
SwitchTx: Scalable In-Network Coordination for Distributed

Transaction Processing

Junru Li†, Youyou Lu‡*, Yiming Zhang♣, Qing Wang†, Zhuo Cheng♠, Keji Huang♠, Jiwu Shu‡
†{lijr19, q-wang18}@mails.tsinghua.edu.cn, ‡{luyouyou, shujw}@tsinghua.edu.cn

♣zhangyiming@xmu.edu.cn, ♠{chengzhuo, huangkeji}@huawei.com
†‡Tsinghua University, ♣NICEX Lab, Xiamen University, ♠Huawei Storage Product Line

ABSTRACT

Online-transaction-processing (OLTP) applications require the un-

derlying storage system to guarantee consistency and serializabil-

ity for distributed transactions involving large numbers of servers,

which tends to introduce high coordination cost and cause low sys-

tem performance. In-network coordination is a promising approach

to alleviate this problem, which leverages programmable switches

to move a piece of coordination functionality into the network. This

paper presents a fast and scalable transaction processing system

called SwitchTx. At the core of SwitchTx is a decentralized multi-

switch in-network coordination mechanism, which leverages modern

switches’ programmability to reduce coordination cost while avoid-

ing the central-switch-caused problems in the state-of-the-art Eris

transaction processing system. SwitchTx abstracts various coordi-

nation tasks (e.g., locking, validating, and replicating) as in-switch

gather-and-scatter (GaS) operations, and offloads coordination to a

tree of switches for each transaction (instead of to a central switch

for all transactions) where the client and the participants connect

to the leaves. Moreover, to control the transaction traffic intelli-

gently, SwitchTx reorders the coordination messages according to

their semantics and redesigns the congestion control combined with

admission control. Evaluation shows that SwitchTx outperforms

current transaction processing systems in various workloads by up

to 2.16× in throughput, 40.4% in latency, and 41.5% in lock time.

PVLDB Reference Format:

Junru Li, Youyou Lu, Yiming Zhang, Qing Wang, Zhuo Cheng, Keji Huang,

Jiwu Shu. SwitchTx: Scalable In-Network Coordination for Distributed

Transaction Processing. PVLDB, 15(11): 2881 - 2894, 2022.

doi:10.14778/3551793.3551838

1 INTRODUCTION

Transactions with consistency and serializability [1] provide a simple

but powerful abstraction for programming and reasoning about dis-

tributed storage systems, where a single server never fails and always

executes one transaction at a time in an order consistent with the real

distributed execution. Fast and scalable in-memory transaction pro-

cessing is the basis for many online-transaction-processing (OLTP)

*Youyou Lu is the corresponding author (luyouyou@tsinghua.edu.cn).
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551838

applications like web service, stock exchange, and e-commerce. A

common way to support this large-scale transaction processing is

partitioning data into shards spreading over servers with concurrency

control [1–6]. Data partitioning necessitates distributed transaction

processing, which tends to cause high coordination cost including

network communication, locking/unlocking, data replication as well

as aborts and retries.

There have been numerous studies for alleviating coordination

cost in distributed transaction processing, e.g., by designing new

concurrency control and replication protocols [7–12], optimizing

for specific (independent) transactions [13–16], partitioning data

more efficiently to reduce contention [17–21], and leveraging fast

networks that bypass OS kernel [22–27]. However, these proposals

essentially require heavy involvement of CPU cores in coordination

and thus are inefficient in transaction processing.

Recent advances in programmable network hardware [28–31]

provide new opportunities for in-network coordination by moving

the coordination functionality into the network. Eris [14], a state-

of-the-art transaction system, uses a central switch or middlebox to

generate multiple sequence numbers for each independent transac-

tion to reduce the coordination cost. Although effectively improving

transaction performance in a small scale, the centralized sequencing

mechanism (i) bounds the overall system throughput to the capability

of a single switch, (ii) substantially increases the processing latency

for the scenario where the single switch does not locate on the path

from clients to servers, and (iii) limits the transaction types due to

switch’s hardware constraints. Further, the network stack only offers

general-purpose traffic control that does not consider transaction

semantics, thus resulting in requirement mismatches (i.e., packet

processing order in the network and transaction processing order in

database). and function redundancies (i.e., congestion control in the

network and admission control in the database)

In this paper, we present an in-memory transaction processing

system, SwitchTx. At the core of SwitchTx is a novel scalable in-

network coordination mechanism. It leverages switches’ programma-

bility to reduce coordination (including concurrency control and

replication) cost while avoiding the central-switch-caused problems.

It also intelligently controls the network traffic (i.e., message process-

ing order and flying message count) based on transaction semantics.

First, SwitchTx abstracts various coordination tasks as in-switch

gather-and-scatter (GaS) operations, where switches gather the mes-

sages of a transaction phase, perform state transition of the state

machine while meeting conditions, scatter messages to finish the

current phase, and recycle the state machine for the next phase (or

another transaction). In-switch GaS not only reduces the the commu-

nication length by half but also eliminates processing and queuing

2881

https://doi.org/10.14778/3551793.3551838
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551838

P50 P99

L
o

c
k
 t
im

e
 (
μ

s
)

(a) P50 and P99 lock time
of shards in a txn

0
20
40
60
80

2 3 4 5 6 7 8

Issue txns
Coordination
Network + other

(b) Txn lifetime breakdown

100G
bps

10G
bps

0% 50% 100%

Figure 1: Coordination cost.

overhead in software. Second, different from Eris which relies on

a central switch for sequencing all transactions, for each transac-

tion SwitchTx offloads the coordination task to a tree of switches

where the transaction’s client and participants connect to the leaves.

SwitchTx reduces round-trips of transaction processing by exploit-

ing the locality of messages and has no constraint on the transaction

types. Third, SwitchTx controls the network traffic (i.e., throughput

pressure and processing order) intelligently. To control the process-

ing order, SwitchTx leverages the processing queues in the network

stack to reorder the concurrent messages from different transactions

according to their semantics; To control the flying message count in

the network, SwitchTx redesigns the admission control combined

with the network congestion control.

To the best of our knowledge, we are the first to propose a scal-

able multi-switch in-network coordination mechanism for distributed

transaction processing, which offloads all coordination functionality

to multiple programmable switches and couples network traffic con-

trol with distributed transaction semantics. We have implemented

a prototype of SwitchTx using Barefoot Tofino switches. SwitchTx

supports optimistic concurrency control (OCC) and primary-backup

replication. Evaluation with various benchmarks shows that SwitchTx

outperforms current transaction processing systems by up to 2.16×

in throughput, 40.4% in latency, and 41.5% in lock time.

2 BACKGROUND AND MOTIVATION

2.1 Distributed Transaction Processing

Large-scale transaction processing systems partition data into shards

spreading over servers. This subsection briefly reviews data parti-

tioning and coordination for distributed transactions.

Data partitioning. Each server manages an exclusive shard of the

entire data set, and cores in a server manage the data in two different

ways. (i) Each core is treated as a logical server; data of a server is fur-

ther partitioned to cores (i.e., one-shard-per-core approach) [7, 14].

(ii) Cores share data of the server (i.e., one-shard-per-server ap-

proach), using lock or version synchronization to control concurrent

data accesses [23, 32]. SwitchTx focuses on the one-shard-per-server

approach and accelerates coordination among servers.

Coordination for distributed transactions. In a large-scale dis-

tributed transaction system, concurrency control (such as two-phase

locking and optimistic concurrency control [4]) and replication proto-

cols, usually induce high network coordination cost. Two-phase lock-

ing (2PL) uses locks and is suitable for high-contention workloads,

but suffers from the deadlock problem [1]. In contrast, optimistic

concurrency control (OCC) first executes the operations in the exe-

cute phase and then handles conflicts in the commit phase, which is

more efficient for low-contention workloads. OCC is widely adopted

in modern distributed transaction systems (including SwitchTx) be-

cause of its simplicity [23, 24, 33]. But OCC needs more network

coordination, therefore, SwitchTx uses programmable switches to

solve this problem.

In a system that uses OCC for concurrency control and primary-

backup replication for availability, transactions are processed through

five phases, namely, the execute phase, lock phase, validate phase,

commit backup phase, and commit primary phase. For each transac-

tion, (i) the client reads records without acquiring locks and buffers

data in the write set into a private workspace in the execute phase; (ii)

OCC detects write-write conflicts and read-write conflicts in the lock

phase and validate phase, respectively. OCC acquires write locks

during the lock phase, and in the validate phase, OCC guarantees that

the read data is not changed since the execute phase; (iii) if there are

no conflicts then the transaction enters the commit (backup/primary)

phase, in which the transaction installs data atomically in the backup

servers and primary servers.

2.2 Coordination Cost

Distributed transaction processing has massive cost for network co-

ordination (e.g., multiple round trips), which is a performance killer.

To illustrate the performance impact, we use a microbenchmark to

evaluate FaSST [23], a state-of-the-art distributed transaction pro-

cessing system. In this benchmark, we use 8 servers, each running 24

threads; we disable replication, where transactions do not need the

commit backup phase; threads are symmetric: each of them both is-

sues new transactions and handles network requests to participate in

transactions issued by threads in other servers. Each transaction ran-

domly reads and writes 8 records. By varying the number of servers

involved in each transaction from 2 to 8, the throughput degrades

from 7.1Mops to 3.1Mops (43.6%); the P99 tail latency increases

from 60.9µs to 126.2µs (2.07×). Specifically, the coordination cost

mainly includes the following two aspects.

First, coordination for distributed transactions not only induces

high processing latency but also lengthens the lock time (i.e., the time

between acquiring and releasing a lock) and version validation time

(i.e., the time between execute phase and validate phase), leading to

a high abort rate. We refer to these times as the contention span [20]

of a transaction. To understand the impact on contention span from

coordination, we evaluate the lock time in the low-contention work-

load, to exclude the interference from transaction abort. As shown in

Figure 1(a), when the number of data shards involved in a transaction

grows, the P50 lock time increases by 2.13×, and the P99 lock time

increases by 3.97×.

Second, coordination tasks waste precious CPU cycles, even

though they are simple and only include distributing and collecting

small network messages. Figure 1(b) shows the latency breakdown of

the transaction committing procedure; we observe that the software

overheads for coordination are 15.0% and 47.1% under 10Gbps and

100Gbps network, respectively. We conclude that, with a faster net-

work, the coordination cost of software designs is relatively heavier

and leaves the high-speed network under-exploited.

2.3 Programmable Switches

Figure 2 shows the architecture of programmable switches. The

switches provide flexible pipelines where users can design protocols

2882

Parser
(dstIP,

dstPort,

…)

Deparser

Ingress

Match
dstIP == a.b.c.d

Action
flow[dstPort]++

Match

Action …

Egress

…
Registers

Regs

Queues

external network ports normal packet flow recirculation

Figure 2: The architecture of programmable switches.

by programming parser and match-action tables. Applications use a

switch control plane to configure match-action pairs in these tables.

Programmable switches also have on-chip memory (registers arrays)

which can be used to store information.

When a packet arrives at an ingress port, the switch parses the

packet header and then applies match-action tables to this packet.

If the packet matches a key in a table, the switch executes the cor-

responding action (e.g., modifying packet header, packet metadata,

and register arrays). The packet might be dropped, transmitted to

an egress port, or resubmitted to the ingress port. Finally, the egress

applies its match-action tables to drop or forward the packet.

2.4 Challenges

The programmable switches provide opportunities to redesign dis-

tributed transaction coordination mechanisms. To reduce the coordi-

nation cost and exploit the resource of high-speed network, we need

to address the following two challenges.

Multi-switch scalability. Eris [14] partitions data per core and intro-

duces a centralized switch or middlebox as a sequencer to generate

monotonically increasing IDs (i.e., sequence numbers) for transac-

tions. Each core (i.e., logical server) executes transactions according

to their sequence numbers. Unfortunately, the centralized in-switch

sequencing mechanism can neither scale out to multiple switches

nor scale up to multiple pipelines in a switch. Eris is not suitable for

large-scale (e.g., cross-rack) transaction processing for the following

three reasons. First, the centralized switch in Eris is a single-point

performance bottleneck, which bounds the overall system through-

put to the processing capability of the central switch. Second, all

transactions must be routed to the centralized switch for sequencing,

which prevents Eris from exploiting locality [23, 24, 34] and thus

substantially increases the processing latency in a multi-switch/multi-

rack system. Third, the header size of packets in Eris is proportional

to the shard count; yet switch hardware supports to parse limited

size header (up to 224 8-bit words); this constraint prevents Eris

from supporting certain types of transactions such as queries of large

ranges and aggregate processing (they both access many shards).

Semantic gap between transactions and network. Network traffic

control (e.g., message processing order and flying message count)

determines whether the network resources can be fully utilized. The

inappropriate processing order of messages in the network stack

might introduce extra aborts. For example, a lock operation must fail

if it is processed before the unlock operation; the message of retrying

transaction needs to have higher processing priority to reduce the

tail latency. Further, the transaction processing system controls the

number of concurrent transactions by admission control algorithms

backup

Worker Threads

M
e

m
o

ry

primary

Server 0

client

participant

buffer

client:
Exec Txns

participant:
Exec Remote Ops

Server 1

primary backup buffer

Programmable

Switches

Server 2

primary backup buffer

Figure 3: SwitchTx overview.

(a.k.a Multi-Programming Limit or MPL) to avoid excessive transac-

tion aborts and retries, while the network stack controls the number

of concurrent network messages by congestion control algorithms to

avoid packet loss and retransmission. There are function redundancy

and interference between the two control algorithms. Distributed

transaction systems need to consider both of them, for example,

allowing clients to issue more transactions, when the conflict is rare,

can cause unnecessary latency increase due to network congestion.

3 DESIGN

We design SwitchTx with the following four goals.

Reduce coordination cost. Considering that switches are in the

routing paths of distributed transaction messages, our first goal is to

offload all coordination functionality to switches, so as to reduce in-

teraction between servers, kill transaction latency, shorten contention

spans, and save CPU cycles.

Avoid single-point bottleneck. Large-scale transaction processing

systems may contain thousands of (or even more) servers, and the

overall throughput far exceeds the capacity of any single switch. Our

second goal is to utilize all switches in the network to parallelize the

coordination of disjoint transactions.

Manipulate transaction traffic intelligently. Switches can monitor

system status and apply software-defined protocols, providing op-

portunities to control transaction traffic. Our third goal is to reorder

the messages by the transaction semantics and to co-design network

congestion control with transaction admission control.

Minimize resource usage in switches. Programmable switches

have limited on-chip memory and processing resources. Our fourth

goal is to minimize the resource usage of switches and prevent switch

memory from being exhausted.

3.1 SwitchTx Overview

SwitchTx is an in-memory transaction processing system which

leverages the in-network coordination and transaction traffic control

to accelerate distributed transaction processing. Figure 3 shows its

end-to-end architecture.

SwitchTx divides data (based on primary keys) into many shards

spreading over servers, and servers store data in memory. For high

availability, data shards are replicated. Specifically, SwitchTx uses

2-way1 primary-backup replication (i.e., a primary and a backup).

Each server has several worker threads, and they share the data of

the server. The worker threads are in the symmetric model, where

each one operates as a client and a participant at the same time.

1Our design is general for system with a higher replication factor.

2883

Specifically, each worker thread is a client: it receives the external

transaction requests from applications and then executes transactions

(i.e., reads/writes data from the local shards and sends requests

to read/write remote shards). Each worker thread is also a par-

ticipant: it manages the data and responds to read/write requests

from clients and coordination requests from switches.

Switches in the cluster have programmability, and they are respon-

sible for the coordination (including concurrency control and repli-

cation) between participants. Specifically, SwitchTx uses optimistic

concurrency control (OCC) protocol and 2-way primary-backup

replication. To guarantee serializability, transactions read data and

acquire lock only from the primary replicas of data shards. SwitchTx

needs four synchronous phases (i.e., lock, validate, commit backup,

and commit primary) to commit a cross-shard transaction.

In-network coordination. We observe that the coordination tasks

are to synchronize the results from participants in the current phase

and make the transaction enter the next phase. SwitchTx abstracts the

coordination tasks as in-switch gather-and-scatter (GaS) operations.

The switches gather the replies of results from participants in the

current phase, perform state transition, and scatter messages to finish

the current phase under certain conditions (i.e., phase failure or

phase success). GaS makes transactions enter their next phases as

quickly as possible. In SwitchTx, with the in-network coordination,

the client is only involved in the execution phase, and the switches

perform the coordination tasks in subsequent four phases.

To make the GaS operation scale out to a large scale (i.e., multiple

racks with multiple switches) and further exploit the processing

resource of all switches, SwitchTx generates a tree topology among

switches for each transaction. The client and the participants connect

to the leaves; the messages are gathered from the child switches to

the root switch and are scattered reversely. We first introduce how

SwitchTx realizes in-network coordination using one single switch

in §3.2, and then detail how SwitchTx extends the single-switch

design to multiple switches for scalability in §3.3.

Transaction traffic control. Further, we observe that there is a se-

mantic gap between transaction semantic and general network proto-

col. To manipulate transaction traffic intelligently, we introduce new

transaction traffic control algorithms in §3.4. SwitchTx reorders mes-

sages in a batch-based and priority-based manner, in the servers and

switches respectively; SwitchTx monitors performance metrics and

packet loss rate and applies dynamic transaction admission control

according to them.

3.2 In-Switch Gather-and-Scatter

3.2.1 Gather-and-Scatter. We observe that once all participants

complete the current phase successfully, the transaction enters the

next phase, and as long as any participant completes with failures, the

transaction aborts. To employ the switch as a coordinator, SwitchTx

abstracts various coordination tasks as in-switch gather-and-scatter

operations. From the perspective of the switch, any coordination task

is to (i) gather a certain amount (all or one) of completion replies

from one set of participants and (ii) scatter the corresponding phase

transition messages to another set of participants.

The GaS operation needs the following information: a message

counter (counter), the number (threshold) of participants in the

current phase (gather_group), and the participants in the next phase

Table 1: Cases in gather-and-scatter.

message type threshold* next phase scatter_group

lock_ok #WP Validate RP

validate_ok #RP Commit backup WB

replicate_ok #WB Commit primary WP

commit_ok #WP - unicast to client

fail 1 Unlock W** & client

version_copy_ok*** #RP Validate & Read RP

* W/R: write/read; P/W: primary/backup; #: participant count.
** The scatter_group in fail messages excludes the message sender.
*** version_copy_ok is used for read-only transactions.

(scatter_group). Specifically, for an ongoing transaction, counter

is 0 at the beginning. (i) In the gather step, when receiving a reply

message from participants in gather_group, the switch increments

counter by 1; The switch does not route messages (i.e., drops it)

if counter is less than threshold. (ii) In the scatter step, once

counter is equal to threshold, the switch multicasts the message

to the participants in scatter_group to notify them for the next

phase, then resets counter to 0.

Table 1 lists all cases of the GaS operations in SwitchTx. For

example, the threshold in the lock phase for lock_ok messages

is the number of write participants2 and the scatter_group is the

primary replicas of read shards. It means that a transaction enters

the validate phase once all locks on write participants are held.

We show two transaction examples using the GaS operations: a

committed one and an aborted one.

Committed transactions. Figure 4 shows a committed read-modify-

write transaction. It reads records from shard0 and shard1, modifies

them by the user’s logic, and writes records in shard1 and shard2.

Figure 4(a) shows the basic procedure of transaction processing

with in-server coordination. In the execution phase, the client reads

records from primary replicas P0 and P2, and executes the transac-

tion. And then, in the lock phase, it sends requests to P1 and P2 to

acquire write locks; in the validate phase, it verifies that the versions

of records in P0 and P2 are not changed. Finally, in the commit

backup phase, it writes logs to B1 and B2; in the commit primary

phase, it writes and unlocks the locked records in P1 and P2.

SwitchTx extends the basic procedure to offload coordination to

the switch, as shown in Figure 4(b). The client sends the whole write

data to the primary and backup replicas at the beginning of the lock

phase so that the subsequent coordination phase does not need to

involve the client. While in the original OCC, the keys in the write

set are combined with messages in the lock phase, and the values

are combined with messages in the commit backup/primary phase.

In the lock phase, the switch uses the counter to count the

number of the lock_ok messages from P1 and P2, and it compares

counter with the number of write participants (i.e., threshold =

2). It drops the first lock_okmessage and multicasts the second one

(i.e., the last one) as the validate requests to ⟨P0, P2⟩. In the validate

phase, similarly, the switch waits for validate_ok messages from

P0 and P1, and then multicasts the last one to ⟨B1, B2⟩. After that,

in the commit backup phase, it waits for replicate_ok messages

from B1 and B2, and then multicasts the last one to ⟨P1, P2⟩; in the

commit primary phase, the switch waits for commit_ok messages

2They are primary replicas of write shards.

2884

client

(a) OCC

P0(r)

P1(w)

P2(rw)

(b) SwitchTx

Lock Validate
Commit
backupExec Validate

Commit
backup

Commit
primary

switch

G: P1, P2
S: P0, P2

B1

B2

Commit
primary Exec Lock

G: P0, P2
S: B1, B2

G: B1, B2
S: P1, P2

G: P1, P2
S: C

validate_ok

lock_ok

replicate_ok

commit_ok
txn log + data

data

Figure 4: The lifetime of a committed transaction. G/S is gather/scatter operation. Pi/Bi is the primary/backup replica of the data

shardi; This example Txn reads data from shard0,2 and writes data to shard1,2.

from P1 and P2 and routes the last one to the client as a sign of

transaction committed.

Aborted transactions. Figure 5 shows an aborted read-modify-write

transaction example. The switch multicasts the first fail message

(orange one in Figure 5) to write participants and the client. There-

fore, write participants can release the locks of the transaction as

quickly as possible. After receiving the first fail message, the switch

sets an aborted flag for the transaction. The switch drops subse-

quent messages (? in Figure 5) of the transaction by checking the

aborted flag. When clients need to reuse the resources which be-

long to the aborted transaction for new transactions, clients send an

init message and reset the aborted flag.

Other details. We decouple the data and control messages, where

data messages contain keys, values, and versions, and control mes-

sages contain the transaction states and the information for GaS

operations. SwitchTx only needs to use the fixed-size control mes-

sages to coordinate the processing of transactions between partic-

ipants. The format of control messages is depicted in Figure 6,

which occupies a UDP source port to identify the SwitchTx proto-

col. Clients generate the txn_id using the triple ⟨local_txn_id,

server_id, thread_id⟩, where local_txn_id is increased at

the start of transactions. The switch uses the txn_id to identify the

counter stored in switch registers.

To reduce switch resource usage, we minimize the transaction in-

formation stored in switches. The threshold and scatter_group

are carried as metadata by the reply messages as shown in Figure 6.

Servers store not only the data shard but also the coordination

information for flying transactions. Each transaction logs its coordi-

nation information (i.e., txn_id, keys in write set, and write shards,

current phase) with data to its write shards’ replicas. We will detail

the design for server/switch failure in §3.5.

3.2.2 Switch Workflow. Figure 7 shows the workflow of the pro-

grammable switches in SwitchTx, including the following 6 steps.

At the beginning, Step ➊ handles the network disorder anomalies.

Each transaction installs its txn_id in the switches to occupy and

init its resources for GaS. Because when the new transaction begins,

messages belonging to the aborted transaction, which uses the same

GaS resource, might be still flying in the network (e.g., message ?

in Figure 5). SwitchTx uses registers to record the txn_id of the

current transaction and drops the invalid messages of the already

P0(RW)

P1(W)

P2(RW)

switch

Lock Validate Unlock
client

G: P0
S: C, P1, P2

G: P0, P1, P2
S: P0, P2

fail

lock_ok

Figure 5: The lifetime of an aborted transaction. This example

Txn reads data from shard0,2 and writes data to shard0,1,2.

…switch0

gather0threshold0 scatter0

switchM1 2

srcPort: SwithTx protocol

dstPort: thread_id

<local_txn_id, server_id, thread_id>

<16-bit, 8-bit, 8-bit>
bitmap

IPETH UDP txn_idtype scatter_group perf

§3.4

threshold

Figure 6: Control message format.

aborted transaction. Then, Steps ➋ and ➌ select the multicast fields

in the messages for the multi-switch environment (§3.3). Afterward,

Steps ➍ and ➎ maintain the aborted register for each transaction to

multicast the first fail message and drop the subsequent messages.

Further, a new transaction needs to send an init message at the

beginning: it installs the new txn_id and clears the aborted flag

of the last transaction. Finally, Step ➏ increments the counter

register, compares the counter with the threshold, and decides

the action (drop or multicast) to the message. If the counter is equal

to the threshold, the switch resets the counter for the next phase.

Furthermore, switches assign each message to queues of different

priorities (§3.4.1) according to the message semantics.

Switches use match-action tables to implement the above steps.

The processing in match-action tables is sequential. There are no

out-of-order issues either between different messages or between

match-action tables of the same message.

2885

priority = F(pkt.type)

++counter == pkt.threshold?

aborted == true?

Multicast:

scatter_group

aborted = true

Is pkt.txn_id matched?

Is root node?

pkt.type is FAIL?

dst = gather_group dst = scatter_group

counter = 0

Drop

Y

Y

N

N

N

Y

N

Y

Y

From child node? Tree-based

Scalable GaS

Y

N

N













Multicast: dst

Message Reordering

§3.3

§3.4.1

Figure 7: Switch workflow. The aborted and counter are two

registers indexed by the hash value of pkt.txn_id.

3.2.3 GaS for Special Transaction Types. SwitchTx also opti-

mizes the read-only and blind-write transactions; SwitchTx supports

single-shard transactions without extra coordination overhead.

Read-only and blind-write transactions. Since SwitchTx is based

on the single-version protocol and the update is applied in place,

read-only transactions need to check the version to guarantee se-

rializability. Read-only transactions need two phases: the version

copy phase and validate phase. In the version copy phase, the partic-

ipants copy the read-set versions to the local buffer, and then send

version_copy_ok messages to use GaS operation to synchronize

that all participants have copied read-set versions. In the validate

phase, participants reply fail / read-set data to the client if the

versions are changed/unchanged; the client retries this transaction

when receiving a fail message. Blind-write transactions are a spe-

cial case of general transactions without the execute phase and the

version check phase.

Single-shard transactions. For the transactions which read/write

data only from a single shard, SwitchTx has no coordination over-

head. Before sending lock_ok messages to the switches in the lock

phase, the participant checks whether the validate phase only needs

itself; if the participant is the only one in the validate phase, it direct

validates the transaction without coordination.

3.3 Tree-based Scalable GaS

The coordination in SwitchTx is decentralized because different

transactions can use different switches to perform GaS operations,

which is the foundation of scalability. Different from Eris which

relies on a central switch for sequencing, SwitchTx is scalable with-

out the single-point bottleneck. Gather-and-scatter focuses on intra-

transaction coordination, and thus the states of each transaction in

the switch are not shared with other transactions.

To further exploit the benefit of in-network coordination in a large-

scale system with multi switches, SwitchTx introduces a tree-based

gather-and-scatter design. This design can also support the multiple

S1 S2 S3

S0

<3, 0001, />

<3, 000, 111>

P5P0 P2P1 P4

<threshold ,

gather_group,

scatter_group>

<1, 001, /> <1, 0001, />

</, /, 1000></, /, 1110> </, /, 010>

root
0

1

1
1

1

2

2

2 20 0 0

3 3

Figure 8: Scalability for multi-switch environment. Task: gath-

ering messages from P0, P1, P2, P4 and P5, and then scattering

the last one to these primary replicas.

pipelines in a single switch. We reasonably assume that all switches

are programmable and SwitchTx knows the network topology.

Before committing transactions the client chooses a group of

switches with a tree-topology network as a coordination tree, which

connects all participants and the client. The switch in the highest

layer in the group is the root of the tree. In the gather step, the non-

root switches gather the messages from their child nodes (switches

or servers) and send the results to their parent nodes. The root switch

gathers enough messages and begins to scatter the requests to the

participants in the next phase. Then, in the scatter step, the non-root

switches multicast the requests from the root switch. For example,

as shown in Figure 8, the participants include five servers among

all racks; therefore, the coordination tree includes all four switches.

On the one hand, once child switches (i.e., S 1, S 2, and S 3) gathers

enough messages, they route their last message to the root switch

(i.e., S 0). S 0 treats the other three switches as participants of the

gather step. On the other hand, S 0 multicasts the result to the three

child switches, and then the child switches multicasts the result to

the five servers directly.

To implement it, we extend the control message format (Figure 6).

Each switch has a part of fields in the control message including

threshold, gather_group, and scatter_group. In the gather

step, for the child switch, the gather_group is the port of its father

switch; then it routes the last message to its father switch after

gathering enough messages. For the root switch, the gather_group

is 0; and it enters the scatter step. In the scatter step, the root switch

initiates a multicast along the coordination tree from the root to the

servers; each non-root switch multicasts the message according to

the corresponding scatter_group in the messages.

The coordination tree is decided by the participants in each trans-

action. Clients maintain the selective trees for different transactions

(according to the locations of participants). They issue new transac-

tions by selecting these coordination trees in a round-robin order. The

topology in SwitchTx is static, and to support dynamic topology, we

need a reconfiguration service (i.e., zookeeper). Specifically, when

a switch is added/removed, all servers should reach a consensus on

the new topology.

3.4 Transaction Traffic Control

According to these semantics, we introduce a semantic-aware mes-

sage reordering mechanism and redesign the admission control to

control the concurrent transaction count.

3.4.1 Message Reordering in SwitchTx. We observe that making

transactions enter (e.g. lock) into the contention span late and exit

2886

(e.g., unlock) from it early can reduce the contention span. We

achieve this by using priorities for different requests. The principle

for assigning priority is that the request that ends the contention

span has a higher priority to be processed. In SwitchTx, we classify

network messages into three priority levels.

∙ Highest priority: ➊ messages for lock releasing, i.e., replicate_ok

and fail messages, ➋ messages for validating the data versions,

i.e., lock_ok and version_copy_ok messages, and ➌ all mes-

sages of retrying transactions.

∙ Lowest priority: the messages which are out of contention spans,

i.e., read requests in the execute phase and commit_ok messages.

∙ Medium priority: other messages.

SwitchTx leverages both switches and servers to reorder messages.

Priority queues in switches. SwitchTx leverages the existing priority

queues in switches. Switches support priority-based scheduling by

leveraging multiple queues, each of which manages messages with

a specific priority. Queues with higher priorities are serviced before

those with lower ones, which ensures that messages with a higher

priority are processed and transmitted earlier.

Batch-based reordering in servers. Each thread polls messages in its

queue to form a batch and sorts them by their priorities before pro-

cessing. Since this batching mechanism does not wait for a timeout

or count threshold, it does not introduce extra latency.

3.4.2 Admission Control in SwitchTx. We use MPL to represent

the maximum number of parallel requests allowed in the whole

system. The MPL of a thread represents the maximum number of

requests a thread can issue at the same time, and the server’s MPL is

the sum of threads’ MPL. SwitchTx dynamically adjusts the MPL of

each thread, considering the two aspects: global performance metrics

and individual network conditions. The global performance metrics

include throughput, tail latency, and abort rate. Further, the workload

characteristics (e.g., skewness, transaction types) are time-varying,

leading to dynamic performance metrics and network conditions.

Therefore, the admission control in SwitchTx aims to combine itself

with network congestion control and be adaptive to time-varying

workload characteristics.

We designed an epoch-based MPL update strategy. We divide

time into continuous epochs (e.g., 100ms). At the end of an epoch,

each thread collects the global performance metrics and records the

packet loss rate for the current epoch. We adjust MPL in an additive

increase/multiplicative decrease manner. Using throughput as the

performance metric in Listing 1, the MPL keeps increasing until

throughput drops or packets are lost. If there is packet loss, the MPL

is reset to 1, since slow reduction can not immediately drain the

queue to relieve network pressure.

SwitchTx uses control messages to carry performance metrics.

The sender takes the local performance metrics and writes them into

the control message, and the receiver updates the sender’s perfor-

mance and calculates the latest global performance.

3.5 Fault Tolerance

The network may have problems such as packet loss and out-of-

order issues; servers and switches may fail. We first describe how to

guarantee consistent states with out-of-order issues, then describe

how to handle packet loss, node failure, and switch failure.

1 /* Init: restart=true, MPL=1, slow_start=MAXMPL/2 */

2 void admission_control(epoch: i, throughput: T){

3 if (packet_loss(i)){

4 slow_start = max(MPL / 2, 1);

5 restart = true, MPL = 1; // reset

6 }

7 /* Slow start, additive increase */

8 else if (restart){

9 restart = false;

10 MPL = (MPL < slow_start) ? MPL * 2 : MPL + 1;

11 }

12 else if (Ti > αTi−1 && !packet_loss(i)) // α=0.9

13 MPL = (MPL < slow_start) ? MPL * 2 : MPL + 1;

14 /* Multiplicative decrease */

15 else

16 restart = true, MPL /= 2;

17

18 if (MPL == 0) MPL = 1;

19 }

Listing 1: The logic of admission control in SwitchTx.

Out-of-order packets. When the client receives an abort message,

it immediately reclaims the resources on switches and the server’s

buffer for the new transaction. Switches and servers use the txn_id

to filter and drop the in-flight (i.e., out-of-order) messages of the

aborted transactions.

Packet loss. SwitchTx transmits data messages via RDMA in reliable

connection (RC) transport. Therefore, the data messages (especially

the lock and write data) are consistent in the participants unless the

server fails. The connections for control messages are not reliable,

and the switch or server may drop messages due to buffer overflow.

Clients use timeout as the signal of packet loss. When a transaction

triggers a timeout, the client recycles resources in switches and uses

switches to drop all control messages of this transaction, Then, the

client sends abort messages to remote participants to abort and roll

back the transaction.

Switch failure. Because SwitchTx only stores the coordination infor-

mation instead of data in switches. When a switch fails, clients just

keep aborting and retrying the blocked transactions as in the packet

loss case until the restart of the failed switch.

Server failure. Each server acts as both a participant and a client

(i.e., coordinator). We discuss participant recovery and coordinator

recovery separately.

∙ Participant recovery. SwitchTx uses primary-backup replication

for data. The switches do not store data, so the participant recovery

algorithm is similar to prior work [23, 35]. SwitchTx can select a

backup participant as the new primary participant.

∙ Coordinator recovery. Because coordinators’ states can be recov-

ered from the transaction states in participants, SwitchTx can

directly discard all transaction states belonging to the failed co-

ordinator. Switches first recycle resources used by the failed co-

ordinator and drop the subsequent messages of this coordinator.

SwitchTx uses a new server to aggregate the coordinator’s trans-

action states in participants (all primaries and backups); then,

SwitchTx determines that a transaction has been committed if

and only if its state meets: 1) the state in one of the primary

participants is committed, or 2) the states in all backups of all

participants are committed. SwitchTx then finishes the committed

transactions and rolls back the changes of other transactions.

2887

3.6 Discussion

3.6.1 ACID. We discuss the ACID properties [36] in SwitchTx.

∙ Atomicity: SwitchTx uses the redo logs in backups to guarantee

the atomicity of transactions in presence of server failures.

∙ Consistency: users need to add their constraints in transaction

logic, and data remains consistent after executing a transaction.

∙ Isolation: SwitchTx provides serializable isolation via lock for

write and version validation for read. Serialization point is after

the switch gathers all validate_ok messages

∙ Durability: in the event of server failures, SwitchTx provides

availability via replication without guaranteeing durability.

3.6.2 Generality. Compared to deterministic OLTP systems [7, 15,

16], SwitchTx focuses on accelerating general transactions, which

allow unknown read/write sets, dependencies between write and read,

and user aborts. Further, the techniques can improve not only the

OCC and 2PC protocols but also other CC or replication protocols:

∙ The synchronization among multiple machines is common in dis-

tributed concurrency control (e.g. Chiller [20]) and commitment

protocols (e.g., EasyCommit [37]), and it can be offloaded to

switches using the in-switch GaS operation.

∙ The message reordering and admission control in SwitchTx are

general. Message reordering allows database to assign protocol-

specific priority to each packet, and admission control can adjust

MPL based on different performance metrics.

∙ The switches in SwitchTx do not store the data. Our techniques

do not affect the original recovery algorithm of node failure.

3.6.3 Practicality. We discuss the practicality in data centers:

∙ Switch topologies: SwitchTx can support environments with a

mix of normal switches and programmable switches, and the per-

centage of programmable switches only affects the performance.

∙ Memory usage in switches: The memory in a switch is limited to

about 15 MB, which needs to store the match-action tables and

registers. For match-action tables, message types in SwitchTx and

other normal route (e.g., ip and udp) rules are small. For registers,

each GaS slot uses 5 bytes (2 bytes for high 16-bit txn_id register,

1 byte for aborted register, and 2 bytes for counter register).

Assuming that the fastest transaction latency is 10µs, switches

can support 216

10µs
=6.1G txns/s parallel transactions, which cost

216 × 5B=0.3125MB registers.

∙ Network isolation in switches: We only add the GaS and reorder-

ing function for packets of SwitchTx protocol; function for other

network protocols is unmodified. SwitchTx can share switch re-

sources with other applications fairly via multi-tenancy studies

on programmable network [38].

∙ Cost: the current price of Barefoot Tofino switch (programmable)

and Mellanox typical switch are $220 and $93.75 per port, respec-

tively. Data centers already deploy programmable switches, such

as Alibaba [39] and Facebook [40].

4 IMPLEMENTATION

We use RoCE (RDMA over Converged Ethernet) as the network

stack of servers for high-performance communication.

Network routing. We use a general RPC framework [22, 41, 42] to

transmit data messages, which is based on RDMA WRITE_WITH_IMM

switch
1

switch
2

switch
3

switch
0

servers

cables

Figure 9: The multi-switch topology.

(a two-sided verb) with the reliable connection (RC) transport. The

switches route the data messages by the IP protocol directly. Our

control messages use the RDMA RAW PACKET [43] based on the

UDP protocol. The switches can identity control messages using a

preserved UDP source port. The coordination logic and the mapping

from the bitmap (i.e., gather_group and scatter_group) to the

switch physical port are preloaded to the switches.

Packet steering. For simplicity, each server own the same number

of threads. For data messages, each thread establishes a QP (queue

pair) connection with a thread in other remote servers. For control

messages, the UDP destination port is used to indicate the different

threads, and each thread in a server is responsible for a fixed port. We

use the NIC steering mechanism to dispatch the control messages.

5 EVALUATION

We evaluate SwitchTx under various workloads, seeking to answer

the following questions:

∙ How do the different techniques employed in SwitchTx contribute

to overall performance (§5.2)?

∙ How does the in-switch GaS perform compared to the in-server

one? What are the benefits/overheads of admission control (§5.3)?

∙ How SwitchTx scale with the number of threads under both single-

switch and multi-switch environments (§5.4)?

∙ How do the characteristics of workloads affect SwitchTx (§5.5)?

∙ How does SwitchTx perform compared to deterministic OLTP

systems (§5.6)?

5.1 Experimental Setup

Experimental environment. SwitchTx is based on the symmet-

ric model where each thread acts as both participant and client.

We use 8 servers and 24 threads per server unless specified. Each

server has two 12-cores Xeon E5-2650 v4 2.20GHz CPU nodes,

and is equipped with a 100Gbps Mellanox ConnectX-5 NIC and

128GB memory. Regarding the partition scheme among servers,

we use consistent hashing [44]. The storage behind SwitchTx is

an in-memory key-value system; its index is cuckoo hash[45]. We

use 2-way primary-backup replication for all evaluations. We use

a Barefoot Tofino Wedge 100BF-32X switch [46] to simulate four

independent virtual switches in Figure 9, where the physical switch

connects itself with three cables. The connection between switches

must go through the cables and the resources on the physical switch

are partitioned into the four virtual switches. The environment of

this configuration is similar to the real multi-rack environment. The

network topology is the same as Figure 8.

2888

L
a

te
n

c
y
 (
μ

s
)

(d) TPC-C (4 W / server)

0
0.2
0.4
0.6
0.8
1.0

0
100
200
300
400
500

FaSST

+GaS
+Tree-GaS

+Reorder

+MPL

(c) TPC-C (24 W / server)

0

1

2

3

0

120

240

360

FaSST

+GaS
+Tree-GaS

+Reorder

+MPL

(b) YCSB-T (θ=0.99)

0

1

2

3

4

0

50

100

150

200

Eris
FaSST

+GaS
+Tree-GaS

+Reorder

+MPL

(a) YCSB-T (θ=0.8)T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Throughput Txn latency (P50) Txn latency (P90) Lock time (avg)

0
1
2
3
4
5
6

30
60
90
120
150
180

Eris
FaSST

+GaS
+Tree-GaS

+Reorder

+MPL

Figure 10: Overall performance. (a) YCSB-T with θ=0.8 and (c) TPC-C with 24 warehouses per server are the low-contention

workloads; (b) YCSB-T with θ=0.99 and (d) TPC-C with 4 warehouses per server are the high-contention workloads.

Workloads. We use the following two benchmarks:

YCSB-T. We modify YCSB [47] according to prior work [48]. Each

server maintains a single table, where each record contains 24

columns. Each column is a key-value pair, which is the access gran-

ularity, including an 8-byte key and a 16-byte value. The key con-

sists of the server_id, record_id, and column_id. Each trans-

action reads/writes 8 key-value pairs, and the write operation is

read-modify-write. To focus on evaluating distributed transactions,

the 8 keys are distributed on 8 servers by assigning the server_id.

The record_id is generated by Zipf distribution; the column_id

is randomly generated.

TPC-C. The TPC-C [49] benchmark simulates a wholesale supplier

with five types of transactions. We use new-order and payment trans-

actions, which are the two most dominant transactions (88%) and are

the primary source of conflicts [23, 48, 50]. To focus on evaluating

distributed transactions, all the items in new-order transactions are

from remote warehouses. We evaluate SwitchTx under workloads

with different distributed transaction configurations in §5.5.2.

Competitors. We compare SwitchTx with FaSST and Eris:

FaSST [23] is an OCC-based and RDMA-optimized distributed

transaction system with server-based coordination.

Eris [14] uses a central programmable switch for sequencing to

optimize independent deterministic transactions. we implement the

sequencer in Eris on the programmable switch based on the open-

source server-based sequencer [51]. Because Eris needs an extra

transaction chipping algorithm to convert the transactions in TPC-C

(they are not deterministic transactions) into multiple deterministic

transactions, we evaluate Eris only under YCSB-T.

For a fair comparison, we implement FaSST [52], Eris [51] with

the same network stack as SwitchTx. SwitchTx uses dynamic admis-

sion control to control the total concurrent transactions, and other

systems use static admission control (MPL = 2 for each thread in

YCSB-T, and MPL = 1 in TPC-C).

5.2 Overall Performance

To analyze the performance of SwitchTx, we apply each technique

one by one. We evaluate the performance under YCSB-T (Fig-

ure 10.(a) and (b)) and TPC-C (Figure 10.(c) and (d)) with different

conflict levels. YCSB-T changes the conflict levels by varying the

Zipf θ parameter; TPC-C changes the conflict levels by varying the

number of warehouses per server. The +GaS is equivalent to the

configuration where only the core switch is a programmable switch.

In Figure 10, +GaS represents that SwitchTx uses a single switch

(i.e., switch0 in Figure 9) to offload gather-and-scatter operations;

+Tree-GaS represents that a tree of switches in the cluster executes

the gather-and-scatter operation. +Reorder and +MPL (i.e., admis-

sion control) are two design parts of addressing the semantic gap

between transactions and network: reordering network messages via

the transaction semantic, and co-designing transaction admission

control with network congestion control, respectively.

5.2.1 Throughput. By comparing the throughput between Eris,

FaSST, and SwitchTx, we make the following three observations:

First, compared to FaSST, SwitchTx improves the throughput by

up to 1.81× and 1.87× under YCSB-T and TPC-C, respectively. The

throughput improvement from all four techniques: 1) In-switch GaS

saves CPU cycles of coordination, which can be used to initiate and

process more transactions; it also reduces conflicts between transac-

tions by shortening the contention span; it improves the throughput

by 1.63×, 1.48×, 1.54×, and 1.35× under the four benchmarks, re-

spectively. 2) The tree-based GaS reduces more network pressure

than GaS; and it uses a closer switch to handle GaS operations, fur-

ther shortening the contention span; it improves the throughput by

2.1%~7.8%. 3) The semantic-aware message reordering provides

a small improvement in throughput (up to 7.2%). 4) The dynamic

admission control adjusts MPL based on the throughput to make full

use of system resources; it improves the throughput by 5.0%, 13.4%,

4.8%, and 28.6% under the four benchmarks, respectively.

Second, under high-contention workloads (Figure 10.(b) and (d)),

dynamic admission control brings more performance improvement

compared to the improvement under low-contention workloads (Fig-

ure 10.(a) and (c)). This is because, in high-contention workloads,

the dynamic MPL mitigates performance degradation due to abort.

Third, the throughput of Eris is only 37.7% (55.0%) and 21.1%

(30.3%) of FaSST and SwitchTx under YCSB-T with θ=0.8 (0.99).

This is because SwitchTx and FaSST can use more CPU resources.

SwitchTx and FaSST use 192 threads, and Eris uses up to 40 threads

for the limitation of the centralized sequencer. The limitation is

that Eris needs to store the sequence number for each shard in the

packet header (4 bytes per shard in our evaluation). However, the

programmable switch can only parse 40 sequence numbers. There-

fore, Eris can only support 40 shards in our evaluation (evaluation

uses 15 shards in Eris’s paper). Eris is suitable for the scenario where

each thread is powerful but the number of threads is small, and we

will show SwitchTx throughput with the same number of threads in

the scalability evaluation (§5.4).

5.2.2 Latency. Figure 10 also shows the P50 and P99 end-to-end

latency. We make the following four observations:

2889

Baseline-P50
Baseline-P99

In-switch-P50
In-switch-P99

(b) single-switch

0

10

20

30

40

1 2 3 4 5 6 7

(a) multi-switch

L
a

te
n

c
y
 (
μ

s
)

0

10

20

30

40

50

1 2 3 4 5 6 7
of servers per GaS

Figure 11: P50 and P99 tail latency of GaS operations. 24

threads per server; one GaS operation per thread.

First, compared to FaSST, SwitchTx reduces the latency, due to

the first three technologies: +GaS, +Tree-GaS, +Reorder. In-switch

GaS operations (i.e., +GaS and +Tree-GaS) reduce the number of

network hops on the critical path of transaction committing. The

semantic-aware message reordering gives priority to messages of

retrying transactions, which reduces the P99 latency by up to 7.7%.

Second, in-switch GaS designs (i.e., +GaS and +Tree-GaS) re-

duce the median latency by up to 40.4% and 21.6% under YCSB-T

and TPC-C, respectively. This is because TPC-C has longer execute

phases than the YCSB-T. The optimizations are not evident, leading

to less latency reduction than YCSB-T.

Third, the admission control using throughput as the performance

metric brings higher latency. Under TPC-C, the latency of SwitchTx

is even worse than that of FaSST. This is because the dynamic

admission control in SwitchTx is aimed at optimizing throughput;

when throughput has room for improvement, it constantly increases

MPL, resulting in high network pressure and high latency.

Fourth, Eris has low latency under YCSB workloads. Due to

the in-switch centralized sequencer, Eris only needs 1 round trip to

commit an independent transaction. However, the latency in Eris is

longer than the latency of a network round trip (4µs); this is because

Eris has to wait for the completion of requests with smaller serial

numbers, instead of processing requests once it receives them.

5.2.3 Lock Time. Figure 10 also shows the average lock time.

The lock time is the time between lock acquisition and lock release.

The lock time is shorter under high-contention configurations for

both YCSB-T (Figure 10.(b)) and TPC-C (Figure 10.(d)). This is

because more transactions are aborted and retrying, which leads

to earlier lock releasing. In this evaluation, we only focus on the

lock time in the low-contention benchmark, because the lock time in

this benchmark can represent the contention span of transactions. In

YCSB-T with θ=0.8 (Figure 10.(a)), which has few inter-transaction

conflicts, thanks to the in-network coordination (+GaS), SwitchTx

reduces the lock time by 41.5%.

According to the overall performance evaluation, we can con-

clude that: 1) in-network coordination (+GaS and +Tree-GaS) in

SwitchTx alleviates the coordination cost of distributed transactions,

leading to higher throughput and lower latency; 2) the semantic-

aware message reordering (+Reorder) reduces the tail latency; 3)

throughput-optimized dynamic admission control (+MPL) fully ex-

ploits the throughput at the expense of latency; 4) Eris has lower

latency, but its throughput is limited by the scalability of the central-

ized sequencer.

Coordination

(a
)

C
P

U
 u

ti
liz

a
ti
o

n
(%

)

of shards / txn

0

50

100

2 4 8

(b
)

#
 o

f
p

a
c
k
e

ts
 /
 t
x
n

of shards / txn

0

20

40

60

80

2 4 8

Other

Polling

Remote ops

Issue txns
+GaS

+GaS

Figure 12: Saved CPU resources and packets from GaS.

Throughput Abort rate Txn latency (P50)

T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

L
a

te
n

c
y
 (
μ

s
)

MPL per thread

19% 18%
41%

75% 91% 99% 99%

0

1

2

3

4

0

60

120

180

240

Dynamic 1 2 3 4 5 6

Figure 13: Dynamic vs. static admission control under YCSB-T.

Total MPL × 24 × 8 concurrent txns. Zipf θ=0.99.

5.2.4 Recovery Time of Switch Failure. We stop and then restart

the switch to emulate the switch failure. SwitchTx needs 32 seconds

to reconfigure the switch and re-build the RC connection between

servers. All servers keep aborting and retrying the blocked transac-

tions until the switch recovers.

5.3 In-Depth Analysis

5.3.1 Latency of In-Switch GaS.. We evaluate the tail latency of

GaS operations for in-server implementation and in-switch imple-

mentation. We use 8 servers, each with 24 threads; each thread issues

a GaS operation, and each GaS operation completes the synchro-

nization among n (from 2 to 8) servers, similar to barrier operation

in MPI. Figure 11 shows the latency with the increasing number of

servers involved in the GaS operations. We make the following two

observations. First, due to the overhead of cross-rack communica-

tion, the latency of the multi-switch settings is higher than that of

single-switch settings. Compared with the baseline (i.e., in-server)

GaS operation, in-switch GaS operation reduces P99 latency up to

48.4% and 45.2% in multi-switch and single-switch settings respec-

tively. The extra latency of cross-rack communication for in-switch

GaS is less. Second, as n grows, the latency increases, since GaS

operation is affected by the slowest messages, and the more involved

servers in a GaS operation, its latency is more likely to be affected

by the network quality fluctuations.

5.3.2 CPU Saving of In-Switch GaS.. Figure 12 shows the CPU

utilization and the packets of different functions in the systems

without/with in-switch GaS. We make the following two observa-

tions. First, in the baseline, each server costs 24.2%∼33.0% of CPU

resources for coordination. SwitchTx uses them to perform other

operations (i.e., issuing new transactions and processing data opera-

tions as participants), which can achieve higher throughput. Second,

in the baseline, as the number of shards involved in each transaction

2890

(c) TPC-C

 (24 w / server)

of threads

1

2

3

0 40 80 120 160 200

(b) YCSB-T (θ=0.99)

 single-switch

of threads

1

2

3

4

5

0 40 80 120 160 200

1

40

of threads

(a) YCSB-T (θ=0.99)

 multi-switch

T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

) Eris FaSST SwitchTx

1

2

3

4

0 40 80 120 160 200

1

40

Figure 14: Throughput scalability under YCSB-T and TPC-C. Servers in (a) and (c) locate in three racks (multi-switch); all servers

in (b) locate in a single rack (single-switch).

Eris
FaSST

SwitchTx (+Tree-GaS)
SwitchTx (+all)

(a)

T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

Zipf θ

0

4

0 0.2 0.4 0.6 0.8 1.0

(b)

P
5

0
 l
a

te
n

c
y
 (
μ

s
)

Zipf θ

0

40

80

120

0 0.2 0.4 0.6 0.8 1.0

Figure 15: YCSB-T with varing Zipf θ.

increases, the average number of coordination packets per transac-

tion in the server increases from 8.4% to 29.1%. With in-switch GaS,

the server only needs to process about 1.6 packets for the coordi-

nation of each transaction. Therefore, in-switch GaS brings higher

performance improvement for transactions with more participants.

5.3.3 Admission Control. We evaluate the benefits of our dynamic

admission control. To compare dynamic admission control with the

static admission control, we evaluate the throughput and latency of

SwitchTx with static MPL, as shown in Figure 13. We observe that the

performance is the highest when MPL=2 in static admission control,

but SwitchTx with dynamic one still boosts throughput by 13.4%

and has 4.3% less latency. This is because the dynamic admission

control changes the MPL over time based on real-time performance.

5.4 Scalability

We use 8 servers and increase the threads in each server to eval-

uate the scalability under YCSB-T (Figure 14.(a)(b)) and TPC-C

(Figure 14.(c)). In this evaluation, (a) and (c) use the multi-switch

topology; (b) uses the single-switch topology.

Scalability of FaSST and SwitchTx. The throughput of FaSST and

SwitchTx are scalable as the thread count increases. This is because

they do not have a centralized component for different transactions.

Scalability of Eris. As shown in Figure 14.(a), Eris performs worse

than SwitchTx under multi-switch even at the small scale. this is

because its centralized sequencer becomes the performance killer.

As shown in Figure 14.(b), when all servers in the same rack, Eris

performs better than SwitchTx at this small scale. However, the

number of threads in each server of Eris is 5 (total 40 threads) due

to the limited header size in programmable switches. Note that our

throughput of 8 servers is up to 5.18Mops, which is larger than the

software sequencer capacity (i.e., 1.61Mops using the dedicated

FaSST
SwitchTx (+Tree-GaS)

SwitchTx (+all)

(a)

T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

of warehouses per server

0

1

2

3

4 8 12 16 20 24

(b)

P
5

0
 l
a

te
n

c
y
 (
μ

s
)

of warehouses per server

0

100

200

300

4 8 12 16 20 24

Figure 16: TPC-C with varing # of warehouses.

servers) in the Eris paper. In SwitchTx, the throughput does not

reach the switch bottleneck.

Further, the scalability of Eris is not linear when the number of

threads is from 8 to 40. This is because 1) Eris needs the switch’s

coordination, even if the keys of a transaction are on the same server

(but on the different threads); 2) Eris needs to process requests in

the order of sequence numbers, and as the concurrent request count

increases, the network out-of-order problem blocks the threads in

Eris, which also damages the performance.

We also emulate a switch using a server. Because Eris needs to

guarantee the atomicity of sequencer vector update, which is diffi-

cult to be scaled to multiple threads, the simulated switch uses only

one thread. When there are 30 threads in the system with YCSB-T

workload, the throughput of FaSST, Eris and SwitchTx are 0.24Mop-

s/s, 0.29Mops/s, and 0.4Mops/s, respectively. This is because Eris’s

packets require more processing resources (i.e., multiple operations

on the sequencer vector) than the other two systems.

5.5 Sensitivity Analysis

5.5.1 Varying the Contention Level of Workloads. Figure 15

shows the throughput and P50 (median) latency under YCSB-T with

varying Zipf θ. Figure 16 shows the performance under TPC-C with

varying warehouse count. We have the following two observations:

First, compared to FaSST, SwitchTx improves the throughput

by 1.67×~2.16× under different contention levels. This is not only

because SwitchTx saves CPU resources, but also because SwitchTx

reduces conflicts by shortening the contention span.

Second, compared to FaSST, SwitchTx (+Tree-GaS) reduces the

latency by 18.9%~39.5% under different contention levels. SwitchTx

(+all), which uses the dynamic admission control, trades the la-

tency for higher throughput. In YCSB-T (Figure 15.(b)), the latency

in SwitchTx (+all) decreases when the Zipf θ increases. Because

2891

FaSST SwitchTx

(b) TPC-C (24 w / server)

% of items from remote warehouses

0
1
2
3
4
5
6

0 20 40 60 80 100

(a) YCSB-T (θ=0.99)

T
h

ro
u

g
h

o
u

t
(M

 t
x
n

s
/s

)

of shards per txn

0
1
2
3
4
5
6

2 3 4 5 6 7 8

Figure 17: Throughput with varing % of distributed txns.

aria calvi

L
a

te
n

c
y
 (
μ

s
) (b)

1

10
2

10
4

0 1 10 50 100

Aria Calvin SwitchTx

T
h

ro
u

g
h

p
u

t
(M

 t
x
n

s
/s

)

% of items from remote warehouses

(a)

0

2

4

6

0 1 10 50 100

Figure 18: TPC-C with other CC protocols.

the MPL for YCSB-T in SwitchTx (+all) decreases when the con-

tention level becomes high. In TPC-C (Figure 16.(b)), the latency

in SwitchTx (+all) is always higher than the latency in SwitchTx

(+Tree-GaS) and FaSST. This is because the transactions in TPC-C

have a longer execution phase, which means higher retry overhead.

SwitchTx (+all) has more retrying transactions for the higher MPL.

5.5.2 Varying the Percentage of Distributed Transactions. We

design SwitchTx for distributed transactions. SwitchTx has no per-

formance improvement for single-partition transactions. We evaluate

the throughput under workloads with different percentages of dis-

tributed transactions. In YCSB-T (Figure 17.(a)), as the number

of partitions involved in each transaction increases, compared to

FaSST, the throughput improvement of SwitchTx is from 1.17×

to 1.81×. In TPC-C (Figure 17.(b)). The percentage of items from

remote warehouses in new-order transactions affects the percent-

age of distributed transactions. With the increasing percentages, the

throughput improvement of SwitchTx is from 1.11× to 1.86×.

5.6 Comparison with Other CC protocols

We compare SwitchTx with two state-of-the-art deterministic OLTP

systems. We use the open-source codes [53] of Aria [16].

Calvin [7] is a classical deterministic OLTP system that orders trans-

actions and acquires the locks before executing transactions.

Aria [16] is a state-of-the-art deterministic OLTP system which

allows read/write sets unknown before transaction execution.

Figure 18 shows the throughput and median latency under TPC-

C. We increase the percentage of remote items in New-Order to

increase the percentage of cross-shard transactions. We observe that

the performance of Aria and Calvin degrades significantly as the

number of cross-shard transactions increases. When all items are

from remote warehouses, the throughput of SwitchTx is 10.2× and

10.6× higher than the throughput of Aria and Calvin, respectively.

This is because the cross-shard transactions in Aria and Calvin cause

blocking and need a lot of network communication. Further, Aria

and Calvin have much higher latency than SwitchTx due to batching.

6 RELATED WORK
Distributed Transaction System. We discuss the related work in

the field of distributed transaction systems.

Admission control in the transaction system. Industry-level databases

usually use the static admission control to control the number of con-

current transactions. Further, some studies design adaptive admission

control [54, 55] to handle dynamic workloads. Cicada [56] adjusts

the backoff of retry transactions to reduce contention. SwitchTx

explores the relationship between congestion control and admission

control, to co-design them for distributed transaction systems.

Distributed transaction system under fast network. Some studies [5,

24, 27] use RDMA to design distributed transaction systems. FaSST

[23] leverages scalable RDMA primitives to improve performance.

DrTM [32, 57] combines RDMA and hardware transactional mem-

ory. NAM-DB [58] focuses on scalability in the RDMA-based dis-

tributed transaction system. These variant distributed transaction

systems are orthogonal to SwitchTx, and we can apply our scalable

GaS to them and make these systems perform better.

In-network transaction scheduling. AlNiCo [59] uses FPGA-based

SmartNICs to schedule transaction requests, reducing contention

between multiple CPU cores. Jepsen et al. [60, 61] introduce batch-

based transaction reordering, grouping, and steering techniques in

programmable switches to amortize the transaction overhead and

reduce contention. They focus on single-server transactions and can

not support distributed transactions.

In-switch cache system. Some studies leverage the memory in the

switch to build the cache layer(e.g., NetCache [62], DistCache [63],

and P4DB [64]) for distributed systems. NOCC [65] uses switches

to cache versions and keys of data. Different from them, SwitchTx

offloads the coordination task to a tree of switches instead of storing

the data in switches. Using memory in switches to cache the data or

locks will further exploit the performance but would complicate the

crash consistency design; we leave it as our future work.

In-Network Aggregation Accelerator. Some studies [66–69] use

programmable switches to accelerate aggregation work in AI train-

ing system. Different from the above studies, our proposed GaS ab-

straction aims to aggregate coordination metadata (rather than data).

HovercRaft++ [70] is a replication system based on Raft using the

switch to gather ACK messages from followers. Different from it,

SwitchTx aims to accelerate all phases in the concurrency control

and replication protocols and aims to be scalable to all switches.

7 CONCLUSION
This paper presents SwitchTx, a fast and scalable transaction process-

ing system. SwitchTx introduces in-network gather-and-scatter oper-

ations to mitigate coordination between servers. Moreover, SwitchTx

utilizes multiple switches to parallelize disjoint transactions and

avoid the single-point bottleneck. SwitchTx realizes transaction traf-

fic control to fully utilize network resources.

ACKNOWLEDGEMENTS
We sincerely thank the reviewers for their valuable feedback. We

also thank Minhui Xie, Zhe Yang, Jing Wang, and Jian Gao for their

suggestions. This work is funded by the National Natural Science

Foundation of China (Grant No.62022051, 61832011, 61872376),

Huawei,and the CCF-Huawei Innovation Research Plan.

2892

REFERENCES
[1] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally distributed database. ACM

Transactions on Computer Systems (TOCS), 31(3):1–22, 2013.
[2] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

control and recovery in database systems, volume 370. Addison-wesley New
York, 1987.

[3] Philip A Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Computing Surveys (CSUR), 13(2):185–221, 1981.

[4] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.

[5] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:
distributed transactions with consistency, availability, and performance. In Pro-

ceedings of the 25th symposium on operating systems principles, pages 54–70,
2015.

[6] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel,
and Kenneth A. Ross. Reducing database locking contention through multi-version
concurrency. Proc. VLDB Endow., 7(13):1331–1342, aug 2014.

[7] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, pages 1–12, 2012.
[8] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting

more concurrency from distributed transactions. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14), pages 479–494, 2014.
[9] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang

Wang. High-performance acid via modular concurrency control. In Proceedings

of the 25th Symposium on Operating Systems Principles, pages 279–294, 2015.
[10] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic concurrency

control through transaction batching and operation reordering. Proceedings of the

VLDB Endowment, 12(2):169–182, 2018.
[11] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim, and Wolfgang

Lehner. Sharing opportunities for oltp workloads in different isolation levels.
Proceedings of the VLDB Endowment, 13(10):1696–1708, 2020.

[12] Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma, Arvind Krish-
namurthy, Dan RK Ports, and Irene Zhang. Meerkat: multicore-scalable replicated
transactions following the zero-coordination principle. In Proceedings of the

Fifteenth European Conference on Computer Systems, pages 1–14, 2020.
[13] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, et al. H-store: a high-performance, distributed main memory transac-
tion processing system. Proceedings of the VLDB Endowment, 1(2):1496–1499,
2008.

[14] Jialin Li, Ellis Michael, and Dan RK Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In Proceedings of the 26th

Symposium on Operating Systems Principles, pages 104–120, 2017.
[15] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi. Q-store: Distributed,

multi-partition transactions via queue-oriented execution and communication. In
EDBT, pages 73–84, 2020.

[16] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A fast and practical
deterministic oltp database. Proc. VLDB Endow., 13(12):2047–2060, jul 2020.

[17] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu. InfiniFS: An
efficient metadata service for Large-Scale distributed filesystems. In 20th USENIX

Conference on File and Storage Technologies (FAST 22), pages 313–328, Santa
Clara, CA, February 2022. USENIX Association.

[18] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden.
Schism: a workload-driven approach to database replication and partitioning.
2010.

[19] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction processing systems. Proceedings of

the VLDB Endowment, 8(3):245–256, 2014.
[20] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. Chiller:

Contention-centric transaction execution and data partitioning for modern net-
works. In Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data, pages 511–526, 2020.
[21] Thamir M. Qadah and Mohammad Sadoghi. Quecc: A queue-oriented, control-free

concurrency architecture. In Proceedings of the 19th International Middleware

Conference, Middleware ’18, page 13–25, New York, NY, USA, 2018. Association
for Computing Machinery.

[22] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: An rdma-enabled
distributed persistent memory file system. In Proceedings of the 2017 USENIX

Conference on Usenix Annual Technical Conference, USENIX ATC ’17, page
773–785, USA, 2017. USENIX Association.

[23] Anuj Kalia, Michael Kaminsky, and David G Andersen. Fasst: Fast, scalable
and simple distributed transactions with two-sided (rdma) datagram rpcs. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

16), pages 185–201, 2016.
[24] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.

Farm: fast remote memory. In 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), pages 401–414, 2014.
[25] Chao Wang, Kezhao Huang, and Xuehai Qian. A comprehensive evaluation of

rdma-enabled concurrency control protocols. CoRR, abs/2002.12664, 2020.
[26] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu, Junru Li, and Youyou Lu.

Th-dpms: Design and implementation of an rdma-enabled distributed persistent
memory storage system. ACM Trans. Storage, 16(4), oct 2020.

[27] Masoud Hemmatpour, Bartolomeo Montrucchio, Maurizio Rebaudengo, and Mo-
hammad Sadoghi. Analyzing in-memory nosql landscape. IEEE Transactions on

Knowledge and Data Engineering, 34(4):1628–1643, 2022.
[28] Dan RK Ports and Jacob Nelson. When should the network be the computer? In

Proceedings of the Workshop on Hot Topics in Operating Systems, pages 209–215,
2019.

[29] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker.
Thoughts on load distribution and the role of programmable switches. ACM

SIGCOMM Computer Communication Review, 49(1):18–23, 2019.
[30] Theophilus A Benson. In-network compute: Considered armed and dangerous. In

Proceedings of the Workshop on Hot Topics in Operating Systems, pages 216–224,
2019.

[31] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu. Con-
cordia: Distributed shared memory with in-network cache coherence. In 19th

USENIX Conference on File and Storage Technologies (FAST 21), pages 277–292,
2021.

[32] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast in-
memory transaction processing using rdma and htm. In Proceedings of the 25th

Symposium on Operating Systems Principles, pages 87–104, 2015.
[33] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Deconstructing rdma-

enabled distributed transactions: Hybrid is better! In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18), pages 233–251, 2018.
[34] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew

Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. Zeus: locality-aware distributed transactions. In Proceedings of the

Sixteenth European Conference on Computer Systems, pages 145–161, 2021.
[35] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew

Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:
Distributed transactions with consistency, availability, and performance. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page
54–70, New York, NY, USA, 2015. Association for Computing Machinery.

[36] Mohammad Sadoghi and Spyros Blanas. Transaction processing on modern
hardware. Synthesis Lectures on Data Management, 14(2):1–138, 2019.

[37] Suyash Gupta and Mohammad Sadoghi. Easycommit: A non-blocking two-phase
commit protocol. In EDBT, pages 157–168, 2018.

[38] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan RK Ports,
and Aurojit Panda. Multitenancy for fast and programmable networks in the cloud.
In 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20),
2020.

[39] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao, Zhiguo
Li, Kun Liu, Jie Lu, Jianyuan Lu, Enge Song, Jiao Zhang, Tao Huang, and Shunmin
Zhu. Sailfish: Accelerating cloud-scale multi-tenant multi-service gateways with
programmable switches. In Proceedings of the 2021 ACM SIGCOMM 2021 Con-

ference, SIGCOMM ’21, page 194–206, New York, NY, USA, 2021. Association
for Computing Machinery.

[40] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani, Rob
Sherwood, Ying Zhang, and Hongyi Zeng. Fboss: Building switch software at
scale. In Proceedings of the 2018 Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’18, page 342–356, New York, NY, USA,
2018. Association for Computing Machinery.

[41] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable rdma rpc on reliable connec-
tion with efficient resource sharing. In Proceedings of the Fourteenth EuroSys

Conference 2019, pages 1–14, 2019.
[42] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu. Octopus+:

An rdma-enabled distributed persistent memory file system. ACM Trans. Storage,
17(3), aug 2021.

[43] Mellanox. Raw packet.
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-
introduction---code-example, 2020.

[44] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proceedings of the twenty-ninth

annual ACM symposium on Theory of computing, pages 654–663, 1997.
[45] Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J Freedman.

Algorithmic improvements for fast concurrent cuckoo hashing. In Proceedings of

the Ninth European Conference on Computer Systems, pages 1–14, 2014.

2893

https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example

[46] Barefoot Technologies Corporation. Barefoot tofino
https://barefootnetworks.com/products/brief-tofino/, 2018.

[47] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143–154, 2010.
[48] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira.

Opportunities for optimism in contended main-memory multicore transactions.
Proceedings of the VLDB Endowment, 13(5):629–642, 2020.

[49] Standard Specification. TPC BENCHMARK C. 1994.
[50] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. Staring into the abyss: An evaluation of concurrency control with
one thousand cores. Proc. VLDB Endow., 8(3):209–220, November 2014.

[51] Jialin Li, Ellis Michael, and Dan RK Ports. Implementation of the Eris protocol
with the software sequencer.
https://github.com/nicklijl/simbricks-nopaxos, 2021.

[52] Anuj Kalia, Michael Kaminsky, and David G Andersen. Implementation of
FaSST.
https://github.com/efficient/fasst, 2017.

[53] Yi Lu, Yu Xiangyao, Lei Cao, and Madden Samuel. Implementation of the Aria.
https://github.com/luyi0619/aria, 2021.

[54] Donghui Wang, Peng Cai, Weining Qian, and Aoying Zhou. Discriminative
admission control for shared-everything database under mixed oltp workloads. In
2021 IEEE 37th International Conference on Data Engineering (ICDE), pages
780–791. IEEE, 2021.

[55] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar, Erich Nahum, and Adam
Wierman. How to determine a good multi-programming level for external sched-
uling. In 22nd International Conference on Data Engineering (ICDE’06), pages
60–60. IEEE, 2006.

[56] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. Cicada: Depend-
ably fast multicore in-memory transactions. In Proceedings of the 2017 ACM

International Conference on Management of Data, pages 21–35, 2017.
[57] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. Fast and

general distributed transactions using rdma and htm. In Proceedings of the

Eleventh European Conference on Computer Systems, pages 1–17, 2016.
[58] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. The end of a myth:

Distributed transactions can scale. arXiv preprint arXiv:1607.00655, 2016.
[59] Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe Yang, and Jiwu Shu. AlNiCo:

SmartNIC-accelerated contention-aware request scheduling for transaction pro-
cessing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages

951–966, Carlsbad, CA, July 2022. USENIX Association.
[60] Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and Philippe Cudré-

Mauroux. In-network support for transaction triaging. 2021.
[61] Theo Jepsen. Building blocks for leveraging in-network computing. PhD thesis,

Università della Svizzera italiana, 2020.
[62] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Symposium on Operating Systems

Principles, pages 121–136, 2017.
[63] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir

Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load balancing for large-
scale storage systems with distributed caching. In 17th USENIX Conference on

File and Storage Technologies (FAST 19), pages 143–157, 2019.
[64] Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig. P4db - the

case for in-network oltp. In Proceedings of the 2022 International Conference

on Management of Data, SIGMOD ’22, page 1375–1389, New York, NY, USA,
2022. Association for Computing Machinery.

[65] Theo Jepsen, Leandro Pacheco de Sousa, Masoud Moshref, Fernando Pedone, and
Robert Soulé. Infinite resources for optimistic concurrency control. In Proceedings

of the 2018 Morning Workshop on In-Network Computing, pages 26–32, 2018.
[66] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian

Huang. Accelerating distributed reinforcement learning with in-switch computing.
In Proceedings of the 46th International Symposium on Computer Architecture,
pages 279–291, 2019.

[67] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael M Swift. Atp: In-network aggregation for multi-tenant
learning. In NSDI, pages 741–761, 2021.

[68] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. Scaling distributed machine learning with in-network aggregation.
arXiv preprint arXiv:1903.06701, 2019.

[69] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca, Peter
Pietzuch, and Alexander L Wolf. Netagg: Using middleboxes for application-
specific on-path aggregation in data centres. In Proceedings of the 10th ACM

International on Conference on emerging Networking Experiments and Technolo-

gies, pages 249–262, 2014.
[70] Marios Kogias and Edouard Bugnion. Hovercraft: Achieving scalability and

fault-tolerance for microsecond-scale datacenter services. Technical report, 2020.

2894

https://barefootnetworks.com/products/brief-tofino/
https://github.com/nicklijl/simbricks-nopaxos
https://github.com/efficient/fasst
https://github.com/luyi0619/aria

