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ABSTRACT
Emerging domains, such as sensor-driven smart spaces and social
media analytics, require incoming data to be enriched prior to its use.
Enrichment often consists of machine learning (ML) functions that
are too expensive/infeasible to execute at ingestion. We develop
a strategy entitled Just-in-time ENrichmeNt in quERy Processing
(JENNER) to support interactive analytics over data as soon as it
arrives for such application context. JENNER exploits the inherent
tradeo�s of cost and quality often displayed by the ML functions to
progressively improve query answers during query execution. We
describe how JENNERworks for a large class of SPJ and aggregation
queries that form the bulk of data analytics workload. Our experi-
mental results on real datasets (IoT and Tweet) show that JENNER
achieves progressive answers performing signi�cantly better than
the naive strategies of achieving progressive computation.
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1 INTRODUCTION
Today, organizations have access to potentially limitless informa-
tion in the form of web data repositories, continuously generated
sensory data, social media posts, captured audio/video data, click
stream data from web portals, and so on [1]. Often, such data needs
to be enriched before it can be analyzed. Functions used to enrich
data (referred to as enrichment functions in the paper) could consist
of (a combination of) custom-compiled code, declarative queries,
and/or expensive machine learning techniques. Examples include
mechanisms for sentiment analysis [54] over social media posts,
named entity extraction [7] in text, and sensor interpretation such
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as face detection and face recognition [32, 43] from images, sensor
data fusion [46], and data cleaning tasks such as missing value
imputation in relational data [15].

Analytical applications that require raw data to be enriched prior
to use can be built in several ways. One approach is to collect the
data, periodically enrich it, and then load it into the database for
analysis, as done in the traditional extract-transform-load (ETL)
systems [56]. An alternate approach is to enrich the data as it arrives
"on-the-�y" at insertion time. Systems (e.g., Spark Streaming [62] of-
ten used for scalable ingestion) are capable of executing enrichment
functions on newly arriving data prior to its storage in a DBMS and
can be used to build such an approach.

Both approaches su�er from several limitations. The periodic
approach could signi�cantly increase latency between when data
arrives to when it is enriched and available for analysis. It does
not support interactive analytics on the data as it is inserted.1 The
alternate approach of enriching data at insertion time su�ers from
a di�erent limitation - it is only feasible when enrichment functions
are simple. If complex functions such as Multi-layer Perceptron and
Random Forest (often used to interpret data) are used for enrich-
ment, it may result in ingestion bottleneck. For instance, accurately
locating a person using WiFi events based on their history of con-
nections can take ⇡ 200ms/event [38, 39]. Clearly, with thousands
of connection events with WiFi access points per second, it is in-
feasible to execute such functions at the ingestion time.

Both the insertion time and periodic enrichment approach waste
resources as they indiscriminately enrich all data, irrespective of
whether they are needed for future analysis. E.g., in the previous
example, the analyst may only be interested in executing ad-hoc
queries that require �ne-grained localization of a small number of
individuals instead of continuous �ne-grained location of all indi-
viduals. Finally, both approaches require that enrichment functions
to be known in advance prior to data collection.

With the goal of supporting analytics on data as it arrives, re-
cent work in E�����DB [2] has proposed a di�erent approach that
supports "just-in-time" data enrichment during query processing.
Such a technique eliminates several limitations of the insertion-
time and periodic techniques mentioned above. It prevents wastage
of resources since only data accessed by queries during analysis
is enriched. Furthermore, by eliminating enrichment at ingestion
1This is similar to the limitation of the traditional data warehouse applications wherein
newly arrived data was not available for analysis until it was loaded into a warehouse
which led to the emergence of HTAP systems [12] over the past decade.

2666

https://www.acm.org/publications/policies/artifact-review-and-badging-current


(or limiting it to simple enrichment) the scheme does not create an
ingestion bottleneck. Finally, the data is available for analysis as
soon as it is inserted without incurring long latency between when
data is inserted and is available for analysis.

While the query-time enrichment has several advantages, it
nonetheless, increases latency of individual queries since enrich-
ment of queried data need to be performed at the time of query
execution. Interactive analytics can only be supported if the number
of objects that require enrichment are small. To overcome such a
limitation of query-time enrichment, we develop Just-in-time EN-
richmeNt in quERy Processing (JENNER) that interactively re�nes
query answers based on progressively enriching data. JENNER ex-
ploits the fact that often multiple functions can be used to enrich
the data for the same task which display a cost-quality tradeo�.

Cost-quality tradeo�s are demonstrated by several ML functions,
e.g., a complex neural network classi�er (with higher number of
layers and/or higher number of neurons per layer) has better accu-
racy than a neural network with lower complexity.2 Furthermore,
simple classi�ers such as Bayes classi�er, logistic regression are
less accurate than complex classi�ers of Extra Tree, Random For-
est, and Neural Network classi�ers. Such tradeo� is also studied
in LOCATER [38] where coarse level localization techniques were
used which had a fraction of cost than the �ne-grained techniques.

JENNER prioritizes/ranks which enrichment functions should be
evaluated on which objects to improve the quality of the answer as
quickly as possible for a query. JENNER divides the query execution
time into several epochs and analyzes the evaluation progress at
the beginning of each epoch to generate an enrichment plan. Such
a plan includes tuples that have highest potential of improving the
quality of the answer in that epoch.

The deferred/lazy enrichment in JENNER is motivated by prior
work on lazy query time data cleaning such as [11, 26]. Such works
developed techniques to combine entity resolution/database repair
using denial constraints with query processing to minimize the
amount of data that needs to be cleaned. Likewise, [8] developed
an approach to dynamically link entities in top-k queries. Such
approaches, however, do not support the progressiveness that JEN-
NER does. Since data cleaning tasks, such as entity linking, can be
viewed as enrichment, the approach developed in this paper can also
bene�t query time data cleaning by supporting progressiveness.

In summary, we propose JENNER, a progressive approach of
answering queries on the data that needs to be enriched. JENNER
orders enrichment in a way to optimize progressiveness of queries
by using a probabilistic strategy of estimating the bene�t of en-
richment functions. Our experiments on real data and enrichment
functions show the e�cacy of JENNER. JENNER has been inte-
grated into the E�����DB system [3] and forms the basis of its
progressive query evaluation strategy.

2 DATA MODEL TO SUPPORT ENRICHMENT
We consider an extended relational data model, wherein some of
the attributes of a relation are derived (denoted as A8 ) and require
enrichment (by executing a set of enrichment functions). The re-
maining attributes are �xed (denoted as � 9 ) and do not require
enrichment. Table 1 shows a relation with �xed attributes (e.g., id,
2This phenomena is true until the model over�ts the training data [22].

user_id, time, wifi_ap) and a derived attribute of location that
could be derived by multiple functions that vary in cost and quality.

The enrichment functions are categorized based on their input
types: (i) single-tuple-input and (ii)multi-tuple-input, that take as in-
put a set of �xed attribute values of a single tuple or multiple tuples,
respectively. The output of both types of enrichment functions are
for a single derived attribute of a tuple. A single-tuple-input enrich-
ment function typically uses other attributes in the same tuple and
a model to make the inference. The multi-tuple-input enrichment
function takes the �xed attribute values of multiple tuples from the
same relation or di�erent relations based on a parameter to infer
the derived attribute value of the tuple.

Enrichment functions can also be categorized by their output
types: (i) single-valued, (ii) multi-valued, or (iii) probabilistic, that
output as a prediction a single value, multiple values, or probability
distribution over a set of possible values. Of the three, probabilistic
outputs are most general as we can always interpret results of the
other two as probability distributions. We, thus, assume that enrich-
ment functions output probabilities in the rest of the paper. E.g., the
value of location in tuple C1 of wifi in Table 2 is [0.54, 0.35, 0.11]
which corresponds to locations L1, L2, and L3. JENNER assumes
that the enrichment functions are calibrated using mechanisms
such as [49, 61] on a labeled validation dataset. After calibration,
the enrichment functions output a real probability distribution.

The enrichment functions for a derived attributeA8 are denoted
by � 8 = {5 81 , 5

8
2 , . . . , 5

8
: }. Each function 5 89 is associated with a cost

(denoted by 289 ) which represents the average execution cost of
the function on a single tuple. Since the output of an enrichment
function is probabilistic, we associate a notion of uncertainty with
the probabilistic outputs. An expensive enrichment function is
expected to produce output with less amount of uncertainty.

Given a probabilistic attribute value, we measure uncertainty
using the entropy metric [31]. For a tuple C: and derived attribute
A? , entropy is calculated as follows:

⌘(C8 ,A 9 ) = �
’
8

?8 · ;>6(?8 ) (1)

where, ?8 represents the probability of the derived attribute taking
the 8-th domain value for the tuple C: . The entropy of C1 in Table 2
is [�0.54⇥ log3 (0.54)�0.35⇥ log3 (0.35)�0.11⇥ log3 (0.11)] = 0.86.

JENNER is based on the premise that enrichment functions (that
are often based on ML models) can be ordered based on their aver-
age behavior and very often enrichment functions that are more
accurate are more expensive. This behavior of classi�ers was high-
lighted in the past, e.g., [21] studied cost-accuracy tradeo� of clas-
si�ers for sentiment analysis in tweets. Other examples include
work on deep neural networks that accelerated performance by
reducing the �oating point precision of intermediate outputs of
the neural network [25, 53, 63] and reducing the network size by
modifying the width of the layers or by skipping layers/modules
[14, 57, 60]. Such techniques trade between complexity and cost,
e.g., [63] describes a “precision-adjustable” softmax computation to
achieve di�erent precision and cost requirements of ML tasks.
State and Value of a Derived Attribute. Enrichment state or
state of a derived attribute A 9 in tuple C8 (denoted by state(C8 .A 9 ))
is the information about enrichment functions that have been ex-
ecuted on C8 to derive A 9 and their output. The state has two
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Table 1: The wifi table where location
is a derived attribute.
id user_id time wifi_ap location
C1 24 09:14 56 L1
C2 22 10:26 110 NULL
C3 108 14:10 116 L4

Table 2: State output for derived
attributes.
tid location
C1 L1:0.54, L2:0.35, L3: 0.11
C2 L1: 0.1, L2: 0.1, . . ., L10: 0.1
C3 L1:0.15, L2: 0.35, . . ., L6: 0.05

Table 3: wifistate table (created for tuples in
wifi table).

tid BitMap LocationState Output
C1 [1,0,0] [[0.54, 0.35, 0.11, ...], [], []]
C2 [1,0,1] [[0.2,0.6,..., 0.2],[], [0.86,0.1, . . . 0.04]]
C3 [1,1,0] [[0.1,0.2,...,0.5,0.2], [0.2,0.5,0,...] ,[]]

components: bitmap, that stores the list of enrichment func-
tions already executed on C8 .A 9 ; and output, that stores the out-
put of executed enrichment functions on C8 .A 9 . E.g., consider-
ing three enrichment functions 51, 52, and 53 for location, the
state bitmap of C2, i.e., h101i signi�es that only 51 and 53 have
been executed on it (see Table 3).3 Further, the output of the state
h[0.2, 0.6, . . . 0.2], [], [0.86, 0.1, . . . , 0.04]i is the output of 51 and 53.

The individual function outputs are aggregated into a combined
value denoted byA 9 .Value (e.g., Location.Value) using a combiner
function (e.g., weighted average and majority voting). Since this
value depends upon the state of the derived attribute, we denote
A 9 .Value by Val(BC0C4 (C8 .A 9 )) and the probability of it taking a
particular value 0 9 by Val(state(C8 .A 9 )) [0 9 ]. E.g., in Table 3, the
value of location for C1, is Val(state(C1 .location)) = [L1: 0.54, L2:
0.35, L2: 0.11]. The probability of C1 taking the value of location
as L1, i.e., Val(BC0C4 (C1 .location)) [L1] is 0.54.

State and Value of Tuples and Relations. The notions of state
and value of derived attributes are generalized to tuples, relations,
and the database in a straightforward way. The state (value) of a
tuple C8 , denoted by state(C8 ) (Val(state(C8 )) is the concatenation
of the state (value) of all derived attributes of C8 . Likewise, the
state (value) of relation '8 and database ⇡ is denoted by state('8 )
(Val(state('8 ))) and state(⇡) (Val(state(⇡))), respectively.

Next Best Function at a State. Execution of an enrichment func-
tion on an attribute A 9 in a tuple C8 in state state(C8 .A 9 ) reduces
uncertainty in its value Val(BC0C4 (C8 .A 9 )). This reduction in uncer-
tainty depends upon state(C8 .A 9 ) and is learnt using a validation
data set provided by the user as a preprocessing step. The size of
the validation dataset is small and can be chosen from the same
training dataset on which the enrichment functions are trained.
Given state(C8 .A 9 ) we order the enrichment functions associated
with A 9 in the order of their uncertainty reduction and choose the
one that reduces the uncertainty the most as next-best function,
denoted as NBF (C8 ,A 9 ). Note that uncertainty reduction due to
enrichment functions that have already been executed in the past
is zero and hence they cannot be the next best function at a state.

Example 2.1. Suppose the value of the location attribute of a tuple
C1 is: [L1: 0.54, L2: 0.35, L3: 0.11]. The entropy of C1 with respect
to location is 0.86 (measured using Equation 1). Suppose after the
enrichment of C1 and using the next best function and combining
the output with the outputs of previously executed functions, the
location value of C1 becomes [L1: 0.8, L2: 0.15, L3: 0.05]. Hence, the
entropy of the tuple with respect to location reduces to 0.56.

Currently JENNER rank orders enrichment functions based on
their capability to reduce uncertainty (on an average) of derived
attributes. Prior work [16] showed that ranking of classi�ers can
be context dependent. In [16], authors developed a strategy to
train multiple classi�ers where each classi�er was an expert on a
3The bitmap does not represent any order between enrichment functions. It is possible
to execute only the second enrichment function without executing the �rst one.

part of the data and their outputs were combined using a stacking
based method. Such techniques result in the ranking to be context
dependent. They can be supported in JENNER by storing a map
that orders functions based on the context instead of a single next-
best function. JENNER needs to store the condition on context (e.g.,
timestamp between C1 and C2) as the key and next best function as
the value. When NBF (C8 ,A 9 ) is called, JENNER will use the context
of C8 to �nd next-best function. Implementing JENNER with context
dependent enrichment function is an interesting future direction.
Query Model. JENNER supports single block select-project-join-
aggregation queries with conditions on both �xed and derived at-
tributes, an example of which is shown in Code Listing 1.

SELECT wifi.location as p_location , wifi.time as

p_time FROM wifi WHERE p_location = �L1� AND

p_time BETWEEN (�10:00 �,�12:00 �)

Code Listing 1: Example Query.
In the following, we focus on the queries with at least one de-

rived attribute in the SELECT or WHERE clause. E.g., the above query
contains a condition on the derived attribute location.

Since derived attributes have probabilistic values, JENNER
interprets queries based on determinization-based semantics
[37, 45, 59], wherein& is evaluated over determinized values for de-
rived attributes in tuples that are part of& . The determinized value
of a derived attribute A 9 is determined by executing a determiniza-
tion functionDET (.) on the associated value of the derived attribute
(i.e., DET (Val(state(C8 .A 9 ))) ). Several methods to determinize a
probabilistic attribute have been previously studied [37, 45, 59]. We
choose the determinization function that returns the highest prob-
able value after combining the output of the previously executed
enrichment functions on the tuple. If the highest probable value is
not unique then JENNER assigns the attribute value as NULL. For
multi-valued determinization functions such as determinization
based on a threshold, if all the possible attribute values have the
probability lower than the threshold for a particular tuple, then the
derived attribute is assigned a NULL value for that tuple.4

Progressive Query Execution in Epochs. The query execution
time is discretized into multiple epochs (denoted by 41, 42, . . . , 4I ) in
which data enrichment is performed. We denote the time span of
an epoch 4F by the notation |4F |. 5
4The techniques developed in the paper can be adopted to other determinization func-
tions studied in [37, 45, 59] including those that return multiple values as discussed
in the extended version of the paper [4].

Determinization concept naturally extends to a tuple and a relation. Determinized
representation of a relation ' is denoted as DET (') :

DET (') = DET (Val (state (C8 .A 9 ))) | 8C8 2 ', 8A 9 of '.

Thus, the execution of query& is:
& ('1,'2, . . . ,'=) = & (DET ('1),DET ('2), . . . ,DET ('=))

where DET ('8 ) is the determinized representation of '8 .

5For simplicity, we will consider the duration of each epoch to be of �xed size in the
remainder of the paper, though, the approach does not require this to be the case.
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During an epoch 4F , certain enrichment functions (not executed
before) are chosen to be executed. Let ⇢%F = {hC8 ,A 9 , 5

9
:
i} be a

set of htuple, derived attribute, enrichment functioni triples, re-
ferred to as the enrichment plan of epoch 4F . Let ( be the state of
the database at the end of 4F�1 and, let ( 0 be the state after the
execution of the enrichment plan ⇢%F in 4F . This results in state
update of all tuples C8 2 ⇢%F as follows: 8hC8 ,A 9 , 5

9
:
i 2 ⇢%F , the

BC0C4 (C8 .A 9 ) .bitmap is updated by setting the :-th bit to 1 to de-
note that :-th function is executed. Similarly, BC0C4 (C8 .A 9 ).output
is updated as: BC0C4 (C8 .A 9 ).output = (C8 .A 9 ).output � hC8 ,A 9 , 5

9
:
i,

where � signi�es that the :-th array of state output is updated and
the new derived attribute value of the tuple is updated. At the end
of 4F , user receives a query result, denoted as AnsF , based on the
current state of the database. Note that a tuple that was part of the
answer in previous epoch, may no longer be part of AnsF . In the
rest of the paper, to disambiguate between di�erent states/values
of data in di�erent epochs, we will denote the original database ⇡
on which & executes as ⇡0 to signify its status prior to the query
execution. We will refer to the database after the execution of 4F
as ⇡F that corresponds to the database after all the enrichment
functions until epoch 4F have been executed.

The user can access the query results at the end of each epoch.
JENNER provides an expected quality of the returned results based
on the enrichment performed until that time. This quality can be
used by the user to determine if the query execution needs to be
continued. The progressive query execution is motivated by online
AQP systems where users can view the query results as soon as
they are computed on the samples [17, 30]. The usefulness of online
AQP systems were discussed in [24, 44]. An alternative is to use
the query model of o�ine AQP systems [6, 48] where a maximum
duration/quality requirement is speci�ed by the user. The system
continues the query execution till that time. JENNER supports the
model of o�ine AQP by appropriately setting the epoch sizes.

Since in a progressive approach, users may stop query evaluation
at any instance of time, performing enrichments that impact the
answer quality as early as possible is desirable.

De�nition 2.1. Progressive Score. The e�ectiveness of JENNER
is measured using the following progressive score (similar to other
progressive approaches used in [9, 47]):

PS(Ans(@, ⇢)) =
|⇢ |Õ
8=1

, (48 ) · [Qty(Ans(&, 48 ))�Qty(Ans(&, 48�1))]

(2)
where E = {e1, e2, . . . , ek} is a set of epochs, W (ei) 2 [0, 1] is
the weight allotted to the epoch 48 , W (ei�1) > W (ei)), Qty is
the quality of answers, and [Qty(Ans(&, 48 )) � Qty(Ans(&, 48�1))]
is the improvement in the quality of answers occurred in epoch
48 . Assigning higher weights to the earlier epochs provide higher
importance to the improvement in quality in the earlier epochs. ⌅

Since weights,8 in the progressive score de�ned above are de-
creasing, optimizing the progressive score is equivalent to selecting
a set of enrichment functions (that have previously not executed)
which can result in maximum increase in quality in the following
epoch, that is, Maximize(Qty(Ans(&, 48 )) � Qty(Ans(&, 48�1))).

The quality Qty in Equation 2, for a set-based query answer
corresponds to a set-based quality metrics such as precision, recall,

�U -measure [50], or Jaccard similarity coe�cient [34]. We de�ne
the �U measure and Jaccard’s similarity below.

�U (AnsF ) =
(1 + U) · %A4 (AnsF ) · '42 (AnsF )

(U · %A4 (AnsF ) + '42 (AnsF ))

J (AnsF ) =
|AnsF \ Ansreal |
|AnsF [ Ansreal |

=
⇥ 1
%A4 (AnsF )

+
1

'42 (AnsF )
� 1

⇤ (3)

where Ansreal is the real answer of the query in ground truth set⌧ ,
Pre is precision, i.e., %A4 (AnsF) = |AnsF \Ansreal |/|AnsF |, and Rec
is recall, i.e., '42 (AnsF) = |AnsF \Ansreal |/|Ansreal |, and U 2 [0, 1]
is the weight of precision in �U -measure. In the rest of the paper, for
computing the quality of set-based query result, we restrict to �U -
measure. The quality of an aggregation query could be measured
using root-mean-square error [33] or mean-absolute-error [58].
Quality Guarantees in JENNER. At each epoch JENNER strives
to choose the best set of objects to enrich that can improve the
quality of the query result most. Since the ground truth of objects
are not known, JENNER can neither directly measure the quality
of query results returned so far, nor can it precisely determine the
improvement in quality by executing an enrichment function. In-
stead, JENNER estimates both the quality of results (of previous
epoch) and the improvement in quality if a selected set of objects are
enriched in the current epoch. Based on these estimates, JENNER
chooses and executes the enrichments that maximizes the improve-
ment in quality of the resulting query answer from previous epoch.

Below we discuss how JENNER estimates the quality for set-
based queries. For aggregation queries, JENNER optimizes the en-
richment process using a set-based metric (e.g., �U -measure) and
then applies the aggregation function on the resulting tuples.

De�nition 2.2. Estimated Quality. Let Ans"�-
F be the set of

tuples that have non-zero probability to be in the answer to query
& , AnsF be a set of tuples returned as an answer to the user. Let
P8 be the probability of a tuple C8 2 AnsA40; (we discuss ways to
compute P8 later). Furthermore, let< be the cardinality of AnsF ,
and = be the cardinality of Ans"�-

F . We compute the estimated
precision and recall of AnsF , denoted by c%A4 and c'42 , as follows:

c%A4 =
Õ

C8 2AnsF
P8

<
, c'42 =

Õ
C8 2AnsF

P8

Õ
C 9 2Ans"�-

F

P9
(4)

Given the above estimates of precision and recall, we can next
de�ne estimate of �U measure denoted as b�U .

b�U (AnsF) =
(1 + U)

Õ
C8 2AnsF

P8

U
Õ

C8 2Ans"�-
F

P9 +<
(5)

The above de�nition of estimated quality depends upon deter-
mining the probability P8 of an answer tuple C8 to be in the real
answer of the query. For a selection query with a single condi-
tion (C8 .A 9 = 0 9 ) on a derived attribute A 9 , the P8 of C8 is sim-
ply Val(BC0C4 (C8 .A 9 )) [0 9 ] if the determinized value of C8 .A 9 corre-
sponds to 0 9 , else it is zero. For queries with selection conditions
on multiple derived attributes, the probability of C8 satisfying the
predicate is computed under the independence assumption of de-
rived attributes by combining the probabilities of C8 satisfying the
predicates on single attributes. For a join query, P8 of a tuple C8 in a
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base relation is calculated as follows: (i) for each answer tuple that
was generated from C8 , the probability of the answer tuple satisfy-
ing all the conditions on derived attributes are combined according
to the independence assumption and (ii) the probability of all the
answer tuples generated from C8 are added to generate P8 as done in
[55]. JENNER uses expected quality metric to choose which tuples
should be enriched in an epoch as will be clear in §3. Note that it
is possible that after enriching a tuple C8 , the probability P8 of the
tuple to satisfy the query decreases from the previous epoch, but
it is expected that the overall quality of the query result improves.
Furthermore, if multiple enrichment functions with cost quality
tradeo� can not be de�ned (e.g., enrichment can only be performed
by a unique function), JENNER may not achieve progressive im-
provement of query results. Even in such a case, as JENNER only
enriches objects relevant to the query, it is bene�cial than complete
enrichment of objects before answering queries.
Progressive Enrichment Problem. Given the notations above,
we can now formally state the problem of progressive enrichment.
Let & be a query and let 41, 42, . . . , 4= be the epochs used to exe-
cute & . Let state(⇡) be the state of the database after epoch 4F�1,
whereF  =� 1. Let⇠(F be the set of tuples in ⇡ that are not fully
enriched. The progressive enrichment problem consists of determin-
ing a set of htuple, derived attribute, enrichment functioni triples
⇢%F such that, when executed in 4F , results in a database value of:
(Val(state(D)) � ⇢%F) that optimizes the following objective:

max
hC8 ,A 9 ,5

9
: i

⇥dQty (& (DET (Val (state (D)) � ⇢%F ))) � dQty (& (+0; (state (D))))
⇤

subject to’
hC8 ,A 9 ,5

9
: i2⇢%F

cost ( hti, Aj, f
j
k i)  |4F |

(6)
where dQty(& (+0; (state(D)) � ⇢%F)) is the expected quality of

the query result when it is executed on the updated state of the
database in epoch 4F and dQty(& (+0; (state(D)))) is the expected
quality of the query result at the end of previous epoch of 4F�1.

3 PROGRESSIVE ENRICHMENT IN JENNER
The overall algorithm of JENNER is presented in Algorithm 1. The
zero-th epoch performs pre-processing in order for the answers to
be generated in the later epochs. The later epochs of 4F , F > 0,
iteratively enriches the tuples and compute the query results.
Zero-th Epoch (Lines 5 - 10): The goal of the zero-th epoch is
to seed JENNER with the tuples that may need to be enriched in
the upcoming epochs (i.e., epoch 1 and onwards). It also sets up the
data structures used in the later epochs. JENNER does not require
any enrichment function to be executed on the data before. In
zero-th epoch, JENNER identi�es for each relation '8 a minimal set
of candidate tuples whose enrichment in subsequent epochs may
in�uence the query result (denoted as CandidateSet ('8 )). Such a
CandidateSet ('8 ) is identi�ed by executing probe queries (Line 4).
Generation of probe queries are discussed in §3.1.

Next, for each C8 in the CandidateSet for each relation, for each
derived attribute A 9 in C8 that is part of & , JENNER estimates the
probability of C8 matching the condition on A 9 (listed in the code
as match_prob). For each such attribute A 9 in C8 , JENNER also

Algorithm 1: Overall Algorithm.
Inputs: Query& and the duration of each epoch epoch_duration.
Outputs: An enrichment plan for each epoch.

1 Function Optimize_Enrichment () begin
2 CandidateSet"  ;
3 Epoch 0:: for each '8 2 & do
4 CandidateSet ('8 )  Execute (GenerateProbeQ (&,'8 ))

5 for each '8 .A: 2 & do
6 for each C 9 2 CandidateSet ('8 ) do
7 M  CompProb(C 9 , A: ) ; C  Cost (NBF (C 9 , A: ))

8 B ComputeBene�t (NBF (C 9 , A: ))

9 CandidateSet" [ hC 9 , A: ,NBF, B,C,M i
10 CandidateSet"  Sortmatch_prob (CandidateSet" )

11 Epoch F, F � 1:: for each epoch 4F do
12 EPF  ChooseEnrichmentPlan(CandidateSet" )

13 for each entry 2 EPF do
14 ExecuteEnrichment (C, A, 5 ) ; UpdateState (C, A, 5 ) ;
15 Determinize (C , A) ;UpdateBene�t (CandidateSet" , C , A) ;
16 AnsF  Produce�eryResult (&)

17 Return Ans

computes the bene�t and cost of executing the next best function
(NBF ) associated with C8 .A 9 based on its current state (Line 7- 8).

Thematch_probability of a derived attribute C8 .A 9 is determined
using the probability Val(state(C8 .A 9 )) [0 9 ] where the selection
condition is A 9 = 0 9 . For derived attributes, that do not appear in
any selection condition, the value of match_probability is 1.

The bene�t of enrichment of tuple C8 using the next best function
(as shown in Line 8) for attributeA 9 is computed by estimating the
improvement in quality from the previous epoch. We describe this
step in details in §3.2. The bene�t, cost, andmatching probability for
each candidate in CandidateSet ('8 ) is stored in the corresponding
CandidateSet" to represent the metadata of candidates (Lines 7-9).
Candidates in CandidateSet" are sorted based on theirmatch_prob
values (Line 10).
Later epochs 4F ,F � 14F ,F � 14F ,F � 1, (Lines 11 - 16): The later epochs (i.e.,
41, 42, . . . , 4=) consist of a sequence of the following three steps: (i)
Choose Enrichment Plan: that selects a set of candidate tuples from
CandidateSet" to generate an enrichment plan EPF for the epoch
4F (Line 12); We discuss choosing the enrichment plan in details
in §3.2 and in §3.3; (ii) Execute Enrichment Plan: that enriches the
tuples in EPF , update their state, determinized representations and
their bene�t in CandidateSet" (Lines 14 - 15); We discuss them in
§3.4; (iii) Produce Query Results: produce a query result by executing
the query on determinized representation of the tuples and then
choosing a subset of tuples that maximizes the quality of the result
measured using ⇢ (�U ) measure (Line 16); We discuss this step in
§3.5. Progressive approach for aggregation queries is realized by
developing a progressive approach for the corresponding set-based
query on which the aggregation is performed.

3.1 Probe Query Generation
In order to populate CandidateSet ('8 ) for relation '8 , i.e., to �nd
out the set of tuples that may have impact on the query results,
one could add all the tuples that are not fully enriched to this set.
However, it would result in a signi�cant number of redundant
enrichments, i.e., the tuples that do not satisfy predicates on the
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SELECT * FROM '1, '2 WHERE '1 .A1 = 01 AND '1 .�2 = 02 AND
'1 .A3 = '2 .A3 AND '1 .�4 = '2 .�4 AND '2 .�5 = 05 AND

'2 .A6 = 06

(a) Original query.
SELECT * FROM '1 WHERE '1 .�2 = 02

(b) Step 1 of probe query generation for relation '1.

SELECT * FROM '1 WHERE '1 .�2 = 02
AND '1 .�4 IN (SELECT �4 FROM '2 WHERE '2 .�5 = 05)

(c) Step 2 of probe query generation for '1.
SELECT * FROM '1, '1(C0C4 WHERE '1 .�2 = 02

AND '1 .�4 IN (SELECT �4 FROM '2 WHERE '2 .�5 = 05)
AND '1 .83 = '1(C0C4 .83

AND ('1(C0C4 .array_sum(A1StateBitmap)! =
'1(C0C4 .array_length(A1StateBitmap))

(d) Step 3 of probe query generation for '1.

Figure 1: Steps of probe query generation for '1 in Q.

�xed attributes will be added to this set for enrichment. To avoid
this, JENNER exploits the predicates over �xed attributes to �lter
out tuples whose enrichment has no consequence on the results.
The probe queries identify a “minimal” subset of tuples (as small
a subset as possible) for each '8 2 & that need to be enriched to
execute & (denoted as ?@('8 )).

We illustrate how probe queries are generated using the query
in Figure 1a. The selection conditions on �xed attributes of '1 are
identi�ed, i.e., '1 .�2 = 02. The tuples of '1 that require enrichment
are restricted using this condition as shown in Figure 1b. JENNER
further exploits join conditions on �xed attributes. E.g., in Figure
1a, an '1 tuple must join with at-least one of '2 tuples that satisfy
the condition of '2 .�5 = 05. A tuple of '1 can be part of the answer
if it joins some tuples of '2 which satisfy the join condition '1 .�4 =
'2 .�4. JENNER determines such a set by computing semi-join with
other relations in the query with which '1 joins using conditions
on �xed attributes. Utilizing the semi-join optimization results in a
nested query as shown in Figure 1c. We restrict the description of
probe query using an example as the algorithm is an adaptation of
semi-join optimization in [13]. The algorithm is available in [4].

Further, JENNER exploits the current state of the tuples to
avoid repeated enrichment of tuples that are completely en-
riched. JENNER rewrites the selection condition as in Figure
1d on derived attribute, i.e., '1 .A1 = 01 by the condition:⇥
'1 .id = '1State.id AND '1 .array_sum(A1StateBitmap)! =
'1 .array_length(A1StateBitmap)

⇤
. This checks if a derived at-

tribute is completely enriched using StateBitmap column of state
table (i.e., all the bits set to 1). Such tuples are not enriched.

3.2 Bene�t Estimation
JENNER chooses the htuple, derived attribute, enrichment functioni
triples from CandidateSet" as an enrichment plan based on the ben-
e�t of the triple per unit cost. Bene�t, discussed formally below,
corresponds to the expected improvement in the quality of the
answers from previous epoch due to the execution of the enrich-
ment plan. We restrict the choice of tuples for enrichment to only

Algorithm 2: Bene�t Calculation.
Inputs: A triple containing a tuple C8 , a derived attribute A 9 , the
next best function 5: for the tuple at the state in 4F�1.

Outputs: The bene�t of the htuple C8 , derived attribute A 9 ,
enrichment function 5: i triplet.

1 Function Compute_Bene�t () begin
2 Prev�ality  b�U (AnsF�1)
3 EF�1  ComputeEntropy (C8 , A 9 )

4 bEF  EF�1 � DeltaEntropy (C8 , A 9 , 5: )

5 Match_Probability  ComputeInverseOfEntropy (bEF )

6 Expected�ality  �ality (Match_Probability,AnsF�1)
7 Bene�t (C8 , A 9 , 5: )  Max (Expected�ality � Prev�ality, 0)
8 Return Bene�t (C8 , A 9 , 5: )

those that are not in the answer set of previous epoch. This step
is performed as the bene�t of further enriching a tuple in 4F that
was in AnsF�1 is signi�cantly lower than the tuples that are not in
AnsF�1. We formally justify this decision in [4].

De�nition 3.1. Bene�t of an Enrichment Function. Let &
be a query, ⇡F�1 be the database at the end of epoch 4F�1,
and hC8 ,A 9 , 5: i be a triple to be executed in 4F . The bene�t of
hC8 ,A 9 , 5: i is de�ned as follows:

Bene�t (hC8 ,A 9 , 5: i) = d&C~ (& (⇡F�1 � hC8 ,A 9 , 5: i))�

d&C~ (& (⇡F�1))
(7)

where d&C~ (& (⇡F�1 � hC8 ,A 9 , 5: i)) is the estimated quality of
the query answer after the triple hC8 ,A 9 , 5: i is executed andd&C~ (& (⇡F�1)) is the estimated quality at the end of 4F�1. ⌅

Thus, to determine the bene�t of executing an enrichment func-
tion, JENNER estimates (i) the quality of answer after epoch 4F�1
and (ii) the expected quality of the answer set if the enrichment
function is executed in the current epoch.

3.2.1 Selection�eries. GivenAnsF�1 (i.e.,& (⇡F�1)), for selec-
tion queries, estimating its quality (i.e., d&C~ (& (⇡F�1)) is straight-
forward, since for every tuple C8 2 �=BF�1, the probability of the
tuple C8 to be in the Ansreal is known, as discussed in §2 and illus-
trated using the following example.
Example 3.1. Consider the selection query in Code Listing 1 on
wifi (see Table 1). Suppose at the end of epoch 41, the state of
the tuples are as shown in Table 3 and let C1 be part of the query
result. Since, the location of C1, i.e., Location.Value in Table 2
(calculated from Table 3) is [L1: 0.54, L2: 0.35, L3: 0.11] and, thus,
the determinized value of location in Table 1 is L1. Hence, the
combined probability of C1 satisfying all the selection conditions of
the query is 0.54. The expected precision of the answer is 0.54. The
recall calculation requires probability of the tuples that are part of
the answer as well as of the tuples that are outside of the answer. ⌅

To compute the bene�t of hC8 ,A 9 , 5: i, JENNER estimates the
quality of the answer that would result if & were to be executed
on the database after executing 5: on C8 . Recall that with each en-
richment function 5: , we have associated a measure of uncertainty
reduction that is a function of the state of the derived attribute A 9
of tuple C8 on which 5: executes. Let the uncertainty reduction of
the execution of 5: over the state of A 9 in tuple C8 in the current
database ⇡F�1 be �. Such an uncertainty reduction measure �
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allows us to estimate the probability of the tuple satisfying the
selection condition of the query after execution of 5: as follows.
Let EF�1 be the entropy of attributeA 9 of C8 prior to the execution
of 5: . The tuple’s entropy after the execution of 5: is EF�1 � �.
We estimate the new probability ? of C8 .A 9 satisfying the selection
condition by solving the following equation:

EF�1 � � = �? · ;>6(?) � (1 � ?) · ;>6(1 � ?) (8)
Note that the equation above leads to two solutions, one that

reduces the probability ? of C8 .A 9 satisfying the selection condition
(denoted as ?;>F ) and another that corresponds to the increase in
probability (denoted as ?⌘86⌘). While JENNER does not depend on
the probability to monotonically increase with the execution of
more enrichment functions on each tuple, for the approach to be
e�ective we expect that such would be the case for much of the data.
The works on ensemble classi�ers [23, 52] provide evidence that
multiple classi�ers together can reduce the inference error more as
compared to the individual classi�ers. For a single object, the en-
richment functions can make mistakes in the prediction but overall,
executing more enrichment functions increases the quality of the
inference. Furthermore, several authors addressed the problem of
reducing the cost of ensemble classi�ers on large datasets. Authors
either used a separate dataset to score the performance of classi�ers
and chose ensemble dynamically at inference time (in Dynamic
Ensemble Selection mechanisms [18, 19]) or dynamically pruned
away classi�ers in an existing ensemble with accuracy lower than
a threshold (in Ensemble Pruning mechanisms [28, 41]).

Example 3.2. Consider C3 in Table 3 the value of which, based on
the execution of the �rst two enrichment functions, is a distribution
[0.15, 0.35, . . ., 0.05] over the possible locations. Given the query
in Code Listing 1, the probability of C3 satisfying the predicate
on location is 0.15 and not satisfying is 0.85. As a result, entropy
is calculated as 0.60. Consider the execution of third enrichment
function and the associated entropy reduction as 0.3. With the new
entropy of (0.6-0.3) =0.3, JENNER solves Equation 1 to determine
?;>F and ?⌘86⌘ as 0.05 and 0.95 respectively. ⌅

Given (?;>F and ?⌘86⌘) of the tuple, JENNER computes the prob-
ability of the tuple to be part of the real answer of the query in
epoch 4F , denoted as P;>F and P⌘86⌘ respectively (as described in
De�nition 2.2). Considering P;>F and P⌘86⌘ of the tuple and the
probabilities of other tuples satisfying the query condition (which
is the same as in the previous epoch 4F�1), JENNER determines
the answer that would be return to the user in order to maximize
the answer quality (as discussed in §3.5). Thus, JENNER can de-
termine the answers returned in both cases when the probability
of C8 .A 9 satisfying the query condition is P;>F or it is P⌘86⌘ . Let
these answers be Ans;>F and Ans⌘86⌘ respectively.

We can now determine the estimated quality of the answer after
execution of 5: on C8 .A 9 as a weighted sum of the quality of the
potential answers dQty(Anslow) and dQty(Anshigh).

?F�1dQty(Anshigh) + (1 � ?F�1)dQty(Anslow) (9)
where ?F�1 refers to the probability of C8 .A 9 satisfying the query
condition in its state in ⇡F�1.

Given the above expected quality of answers after execution of
5: on C8 .A 9 , we can now determine the bene�t of its execution to
the results. Note that such a value could be negative depending

upon the value of ?F�1. In this case, we consider the bene�t to be
0 and such a function would not be chosen for enrichment.

3.2.2 Generalizing to Other �eries . To estimate the bene�t
for general queries, we extended the model for both estimating the
quality of query result in the previous epoch 4F�1 and the bene�t of
executing the triples in enrichment plan EPF of the current epoch
4F . Let us consider a query & with conditions on = relations '1,
'2, . . ., '= . For each '8 , there could be multiple selection and join
conditions on both �xed and derived attributes.

For queries with join conditions, the bene�t is computed for each
tuple of the relations separately, i.e., JENNER does not compute the
bene�t of the composite tuples generated from two tuples of the
di�erent relations. This allows JENNER to measure the bene�t of
the tuples in linear time irrespective of the type of the query. At
epoch 4F�1, the tuples of '8 are classi�ed as one of the following
two types: (i) the tuples that have met the selection condition on
derived attributes of '8 , denoted by 'f8 ,

6 and (ii) the tuples that
do not satisfy such selection conditions, are denoted by '¬f8 . The
tuples of 'f8 are further classi�ed as those that were part of the
answer set (i.e., at-least one tuple in the answer set of 4F�1 was
generated by these tuples) or not in the answer set (i.e., no tuples
in the answer set of 4F�1 was generated by these tuples).

To determine 'f8 , JENNER �rst determines AnsF�1 and �nds
out the tuple of '8 with minimum match_prob (i.e., probability of
satisfying all the selection conditions of '8 ) that still quali�ed to
be part of AnsF�1. This minimum match_prob is denoted as the
relation-threshold of '8 . The tuples with match_prob higher than
this threshold forms 'f8 and the remaining tuples form the set of
'¬f8 . The candidate tuples are chosen from '¬f8 of the relations.

To compute the probability of a tuple C8 2 AnsF to be part
of Ansreal , let us consider the projection of C8 to its constituent
tuples in relations of '1, . . . ,'= . Let us denote the correspond-
ing tuple in ' 9 as C8 [' 9 ]. The probability of C8 [' 9 ] satisfying
the selection condition in & on attributes in ' 9 is computed
as discussed above in the context of selection queries. The
probability of the join condition between two relations ' 9 and
': (say ' 9 .A< = ': .A<) being satis�ed by C8 is computed as
follows: let the determinized value of C8 [' 9 ] be Det (C8 [' 9 ]). The
probability of C8 [' 9 ] satisfying the join condition on derived
attribute A< is Val(BC0C4 (C8 [' 9 ] .A<)) [⇡4C (C8 [' 9 ] .A<)].
Likewise, suppose the determinized value of C8 [': ] be
Det (C8 [': ]). The probability of C8 [': ] satisfying the join
condition on A< is Val(BC0C4 (C8 [': ] .A<)) [⇡4C (C8 [': ] .A<)].
Hence, the probability of tuple C8 satisfying the join condi-
tion of ' 9 .A< = ': .A< is the product of the above two
probabilities, i.e., Val(BC0C4 (C8 [' 9 ] .A<)) [⇡4C (C8 [' 9 ] .A<)] ⇥

Val(BC0C4 (C8 [': ] .A<)) [⇡4C (C8 [': ] .A<)]. The overall probability
of tuple C8 is computed by computing the product of all the
probabilities for the predicates present in & .

Given the probability of all tuples C8 2 AnsF to be part of real
answer setAnsreal , JENNER computes �U measure by Equation 5. To
compute bene�t of a triple hC8 ,A 9 , 5: i, where C8 is in relation '? and
it is part of '¬f? , JENNER estimates the quality of the answer that
would result if& were to be executed on the database after executing
6If there are no selection conditions on derived attributes then all the tuples are part
of 'f

8 .
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5: on C8 .A 9 . JENNER follows the same strategy as selection queries
where it generates ?;>F and ?⌘86⌘ for the condition on C8 .A 9 to be
met. In each case, it re-executes the query, generates the answers
Ans⌘86⌘ and Anslow . As in selection queries, it chooses an answer
with maximum quality (as described in §3.5).

The above way of computing bene�t for executing 5: on C8 .A 9 re-
quires (i) determining the probabilities ?;>F and ?⌘86⌘ from the en-
tropy reduction of 5: , (ii) re-executing& on the database state result-
ing in⇡4F�1 with the probability of C8 .A 9 matching the query condi-
tion modi�ed to ?;>F (or ?⌘86⌘), and (iii) run Produce�eryResult in
both cases (the complexity, as will be clear in §3.5 is |Ans |;>6( |Ans |),
where |Ans | is the size of the answer from which query result is
selected). Thus, the complexity of above three steps is $ (cost& +

|�=BF |;>6( |AnsF |)), where cost& is the time to execute & , |�=BF |

is the size of answers returned. As a result, the overall complexity
of bene�t estimation is $ (=(cost& + |�=BF |;>6( |AnsF |))) where =
is the size of CandidateSet" .

3.3 Selecting Enrichment Plan
This step chooses a set of htuple, derived attribute, enrichment
functioni triples as the enrichment plan of epoch 4F . The problem
of selecting an enrichment plan is a budgeted Knapsack problem
as we need to �nd an enrichment plan with total cost less than
or equal to epoch_duration and that has maximum sum of bene�t
values among all the possible subset of ranked tuples. JENNER
uses a greedy approach to choose this enrichment plan for the
epoch 4F . For the htuple, derived attribute, enrichment functioni
triples in CandidateSet" , it computes the bene�t as described ear-
lier. The triples in CandidateSet are sorted in decreasing order of
their bene�t/cost values. The enrichment plan is chosen from the
sorted set starting from the triple with highest bene�t/cost value.
Note that choosing the triples based on bene�t/cost, allowed JEN-
NER to achieve two goals: (i) If a triple has a very high bene�t
value but the cost of enrichment function is also high then such
triples are not executed in the beginning and (ii) triples with smaller
bene�t and cost can be enriched in the beginning in large numbers
to achieve higher improvement of the answer quality.

3.4 Execution of Enrichment Plan
This step executes the htuple, derived attribute, enrichment
functioni triples present in EPF . While executing an enrichment
function on a set of tuples, JENNER batches the tuples together
and then execute the enrichment function on them. For each tuple
C8 2 EPF , JENNER updates the state of C8 . Next, the determinized
representation of C8 is updated based on the output of all the enrich-
ment functions executed on it. For each tuple for which a derived
attribute value was enriched, the NBF function for that attribute
changes. Hence, JENNER, calculates the new bene�t of the tuple,
if it is enriched using the NBF function at the current state. These
updated bene�t of the tuples that were enriched in epoch 4F are re-
�ected in the CandidateSet" data structure. Hence, the next epoch
can choose an enrichment plan by comparing the updated bene�t
of enriched tuples in 4F and the previous bene�t of tuples that were
not enriched. In an epoch, JENNER keeps executing the triples
until the epoch duration is exhausted.

3.5 Produce Query Result
After the state update of tuples enriched in 4F , the original query
& is re-executed on the determinized representation to �nd the set
of potential answer. For each tuple C8 in computed AnsF , JENNER
determines the probability of C8 to be in Ansreal , based on the prob-
ability of the tuples in base relations that constructed C8 . Instead
of returning AnsF , it returns a subset of tuples that maximizes the
answer quality (i.e., �U -measure for set-based queries). For aggre-
gation queries, JENNER �rst determines the set of answers that
optimizes �U -measure and then computes the aggregation function.
Note that it is possible that a tuple that was returned as an answer
in one of the previous epochs is retracted in the current epoch 4F .

JENNER is based on the following observation (proved in a the-
orem in [4]) : Let C1, C2, . . . , C= be the set of tuples in �=BF sorted
by their probability of being in Ansreal . The ⇢ (�U ) measure of the
query result increases monotonically with the inclusion of more
tuples C8 starting with the highest probability value up to the inclu-
sion of a certain tuple; beyond which the ⇢ (�U ) measure decreases
monotonically with the inclusion of any more tuples.

JENNER utilizes this observation where it sorts the tuples of
�=BF based on their probability of being in Ansreal and continue
including answer tuples until ⇢ (�U ) measure of the answer is maxi-
mized. We refer to the probability of the last tuple that is part of the
answer of epoch 4F as the answer-threshold. The time complexity
of this step is O(=;>6(=)) where = is the size of CandidateSet" .
Example 3.3. Consider the query of Figure 1a with conditions on
relations '1 and '2. Suppose the probe query results of '1 and '2
contained �ve tuples: hA11 , A

1
2 , . . ., A

1
5 i and ten tuples: hA21 , . . ., A

2
10i

respectively. Without loss of generality, suppose the tuples of each
relation are sorted by their probability of satisfying all the selection
conditions on derived attributes. Considering the possible tuple
pairs of hh A11 , A

2
1 i, . . ., hA

1
5 , A

2
10ii, JENNER computes the probability

of the tuples as shown in Example 3.4. JENNER keeps including
the tuples in AnsF until the ⇢ (�1) measure of the answer keeps
increasing. AnsF chosen in this way has maximum ⇢ (�U ) measure.

We next discuss how the probability of a tuple C8 2 AnsF to be
in the true answer is calculated based on the corresponding tuples
in base relations '8 2 & that formed C8 . For selection queries over
a single derived attribute, it is the probability of the value of the
tuple to match the condition (i.e., +0; (state(C .A 9 )) = 0 9 for a se-
lection condition of A 9 = 0 9 ). For multiple selection conditions on
derived attributes of a relation, the probability is estimated under
the independence assumption of derived attributes. For queries
where answer tuple C8 is formed using tuples from multiple rela-
tions, the corresponding probability is based on the product of
probabilities of individual tuples to satisfy the individual selection
and join conditions. 7 An example is shown below.
Example 3.4. Consider the query of Figure 1a on '1 and '2 and
two tuples A1 2 '1 and A2 2 '2 which were part of the probe
query results of '1 and '2. Suppose, A1 .A1 is 01 (i.e., the value
with highest probability after determinization) and the probability
associated with the value is 0.9. Similarly, let A2 .A6 be 06 and the
probability associated with it is 0.8. Considering the join condition
on derived attribute (i.e., '1 .A3 = '2 .A3), suppose the attribute
values of the tuples after determinization on A3 match and the
7For duplicates, probability values are added up as in probabilistic databases [20].
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Table 4: Queries used in the experiments.
ID Query
Q1 Trajectory of a person in a time interval.
Q2 Users who came in contact with a speci�c user in a time interval.
Q3 Average time spent by a user in di�erent infrastructure types.
Q4 Tweets with positive sentiment and of a particular topic.
Q5 Tweet pairs with same sentiment value posted between an interval.
Q6 Tweets with positive sentiment posted from a particular state be-

tween two time intervals.
Q7 Number of tweets posted for each topic between two time intervals.

corresponding probabilities are 0.95 and 0.85. Hence, the probability
of the tuple pair hA1, A2i satisfying all the query conditions in &
is P(hA1, A2i) = 0.9 ⇥ 0.8 ⇥ 0.95 ⇥ 0.85 = 0.58. We compute these
probabilities for all the tuple pairs in the probe query result of
'1 and '2 and whose determinized representation of the derived
attribute matches the conditions in the query.

After determining the AnsF that optimizes the quality metric
⇢ (�U ), JENNER prunes tuples from the candidate set whose impact
on quality improvement of the answer set in subsequent epochs is
expected to be low. JENNER �nds out the tuples of each relation
that already contributed toAnsF of the current epoch and removing
them from CandidateSet" . Enriching such tuples has low impact
on improving the quality of the query result as proved in [4].

3.6 Optimizing Bene�t Computation
The techniques for bene�t computation for an enrichment func-
tion 5: on attribute C8 .A 9 , as described in §3.2.1 and §3.2.2, used
simulated execution of 5: to assess the impact of execution on
the overall quality of the query answers. Their overall time
complexity is $ (=(cost& + |�=BF |;>6( |AnsF |))) where = is the
size of CandidateSet" . This section presents a strategy wherein
SelectEnrichmentPlan can select the plan without explicitly calcu-
lating the bene�t of the enrichment functions. We de�ne a metric,
RelativeBene�t, that allows JENNER to order the triples as if they
were ordered based on their bene�t/2>BC value. This metric is de-
rived from the expression of expected �U measure in Equation 5.
In deriving this metric, we choose two triples from CandidateSet"

and derive how much expected �U measure improvement per unit
cost can be brought by enriching them in the current epoch. Then,
we derive the condition in which one of the triples has higher ex-
pected �U measure improvement per unit cost than the other. It is
observed that their ordering depends on P8 , i.e., probability of the
tuple satisfying the query condition in epoch 4F�1, (P8 + �P8 ), i.e.,
the new probability of C8 if it is enriched in the current epoch of
4F , and the cost of the enrichment function. We explain the metric
�rst for selection queries and then generalize it.

Selection Query. In the modi�ed strategy, for each hC8 ,A 9 , 5: i 2
CanddiateSet" , we compute the RelativeBene�t de�ned below.

RelativeBene�t (C8 ,A 9 , 5: ) =
P8 (P8 + �P8 )

2:
(10)

where P8 is the probability of the tuple satisfying the query in the
previous epoch of 4F�1 and (P8 + �P8 ) is the value of P⌘86⌘ , i.e.,
the new probability of C8 satisfying the query if it is enriched in the
current epoch of 4F . The value of P⌘86⌘ is calculated as described in
De�nition 2.2 and in Section 3.2.1. JENNER only uses P⌘86⌘ , instead

Table 5: Datasets and cost/quality tradeo� of functions.
Relation Derived attrs. Function Cost (ms) Quality
WiFi
10M tuples
9GB Size

location(304)

LOC_2 24.5 0.68
LOC_4 46.4 0.75
LOC_8 93.7 0.82
LOC_16 186.4 0.91

TweetData
11M tuples
10.5GB Size

sentiment(3)

SVM 1.67 0.61
KNN 2.81 0.72
GNB 5.32 0.81
MLP 6.26 0.89

topic(40)

LDA 2.17 0.58
LR 3.89 0.67
KNN 5.48 0.75
GNB 7.82 0.88

of P;>F , as by using the latter the bene�t of the triple is 0. Below,
we show that ordering two triples based on RelativeBene�t metric
ensures that they are ordered based on their Bene�t/Cost values.
Example 3.5. Consider the query of Figure 1a on relations '1 and
'2 and two tuples A1 2 '1 and A2 2 '2. Suppose, the probability of
A1 satisfying all the conditions on derived attributes (i.e., P1) be 0.8
in epoch 4F�1. Similarly, let the probability of the tuple A2 be 0.7 in
4F�1. If A1 is enriched in epoch 4F , let the new probability values
of satisfying the query be as follows: Phigh = 0.9 and Plow = 0.1.
The RelativeBene�t of A1 is (0.8 ⇥ 0.9)/0.04 = 18. Similarly, if A2 is
enriched, let the new probabilities of A2 be Phigh = 0.75 and Plow =
0.25. Hence, the RelativeBene�t of A2 is (0.75 ⇥ 0.7)/0.03 = 17.5.
Comparing the RelativeBene�t of tuples, JENNER ranks A1 before
A2. Now, we check if enriching tuple A1 improves the expected
�U measure of the answer set per unit cost more as compared to
A2. Recall that expected �U measure is calculated using Equation
5. Considering that all the tuples, except A1 and A2, that were in
the answer set of epoch 4F�1, still remain part of the answer in
4F , the numerator of �U measure is increased by Phigh in 4F . The
denominator increases by the value of (1 + �P1) = 1 + (Phigh �
P1). Let the numerator of expected �U measure in 4F�1 be 30 and
the denominator be 50, i.e., �U = (30/50) = 0.6. Hence, the �U
measure of the answer due to the enrichment of A1 is (30+0.9)/(50+
1 + 0.1) = 0.6046. Similarly, the �U measure due to A2 is (30 +

0.75)/(50 + 1 + 0.05) = 0.6024. Hence, the Bene�t per unit cost of A1
(i.e., (0.046/0.04) = 1.15) is higher than A2 (i.e., (0.024/0.03) = 0.8).

T������ 1. A triple (C8 , A 9 , 5: ) has higher bene�t than a triple
(C@ , AB , 5E) in epochF irrespective of the values of P8 , P@ , �P8 and
�P@ if the following condition holds:

RelativeBene�t (C8 ,A 9 , 5: ) > RelativeBene�t (C@,AB , 5E) (11)

Proof Sketch. We prove this theorem as follows: for the given
values of P8 , P@ , �P8 and �P@ , there can be four possible orders
among them. They are as follows: (i) P8 > P@ and �P8 > �P@ ,
(ii) P8 > P@ and �P8 < �P@ , (iii) P8 < P@ and �P8 > �P@ , (iv)
P8 < P@ and �P8 < �P@ . In each of these orders, we determine
the answer set by calculating the new threshold probability value.
After determining the answer set, the quality of the answer set is
calculated separately both when triple (C8 , A 9 , 5: ) and triple (C@ ,
AB , 5E ) are enriched. We measure their bene�t using Equation 7.
By simplifying the equation, it is observed that the �rst triple will
have higher bene�t/cost than the second one when the condition
in Equation 11 is satis�ed. We provide the complete proof in [4]. ⌅

Given the above theorem, JENNER computes RelativeBene�t of
the triples and selects an enrichment plan (§3.3). This results in a
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Table 6: Exp 1. Query time without progressiveness (in Mins).
Query Q1 Q2 Q3 Q4 Q5 Q6 Q7
Time 31 44.5 40.6 22.1 67.1 39.2 45.1

time complexity of $ (=), where = is the size of CandidateSet" as
compared to the approach of computing bene�ts explicitly.
More General Queries. To exploit the previous strategy in other
queries, we need to estimate the number of tuples that would result
from a tuple C8 in relation'? . JENNER estimates the average number
of tuples that were generated by the tuples in 'f? in the answer
of AnsF�1. We refer to this value as _F�1 ('? ). We measure the
relative bene�t of hC8 ,A 9 , 5: i, where C8 2 '? as follows:

RelativeBene�t (C8 ,A 9 , 5: ) = _'8 ·
⇥P8 (P8 + �P8 )

2:

⇤
(12)

The relative bene�t re�ects the amount of improvement in the
quality of the query result that is achieved by the answer tuples gen-
erated from tuple C8 in '? . As for selection queries, the enrichment
plan EPF is chosen using the above RelativeBene�t metric.

4 EXPERIMENTAL EVALUATION
Datasets. We used the following datasets to evaluate JENNER:
(i) WiFi data containing 10M WiFi connectivity events of user’s
mobile devices in a university campus (taken from the SmartBench
benchmark[29]) and (ii) TweetData containing 11 million tweets.
Enrichment Functions. The enrichment functions are presented
in Table 5. For the wi� dataset, we used multiple versions of the
algorithm in [38] (LOC_n). LOC_n analyzes the pattern of the lo-
cations visited by the user and the interaction between the user
and other users to infer their location. It is implemented as a multi-
tuple-input enrichment function with the tuples collected in the
past = days as input. For the tweet dataset, we used the following
probabilistic classi�ers (single-tuple-input enrichment functions):
Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Gauss-
ian Naïve Bayes (GNB), Multi-Layered perceptron (MLP), Linear
Discriminant Analysis (LDA), and Logistic Regression (LR).
Queries. Table 4 shows the queries used in our experimental
study. Q1-Q3 are from the SmartBench benchmark [29] on the
wifi dataset. Q1 is a simpler query with selection conditions on de-
rived attributes while Q2 and Q3 require join on derived attributes.
Q4-Q7 are analytical queries over Tweet data with di�erent com-
plexities - Q4 is a selection query, Q5-Q6 are join queries, and Q7
is an aggregation query. The SQL implementations of all queries
are available in [4]. The epoch sizes in Experiment 1 are set ac-
cording to the optimal epoch sizes determined by Experiment 5
for di�erent queries. The quality of the query results are measured
using the ground truth data available for the datasets. JENNER uses
expected �U measure and RelativeBene�t to select the enrichment
plans without using ground truths. Note that, we do not consider
the enrichment functions to be 100% accurate (i.e., executing all
enrichment functions might result in an �1 measure lower than 1).
Enrichment Plan Generation Strategies. We compare JENNER
with three di�erent plan generation strategies: (i) Sample-based
with Object Order (OO): that randomly selects tuples from the set
of tuples satisfying predicates on �xed attributes. Selected tuples
are completely enriched by executing all enrichment functions

Table 7: Exp 2. Total time of query execution and enrichment
with varying selectivity of �xed condition in Q4.

Selectivity TTR (90%) TTR (95%) Query Completion
100% 18.37 mins 25.19 mins 10 hours (timeout)
10% 5.88 mins 8.71 mins 4.48 hours
1% 25.19 sec 2.1 mins 27.29 mins

Table 8: Exp 3. Progressive Scores.

Q JENNER FO OO RO Q JENNER FO OO RO
Q1 0.87 0.36 0.33 0.32 Q5 0.73 0.39 0.35 0.33
Q2 0.84 0.34 0.32 0.31 Q6 0.72 0.37 0.36 0.32
Q3 0.76 0.43 0.35 0.31 Q7 0.74 0.37 0.33 0.34
Q4 0.80 0.34 0.33 0.31

available for derived attributes present in the query. (ii) Sample-
based with Function Order (FO): that selects enrichment functions
based on the decreasing order of their quality

cost values. The function
with the highest value is executed on all tuples of the probe query
result before choosing the next function. In an epoch, only tuples
are chosen and they are enriched using the chosen function. (iii)
Sample-based with Random Order (RO): that selects both tuples
(from probe query results) and enrichment functions randomly.

4.1 Experimental Results
The experiments were performed on an enrichment server with
16 core 2.50GHz Intel Xeon CPU, 64GB RAM, and 1TB SSD. The
datasets were stored in two tables of a PostgreSQL database. If we
had to perform complete enrichment of 11M tweets of TweetData
table for both topic and sentiment attributes using the functions
of Table 5, it would have taken ⇡ 43 hours to complete after using
all the 16 cores of the server.8 The authors in [21] also showed
that sentiment inference on tweets using complex ML algorithms
can take hours for the Sentiment140 dataset [27] with 1.6 million
tweets. The complete enrichment of 100K wi� data for the derived
attribute of location would have taken ⇡ 37 days on the same
server. Hence, complete enrichment of the data is infeasible.
Experiment 1 (Need for a Progressive Approach). We compare
JENNER with the approach of completely enriching the objects
required to answer the query �rst and then evaluating the query.
The query execution times in the second approach are presented
in Table 6. Since, in the second approach, all the required objects
(i.e., the objects present in the probe query result) are enriched �rst,
all the queries have very high execution times. In contrast, if we
execute the same queries in JENNER, users do not have to wait for
a long time to receive the query results. Furthermore, the variation
of the quality of the results with respect to time are presented in
Figure 2. It shows that in JENNER, the quality of the query result
achieves very high value within a few seconds of query execution.
Experiment 2 (Eager Enrichment VS. JENNER). We vary query
selectivities to compare JENNER against the strategy of complete
enrichment (i.e., Eager). We de�ne the selectivity as the ratio of
output-cardinality to the input-cardinality of a query. We use Q4
and replace the predicate on TweetTime to control the selectivity.
Table 7 shows the time to reach the qualities of 90%, 95%, and 100%
8We experimentally measured the runtime of the enrichment functions in the tweet
dataset for 1 million tweets to be 3 hours 55 minutes. This runtime multiplied by a
factor of 11, as the dataset has 11 million tweets, is ⇡ 43 hours.
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(a) wi� (Q1). (b) wi� (Q2). (c) wi� (Q3). (d) TweetData (Q4).

(e) TweetData (Q5). (f) TweetData (Q6). (g) TweetData (Q7). (h) wi� (Q1) complete execution.

Figure 2: Exp 1 and Exp 3. Performance results of di�erent plan generation strategies.

of the maximum quality in JENNER. Comparing Table 7 and the
time required in the eager enrichment strategy (i.e., ⇡ 43 hours), we
observe that the total time for query processing and enrichment in
JENNER is much lower than the eager strategy. Furthermore, Table
7 shows that JENNER achieves 90% and 95% of the maximum quality
within a few minutes of query execution. Only in the unfavorable
case of 100% selectivity and 100% quality, the execution time is as
high as the eager strategy. Even in such situations (not our design
target) JENNER does not result in much overhead (as in Table
9), whereas it saves several orders of magnitude in the favorable
situations of lower selectivity and quality requirement.
Experiment 3 (Comparison with Di�erent Progressive Ap-
proaches). This experiment compares JENNER with FO, OO, and
RO approaches. Progressive score is computed as a weighted sum-
mation of �1 measures with weight of the epoch 4F set as (1� F

F<0G
)

where theF<0G (corresponding to themaximum number of epochs)
is set as 15. The results are shown in Figure 2 where we measure
the quality of the query result using normalized �1 measure for
set based queries and normalized root-mean-square-error (RMSE)
for aggregation queries (Q3 and Q7). The normalized �1 measure
is calculated as �1/�<0G

1 , where �<0G
1 is the maximum �1 mea-

sure that is achievable by executing all the enrichment functions.9
Similarly, normalized root-mean-square-error is calculated by mea-
suring RMSE/RMSE<8= where RMSE<8= is the minimum RMSE
achievable by executing all enrichment functions. Furthermore, we
report the progressive scores in Table 8. Note that in Figures 2a-2g,
the plots are capped to only the �rst two minutes of query execu-
tion as the time to enrich completely is large. When the queries are
run for the duration of complete enrichment, all the approaches
converge to the value of 1 for set-based queries (as shown for Q1
in Figure 2h) and the value of 0 for the aggregation query of Q7.

Figure 2 and Table 8 show that JENNER outperforms the other
approaches signi�cantly for all queries. With JENNER, the answer
achieves a high quality within �rst few epochs of query execution.
For example, Figure 2(a) shows that JENNER achieves �1-measure
of 0.9 within �rst 80 seconds. Furthermore, JENNER achieves a
9Recall that our evaluation of �1 measure in experiments is based on the ground truth
data since we have access to them.

Table 9: Exp 4. Overhead as compared to the total query exe-
cution time. The remaining time is used in enrichment.
Q Plan

Gen.
DBMS
Time

Network
Cost

Q Plan
Gen.

DBMS
Time

Network
Cost

Q1 0.64 % 0.37% 0.86% Q5 1.32% 1.84% 2.90%
Q2 0.93% 0.52% 0.60% Q6 0.71% 1.20% 2.71%
Q3 0.96% 0.73% 0.65% Q7 1.33% 1.10% 1.40%
Q4 1.45% 0.70% 2.80%

high rate of quality improvement in early epochs resulting in the
highest progressive score among all the approaches. This is due
to JENNER’s strategy of monitoring the progress of enrichment in
each epoch and dynamically selecting an enrichment plan.
Experiment 4 (Overhead). Table 9 shows di�erent time overheads
of JENNER: (i) time spent in the enrichment plan generation, (ii) ex-
ecution time in the DBMS, and (iii) the network cost of transmitting
data between DBMS and enrichment server. We measured the total
plan generation time across all epochs and reported the sum as the
percentage of total time. For DBMS time, we measured the total
cost of probe queries and the queries at the end of each epoch. For
network cost, we measured the total cost of transmitting the result
of probe queries at zero-th epoch and updating the states of tuples
at the end of epochs. The results show that (i) the cost at DBMS
increases when the query complexity increases (e.g., see increase
in DBMS time between Q4 and Q5); (ii) total overhead remains a
small fraction of the overall execution time (ranging from 1.87% to
6.05%). Thus, JENNER ’s adaptive approach of selecting tuples to
enrich does not pose signi�cant overhead. For storage overhead,
the total size of CandidateSet, CandidateSet" , and EPF were less
than 10 MB which is a small fraction of the data sizes (i.e., 9 GB and
10.5 GB as shown in Table 5). Furthermore, the state table sizes for
wifi and TweetData tables were 0.4 GB and 0.9 GB, respectively.
Experiment 5 (Epoch Size). This experiment studies how epoch
size a�ects progressiveness achieved for the queries. Figure 3 plots:
(i) Time to reach (TTR) 90% quality by JENNER for Q2 (1% selectiv-
ity) and (ii) Time overhead as percentage of total query execution
time. Figure 3(a) shows that when the epoch size is reduced from 8
to 4 seconds, the TTR 90% reduces as JENNER chooses enrichment
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Figure 3: Exp 5. E�ect of epoch sizes: (a) time to reach 90% of
max. quality (Q2) and (b) %age of plan generation time.

Table 10: Exp 6. Avg. Number of Candidates in CandidateSet" .

Query JENNER Naive Query JENNER Naive
Q1 800 3000 Q5 11000 20000
Q2 1200 5000 Q6 6000 10000
Q3 16000 50000 Q7 500 1000
Q4 1200 2000

Table 11: Exp 7. Percentage of enrichment plan generation
time taken by using relative bene�t as compared to bene�t.

Query rel. bene�t bene�t Query rel. bene�t bene�t
Q1 0.64% 32.17% Q5 1.32% 94.17%
Q2 0.93% 61.45% Q6 0.85% 58.96%
Q3 0.96% 82.38% Q7 0.62% 43.14%
Q4 1.45% 88%

plans more frequently. However, when it is reduced further from 4
to 2 seconds, the overheads due to frequent plan generation reduces
the e�ective time for enrichment, thereby increases the TTR.
Experiment 6 (Impact of Pruning). As shown in §3.2, JENNER
restricts tuples in the enrichment plan to only those that are not
in the answer of previous epoch. We compare this strategy with
the strategy of using all tuples in ⇠0=3830C4(4C ('8 ) for generating
enrichment plans. Table 10 shows that the size of CandidateSet"
in JENNER is signi�cantly smaller, hence reducing the cost of plan
generation. The entries in CandidateSet" pruned by JENNER were
(almost) never chosen for enrichment. As a result, this cost reduc-
tion comes with no impact on the quality achieved by JENNER.
Experiment 7 (Impact of Optimized Bene�t Estimation). This
experiment compares JENNER when it uses the naive strategy (de-
scribed in §3.2) of bene�t estimation as compared to the strategy in
§3.6 used in JENNER (with complexity$ (=)). Table 11 presents the
percentage of total execution time taken by the two approaches. The
table shows that the naive strategy would have taken 32% to 94 % of
total execution time to estimate bene�t, thereby making JENNER
impractical. Hence, bene�t estimation using RelativeBene�t allowed
JENNER to allocate most of the execution time to enrichment.
Experiment 8 (Accuracy of Di�erent Estimation Steps). In
each epoch 4F , for a tuple C8 2 ' 9 that was in the probe query result,
JENNER estimates the probability that it will be in the answer of
4F (i.e., generate at-least one answer tuple). Furthermore, JENNER
estimates the cardinality, i.e., the number of answer tuples that
will be generated by C8 . Both estimations are based on the answer
returned in the previous epoch 4F�1. We measure accuracy of both
estimations by calculating the Standard Deviation (SD) from the
actual value (determined by ground truth) and the estimated value.

In an epoch, the deviation in estimated probability and cardinal-
ity is calculated for each tuple of the probe query result and then

Table 12: Exp 8. Accuracy of (a) probability estimation and
(b) cardinality estimation.

Q Std. Dev. Q Std. Dev.
Q1 1.18% Q5 2.31%
Q2 1.87% Q6 1.94%
Q3 2.03% Q7 2.43%
Q4 2.11%

Q Std. Dev.
Q1 2.06%
Q2 2.37%
Q5 3.14%
Q6 2.74%

SD is computed over all such tuples. This process is continued over
all epochs and SD is reported in Table 12. We report the accuracy of
probability estimation in Table 12 (a) and cardinality estimation (for
join queries) in Table 12 (b). These results highlight that JENNER
provides accurate estimation for both the metrics.

5 RELATEDWORKS
JENNER is related to several lines of prior research work. Progres-
sive query answering was explored in approximate processing of
aggregate queries [30]. The techniques o�er error bounds based
on sampling [6, 48] that improves when larger samples are used.
However, they do not consider the problem of enrichment during
query processing and cannot be used in our setting. Progressive
data processing has also been considered in data cleaning contexts
such as in entity resolution [9, 10, 42, 47]. JENNER adapted the
metric for progressive enrichment from these works. Since JENNER
explores progressive enrichment during query processing, it di�ers
from these works as they did not consider progressive data cleaning
in the context of queries. As mentioned in §1, data cleaning during
query processing has been studied in [51]. However, such works
did not consider progressive data processing. Recently, in [5] we
explored a complementary challenge of supporting enrichment
during query processing: using a loose design (enrichment inside a
middleware) and a tight design (enrichment in DBMS). However,
[5] does not consider the problem of ordering enrichment functions
to optimize enrichment during progressive query processing as ad-
dressed in this paper. JENNER is also related to expensive predicate
optimization of [35, 36, 40] which focused on predicate reordering
during query processing to minimize cost. In contrast, JENNER
focused on progressive enrichment during query processing.

6 CONCLUSIONS
We described an approach that optimizes data enrichment with pro-
gressive query processing. JENNER overcomes several limitations
of both o�ine and at-ingest enrichment by optimally integrating
enrichment during query processing. To overcome the increased
query latency, JENNER exploits trade-o� between quality and ef-
�ciency that is implicit in the realization of enrichment functions
that are typically based on machine learning/signal processing
techniques. Furthermore, JENNER hides latency by supporting pro-
gressive query answering that re�nes as data gets enriched. Our
experiments validate the improvement achieved by JENNER over
naive strategies to support progressiveness in query processing.
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