319-55696-3_16

[5] Iddo Drori, Lu Liu, Yi Nian, Sharath C Koorathota, Jung-Shian Li, Antonio Khalil
Moretti, Juliana Freire, and Madeleine Udell. 2019. AutoML using Metadata
Language Embeddings. ArXiv (2019). https://arxiv.org/abs/1910.03698

[6] Robert Engels and Christiane Theusinger. 1998. Using a Data Metric for Prepro-
cessing Advice for Data Mining Applications. In In Proceedings of the European
Conference on Artificial Intelligence (ECAI). 430ś434. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.56.7414&rep=rep1&type=pdf

[7] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander Smola. 2020. AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data. ArXiv (2020). https://arxiv.org/abs/2003.06505

[8] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and
Frank Hutter. 2020. Auto-Sklearn 2.0: The Next Generation. arXiv (2020). https:
//arxiv.org/abs/2007.04074

[9] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine
Learning. In Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS). 2962ś2970. https://dl.acm.org/doi/10.5555/2969442.
2969547

[10] Nicolo Fusi, Rishit Sheth, and Melih Elibol. 2018. Probabilistic Matrix Fac-
torization for Automated Machine Learning. In Proceedings of the Interna-
tional Conference on Neural Information Processing Systems (NeurIPS). 3352ś3361.
https://dl.acm.org/doi/10.5555/3327144.3327254

[11] P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. 2019.
An Open Source AutoML Benchmark. In AutoML Workshop at the International
Conference on Machine Learning (ICML). https://arxiv.org/abs/1907.00909

[12] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir
Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle
Sebag, Alexander Statnikov, Sébastien Treguer, and Evelyne Viegas. 2016. A brief
Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning
without Human Intervention. In Proceedings of Machine Learning Research, Vol. 64.
21ś30. https://proceedings.mlr.press/v64/guyon_review_2016.html

[13] Mossad Helali, Essam Mansour, Ibrahim Abdelaziz, Julian Dolby, and Kavitha
Srinivas. 2022. A Scalable AutoML Approach Based on Graph Neural Networks.
ArXiv (2022). https://arxiv.org/abs/2111.00083

[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535ś547. https:
//doi.org/10.1109/TBDATA.2019.2921572

[15] Michael Katz, Parikshit Ram, Shirin Sohrabi, and Octavian Udrea. 2020. Explor-
ing Context-Free Languages via Planning: The Case for Automating Machine
Learning. In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS). 403ś411. https://ojs.aaai.org//index.php/ICAPS/article/
view/6686

[16] Trang T Le, Weixuan Fu, and Jason H Moore. 2020. Scaling tree-based automated
machine learning to biomedical big data with a feature set selector. Bioinformatics
36, 1 (2020), 250ś256. https://doi.org/10.1093/bioinformatics/btz470

[17] Erin LeDell and Sebastien Poirier. 2020. H2O AutoML: Scalable Automatic Ma-
chine Learning. In AutoML Workshop at the International Conference on Machine
Learning (ICML). www.automl.org/wp-content/uploads/2020/07/AutoML_2020_
paper_61.pdf

[18] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Yaliang Li, Bolin Ding, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML: Speeding

up End-to-End AutoML via Scalable Search Space Decomposition. Proceedings
of the VLDB Endowment 14, 11 (2021), 2167ś2176. http://www.vldb.org/pvldb/
vol14/p2167-li.pdf

[19] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning Deep Generative Models of Graphs. ArXiv (2018). https://arxiv.org/
abs/1803.03324

[20] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory
Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander Gray.
2020. An ADMM Based Framework for AutoML Pipeline Configuration. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 4892ś4899.
https://doi.org/10.1609/aaai.v34i04.5926

[21] Radu Marinescu, Akihiro Kishimoto, Parikshit Ram, Ambrish Rawat, Martin
Wistuba, Paulito P. Palmes, and Adi Botea. 2021. Searching for Machine Learning
Pipelines Using a Context-Free Grammar. In Proceedings of the AAAI Conference
on Artificial Intelligence. 8902ś8911. https://ojs.aaai.org/index.php/AAAI/article/
view/17077

[22] Jonas Mueller and Alex Smola. 2019. Recognizing Variables from Their Data
via Deep Embeddings of Distributions. International Conference on Data Mining
(ICDM) (2019), 1264ś1269. https://doi.org/10.1109/ICDM.2019.00158

[23] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz,
and Jason H. Moore. 2017. PMLB: a large benchmark suite for machine learning
evaluation and comparison. BioData Mining 10, 1 (2017), 36. https://doi.org/10.
1186/s13040-017-0154-

[24] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. 2000.
Meta-Learning by Landmarking Various Learning Algorithms. In Proceedings
of the International Conference on Machine Learning (ICML). 743ś750. https:
//dl.acm.org/doi/10.5555/645529.658105

[25] Herilalaina Rakotoarison, Marc Schoenauer, and Michèle Sebag. 2019. Au-
tomated Machine Learning with Monte-Carlo Tree Search. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI). 3296ś3303.
https://doi.org/10.24963/ijcai.2019/457

[26] Matthias Reif, Faisal Shafait, and Andreas Dengel. 2012. Meta-learning for
evolutionary parameter optimization of classifiers. Machine Learning 87, 3 (2012),
357ś380. https://doi.org/10.1007/s10994-012-5286-7

[27] Kevin Swersky, Jasper Snoek, and Ryan P. Adams. 2013. Multi-Task Bayesian
Optimization. In Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS). 2004ś2012. https://dl.acm.org/doi/10.5555/2999792.
2999836

[28] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined election and hyperparameter optimization of classifi-
cation algorithms. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 847ś855. https://doi.org/10.1145/2487575.
2487629

[29] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
Networked Science in Machine Learning. SIGKDD Explorations 15 (2014), 49ś60.
https://doi.org/10.1145/2641190.2641198

[30] Ricardo Vilalta, Christophe Giraud-carrier, Pavel Brazdil, and Carlos Soares. 2004.
Using Meta-Learning to Support Data Mining. International Journal of Computer
Science & Applications 1 (2004). https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.105.1351&rep=rep1&type=pdf

[31] Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. 2021. FLAML: A
Fast and Lightweight AutoML Library. In Proceedings of Machine Learning and
Systems (MLSys), Vol. 3. 434ś447. https://proceedings.mlsys.org/paper/2021/file/
92cc227532d17e56e07902b254dfad10-Paper.pdf

[32] Marcel Wever, Felix Mohr, and Eyke Hüllermeier. 2018. ML-Plan for Unlimited-
Length Machine Learning Pipelines. In AutoML Workshop at the International
Conference on Machine Learning (ICML). https://ris.uni-paderborn.de/download/
3852/3853/38.pdf

[33] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai, Nikan
Chavoshi, Venkatanathan Varadarajan, Sandeep R. Agrawal, Sam Idicula, Tomas
Karnagel, Sanjay Jinturkar, and Nipun Agarwal. 2020. Oracle AutoML: A Fast
and Predictive AutoML Pipeline. Proceedings of the VLDB Endowment 13, 12
(2020), 3166ś3180. https://doi.org/10.14778/3415478.3415542

[34] Chengrun Yang, Yuji Akimoto, Dae Won Kim, and Madeleine Udell. 2019. OBOE:
Collaborative Filtering for AutoML Model Selection. In Proceedings of the In-
ternational Conference on Knowledge Discovery and Data Mining (SIGKDD).
http://doi.org/10.1145/3292500.3330909

2436

https://arxiv.org/abs/2002.09440
https://arxiv.org/abs/2002.09440
https://doi.org/10.1145/3360601
http://arxiv.org/abs/1803.11175
https://doi.org/10.1007/978-3-319-55696-3_16
https://arxiv.org/abs/1910.03698
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7414&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7414&rep=rep1&type=pdf
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2007.04074
https://arxiv.org/abs/2007.04074
https://dl.acm.org/doi/10.5555/2969442.2969547
https://dl.acm.org/doi/10.5555/2969442.2969547
https://dl.acm.org/doi/10.5555/3327144.3327254
https://arxiv.org/abs/1907.00909
https://proceedings.mlr.press/v64/guyon_review_2016.html
https://arxiv.org/abs/2111.00083
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://ojs.aaai.org//index.php/ICAPS/article/view/6686
https://ojs.aaai.org//index.php/ICAPS/article/view/6686
https://doi.org/10.1093/bioinformatics/btz470
www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
http://www.vldb.org/pvldb/vol14/p2167-li.pdf
http://www.vldb.org/pvldb/vol14/p2167-li.pdf
https://arxiv.org/abs/1803.03324
https://arxiv.org/abs/1803.03324
https://doi.org/10.1609/aaai.v34i04.5926
https://ojs.aaai.org/index.php/AAAI/article/view/17077
https://ojs.aaai.org/index.php/AAAI/article/view/17077
https://doi.org/10.1109/ICDM.2019.00158
https://doi.org/10.1186/s13040-017-0154-
https://doi.org/10.1186/s13040-017-0154-
https://dl.acm.org/doi/10.5555/645529.658105
https://dl.acm.org/doi/10.5555/645529.658105
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.1007/s10994-012-5286-7
https://dl.acm.org/doi/10.5555/2999792.2999836
https://dl.acm.org/doi/10.5555/2999792.2999836
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/2641190.2641198
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.1351&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.1351&rep=rep1&type=pdf
https://proceedings.mlsys.org/paper/2021/file/92cc227532d17e56e07902b254dfad10-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/92cc227532d17e56e07902b254dfad10-Paper.pdf
https://ris.uni-paderborn.de/download/3852/3853/38.pdf
https://ris.uni-paderborn.de/download/3852/3853/38.pdf
https://doi.org/10.14778/3415478.3415542
http://doi.org/10.1145/3292500.3330909

